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U N I T

4 WORK, ENERGY AND POWER

Th e term work is used in diverse contexts in 

daily life. It refers to both physical as well as 

mental work. In fact, any activity can generally 

be called as work. But in Physics, the term work 

is treated as a physical quantity with a precise 

defi nition. Work is said to be done by the force 

when the force applied on a body displaces 

it. To do work, energy is required. In simple 

words, energy is defi ned as the ability to do 
work. Hence, work and energy are equivalents 

and have same dimension. Energy, in Physics 

exists in diff erent forms such as mechanical, 

electrical, thermal, nuclear and so on. Many 

machines consume one form of energy and 

deliver energy in a diff erent form. In this 

chapter we deal mainly with mechanical 

energy and its two types namely kinetic 

energy and potential energy. Th e next 

LEARNING OBJECTIVES

4.1
INTRODUCTION

In this unit, student is exposed to

• defi nition of work

• work done by a constant and a variable force

• various types of energy

• law of conservation of energy

• vertical circular motion

• defi nition of power 

• various types of collisions

quantity in this sequence of discussion is 

the rate of work done or the rate of energy 

delivered. Th e rate of work done is called 
power. A powerful strike in cricket refers to 

a hit on the ball at a fast rate. Th is chapter 

aims at developing a good understanding 

of these three physical quantities namely 

work, energy and power and their physical 

signifi cance.

4.1.1
WORK

Let us consider a force (F), acting on a body 

which moves it by a displacement in some 

direction (d r ) as shown in Figure 4.1

Th e expression for work done (w) by the 

force on the body is mathematically written as,

 W F dr= ⋅  (4.1)

“Matter is Energy. Energy is Light. We are all Light Beings.” – Albert Einstein
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Th e work done by the force depends 

on the force (F), displacement (dr) and the 

angle (θ) between them. 

Figure 4.2 Calculating work done.

dr

F

w = (F cos3)dr

F cos3

3

Work done is zero in the following cases. 

(i)  When the force is zero (F = 0). 

For example, a body moving on a 

horizontal smooth frictionless surface 

will continue to do so as no force (not 

even friction) is acting along the plane. 

(Th is is an ideal situation.) 

(ii)  When the displacement is zero (dr = 0). 

For example, when force is applied on 

a rigid wall it does not produce any 

displacement. Hence, the work done is 

zero as shown in Figure. 4.3(a). 

Figure 4.1 Work done by a force

Here, the product F dr is a scalar product 
(or dot product). Th e scalar product of two 

vectors is a scalar (refer section 2.5.1). Th us, 

work done is a scalar quantity. It has only 

magnitude and no direction. In SI system, 

unit of work done is N m (or) joule (J). Its 

dimensional formula is [ML2T-2].

Th e equation (4.1) is, 

 W F dr cos  (4.2 )

which can be realised using Figure 4.2 

(as a b ab" � cos3) where,  is the angle 

between applied force and the displacement 

of the body.

Displacement

F

dr

Centripetal
force

Figure 4.3 Diff erent cases of zero work done

(a)

θ

F cosθ

dr

F
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Figure 4.4 Negative work done

dr F

EXAMPLE 4.1

A box is pulled with a force of 25 N to 

produce a displacement of 15 m. If the 

angle between the force and displacement 

is 30o, fi nd the work done by the force.

Solution

 Force, F = 25 N

 Displacement, dr = 15 m

 Angle between F and dr, θ = 30o

(iii)  When the force and displacement are 

perpendicular (θ = 90o) to each other. 

when a body moves on a horizontal 

direction, the gravitational force (mg) 

does no work on the body, since it acts at 

right angles to the displacement  as shown 

in Figure 4.3(b). In circular motion the 

centripetal force does not do work on the 

object moving on a circle as it is always 

perpendicular to the displacement as 

shown in Figure 4.3(c). 

For a given force (F) and displacement (dr), 

the angle (θ) between them decides the value 

of work done as consolidated in Table 4.1.

