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10.1

LEARNING OBJECTIVES

In this unit, the student is exposed to 
• oscillatory motion – periodic motion and non-periodic motion
• simple harmonic motion 
• angular harmonic motion
• linear harmonic oscillator – both horizontal and vertical
• combination of springs – series and parallel
• simple pendulum
• expression of energy – potential energy, kinetic energy and total energy
• graphical representation of simple harmonic motion
• types of oscillation – free, damped, maintained and forced oscillations 
• concept of resonance

Have you seen the Th anjavur Dancing Doll 
(In Tamil, it is called ‘Th anjavur thalayatti 
bommai’)?. It is a world famous Indian 

U N I T

10 OSCILLATIONS

Life is a constant oscillation between the sharp horns of a dilemma  – H.L. Mencken

cultural doll (Figure 10.1). What does this 
doll do when disturbed? It will dance such 
that the head and body move continuously 
in a to and fro motion, until the movement 
gradually stops. Similarly, when we walk on 
the road, our hands and legs will move front 
and back. Again similarly, when a mother 
swings a cradle to make her child sleep, the 
cradle is made to move in to and fro motion. 
All these motions are diff erent from the 
motion that we have discussed so far. Th ese 
motions are shown in Figure 10.2. Generally, 
they are  known as oscillatory motion or 
vibratory motion. A similar motion occurs 
even at atomic levels. When the temperature is 
raised, the atoms in a solid vibrate about their 
rest position (mean position or equilibrium 
position). Th e study of vibrational motion is 
very important in engineering  applications, 
such as, designing the structure of building, 
mechanical equipments, etc.  

Figure 10.1. Th anjavur dancing doll

INTRODUCTION
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Unit 10 Oscill ations 189

b. Non-periodic motion
c. Periodic motion

EXAMPLE 10.2

Which of the following functions of time 
represent periodic and non-periodic 
motion?. 
a. sin ωt + cos ωt
b. ln ωt

Solution

a. Periodic
b. Non-periodic

Question to ponder

Discuss “what will happen if the 
motion of the Earth around the Sun is 
not a periodic motion”.  

10.1.2  Oscillatory motion

When an object or a particle moves back and 
forth repeatedly for some duration of time its 
motion is said to be oscillatory (or vibratory). 
Examples; our heart beat, swinging motion 
of the wings of an insect, grandfather’s 
clock (pendulum clock), etc.  Note that all 
oscillatory motion are periodic whereas all 
periodic motions need not be oscillation in 
nature. see Figure 10.3

10.1.1  Periodic and non-
periodic motion

Motion in physics can be classifi ed as 
repetitive (periodic motion) and non-
repetitive (non-periodic motion).

1. Periodic motion 
Any motion which repeats itself in 
a fi xed time interval is known as 
periodic motion. 
Examples : Hands in pendulum clock, 
swing of a cradle, the revolution of 
the Earth around the Sun, waxing and 
waning of Moon, etc.

2. Non-Periodic motion
Any motion which does not repeat 
itself aft er a regular interval of time is 
known as non-periodic motion. 
Example : Occurance of Earth quake, 
eruption of volcano, etc.  

EXAMPLE 10.1

Classify the following motions as periodic 
and non-periodic motions?.
a. Motion of Halley’s comet. 
b. Motion of clouds.
c. Moon revolving around the Earth. 

Solution

a. Periodic motion

Figure 10.2. Motions
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Unit 10 Oscill ations190

Simple harmonic motion is a special type of 
oscillatory motion in which the acceleration 
or force on the particle is directly 
proportional to its displacement from a 
fi xed point and is always directed towards 
that fi xed point. In one dimensional case, let 
x be the displacement of the particle and ax 
be the acceleration of the particle, then  

ax ∝ x (10.1)

ax = − b x (10.2)

where b is a constant which measures 
acceleration per unit displacement and 
dimensionally it is equal to T   −2. By 
multiplying by mass of the particle on both 
sides of equation (10.2) and from Newton’s 
second law, the force is 

Fx= − k x (10.3)

where k is a force constant which is defi ned 
as force per unit length. Th e negative sign 
indicates that displacement and force (or 
acceleration) are in opposite directions. Th is 
means that when the displacement of the 
particle is taken towards right of equilibrium 
position (x takes positive value), the force (or 
acceleration) will point towards equilibrium 
(towards left ) and similarly, when the 

Figure 10.3 Oscillatory or vibratory motions

10.2
SIMPLE HARMONIC 
MOTION (SHM)

Figure 10.4 Simple Harmonic Motion

Equilibrium position

A simple harmonic motion is a 
special type of oscillatory 
motion. But all oscillatory 
motions need not be simple 
harmonic . 

NoteNote
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Unit 10  Oscill ations 191

displacement of the particle is taken towards 
left of equilibrium position (x takes negative 
value), the force (or acceleration) will 
point towards equilibrium (towards right). 
This type of force is known as restoring 
force because it always directs the particle 
executing simple harmonic motion to restore 
to its original (equilibrium or mean) position. 
This force (restoring force) is central and 
attractive whose center of attraction is the 
equilibrium position.

In order to represent in two or three 
dimensions, we can write using vector 
notation 

	


F k r  � (10.4)

where r  is the displacement of the particle 
from the chosen origin. Note that the force 
and displacement have a linear relationship.  
This means that the exponent of force 



F  and 
the exponent of displacement r  are unity. 
The sketch between cause (magnitude of force  
|


F |) and effect (magnitude of displacement 
| r |) is a straight line passing through 
second and fourth quadrant as shown in 

Figure 10.5. By measuring slope 1
k

, one can 
find the numerical value of force constant k.  

Slope = 
xx
F

F

1
k

1
Slope

=

k = 

Figure 10.5  Force verses displacement graph

10.2.1  The projection of 
uniform circular motion on a 
diameter of SHM

Consider a particle of mass m moving with 
uniform speed v along the circumference of 
a circle whose radius is r in anti-clockwise 
direction (as shown in Figure 10.6). Let us 
assume that the origin of the coordinate 
system coincides with the center O of the circle.  
If ω is the angular velocity of the particle 
and θ the angular displacement of the 
particle at any instant of time t, then θ = ωt. 
By projecting the uniform circular motion 
on its diameter gives a simple harmonic 
motion. This means that we can associate 

Figure 10.6  Projection of moving particle on a circle on a diameter
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Unit 10  Oscill ations192

a map (or a relationship) between uniform 
circular (or revolution) motion to vibratory 
motion. Conversely, any vibratory motion 
or revolution can be mapped to uniform 
circular motion. In other words, these two 
motions are similar in nature. 

	 Let us first project the position of a 
particle moving on a circle, on to its vertical 
diameter or on to a line parallel to vertical 
diameter as shown in Figure 10.7. Similarly, 
we can do it for horizontal axis or a line 
parallel to horizontal axis. 

The following figures explain the position of particle at different time :

Figure 10.7  The location of a particle at each instant as projected on a vertical axis
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Unit 10  Oscill ations 193

As a specific example, consider a spring 
mass system (or oscillation of pendulum) 
as shown in Figure 10.8. When the spring 
moves up and down (or pendulum moves 
to and fro), the motion of the mass or bob 
is mapped to points on the circular motion. 

Figure 10.8  Motion of spring mass (or 
simple pendulum) related to uniform 
circular motion

Thus, if a particle undergoes  uniform 
circular motion then the projection of 
the particle on the diameter of the circle 
(or on a line parallel to the diameter ) 
traces straightline motion which is simple 
harmonic  in nature. The circle is known 
as reference circle of the simple harmonic 
motion. The simple harmonic motion 
can also be defined as the motion of the 
projection of a particle on any diameter of 
a circle of reference. 

a.	 Sketch the projection of spiral in 
motion as a wave form.

b.	 Sketch the projection of spiral out 
motion as a wave form.

Activity

10.2.2  Displacement, 
velocity, acceleration and its 
graphical representation - SHM

Figure 10.9  Displacement, velocity and 
acceleration of a particle at some instant 
of time 
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The distance travelled by the vibrating particle 
at any instant of time t from its mean position 
is known as displacement. Let P be the 
position of the particle on a circle of radius  
A at some instant of time t as shown in 
Figure 10.9. Then its displacement y at that 
instant of time t can be derived as follows
In ∆OPN

	 sin sinθ θ= ⇒ =
ON
OP

ON OP � (10.5)

But θ = ωt, ON = y and OP = A
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Unit 10  Oscill ations194

	 y = A sin ωt� (10.6)

The displacement y takes maximum value 
(which is equal to A) when sin ωt = 1. This 
maximum displacement from the mean position 
is known as amplitude (A) of the vibrating particle.  
For simple harmonic motion, the amplitude is 
constant. But, in general, for any motion other 
than simple harmonic, the amplitude need not 
be constant, it may vary with time. 