Th ere are many examples for the negative 

work done by a force. In a football game, the 

goalkeeper catches the ball coming towards 

him by applying a force such that the force is 

applied in a direction opposite to that of the 

motion of the ball till it comes to rest in his 

hands. During the time of applying the force, 

he does a negative work on the ball as shown 

in Figure 4.4. We will discuss many more 

situations of negative work further in this unit.

Table 4.1 Angl e ( θ) a nd t he  na tur e of  w ork 
Angle (θ) cosθ Work

θ = 0 o 1 Positive, Maximum

0 < θ< 90 o (acut e) 0 <  c osθ< 1 Positive 

θ = 90 o (right  a ngl e) 0 Zero 

90 o<θ< 180 o -1 <  c osθ< 0 Negative 

θ = 180 o -1 Negative, Maximum 

30o
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EXAMPLE 4.2

An object of mass 2 kg falls from a height of 

5 m to the ground. What is the work done 

by the gravitational force on the object? 

(Neglect air resistance; Take g = 10 m s-2)

dr

5m
F = mg

Solution

In this case the force acting on the object is 

downward gravitational force mg . This is a 

constant force. 

Work done by gravitational force is

 W = 
r

r

i

f

F drC "

W F cos dr
r

r

i

f

= ( )∫θ  = ( mg cosθ) (r rf i).

The object also moves downward which 

is in the direction of gravitational force  

(F  = mg) as shown in figure. Hence, the 

angle between them is θ = °0 ; cos0 1� �  and 

the displacement, r r mf i��  � 5

 W = mg r rf i��  
 W = 2 × 10 × 5 = 100 J

The work done by the gravitational force 

on the object is positive.

Work done, W Fdr cosθ 

 W cos� � � � � �25 15 30 25 15
3

2

 W J= 324 76.

4.1.2  Work done by a 
constant force

When a constant force F acts on a body, 

the small work done (dW) by the force in 

producing a small displacement dr is given 

by the relation, 

 dW F cos  dr= ( )θ  (4.3)

The total work done in producing a 

displacement from initial position r
i
 to final 

position r
f
 is,

 W dW
r

r

i

f

� C  (4.4)

 W F cos  dr F cos dr= ( ) = ( )∫ ∫
r

r

r

r

i

f

i

f

θ θ  =  

  (F cos r rf iθ) −( )  (4.5)

The graphical representation of the 

work done by a constant force is shown in  

Figure 4.5. The area under the graph shows 

the work done by the constant force.

Figure 4.5 Work done by the constant force

ri rf r

F
 c

os
3
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W = F  dr  = ( mg sin θ) ( dr) 
          ( dr =  length of the inclined place)

 W = 1  10  sin (30°)  10 = 100
1

2
50� � J

The component mg cos θ and the normal 

force N  are perpendicular to the direction 

of motion of the object, so they do not 

perform any work.

EXAMPLE 4.4

If an object of mass 2 kg is thrown up 

from the ground reaches a height of 5  m 

and falls back to the Earth (neglect the air 

resistance). Calculate 

(a) The work done by gravity when the 

object reaches 5 m height

(b) The work done by gravity when the 

object comes back to Earth

(c) Total work done by gravity both in 

upward and downward motion and 

mention the physical significance of 

the result.

Solution

When the object goes up, the displacement 

points in the upward direction whereas 

the gravitational force acting on the object 

points in downward direction. Therefore, 

the angle between gravitational force and 

displacement of the object is 180°.

(a) The work done by gravitational force 

in the upward motion.

Given that 'r m� 5  and F mg

 W   up � � �F r cos mg r' '3 cos180

 Wup � � � � ��  � �2 10 5 1 100 joule.  

 [cos 180° = −1]

EXAMPLE 4.3

An object of mass m=1 kg is sliding from 

top to bottom in the frictionless inclined 

plane of inclination angle 3 � �30  and the 

length of inclined plane is 10 m as shown 

in the figure. Calculate the work done by 

gravitational force and normal force on 

the object. Assume acceleration due to 

gravity, g = 10 m s-2

mg

mg sin θ

mg cos θ

N

m

10 m

θ

θ

Solution

We calculated in the previous chapter that 

the acceleration experienced by the object 

in the inclined plane as g sinθ .