Velocity
The rate of change of displacement is velocity.  
Taking derivative of equation (10.6) with 
respect to time, we get 

	 v dy
dt

d
dt

= = (A sin ωt)

For circular motion (of constant radius), 
amplitude A is a constant and further, for 
uniform circular motion, angular velocity  
ω is a constant. Therefore,

	 v dy
dt

= = A ω cos ωt� (10.7)

Using trigonometry identity, 
sin2 ωt + cos2 ωt =1 ⇒ cos ωt = 1 2-sin ωt
we get
	 v A t= −ω ω1 2sin

From equation (10.6), 

sinωt y
A

=

 v A y
A

= −







ω 1

2

	 v A y= −ω 2 2 � (10.8)

From equation (10.8), when the displacement 
y = 0, the velocity v = ωA (maximum) and 
for the maximum displacement y = A, the 
velocity v = 0 (minimum). 
As displacement increases from zero to 
maximum, the velocity decreases from 
maximum to zero. This is repeated. 
Since velocity is a vector quantity, equation 
(10.7) can also be deduced by resolving in to 
components. 

Acceleration
The rate of change of velocity is acceleration. 

	 a dv
dt

d
dt

A t= = ( )ω ωcos

	 a A t y=− =−ω ω ω2 2sin � (10.9)

    ∴	 a
d y
dt

y= =−
2

2
2ω � (10.10)

From the Table 10.1 and figure 10.10, 
we observe that at the mean position 

Table 10.1 Displacement, velocity and acceleration at different instant of time.

Time
0

T
4  

2

4

T 3

4

T 4
4
T T=

ωt
0 π

2
π 3

2
π 2π

Displacement
y =A sin ωt

0 A 0 −A 0

Velocity
v =A ω cos ωt

A ω 0 −A ω 0 A ω

Acceleration
a =-A ω2 sin ωt

0 −A ω2 0 A ω2 0
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Unit 10  Oscill ations 195

(y = 0), velocity of the particle is 
maximum but the acceleration of the 
particle is zero. At the extreme position  
(y = ±A), the velocity of the particle is zero 
but the acceleration is maximum ±Aω2 
acting in the opposite direction.

EXAMPLE 10.3

Which of the following represent simple 
harmonic motion? 
(i)	 	 x = A sin ωt + B cos ωt
(ii)		 x = A sin ωt+ B cos 2ωt
(iii)	 x = A eiωt

(iv)	 x = A ln ωt

Solution

(i)	 x = A sin ωt + B cos ωt

	 dx
dt

= A ω cos ωt − B ω sin ωt

	 d x
dt

2

2 = − ω2 (A sin ωt+ B cos ωt)

	 d x
dt

2

2 = − ω2x

This differential equation is similar to the  
differential equation of SHM (equation 
10.10). 
Therefore, x = A sin ωt + B cos ωt represents 
SHM. 
(ii)		 x =A sin ωt + B cos2ωt

	 dx
dt

= A ω cos ωt − B (2ω) sin2ωt

	 d x
dt

2

2 = − ω2 (A sin ωt+ 4B cos 2ωt)

	 d x
dt

2

2 ≠ − ω2x

This differential equation is not like the 
differential equation of a SHM (equation 
10.10). Therefore, x = A sin ωt + B cos 2ωt 
does not represent SHM. 
(iii)	 x = A eiωt

	 dx
dt

= A ωeiωt

	 d x
dt

2

2 =−A ω2 eiωt=−ω2x

This differential equation is like the 
differential equation of SHM (equation 
10.10). Therefore, x = A eiωt represents 
SHM. 
(iv)	 x = A ln ωt

	 dx
dt

= A
t

A
tω

ω







 =

	 d x
dt

2

2 =-
A
t 2  ⇒ d x

dt

2

2 ≠−ω2x

This differential equation is not like the 
differential equation of a SHM (equation 
10.10). Therefore, x = A ln ωt does not 
represent SHM. 

EXAMPLE 10.4

Consider a particle undergoing simple 
harmonic motion. The velocity of the 
particle at position x1 is v1 and velocity of 
the particle at position x2 is v2. Show that 
the ratio of time period and amplitude is

T
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Figure 10.10  Variation of displacement, 
velocity and acceleration at different 
instant of time
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Using equation (10.8) 

v = ω A x2 2-  ⇒v2 = ω2 (A2 − x2)
Therefore, at position x1, 

v A x1
2 2 2 2

1= −ω ( ) � (1)
Similarly, at position x2, 
v A x2

2 2 2
2
2= −ω ( ) � (2)

Subtrating (2) from (1), we get

v v A x A x x x1
2

2
2 2 2

1
2 2 2

2
2 2

2
2

1
2− = − − − = −ω ω ω( ) ( ) ( )

	v v A x A x x x1
2

2
2 2 2

1
2 2 2

2
2 2

2
2

1
2− = − − − = −ω ω ω( ) ( ) ( ) �

ω π=
−
−

⇒ =
−
−

v v
x x

T
x x
v v

1
2

2
2

2
2

1
2

2
2

1
2

1
2

2
22 � (3)

Dividing (1) and (2), we get

v
v

A x

A x
A v x v x

v v
1
2

2
2

2 2
1
2

2 2
2
2

1
2

2
2

2
2

1
2

1
2

2
2=

−( )
−( )

⇒ =
−
−

ω

ω
� (4)

Dividing equation (3) and equation (4), we 
have

T
A

x x
v x v x

=
−
−

2 2
2

1
2

1
2

2
2

2
2

1
2π

10.2.3  Time period, 
frequency, phase, phase 
difference and epoch in SHM.

(i)	 Time period
The time period is defined as the time taken 
by a particle to complete one oscillation. It 
is usually denoted by T. For one complete 
revolution, the time taken is t = T, therefore 

	 ωT = 2π ⇒T = 2π
ω

� (10.11) 

Then, the displacement of a particle 
executing simple harmonic motion can be 
written either as sine function or cosine 
function.

y(t)= A sin 2π
T

t  or  y(t) = A cos 2π
T

t

where T represents the time period. Suppose 
the time t is replaced by t + T, then the 
function 

	 y(t + T) = A sin 2π
T

 (t + T)

	 = A sin( 2π
T

t + 2π)

	 = A sin 2π
T

t = y(t)

	 y(t + T) = y(t)
Thus, the function repeats after one time period. 
This y(t) is an example of periodic function.

(ii)	Frequency and angular frequency
The number of oscillations produced by the 
particle per second is called frequency. It is 
denoted by f. SI unit for frequency is s−1 or 
hertz (In symbol, Hz). 
Mathematically, frequency is related to time 
period by

	 f
T

=
1 � (10.12)

The number of cycles (or revolutions) per 
second is called angular frequency. It is usually 
denoted by the Greek small letter ‘omega’, ω. 
Comparing equation (10.11) and equation 
(10.12), angular frequency and frequency 
are related by 

	 ω = 2πf� (10.13)

SI unit for angular frequency is rad s−1. (read 
it as radian per second)

(iii)  Phase
The phase of a vibrating particle at any instant 
completely specifies the state of the particle. 
It expresses the position and direction of 
motion of the particle at that instant with 
respect to its mean position (Figure 10.11). 

	 y = A sin (ωt + φ0)� (10.14)

where ωt + φ0 = φ is called the phase of the 
vibrating particle. At time t = 0 s (initial 
time), the phase φ = φ0 is called epoch (initial 
phase) where φ0 is called the angle of epoch. 
Phase difference: Consider two particles 
executing simple harmonic motions. Their 
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Unit 10  Oscill ations 197

equations are y1 = A sin(ωt + φ1) and  
y2 = A sin(ωt + φ2), then the phase difference  
∆φ= (ωt + φ2) − (ωt + φ1) = φ2 −φ1. 

A sin φ i

+A
Amplitude x

Phase at instant ti: φ(ti) = ω ti + φ i 

Phase at t = 0: φ i

A

–A

ti

ω

t
2π
ω

A sin φ (ti)

ω
π

Figure 10.11  The phase of vibrating 
particle at two instant of time.

EXAMPLE 10.5

A nurse measured the average heart beats 
of a patient and reported to the doctor in 
terms of time period as 0.8 s. Express the 
heart beat of the patient in terms of number 
of beats measured per minute.

Solution

Let the number of heart beats measured 
be f. Since the time period is inversely 
proportional to the heart beat, then 

f = 1 1
0 8

1 25 1

T
s= = −

.
.

One minute is 60 second, 

(1 second = 1
60

 minute ⇒ 1 s−1 = 60 min−1)

f =1.25 s−1 ⇒ f = 1.25 × 60 min−1 = 75 beats 
per minute

EXAMPLE 10.6

Calculate the amplitude, angular frequency, 
frequency, time period and initial phase 
for the  simple harmonic oscillation given 
below

a.	 y = 0.3 sin (40πt + 1.1)

b.	 y = 2 cos (πt)

c.	 y = 3 sin (2πt − 1.5)

Solution

Simple harmonic oscillation equation is  
y = A sin(ωt + φ0) or y =A cos(ωt + φ0)
a.	 For the wave, y = 0.3 sin(40πt +1.1)

	 Amplitude is A = 0.3 unit

	 Angular frequency ω = 40π rad s−1

	 Frequency f Hz= = =
ω
π

π
π2

40
2

20

	 Time period T
f

s= = =
1 1

20
0 05.