According to Newton’s second law, the 

force acting on the mass along the inclined 

plane F = mg sinθ. Note that this force is 

constant throughout the motion of the 

mass.

The work done by the parallel 

component of gravitational force mg sin θ( ) 
is given by

 W = F dr Fdr. cos�

where 

(mg sin θ) and the  di rection of motion  
(dr). In this case, force (mg sin θ) and the 

displacement (dr) are in the same direction. 

Hence 0 and cos = 1
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(b) When the weight lifter lifts the mass, 

the gravity acts downwards which 

means that the force and displacement 

are in opposite direction. Therefore, 

the angle between them 3 �1800

  W  gravity � � �  F h mghg cos cos3 1800

  � � � � ��  250 10 5 1

 � �12 500,  joule = -12.5 k J

(c) The net workdone (or total work done) 

on the object 

W W Wnet weight lifter gravity� �    

   =  25 k J – 12.5 k J = + 12.5 k J

4.1.3  Work done by a 
variable force

When the component of a variable force F 

acts on a body, the small work done (dW) by 

the force in producing a small displacement 

dr is given by the relation 

 dW F cos dr� �  3  
[F cos θ is the component  

of the variable force F]

where, F and θ are variables. The total work 

done for a displacement from initial position 

r
i
 to final position r

f
 is given by the relation,

 W
r

r

r

r

i

f

i

f

� � CC dW F cos  dr3  (4.6)

A graphical representation of the 

work done by a variable force is shown in  

Figure 4.6. The area under the graph is the 

work done by the variable force. 

(b) When the object falls back, both the 

gravitational force and displacement 

of the object are in the same direction. 

This implies that the angle between 

gravitational force and displacement 

of the object is 0°.

 

W

W

down

down

� �

� � � ��  �

F r

joule

' cos0

2 10 5 1 100  

 [cos 0° = 1]

(c) The total work done by gravity in the entire 

trip (upward and downward motion)

W W W

joule joule

total up down� �

� � � �100 100 0

It implies that the gravity does not transfer 

any energy to the object. When the object is 

thrown upwards, the energy is transferred to 

the object by the external agency, which means 

that the object gains some energy. As soon as 

it comes back and hits the Earth, the energy 

gained by the object is transferred to the surface 

of the Earth (i.e., dissipated to the Earth).

EXAMPLE 4.5

A weight lifter lifts a mass of 250 kg with a 

force 5000 N to the height of 5 m. 

(a) What is the workdone by the weight 

lifter?

(b) What is the workdone by the gravity?

(c) What is the net workdone on the object?

Solution
(a) When the weight lifter lifts the mass, 

force and displacement are in the same 

direction, which means that the angle 

between them 3 � 00.  Therefore, the 

work done by the weight lifter,

 W  weight lifter � � �  F h F hw wcos cos3 00

  � � ��  �5000 5 1 25 000,  joule = 25 kJ
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The important aspect of energy is that 

for an isolated system, the sum of all forms 

of energy i.e., the total energy remains the 

same in any process irrespective of whatever 

internal changes may take place. This means 

that the energy disappearing in one form 

reappears in another form. This is known 

as the law of conservation of energy. In this 

chapter we shall take up only the mechanical 

energy for discussion. 

In a broader sense, mechanical energy is 

classified into two types

1. Kinetic energy 

2. Potential energy

The energy possessed by a body due 

to its motion is called kinetic energy. The 

energy possessed by the body by virtue of 

its position is called potential energy.

The SI unit of energy is the same as 

that of work done i.e., N m (or) joule 

(J). The dimension of energy is also the 

same as that of work done. It is given 

by [ML2T-2]. The other units of energy 

and their SI equivalent values are given 

in Table 4.2.

Table 4.2  SI equivalent of other 

units of energy

Unit Equivalent in 

joule

1 erg (CGS unit) 10 7 J

1 electron volt (eV) 1.6x1   0 19 J

1 calorie (cal) 4.186 J

1 kilowatt hour (kWh) 3.6x106 J

EXAMPLE 4.6 

A variable force F = k x2 acts on a particle 

which is initially at rest. Calculate the work 

done by the force during the displacement 

of the particle from x 0 m to x 4 m. 