	 Initial phase is φ0 = 1.1 rad

b.	 For the wave, y = 2 cos (πt)

	 Amplitude is A = 2 unit

	 Angular frequency ω = π rad s−1

	 Frequency f Hz= = =
ω
π

π
π2 2

0 5.

	 Time period T
f

s= = =
1 1

0 5
2

.

	 Initial phase is φ0 = 0 rad

c.	 For the wave, y = 3 sin(2πt + 1.5)

	 Amplitude is A = 3 unit

	 Angular frequency ω = 2π rad s−1

	 Frequency f Hz= = =
ω
π

π
π2

2
2

1

	 Time period T
f

s= = =
1 1

1
1

	 Initial phase is φ0 = 1.5 rad

EXAMPLE 10.7

Show that for a simple harmonic motion, 
the phase difference between 
a.	 displacement and velocity is π

2
 radian 

or 90°. 
b.	 velocity and acceleration is π

2
 radian  

or 90°. 
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c.	 displacement and acceleration is  
π radian or 180°. 

Solution

a.	 The displacement of the particle 
executing simple harmonic motion 

	 y = A sinωt

	 Velocity of the particle is 

	 v A t A t= = +








ω ω ω ω πcos sin

2

	� The phase difference between 
displacement and velocity is π

2
. 

b.	 The velocity of the particle is 

v = A ω cos ωt

	 Acceleration of the particle is 

	 a A t A=− = +








ω ω ω ω π2 2

2
sin cos t

	� The phase difference between velocity 
and acceleration is π

2
. 

c.	 The displacement of the particle is 
	 y = A sinωt

	 Acceleration of the particle is 

	 a = − A ω2 sin ωt = A ω2 sin(ωt + π)

	� The phase difference between 
displacement and acceleration is π. 

at which the resultant torque acting on the 
body is taken to be zero is called mean 
position. If the body is displaced from the 
mean position, then the resultant torque acts 
such that it is proportional to the angular 
displacement and this torque has a tendency 
to bring the body towards the mean position.  
(Note: Torque is explained in unit 5)
Let 



θ  be the angular displacement of the 
body and the resultant torque τ  acting on 
the body is 

	 τ θ
 

µ � (10.15)

	 τ κθ
 

=− � (10.16)

κ  is the restoring torsion constant, which is 
torque per unit angular displacement. If I is 
the moment of inertia of the body and α  is 
the angular acceleration then 

τ α κθ
� �� �
= =−I

10.3
ANGULAR SIMPLE 
HARMONIC MOTION

10.3.1  Time period and 
frequency of angular SHM

When a body is allowed to rotate freely 
about a given axis then the oscillation is 
known as the angular oscillation. The point 

Support

Fiber

-θ max

+θ max

0

Figure 10.12  A body (disc) allowed to 
rotate freely about an axis
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But α θ�� �
=

d
dt

2

2  and therefore,  

	 d
dt I

2

2

θ κ θ




=− � (10.17)

This differential equation resembles simple 
harmonic differential equation.
So, comparing equation (10.17) with simple 
harmonic motion given in equation (10.10), 
we have 

	 ω κ
= −

I
rad s 1 � (10.18)

The frequency of the angular harmonic 
motion (from equation 10.13) is 

	 f
I

Hz=
1

2π
κ � (10.19)

The time period (from equation 10.12) is 

	 T I
=2π

κ
second� (10.20)

10.3.2  Comparison of Simple 
Harmonic Motion and Angular 
Simple Harmonic Motion

In linear simple harmonic motion, the 
displacement of the particle is measured 
in terms of linear displacement r



 The 
restoring force is F kr

�� �
=− , where k is a 

spring constant or force constant which is 
force per unit displacement. In this case, the 
inertia factor is mass of the body executing 
simple harmonic motion. 
In angular simple harmonic motion, the 
displacement of the particle is measured 
in terms of angular displacement 



θ . Here, 
the spring factor stands for torque constant 
i.e., the moment of the couple to produce 
unit angular displacement or the restoring 
torque per unit angular displacement. In this 
case, the inertia factor stands for moment of 
inertia of the body executing angular simple 
harmonic oscillation. 

Table 10.2 Comparision of simple harmonic motion and angular harmonic motion

S.No Simple Harmonic Motion Angular Harmonic Motion

1. The displacement of the particle is 
measured in terms of linear displacement 
r


.

The displacement of the particle 
is measured in terms of angular 
displacement 



θ  (also known as angle of 
twist). 

2. Acceleration of the particle is 
a r
 

=−ω2

Angular acceleration of the particle is  
α ω θ
�� �
=− 2 .

3. Force, F m a
�� �
= , where m is called mass 

of the particle. 
Torque, τ α

� ��
=I , where I is called moment 

of inertia of a body.

4. The restoring force F kr
�� �
=− , where k is 

restoring force constant.
The restoring torque τ κθ

 

=− , where the 
symbol κ  (Greek alphabet  is pronounced 
as ‘kappa’) is called restoring torsion 
constant. It depends on the property of a 
particular torsion fiber. 

5. Angular frequency, ω=
k
m

 rad s-1 Angular frequency, ω κ
=

I
 rad s-1
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one dimensional motion, mathematically,  
we have

F ∝ x
F = − k x

where negative sign implies that the 
restoring force will always act opposite 
to the direction of the displacement. This 
equation is called Hooke’s law (refer to unit 
7). Notice that, the restoring force is linear 
with the displacement (i.e., the exponent of 
force and displacement are unity). This is 
not always true; in case if we apply a very 
large stretching force, then the amplitude 
of oscillations becomes very large (which 
means, force is proportional to displacement 
containing higher powers of x) and therefore,  
the oscillation of the system is not linear and 
hence, it is called non-linear oscillation. We 
restrict ourselves only to linear oscillations 
throughout our discussions, which means 
Hooke’s law is valid (force and displacement 
have a linear relationship). 
From Newton’s second law, we can write the 
equation for the particle executing simple 
harmonic motion

	 m d x
dt

k x
2

2 =−

	 d x
dt

k
m

x
2

2 =− � (10.21)

Comparing the equation (10.21) with simple 
harmonic motion equation (10.10), we get  

ω2 =
k
m

which means the angular frequency or 
natural frequency of the oscillator is  

	 ω=
k
m

rad s−1� (10.22) 

10.4
LINEAR SIMPLE HARMONIC 
OSCILLATOR (LHO)

10.4.1  Horizontal oscillations 
of a spring-mass system

Figure 10.13  Horizontal oscillation of a 
spring-mass system

y

0 x

k
m

xo

y

0 x

k

xo

m

y

0 x

k

xo

m

Consider a system containing a block of 
mass m attached to a massless spring with 
stiffness constant or force constant or spring 
constant k placed on a smooth horizontal 
surface (frictionless surface) as shown in 
Figure 10.13. Let x0 be the equilibrium 
position or mean position of mass m when 
it is left undisturbed. Suppose the mass is 
displaced through a small displacement x 
towards right from its equilibrium position 
and then released, it will oscillate back 
and forth about its mean position x0. Let 
F be the restoring force (due to stretching 
of the spring) which is proportional to 
the amount of displacement of block. For 
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Th e frequency of the oscillation is 

 f k
m

= =
ω
π π2

1
2

 Hertz (10.23)

and the time period of the oscillation is 

 T
f

m
k

= =
1 2π  seconds (10.24)

Notice that in simple harmonic motion, the 
time period of oscillation is independent of 
amplitude. Th is is valid only if the amplitude 
of oscillation is small. 
Th e solution of the diff erential equation of a 
SHM may be written as  

 x(t) = A sin(ωt +φ) (10.25)

Or 

 x(t) = A cos(ωt +φ) (10.26)

where A, ω and ϕ are constants. General 
solution for diff erential equation 10.21 is 
x(t) = A sin(ωt +φ)+ B cos(ωt +φ) where 
A and B are contants.

(a)  Since, mass is inertial 
porperty and spring 
constant is an elastic 
property. 

 Time period is Τ=2π m
k

 

Τ= =2 2π π
Inertial property
Elasticproperty

displacement
accelerattion

(b)  Displacement
acceleration

x
d x
dt

m
k

= =−2

2

, whose 

modulus value or magnitude is m
k

 

 hence, time period Τ=2π m
k

NoteNote

10.4.2  Vertical oscillations 
of a spring 

Figure 10.14 Springs

Figure 10.15 A massless spring with 
stiff ness constant k

L L

F1=–kl

m

Fg=mgl

L + l

y
y=0

m

m

Let us consider a massless spring with 
stiff ness constant or force constant k attached 
to a ceiling as shown in Figure 10.15. Let the 
length of the spring before loading mass m 
be L. If the block of mass m is attached to the 
other end of spring, then the spring elongates 
by a length l. Let F1 be the restoring force due 
to stretching of spring. Due to mass m, the 
gravitational force acts vertically downward. 
We can draw free-body diagram for this 
system as shown in Figure 10.15. When the 
system is under equilibrium, 

 F1 + mg = 0 (10.27)

But the spring elongates by small 
displacement l, therefore,  
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 F1 ∝ l ⇒ F1 = − k l (10.28)

Substituting equation (10.28) in equation 
(10.27), we get

– k l + mg = 0
mg = kl

or 

  m
k

l
g

=  (10.29)

Suppose we apply a very small external 
force on the mass such that the mass further 
displaces downward by a displacement y, 
then it will oscillate up and down. Now, the 
restoring force due to this stretching of spring 
(total extension of spring is y + l ) is

F2 ∝ (y + l)
 F2 = − k (y + l) = −ky−kl (10.30)

Since, the mass moves up and down with 
acceleration d y

dt

2

2 , by drawing the free body 
diagram for this case, we get

 − − + =ky kl mg m d y
dt

2

2  (10.31)

Th e net force acting on the mass due to this 
stretching is 

F = F2 +mg
 F = − ky−kl +mg (10.32)

Th e gravitational force opposes the restoring 
force. Substituting equation (10.29) in 
equation (10.32), we get

 F = −ky − kl + kl = −ky

Applying Newton’s law, we get

 m d y
dt

k y
2

2 =−

 d y
dt

k
m

y
2

2 =−  (10.33)

Th e above equation is in the form of simple 
harmonic diff erential equation. Th erefore, 
we get the time period as

 T m
k

= 2π second (10.34)

Th e time period obtained 
for horizontal oscillations 
of spring and for vertical 

oscillations of spring are found to be 
equal. 

NoteNote

Th e time period can be rewritten using 
equation (10.29)

 T m
k

l
g

= =2 2π π  second (10.35)

Th e acceleration due to gravity g can be 
computed from the formula 

 g l
T

=







4 2

2π  m s−2 (10.36)

EXAMPLE 10.8

A spring balance has a scale which ranges 
from 0 to 25 kg and the length of the scale 
is 0.25m. It is taken to an unknown planet 
X where the acceleration due to gravity is 
11.5 m s−1. Suppose a body of mass M kg 
is suspended in this spring and made to 
oscillate with a period of 0.50 s. Compute 
the gravitational force acting on the body. 

Solution

Let us fi rst calculate the stiff ness constant 
of the spring balance by using equation 
(10.29),

k mg
l

N m= =
×

= −25 11 5
0 25

1150 1.
.

Th e time period of oscillations is given by 

Τ=2π M
k

, where M is the mass of the 

body. 
Since, M is unknown, rearranging, we get
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M kT kg= = =
2

2

2

24
1150 0 5

4
7 3

π π
( )( . ) .

The gravitational force acting on the body 
is W = Mg = 7.3 × 11.5 = 83.95 N ≈ 84 N

10.4.3  Combinations of 
springs

Figure 10.16  Combination of spring as a 
shock-absorber in the motor cycle

Spring constant or force constant, also called 
as stiffness constant, is a measure of the 
stiffness of the spring.  Larger the value of 
the spring constant, stiffer is the spring. This 
implies that we need to apply more force to 
compress or elongate the spring. Similarly, 
smaller the value of spring constant, the 
spring can be stretched (elongated) or 
compressed with lesser force. Springs 
can be connected in two ways. Either the 
springs can be connected end to end, also 
known as series connection, or alternatively, 
connected in parallel. In the following 
subsection, we compute the effective spring 
constant when 

a.	 Springs are connected in series
b.	 Springs are connected in parallel

a.	 Springs connected in series 
When two or more springs are 
connected in series, we can replace (by 

removing) all the springs in series with 
an equivalent spring (effective spring) 
whose net effect is the same as if all the 
springs are in series connection. Given 
the value of individual spring constants 
k1,  k2,  k3,... (known quantity), we can 
establish a mathematical relationship 
to find out an effective (or equivalent) 
spring constant ks (unknown quantity).  
For simplicity, let us consider only 
two springs whose spring constant are  
k1 and k2 and which can be attached to 
a mass m as shown in Figure 10.17. The 
results thus obtained can be generalized 
for any number of springs in series. 

Figure 10.17  Springs are connected in 
series

y

0 x

k1 k2
m

xo

Let F be the applied force towards right as 
shown in Figure 10.18. Since the spring 
constants for different spring are different 
and the connection points between them 
is not rigidly fixed, the strings can stretch 
in different lengths. Let x1 and x2 be the 
elongation of springs from their equilibrium 
position (un-stretched position) due to the 
applied force F. Then, the net displacement 
of the mass point is 

	 x = x1 + x2� (10.37)

From Hooke’s law, the net force
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in series connection, the eff ective spring 
constant is lesser than the  individual spring 
constants.
From equation (10.39), we have,

k1x1 = k2x2

Th en the ratio of compressed distance or 
elongated distance x1 and x2 is

 x
x

k
k

2

1

1

2

=  (10.43)

Th e elastic potential energy stored in fi rst 
and second springs are V k x1 1 1

21
2

=  and 

V k x2 2 2
21

2
=  respectively. Th en, their ratio is

 V
V

k x

k x

k
k

x
x

k
k

1

2

1 1
2

2 2
2

1

2

1

2

2

2

1

1
2
1
2

= =









=  (10.44)

Th e reciprocal of stiff ness 
constant is called fl exibility 
constant or compliance, 

denoted by C. It is measured in m N-1

If n springs are connected in series :

net compliance C Cs i
i

n

=
=
∑

1

If n springs are connected in parallel :
1 1

1C Cp ii

n

=
=
∑

NoteNote

 F = − ks (x1 + x2) ⇒ x1 + x2 =− F
ks

 (10.38)

For springs in series connection
 −k1x1 = −k2x2 = F

 ⇒ =−x F
k1

1

and x F
k2

2

=−  (10.39)

Th erefore, substituting equation (10.39) in 
equation (10.38), the eff ective spring constant 
can be calculated as 

 − − =−
F
k

F
k

F
ks1 2

 1 1 1

1 2k k ks

= +

Or

 k
k k

k ks= +
1 2

1 2

 Nm−1 (10.40)

Suppose we have n springs connected in 
series, the eff ective spring constant in series 
is 

1 1 1 1 1 1

1 2 3 1k k k k k ks n ii

n

= + + + + =
=
∑...  (10.41)

If all spring constants are identical i.e., k1 =  
k2 =... = kn = k then

 1
k

n
k

k k
ns

s= ⇒ =  (10.42)

Th is means that the eff ective spring constant 
reduces by the factor n. Hence, for springs  

Figure 10.18 Eff ective spring constant in series connection

y

0 x

Equivalent
to

k1 k2

F
→

xo
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ks
m

xo

F
→

m
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Figure 10.19  Springs connected in 
parallel

y

0 x
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m

xo

Let the force F be applied towards right as 
shown in Figure 10.20. In this case, both the 
springs elongate or compress by the same 
amount of displacement. Therefore, net 
force for the displacement of mass m is 

	 F = −kpx� (10.45)

where kp is called effective spring constant. 
Let the first spring be elongated by a 
displacement x due to force F1 and second 
spring be elongated by the same displacement  
x due to force F2, then the net force 

	 F = − k1x – k2x� (10.46)

Equating equations (10.46) and (10.45), we 
get

	 kp = k1 + k2� (10.47)

Generalizing, for n springs connected in 
parallel, 

	 k kp i
i

n

=
=
∑

1

� (10.48)

EXAMPLE 10.9

Consider two springs whose force 
constants are 1 N m−1 and 2 N m−1 which are 
connected in series. Calculate the effective 
spring constant (ks ) and comment on ks .

Solution

k1 = 1 N m−1, k2 = 2 N m−1

k
k k

k ks= +
1 2

1 2

 N m−1

ks=
×
+
=

1 2
1 2

2
3

 N m−1

ks < k1 and ks < k2

Therefore, the effective spring constant is 
lesser than both k1 and k2. 

b.	 Springs connected in parallel
When two or more springs are connected in 
parallel, we can replace (by removing) all these 
springs with an equivalent spring (effective 
spring) whose net effect is same as if all the 
springs are in parallel connection. Given 
the values of individual spring constants to 
be k1,k2,k3, ...  (known quantities), we can 
establish a mathematical relationship to find 
out an effective (or equivalent) spring constant 
kp (unknown quantity). For simplicity, let us 
consider only two springs of spring constants 
k1and k2 attached to a mass m as shown in 
Figure 10.19. The results can be generalized to 
any number of springs in parallel.