(Assume the constant k 1 N m-2)

Solution

Work done, 

 W F d k d= ( ) = =∫ ∫
x

x

i

f

x x x x
0

4

2 64

3
 N m

Figure 4.6 Work done by a variable force

ri rf S

ri rf S

F
 c

os
θ

F
 c

os
θ

4.2
ENERGY

Energy is defined as the capacity to do 

work. In other words, work done is the 

manifestation of energy. That is why work 

and energy have the same dimension 

(ML2T−2)

 Work  Energy



Unit 4  Work,  Energy and Power174

The third equation of motion (refer  

section 2.10.3) can be written as,

 

v u as

a
v u

2 2

2 2

2

2

� �

�
�
s

Substituting for a in equation (4.8), 

 F m
v u

�
�4

8
6

5

9
7

2 2

2s
 (4.9)

Substituting equation (4.9) in (4.7), 

 

W m
v

s m
u

s
s

W mv mu

=
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

= −

2 2

2 2

2 2

1

2

1

2

s

 (4.10)

The expression for kinetic energy:

The term 
1

2

2mv
4
8
6

5
9
7 in the above equation is 

the kinetic energy of the body of mass (m) 

moving with velocity (v). 

 KE mv
1

2

2  (4.11)

Kinetic energy of the body is always positive. 

From equations (4.10) and (4.11)

 ' � �KE mv mu
1

2

1

2

2 2  (4.12)

 Thus, W = ΔKE

4.2.1 Kinetic energy

Kinetic energy is the energy possessed by 

a body by virtue of its motion. All moving 

objects have kinetic energy. A body that is 

in motion has the ability to do work. For 

example a hammer kept at rest on a nail does 

not push the nail into the wood. Whereas 

the same hammer when it strikes the nail, 

draws the nail into the wood as shown in 

Figure 4.7. Kinetic energy is measured by the 

amount of work that the body can perform 

before it comes to rest. The amount of work 

done by a moving body depends both on the 

mass of the body and the magnitude of its 

velocity. A body which is not in motion does 

not have kinetic energy.

4.2.2  Work–Kinetic Energy 
Theorem

Work and energy are equivalents. This is 

true in the case of kinetic energy also. To 

prove this, let us consider a body of mass m 

at rest on a frictionless horizontal surface. 

The work (W) done by the constant 

force (F) for a displacement (s) in the same 

direction is, 

 W Fs  (4.7)

The constant force is given by the equation,

 F ma  (4.8)

Figure 4.7 Demonstration of kinetic energy
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  = 1

2

mv mv

m
p mv

( ) ( ) =
.

[ ]  

  = 1

2

p p

m

.
  

  = 
p2

2m
 

  K E = p2

2m
  (4.14)

where p  is the magnitude of the momentum. 

The magnitude of the linear momentum can 

be obtained by

  p  = p m= 2  KE)(   (4.15)

Note that if kinetic energy and mass are 

given, only the magnitude of the momentum 

can be calculated but not the direction of 

momentum. It is because the kinetic energy 

and mass are scalars.

EXAMPLE 4.7

Two objects of masses 2 kg and 4 kg are 

moving with the same momentum of 

20 kg m s-1. 

(a) Will they have same kinetic energy?

(b) Will they have same speed?

Solution

(a) The kinetic energy of the mass is given  

by KE
p

m
=

2

2

For the object of mass 2 kg, kinetic 

energy is KE J1

2
20

2 2

400

4
100= ( )

×
= =

The expression on the right hand side 

(RHS) of equation (4.12) is the change in 

kinetic energy (ΔKE) of the body.

This implies that the work done by the 

force on the body changes the kinetic energy 

of the body. This is called work-kinetic energy 

theorem.

The work-kinetic energy theorem 

implies the following.

1. If the work done by the force on the 

body is positive then its kinetic energy 

increases.

2. If the work done by the force on the 

body is negative then its kinetic energy 

decreases.

3. If there is no work done by the force 

on the body then there is no change in 

its kinetic energy, which means that 

the body has moved at constant speed 

provided its mass remains constant.

4.2.3  Relation between 
Momentum and  
Kinetic Energy

Consider an object of mass m moving with 

a velocity v. Then its linear momentum is  

p = mv  and its kinetic energy, KE mv
1

2

2. 

 KE mv m= = ( )1

2

1

2

2 v v.   ( 4.13)

Multiplying both the numerator and 

denominator of equation (4.13) by mass, m 

  KE
m

= ( )1

2

2 v v

m

.
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(ii) The energy due to spring force and 

other similar forces give rise to elastic 

potential energy.

(iii) The energy due to electrostatic force 

on charges gives rise to electrostatic 

potential energy.

We will learn more about conservative 

forces in the section 4.2.7. Now, we continue 

to discuss more about gravitational potential 

energy and elastic potential energy.

4.2.5  Potential energy near 
the surface of the 
Earth

The gravitational potential energy (U) at 

some height h is equal to the amount of work 

required to take the object from ground to 

that height h with constant velocity.

Let us consider a body of mass m being 

moved from ground to the height h against 

the gravitational force as shown in Figure 4.8. 

Figure 4.8 Gravitational potential energy

h

The gravitational force Fg acting on 

the body is, m ˆ= −
�

gF g j  (as the force is in 

y direction, unit vector ĵ  is used). Here, 

negative sign implies that the force is acting 

For the object of mass 4 kg, kinetic 

energy is KE J2

2
20

2 4

400

8
50�

�  
�

� �

Note that KE KE1 2≠  i.e., even though 

both are having the same momentum, the 

kinetic energy of both masses is not the 

same. The kinetic energy of the heavier 

object has lesser kinetic energy than smaller 

mass. It is because the kinetic energy is 

inversely proportional to the mass (KE
m

1
)  

for a given momentum.

(b) As the momentum, p = mv, the two 

objects will not have same speed.

4.2.4 Potential Energy

The potential energy of a body is associated 

with its position and configuration with 

respect to its surroundings. This is because 

the various forces acting on the body also 

depends on position and configuration. 

“Potential energy of an object at a point P 

is defined as the amount of work done by an 

external force in moving the object at constant 

velocity from the point O (initial location) to 

the point P (final location). At initial point O 

potential energy can be taken as zero. 

Mathematically, potential energy is  

 defined as U F dra� C .  (4.16)  

where the limit of integration ranges from 

initial location point O to final location 

point P. 

We have various types of potential 

energies. Each type is associated with a 

particular force. For example, 

(i) The energy possessed by the body 

due to gravitational force gives rise to 

gravitational potential energy.



Unit 4  Work,  Energy and Power 177

 It is possible when there is another 

force which acts exactly opposite 

to the external applied force. Th ey 

both cancel each other and the 

resulting net force becomes zero, 

hence the object moves with zero 

acceleration.  

• Why should the object be moved at 

constant velocity when we defi ne 

potential energy? 

 If the object does not move at 

constant velocity, then it will have 

diff erent velocities at the initial and 

fi nal locations. According to work-

kinetic energy theorem, the external 

force will impart some extra kinetic 

energy. But we associate potential 

energy to the forces like gravitational 

force, spring force and coulomb 

force. So the external agency should 

not impart any kinetic energy when 

the object is taken from initial to 

fi nal location. 

Note
• How can an object move with 

zero acceleration (constant 

velocity) when the external 

force is acting on the object? 

EXAMPLE 4.8

An object of mass 2 kg is taken to a height  

5 m from the ground g ��  10ms-2 .  

(a) Calculate the potential energy stored 

in the object.

(b) Where does this potential energy come 

from? 

(c) What external force must act to bring 

the mass to that height?

(d) What is the net force that acts on the 

object while the object is taken to the 

height ‘h’?

vertically downwards. In order to move 

the body without acceleration (or with 

constant velocity), an external applied force 

Fa equal in magnitude but opposite to that 

of gravitational force Fg has to be applied 

on the body i.e., F Fa g� � . Th is implies that 

m ˆ= +
�

aF g j. Th e positive sign implies that 

the applied force is in vertically upward 

direction. Hence, when the body is lift ed up 

its velocity remains unchanged and thus its 

kinetic energy also remains constant.