Figure 10.20  Effective spring constant in parallel connection
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EXAMPLE 10.11

Calculate the equivalent spring constant 
for the following systems and also compute 
if all the spring constants are equal:

(a) (b)

k1

k1

k2

k2

k4 k5

k6

k4

k3m

m

Solution

a. Since k1 and k2 are parallel, ku = k1 + k2

  Similarly, k3 and k4 are parallel, 
therefore, kd = k3 + k4 

  But ku and kd are in series, 

 therefore, k
k k

k keq
u d

u d

=
+

  If all the spring constants are equal 
then, k1 = k2 = k3 = k4 = k

 Which means, ku = 2k and kd = 2k

 Hence, k k
k

keq = =
4
4

2

b. Since k1 and k2 are parallel, kA = k1 + k2

  Similarly, k4 and k5 are parallel, 
therefore, kB = k4 + k5 

  But kA, k3, kB, and k6 are in series, 

 therefore, 1 1 1 1 1

3 6k k k k keq A B

= + + +

  If all the spring constants are equal 
then, k1 = k2 = k3 = k4 = k5 = k6 = k

 which means, kA = 2k  and kB = 2k

 1 1
2

1 1
2

1 3
k k k k k keq

= + + + =

 k k
eq = 3

If all spring constants are identical i.e., 
k1 = k2= ... = kn = k then

 kp = n k (10.49)

Th is implies that the eff ective spring constant 
increases by a factor n. Hence, for the springs 
in parallel connection, the eff ective spring 
constant is greater than individual spring 
constant.

Th e spring constant is 
inversely proportional to the 
length of the spring

If the spring is cut into two pieces, one 
piece with length l1 and other with 
length l2, such that l1 = nl2, then 
spring constant of fi rst length is 

k k
n1

1
=

+(n )  and spring constant of 

second length is k2 = (n+1) k, where 
k is the original spring constant 
before cutting into pieces.

NoteNote

EXAMPLE 10.10

Consider two springs with force constants 
1 N m−1 and 2 N m−1 connected in parallel. 
Calculate the eff ective spring constant (kp ) 
and comment on kp.

Solution

k1 = 1 N m−1, k2 = 2 N m−1

kp = k1 + k2 N m−1

kp = 1 + 2 = 3 N m−1

kp > k1 and kp > k2

Th erefore, the eff ective spring constant is 
greater than both k1 and k2. 
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A pendulum is a mechanical system which 
exhibits periodic motion. It has a bob 
with mass m suspended by a long string 
(assumed to be massless and inextensible 
string) and the other end is fixed on a stand 
as shown in Figure 10.21 (a). At equilibrium, 
the pendulum does not oscillate and hangs 
vertically downward. Such a position is 
known as mean position or equilibrium 
position. When a pendulum is displaced 
through a small displacement from its 
equilibrium position and released, the 
bob of the pendulum executes to and fro 
motion. Let l be the length of the pendulum 
which is taken as the distance between the 
point of suspension and the centre of gravity 
of the bob. Two forces act on the bob of 
the pendulum at any displaced position, as 
shown in the Figure 10.21 (d),  

(i)	 The gravitational force acting on the 
body ( F m g

�� ��
= ) which acts vertically 

downwards. 

(ii)	The tension in the string T
��

 which 
acts along the string to the point of 
suspension. 

Resolving the gravitational force into its 
components:

a.	 Normal component: The component 
along the string but in opposition to the 
direction of tension, Fas = mg cosθ.

b.	 Tangential component: The 
component perpendicular to the string 
i.e., along tangential direction of arc of 
swing, Fps = mg sinθ.

Therefore, The normal component of the 
force is, along the string,

T W m v
las− =
2

Here v is speed of bob

	 T mg m v
l

− =cosθ
2

� (10.50)

EXAMPLE 10.12

A mass m moves with a speed v on a 
horizontal smooth surface and collides with a 
nearly massless spring whose spring constant 
is k. If the mass stops after collision, compute 
the maximum compression of the spring.

Solution

When the mass collides with the spring, 
from the law of conservation of energy 
“the loss in kinetic energy of mass is gain 
in elastic potential energy by spring”.
Let x be the distance of compression of 
spring, then the law of conservation of 
energy 

1
2

1
2

2 2m v k x x v m
k

= ⇒ =

10.4.4  Oscillations of a 
simple pendulum in SHM and 
laws of simple pendulum

Simple pendulum

o
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Eq
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(a) (b)
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(c)

m
mgsin � mgcos �

 �

Figure 10.21  Simple pendulum
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 d
dt

g
l

2

2

θ θ=−  (10.55)

Th is is the well known oscillatory diff erential 
equation. Th erefore, the angular frequency 
of this oscillator (natural frequency of this 
system) is

 ω2 =
g
l

 (10.56)

   ⇒ ω =
g
l

 in rad s−1  (10.57)

Th e frequency of oscillations is 

 f g
l

=
1

2π
 in Hz (10.58)

and time period of oscillations is 

 T l
g

= 2π  in second (10.59)

Laws of simple pendulum
Th e time period of a simple pendulum 
a. Depends on the following laws

(i) Law of length
  For a given value of acceleration due 

to gravity, the time period of a simple 
pendulum is directly proportional to the 
square root of length of the pendulum. 

 T lµ  (10.60)

(ii) Law of acceleration
  For a fi xed length, the time period 

of a simple pendulum is inversely 
proportional to square root of 
acceleration due to gravity.

 T
g

µ
1  (10.61)

b. Independent of the following factors
(i) Mass of the bob

  Th e time period of oscillation is 
independent of mass of the simple 

From Newton’s 2nd law, 


F ma=  Here, the  net force 
on the L.H.S is T-Was 

In R.H.S, m a  is equivalent to the 

centripetal force = mv
l

2

 which makes 
the bob oscillate.

NoteNote

From the Figure 10.21, we can observe that the 
tangential component Wps of the gravitational 
force always points towards the equilibrium 
position i.e., the direction in which it always 
points opposite to the direction of displacement 
of the bob from the mean position. Hence, in 
this case, the tangential force is nothing but 
the restoring force. Applying Newton’s second 
law along tangential direction, we have

m d s
dt

F m d s
dt

Fps ps

2

2

2

20+ = ⇒ =−

 m d s
dt

mg
2

2 =− sinθ  (10.51)

where, s is the position of bob which is 
measured along the arc. Expressing arc 
length in terms of angular displacement i.e., 
 s = l θ (10.52)
then its acceleration,  

 d s
dt

l d
dt

2

2

2

2=
θ  (10.53)

Substituting equation (10.53) in equation 
(10.51), we get  

l d
dt

g
2

2

θ θ=− sin

 d
dt

g
l

2

2

θ θ=− sin  (10.54)

Because of the presence of sin θ in the above 
diff erential equation, it is a non-linear 
diff erential equation (Here, homogeneous 
second order). Assume “the small 
oscillation approximation”, sin θ ≈ θ, the 
above diff erential equation becomes linear 
diff erential equation.
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Pendulum length due to effect  
of temperature

Suppose the suspended wire is affected 
due to change in temperature. The rise 
in temperature affects length by

l = lo (1 + α ∆t)
where lo is the original length of the 
wire and l is final length of the wire 
when the temperature is raised. Let ∆t is 
the change in temperature and α is the  
co-efficient of linear expansion.

Then,	 T l
g

l
g

l
g

= =
+

= +2 2 1 2 10 0π π α π α( t) ( t)∆ ∆

	T l
g

l
g

l
g

= =
+

= +2 2 1 2 10 0π π α π α( t) ( t)∆ ∆
	

T T t T t= + ≈ +0

1
2

01 1 1
2

( ) ( )α α∆ ∆

⇒	
T
T

T T
T

T
T

t
0

0

0 0

1 1
2

− =
−
= =

∆ ∆α

where ∆T is the change in time period 
due to the effect of temperature and T0 is 
the time period of the simple pendulum 
with original length l0.

EXAMPLE 10.14

If the length of the simple pendulum is 
increased by 44% from its original length, 
calculate the percentage increase in time 
period of the pendulum. 

Solution

Since 
T lµ

Therefore, 
T = constant l

pendulum. This is similar to free fall. 
Therefore, in a pendulum of fixed length, 
it does not matter whether an elephant 
swings or an ant swings. Both of them 
will swing with the same time period. 

(ii)	Amplitude of the oscillations
	� For a pendulum with small angle 

approximation (angular displacement is 
very small), the time period is independent 
of amplitude of the oscillation. 

EXAMPLE 10.13

In simple pendulum experiment, we have 
used small angle approximation . Discuss 
the small angle approximation. 