Th e gravitational potential energy (U) 

at some height h is equal to the amount of 

work required to take the object from the 

ground to that height h.

 U F  dr
h

a� �C CF dra . cos
0

θ (4.17)

Since the displacement and the applied force 

are in the same upward direction, the angle 

between them, 3 � �0 . Hence, cos0 10  and 

F mga  and dr dr. 

 U mg dr
h

� C
0

 (4.18)

 U mg r
h

� K L �
0

mgh (4.19)

Note that the potential energy stored in 

the object is defi ned through work done 

by the external force which is positive. 

Physically this implies that the agency 

which is applying the external force is 

transferring the energy to the object which 

is then stored as potential energy. If the 

object is allowed to fall from a height h then 

the stored potential energy is converted 

into kinetic energy. 
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horizontal table as shown in Figure 4.9. 

Here, x = 0 is the equilibrium position. One 

end of the spring is attached to a rigid wall 

and the other end to the mass.

Fa

Fs

Fs

x

x

x

 x = 0

x

x
Fa

Figure 4.9 Potential energy of the spring 
(elastic potential energy)

As long as the spring remains in 

equilibrium position, its potential energy is 

zero. Now an external force F
a
 is applied so 

that it is stretched by a distance (x) in the 

direction of the force.

There is a restoring force called spring 

force F
s 

developed in the spring which 

tries to bring the mass back to its original 

position. This applied force and the spring 

force are equal in magnitude but opposite in 

direction i.e., F Fa s� � . According Hooke’s 

law, the restoring force developed in the 

spring is

  F ks � � x  (4.20)

The negative sign in the above expression 

implies that the spring force is always 

opposite to that of displacement x  and k 

Solution

(a) The potential energy U m g h = 

2 10 5 = 100 J

 Here the positive sign implies that the 

energy is stored on the mass.

(b) This potential energy is transferred 

from external agency which applies 

the force on the mass.

(c) The external applied force Fa which 

takes the object to the height 5 m is 

F Fa g� �

 
� � �F mg j mg ja = − −( ) =  

 where, j represents unit vector along 

vertical upward direction.

(d) From the definition of potential energy, 

the object must be moved at constant 

velocity. So the net force acting on the 

object is zero.

 F Fg a� � 0

4.2.6  Elastic Potential 
Energy

When a spring is elongated, it develops a 

restoring force. The potential energy possessed 

by a spring due to a deforming force which 

stretches or compresses the spring is termed 

as elastic potential energy. The work done by 

the applied force against the restoring force 

of the spring is stored as the elastic potential 

energy in the spring.

Consider a spring-mass system. Let 

us assume a mass, m lying on a smooth 
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spring depends on the force constant k and 

elongation or compression x .

Th e potential energy stored 

in the spring does not 

depend on the mass that is 

attached to the spring.

Note

Force-displacement graph for 

a spring

Since the restoring spring force and 

displacement are linearly related as F = – k x, 

and are opposite in direction, the graph 

between F  and x is a straight line with 

dwelling only in the second and fourth 

quadrant as shown in Figure 4.10. Th e elastic 

potential energy can be easily calculated 

by drawing a F - x graph. Th e shaded area 

(triangle) is the work done by the spring 

force. 

Area = 
1

2

1

2
1

2

2

( )( ) ( ) ( )base height k

k

� � �

�

x x

x

.

Displacement (x)

Fo
rc

e 
(-

kx
)

0

Figure 4.10 Force–displacement 
graph for a spring

is the force constant. Th erefore applied 

force is Fa = k x . Th e positive sign implies 

that the applied force is in the direction 

of displacement x . Th e spring force is an 

example of variable force as it depends on the 

displacement x . Let the spring be stretched 

to a small distance dx . Th e work done by the 

applied force on the spring to stretch it by a 

displacement x  is stored as elastic potential 

energy. 

  

U F dr

dx

x

a= =

=

∫ ∫

∫

F dr

F

a

x

a

. cos

cos

0

0

θ

θ
 (4.21)

The applied force Fa  and the displacement 
dr
�
 (i.e., here dx  ) are in the same 

direction. As, the initial position is 

taken as the equilibrium position or 

mean position, x=0 is the lower limit of 

integration. 