θ ( in degrees) θ( in radian) sin θ

0 0 0
5 0.087 0.087

10 0.174 0.174
15 0.262 0.256
20 0.349 0.342
25 0.436 0.422
30 0.524 0.500
35 0.611 0.574
40 0.698 0.643
45 0.785 0.707

For θ in radian, sin θ ≈ θ for very small angles 

18
π

4
π

2
π

2

y = 

3π π θ
(in radian)

θ

y = sinθ

y

0

This means that  “for θ as large as 10 
degrees, sin θ is nearly the same as θ when  
θ is expressed in radians”. As θ increases 
in value sinθ gradually becomes different 
from θ
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T
T

l l

l
f

i

=
+

= =

44
100 1 44 1 2. .

Therefore, Tf = 1.2 Ti = Ti + 20% Ti

Oscillation of liquid in a U-tube: 

Figure 10.22  U-shaped glass tube

0 0
y

y
00

h

y
2y

Consider a U-shaped glass tube which 
consists of two open arms with uniform cross-
sectional area A. Let us pour a non-viscous 
uniform incompressible liquid of density ρ 
in the U-shaped tube to a height h as shown 
in the Figure 10.22. If the liquid and tube are 
not disturbed then the liquid surface will be in 
equilibrium position O. It means the pressure 
as measured at any point on the liquid is the 
same and also at the surface on the arm (edge 
of the tube on either side), which balances 
with the atmospheric pressure. Due to this the 
level of liquid in each arm will be the same. By 
blowing air one can provide sufficient force 
in one arm, and the liquid gets disturbed 
from equilibrium position O, which means, 
the pressure at blown arm is higher than the 
other arm. This creates difference in pressure 
which will cause the liquid to oscillate for a 
very short duration of time about the mean or 
equilibrium position and finally comes to rest.

Time period of the oscillation is 

	 T l
g

= 2
2

π  second� (10.62)

10.5
ENERGY IN SIMPLE 
HARMONIC MOTION

a.	 Expression for Potential Energy
For the simple harmonic motion, the force and 
the displacement are related by Hooke’s law

	


F kr=−

Since force is a vector quantity, in three 
dimensions it has three components. 
Further, the force in the above equation is a 
conservative force field; such a force can be 
derived from a scalar function which has only 
one component. In one dimensional case 

	 F = − k x� (10.63)

As we have discussed in unit 4 of volume I, 
the work done by the conservative force field 
is independent of path. The potential energy 
U can be calculated from the following 
expression.

	 F dU
dx

=− � (10.64)

Comparing (10.63) and (10.64), we get

	 − =−
dU
dx

kx

	 dU = k x dx

Dummy variable
The integrating variable x' 
(read x' as “x prime”)is a 
dummy variable

tdt xdx pdp yyyy
= = =∫∫∫

2

000 2
Notice that the integrating variables like 
t, x and p are dummy variables because, in 
this integration, whether we put t or x or p 
as variable for integration, we get the same 
answer.
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	 x = A sin ωt
Therefore, velocity is 

	 v dx
dt

A tx = = ω ωcos � (10.69)

	 = −







A x

A
ω 1

2

	 v A xx = −ω 2 2 � (10.70)

Hence, 

	 KE mv m A xx= = −( )1
2

1
2

2 2 2 2ω � (10.71)

	 KE m A t=
1
2

2 2 2ω ωcos � (10.72)

This variation with time is shown below.

Figure 10.24  Variation of kinetic 
energy with time t.

T
2

o

KE(t) KE(t)

T
t

c.	 Expression for Total Energy
Total energy is the sum of kinetic energy 
and potential energy 
	 E = KE + U	�  (10.73)

	 E m x m x= − +
1
2

1
2

2 2 2 2 2ω ω(A )

Hence, cancelling x2 term, 

	 E m A= =
1
2

2 2ω  constant� (10.74)

Alternatively, from equation (10.67) and 
equation (10.72), we get the total energy as 

E m A t m A t= +
1
2

1
2

2 2 2 2 2 2ω ω ω ωsin cos

= +
1
2

2 2 2 2m A tω ω ω(sin t cos )

This work done by the force F during a small 
displacement dx stores as potential energy 

  U x k x dx k x kx
x

x

( )= ′ ′= ′( ) =∫
1

2

1

20

2

0

2 �(10.65)

From equation (10.22), we can substitute the 
value of force constant k = m ω2 in equation 
(10.65), 

	 U x m x( )=1
2

2 2ω � (10.66)

where ω is the natural frequency of the 
oscillating system. For the particle executing 
simple harmonic motion from equation 
(10.6), we get 

x = A sin ωt

	 U m A t(t) sin=
1
2

2 2 2ω ω � (10.67)

This variation of U is shown below.

Figure 10.23  Variation of potential 
energy with time t

T
2

O

U(t)

U(t)
T

t

Question to think over
“If the potential energy is minimum then its 
second derivative is positive, why?” 

b.	 Expression for Kinetic Energy
Kinetic energy 

	 KE mv m dx
dtx= =









1
2

1
2

2
2

� (10.68)

Since the particle is executing simple 
harmonic motion,  from equation (10.6) 
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EXAMPLE 10.15

Write down the kinetic energy and total 
energy expressions in terms of linear 
momentum, For one-dimensional case.

Solution

Kinetic energy is KE mvx=
1
2

2

Multiply numerator and denominator by m

KE
m

m v
m

v
m

px x x= = =
1

2
1

2
1

2
2 2 2 2(m )

where, px is the linear momentum of 
the particle executing simple harmonic 
motion. 
Total energy can be written as sum of 
kinetic energy and potential energy, 
therefore, from equation (10.73) and also 
from equation (10.75), we get

E KE U x
m

p m xx= + = + =( ) 1
2

1
2

2 2 2ω constant

From trigonometry identity, 
(sin2 ωt + cos2 ωt) = 1

	 E m A=
1
2

2 2ω = constant

which gives the law of conservation of total 
energy. This is depicted in Figure 10.26

Figure 10.25  Both kinetic energy and 
potential energy vary but total energy is constant

T
2

O

E

En
er

gy

K(t)

U(t)

U(t) + K(t)

T
t

Thus the amplitude of simple harmonic 
oscillator, can be expressed in terms of total 
energy.

	 A E
m

E
k

= =
2 2

2ω
� (10.75)

Figure 10.26  Conservation of energy – spring mass system and simple pendulum system

Energy Bar Charts for a Mass on a Spring
Position A
KE PE TE

A

Position B
KE PE TE

B

Position C
KE PE TE

C

Position D
KE PE TE

D

Position E
KE PE TE

E
KE - Kinetic Energy PE - Potential Energy

TE - Total energy

Energy Bar Charts for a simple Pendulum system
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v

KE
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v
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KE
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KE

KE
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v
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A2 − x2 = x2

2x2 = A2

⇒ =±x A
2

Conservation of energy
Both the kinetic energy 
and potential energy are 

periodic functions, and repeat their 

values aft er a time period . But total 

energy is constant for all the values 
of x or t. Th e kinetic energy and the 
potential energy for a simple harmonic 
motion are always positive. Note that 
kinetic energy cannot take negative 
value because it is proportional to the 
square of velocity. Th e measurement 
of any physical quantity must be a real 
number. Th erefore, if kinetic energy 
is negative then the numerical value 
of velocity becomes an imaginary 
number, which is physically not 
acceptable. At equilibrium, it is purely 
kinetic energy and at extreme positions 
it is purely potential energy. 

x = –A x = x0 = 0 x = A

Energy

Etotal = 

KE = k(A2 – x2)1
2

U = 

x

U

U U U
U

KE

KE
KE

KE

kx21
2

kA21
2

 

NoteNote

EXAMPLE 10.16

Compute the position of an oscillating 
particle when its kinetic energy and 
potential energy are equal. 

Solution

Since the kinetic energy and potential 
energy of the oscillating particle are equal,  

1
2

1
2

2 2 2 2 2m x m xω ω(A )− =

10.6

TYPES OF OSCILLATIONS:

10.6.1  Free oscillations

When the oscillator is allowed to oscillate 
by displacing its position from equilibrium 
position, it oscillates with a frequency which 
is equal to the natural frequency of the 
oscillator. Such an oscillation or vibration is 
known as free oscillation or free vibration.  
In this case, the amplitude, frequency and 
the energy of the vibrating object remains 
constant.

Examples:
(i)  Vibration of a tuning fork.
(ii)  Vibration in a stretched string.
(iii) Oscillation of a simple pendulum.
(iv) Oscillationsof a spring-mass system. 

10.6.2  Damped oscillations

During the oscillation of a simple pendulum 
(in previous case), we have assumed that 
the amplitude of the oscillation is constant 
and also the total energy of the oscillator is 
constant. But in reality, in a medium, due 
to the presence of friction and air drag, the 
amplitude of oscillation decreases as time 
progresses. It implies that the oscillation 
is not sustained and the energy of the 
SHM decreases gradually indicating the 
loss of energy. Th e energy lost is absorbed 
by the surrounding medium. Th is type of 
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Example:
Th e vibration of a tuning fork getting energy 
from a battery or from external power 
supply. 

10.6.4  Forced oscillations

Any oscillator driven by an external periodic 
agency to overcome the damping is known 
as forced oscillator or driven oscillator.  
In this type of vibration, the body executing 
vibration initially vibrates with its natural 
frequency and due to the presence of 
external periodic force, the body later 
vibrates with the frequency of the applied 
periodic force. Such vibrations are known as 
forced vibrations.  

Example:
Sound boards of stringed instruments.

10.6.5  Resonance

It is a special case of forced vibrations where 
the frequency of external periodic force 
(or driving force) matches with the natural 
frequency of the vibrating body (driven). As 
a result the oscillating body begins to vibrate 
such that its amplitude increases at each step 
and ultimately it has a large amplitude. Such 
a phenomenon is known as resonance and 
the corresponding vibrations are known as 
resonance vibrations. 

Example
Th e breaking of glass due to sound

oscillatory motion is known as damped 
oscillation. In other words, if an oscillator 
moves in a resistive medium, its amplitude 
goes on decreasing and the energy of 
the oscillator is used to do work against 
the resistive medium. Th e motion of the 
oscillator is said to be damped and in this 
case, the resistive force (or damping force) is 
proportional to the velocity of the oscillator.

Figure 10.27 Damped harmonic 
oscillator – amplitude decreases as time 
increases. 

A

The object still oscillates
sinusoidally ...

... but the amplitude decreases
within the “envelope” of a
decaying exponential.

t0

D
is

pl
ac

em
en

t (
x)

–A

Examples 
(i)    Th e oscillations of a pendulum 

(including air friction) or pendulum  
oscillating inside an oil fi lled container.

(ii)   Electromagnetic oscillations in a tank 
circuit.

(iii)  Oscillations in a dead beat and ballistic 
galvanometers.

10.6.3  Maintained 
oscillations

While playing in swing, the oscillations will 
stop aft er a few cycles, this is due to damping. 
To avoid damping we have to supply a push 
to sustain oscillations. By supplying energy 
from an external source, the amplitude 
of the oscillation can be made constant. 
Such vibrations are known as maintained 
vibrations. 

Th e concept of resonance 
is used in Tuning of station 
(or channel) in a radio (or 

Television) circuits.

NoteNote
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Extra:
Pendulum in a lift:
(i)	� Lift moving upwards with acceleration a:  

Effective acceleration due to gravity is geff = g + a  

Then time period is T l
g

l
g aeff

= =
+( )

2 2π π   

Since the time period is inversely related to acceleration due to gravity, time 
period will decrease when lift moves upward.

(ii)	� Lift moving downwards with acceleration a:  
Effective acceleration due to gravity is geff = g - a  

Then time period is T l
g

l
g aeff

= =
−( )

2 2π π   

Since the time period is inversely related to acceleration due to gravity, time 
period will increase when lift moves downward.

(iii)	� Lift falls with acceleration a > g:  
The effective acceleration is geff = a - g  

Then time period is T l
g

l
a geff

= =
−( )

1
2

1
2π π

 

	� in this case, the pendulum will turn upside down and will oscillate about higest point.
(iv)	� Lift falls with acceleration a = g:  

The effective acceleration is geff = g - g =0 
Then time period is T → ∞ which means pendulum does not oscillate and its motion is 
arrested.

(v)	� If the simple pendulum is kept in a car which moves horizontally with acceleration a:  
The effective acceleration is geff = g a2 2+  

Time period is T
l

g
l

g aeff

= =
+

2 2
2 2

π π  

Soliders are not allowed to 
march on a bridge. 
This is to avoid resonant 
vibration of the bridge.

While crossing a bridge, if the period of 
stepping on the ground by marching soldiers 
equals the natural frequency of the bridge, it 
may result in resonance vibrations. This may 
be so large that the bridge may collapse.
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�	 When an object or a particle moves back and forth repeatedly about a  reference 
point for some duration of time it is said to have Oscillatory (or vibratory) motion.

�	 For a SHM, the acceleration or force on the particle is directly proportional to its 
displacement from a fixed point and always directed towards that fixed point. The force is 

Fx = − k x
	 where k is a constant whose dimension is force per unit length, called as force 

constant.
�	 In Simple harmonic motion, the displacement, y = A sin ωt.
�	 In Simple harmonic motion, the velocity, v = A ω cos ωt = ω A y2 2- .

�	 In Simple harmonic motion, the acceleration, a d y
dt

y= =−
2

2
2ω .

�	 The time period is defined as the time taken by a particle to complete one oscillation. 

It is usually denoted by T. Time period T = 2π
ω

.

�	 The number of oscillations produced by the particle per second is called frequency. It 
is denoted by f. SI unit for frequency is S−1 or hertz (In symbol, Hz). Mathematically, 
frequency is related to time period by f

T
=

1 .

�	 The frequency of the angular harmonic motion is f k
I

=
1

2π
 Hz 

�	 For n springs connected in series, the effective spring constant in series is 

	 1 1 1 1 1 1

1 2 3 0k k k k k ks n ii

n

= + + + + =
=
∑...

�	 For n springs connected in parallel, the effective spring constant is 

	 k kp
i

n

i=
=
∑

1

�	 The time period for U-tube oscillation is T l
g

=2
2

π  second.

�	 For a conservative system in one dimension, the force field can be derived from a 
scalar potential energy: F dU

dx
=− .

�	 In a simple harmonic motion, potential energy is U x m x( )=1
2

2 2ω .

�	 In a simple harmonic motion, kinetic energy is KE mv m xx= = −
1
2

1
2

2 2 2 2ω (A ) . 

�	 Total energy for a simple harmonic motion is E m A= =
1
2

2 2ω constant.

�	 Types of oscillations – Free oscillations, Damped oscillations, Maintained oscillations 
and Forced oscillations.

�	 Resonance is a special case of forced oscillations.

S U M M A R Y
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Oscillation

Simple Harmonic Motion (SHM)

V=Aω cosωt
F=−kx x=+A sinωta= −ω2 A sinω t

a= −ω2 y

v = ω A2 − y 2

T = ω
2π

dt 2
d 2x + ω2x = 0

U= 2
1 kx 2F = − dx

dU

TE = 2
1 k A2 KE = 2

1 mv 2

Angular
SHM

ω = I
κ

Linear
SHM

ω = m
k

Simple Pendulam

L

T

ms

Ø

Ø-mg sinØ

Di�erential
equation:

Time Period:

T = 2π g
l

dt 2
d2
i = − l

g
i

Spring mass

(1) Series:

(2) Parallel:

k

c
m

k1

k1

k2 m

m
k2

Combination of Springs

k p = k1 + k2

k s = k1 + k2

k1k2

Di�erential
equation:

U - Tube

Time Period:

T = 2π 2g
l

dt 2
d 2y =− l

2g y

CONCEPT  MAP
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EVALUATION

I. Multiple Choice Questions

 1. In a simple harmonic oscillation, the 
acceleration against displacement for 
one complete oscillation will be 

 (model NSEP 2000-01)
a) an ellipse  b) a circle 
c) a parabola d) a straight line 

 2. A particle executing SHM crosses 
points A and B with the same velocity. 
Having taken 3 s in passing from A to 
B, it returns to B aft er another 3 s. Th e 
time period is 

a) 15 s b) 6 s
c) 12 s d) 9 s

 3. Th e length of a second’s pendulum 
on the surface of the Earth is 0.9 m. 
Th e length of the same pendulum 
on surface of planet X such that the 
acceleration of the planet X is n times 
greater than the Earth is

a) 0.9n b) 0 9.

n
m

c) 0.9n2m d) 0 9
2

.

n
 4. A simple pendulum is suspended from 

the roof of a school bus which moves 
in a horizontal direction with an 
acceleration a, then the time period is 

a) T
g a

a
1

2 2+
 b) T

g a
a

1
2 2+

c) T g aa 2 2+  d) T a (g a )2 2+

 5. Two bodies A and B whose masses are 
in the ratio 1:2 are suspended from 
two separate massless springs of force 
constants kA and kB respectively. If the 
two bodies oscillate vertically such that 
their maximum velocities are in the 

ratio 1:2, the ratio of the amplitude A 
to that of B is 

a) k
k

B

A2
 b) k

k
B

A8

c) 2k
k

B

A

 d) 8k
k

B

A

 6. A spring is connected to a mass m 
suspended from it and its time period 
for vertical oscillation is T. Th e spring 
is now cut into two equal halves and 
the same mass is suspended from one 
of the halves. Th e period of vertical 
oscillation is 

a) ′=T T2  b) ′=T T
2

c) ′=T T2  d) ′=T T
2

 7. Th e time period for small vertical 
oscillations of block of mass m when 
the masses of the pulleys are negligible 
and spring constant k1 and k2 is 

k2

k1

m

k

m

k

m

a) T m
k k

= +










4
1 1

1 2

p

b) T m
k k

= +










2 1 1

1 2

π

c) T m k k= +( )4 1 2π

d) T m= +2 1 2π (k k )
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	 8.	 A simple pendulum has a time period 
T1. When its point of suspension is 
moved vertically upwards according 
as y = k t2, where y is vertical distance 
covered and k = 1 ms−2, its time period 
becomes T2. Then, T

T
1
2

2
2

 is (g = 10 m s−2)
(IIT 2005)

a) 5
6

	 b) 11
10

c) 6
5

	 d) 5
4

	 9.	 An ideal spring of spring constant k, is 
suspended from the ceiling of a room 
and a block of mass M is fastened to 
its lower end. If the block is released 
when the spring is un-stretched, then 
the maximum extension in the spring 
is (IIT 2002)

a) 4 Mg
k

	 b) Mg
k

c) 2 Mg
k

	 d) Mg
k2

	10.	 A pendulum is hung in a very high 
building oscillates to and fro motion 
freely like a simple harmonic oscillator. 
If the acceleration of the bob is 16 ms−2  
at a distance of 4 m from the mean 
position, then the time period is   
(NEET 2018 model)
a) 2 s	 b) 1 s
c) 2πs	 (d) πs

	11.	 A hollow sphere is filled with water. It 
is hung by a long thread. As the water 
flows out of a hole at the bottom, the 
period of oscillation will 

a) first increase and then decrease
b) first decrease and then increase
c) increase continuously
d) decrease continuously

	12.	 The damping force on an oscillator is 
directly proportional to the velocity. The 
units of the constant of proportionality 
are � (AIPMT 2012)

a) kg m s−1	 b) kg m s−2

c) kg s−1	 (d) kg s

	13.	 When a damped harmonic oscillator 
completes 100 oscillations, its 
amplitude is reduced to 1

3
 of its initial 

value. What will be its amplitude when 
it completes 200 oscillations?.

a) 1
5

  b) 2
3

  c) 1
6

  d) 1
9

	14.	 Which of the following differential 
equations represents a damped 
harmonic oscillator ?

a) d y
dt

y
2

2 0+ = 	 b) d y
dt

dy
dt

y
2

2 0+ + =γ

c) d y
dt

k y
2

2
2 0+ = 	d) dy

dt
y+ = 0

	15.	 If the inertial mass and gravitational 
mass of the simple pendulum of length 
l are not equal, then the time period of 
the simple pendulum is 

a) T
m l

m g
i

g

=2π

b) T
m l
m g

g

i

=2π

c) T
m
m

l
g

g

i

=2π

d) T
m
m

l
g

i

g

=2π

Answers:

  1) d	   2) c	   3) a	   4) b
  5) b	   6) b	   7) a	   8) c
  9) c	 10) d	 11) a	 12) c
13) d	 14) b	 15) a
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II. Short Answers Questions

	 1.	 What is meant by periodic and non-
periodic motion?. Give any two 
examples, for each motion.

	 2.	 What is meant by force constant of a 
spring?.  

	 3.	 Define time period of simple harmonic 
motion. 

	 4.	 Define frequency of simple harmonic 
motion. 

	 5.	 What is an epoch?. 
	 6.	 Write short notes on two springs 

connected in series.  
	 7.	 Write short notes on two springs 

connected in parallel. 
	 8.	 Write down the time period of simple 

pendulum. 
	 9.	 State the laws of simple pendulum?. 
	10.	 Write down the equation of time period 

for linear harmonic oscillator. 
	11.	 What is meant by free oscillation?.
	12.	 Explain damped oscillation. Give an 

example. 
	13.	 Define forced oscillation. Give an 

example. 
	14.	 What is meant by maintained 

oscillation?. Give an example. 
	15.	 Explain resonance.  Give an example. 

III.  Long Answers Questions

	 1.	 What is meant by simple harmonic 
oscillation?. Give examples and explain 
why every simple harmonic motion is a 
periodic motion whereas the converse 
need not be true.  

	 2.	 Describe Simple Harmonic Motion as a 
projection of uniform circular motion. 

	 3.	 What is meant by angular harmonic 
oscillation?. Compute the time period 
of angular harmonic oscillation.

	 4.	 Write down the difference between 
simple harmonic motion and angular 
simple harmonic motion.

	 5.	 Discuss the simple pendulum in detail. 
	 6.	 Explain the horizontal oscillations of a 

spring. 
	 7.	 Describe the vertical oscillations of a 

spring. 
	 8.	 Write short notes on the oscillations of 

liquid column in U-tube. 
	 9.	 Discuss in detail the energy  in simple 

harmonic motion. 
	10.	 Explain in detail the four different 

types of oscillations. 

IV. Numerical Problems

	 1.	 Consider the Earth as a homogeneous 
sphere of radius R and a straight hole 
is bored in it through its centre. Show 
that a particle dropped into the hole 
will execute a simple harmonic motion 
such that its time period is 

T R
g

=2π

	 2.	 Calculate the time period of the 
oscillation of a particle of mass m 
moving in the potential defined as 

		  U x
k x x

mgx x
( )= <

>









1
2

0

0

2 ,

,

		  Answer: π m
k

E
g m

+2 2
2 , where E is 

the total energy of the particle. 
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	 3.	 Consider a simple pendulum of length  
l = 0.9 m which is properly placed on a 
trolley rolling down on a inclined plane 
which is at θ = 45° with the horizontal. 
Assuming that the inclined plane is 
frictionless, calculate the time period 
of oscillation of the simple pendulum. 

		  Answer: 0.86 s
	 4.	 A piece of wood of mass m is floating 

erect in a liquid whose density is ρ. If it 
is slightly pressed down and released, 
then executes simple harmonic motion. 
Show that its time period of oscillation 

is T m
Ag

=2π
ρ

	 5.	 Consider two simple harmonic motion 
along x and y-axis having same 
frequencies but different amplitudes as 
x = A sin (ωt + φ) (along x axis) and y = 
B sin ωt (along y axis). Then show that 

x
A

y
B

xy
AB

2

2

2

2
22

+ − =cos sinϕ ϕ

		  and also discuss the special cases when 

a. φ = 0  b. φ = π  c. ϕ π
=

2

d. ϕ π
=

2
 and A = B  (e) ϕ π

=
4

Note: when a particle is subjected to two 
simple harmonic motion at right angle to each 
other the particle may move along different 
paths. Such paths are called Lissajous figures. 
Answer : 
a.	 y B

A
x= ,  equation is a straight line 

passing through origin with positive 
slope.

b.	 y B
A

x=−  equation is a straight line 
passing through origin with negative 
slope.

c.	  x
A

y
B

2

2

2

2 1+ = , equation is an ellipse whose 

center is origin. 
d.	 x2+y2 = A2, equation is a circle whose 

center is origin . 

e.	 x
A

y
B

xy
AB

2

2

2

2

2 1
2

1
2

+ − = , equation is an 

ellipse (oblique ellipse which means 
tilted ellipse)

	 6.	 Show that for a particle executing 
simple harmonic motion

a.	 the average value of kinetic energy is 
equal to the average value of potential 
energy.

b.	 average potential energy = average 

kinetic energy = 1
2

(total energy) 

		  Hint : average kinetic energy = <kinetic 

energy> = 1
0T

Kineticenergy dt
T
( )∫

		  and 

		  average Potential energy = <Potential 

energy> = 1
0T

Potential energy dt
T
( )∫

	 7.	 Compute the time period for the 
following system if the block of mass 
m is slightly displaced vertically down 
from its equilibrium position and then 
released. Assume that the pulley is 
light and smooth, strings and springs 
are light.

k2

k1

m

k

m

k

m
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k2

k1

m

k

m

k

m

		  Hint and answer: 

		  Case(a)

		  Pulley is fixed rigidly here. When the 
mass displace by y and the spring will 
also stretch by y. Therefore, F = T = ky

		  T m
k

= 2π

		  Case(b) 

		  Mass displace by y, pulley also displaces 
by y. T = 4ky.

		  T m
k

= 2
4

π
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Oscillations

Th rough this activity you will be able to 
learn about the resonance.

STEPS:
•  Use the URL or scan the QR code to open ‘PhET’ simulation on ‘Resonance’. Click the play 

button.

•  In the activity window a diagram of resonator  is given. Click the play icon and move the 
slider on ‘sim speed’ given below to see the resonance.

•  Move the slider to change ‘Number of Resonators’, ‘Mass’ and ‘Spring constant’ on the right 
side window and see the ‘frequency’.

•  Select the ‘On’, ‘Off ’ button on ‘Gravity’ to see the different resonance.

URL:
https://phet.colorado.edu/en/simulation/legacy/resonance

* Pictures are indicative only.
*  If browser requires, allow Flash Player or Java Script to load the page.

ICT CORNER

Step4

Step2Step1

Step3
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