 U k
x

= ∫
0

x xd   (4.22)

 U k=
⎡

⎣
⎢

⎤

⎦
⎥

x
x

2

0
2

 (4.23)

 U = 1

2

2kx  (4.24)

If the initial position is not zero, and if the 

mass is changed from position x
i
 to x

f , 
then 

the elastic potential energy is

  U k f i= −( )1

2

2 2x x  (4.25)

From equations (4.24) and (4.25), we observe 

that the potential energy of the stretched 
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The work done on the springs are stored as 

potential energy in the springs.

 U
A
 =

1

2

2k xA  A ; U
B
 

1

2

2k xB B

 

U

U

k x

k x

k
F

k

k
F

k

k

k

U

U

k

k

A

B

A A

B B

A

A

B

B

A

B

A

B

B

A

� �

4

8
6

5

9
7

4

8
6

5

9
7

�

�

2

2

2

2

1

1
 

k
A
>k

B 
implies that U

B
>U

A 
. Thus, more 

work is done on B than A.

EXAMPLE 4.10

A body of mass m is attached to the spring 

which is elongated to 25 cm by an applied 

force from its equilibrium position. 

(a) Calculate the potential energy stored 

in the spring-mass system? 

(b) What is the work done by the spring 

force in this elongation?

(c) Suppose the spring is compressed 

to the same 25 cm, calculate the 

potential energy stored and also the 

work done by the spring force during 

compression. (The spring constant, 

k = 0.1 N m−1).

Solution

The spring constant, k = 0.1 N m-1

The displacement, x = 25 cm = 0.25 m

(a) The potential energy stored in the 

spring is given by

 U = 
1

2

1

2
0 1 0 25 0 00312 2

k Jx � � ��  �. . .

Potential energy-displacement graph for 

a spring

A compressed or extended spring will 

transfer its stored potential energy into 

kinetic energy of the mass attached to the 

spring. The potential energy-displacement 

graph is shown in Figure 4.11.

Total energy

Kinetic energy

Potential energy

Displacement
O

Figure 4.11 Potential energy–
displacement graph for a spring-
mass system

In a frictionless environment, the energy 

gets transferred from kinetic to potential 

and potential to kinetic repeatedly such 

that the total energy of the system remains 

constant. At the mean position, 

 Δ ΔU (4.26)

EXAMPLE 4.9

Let the two springs A and B be such that 

k
A
>k

B
. On which spring will more work 

has to be done if they are stretched by the 

same force?

Solution

 F = kA A B Bx k x

 x
F

k
A

A

;  x
F

k
B

B
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4.2.7  Conservative and non-
conservative forces

Conservative force

A force is said to be a conservative force 

if the work done by or against the force in 

moving the body depends only on the initial 

and final positions of the body and not on 

the nature of the path followed between the 

initial and final positions.

Let us consider an object at point A on 

the Earth. It can be taken to another point B 

at a height h above the surface of the Earth 

by three paths as shown in Figure 4.12.

Whatever may be the path, the work 

done against the gravitational force is 

the same as long as the initial and final 

positions are the same. This is the reason 

why gravitational force is a conservative 

force. Conservative force is equal to the 

negative gradient of the potential energy. 

In one dimensional case,

Figure 4.12 Conservative force

A

B

 F
dU

dx
x ��  (4.27)

Examples for conservative forces are elastic 

spring force, electrostatic force, magnetic 

force, gravitational force, etc.

(b) The work done W
s
 by the spring force 

F
s
 is given by,

 
s s

0 0

W F dr ˆk i (d i)
x x

x x  

The spring force Fs  acts in the negative 

x direction while elongation acts in the 

positive x direction.

 W k d ks = −( ) = −∫
0

21

2

x

x x x

 W Js = − × × ( ) = −1

2
0 1 0 25 0 0031

2
. . .

Note that the potential energy is defined 

through the work done by the external 

agency. The positive sign in the potential 

energy implies that the energy is  

transferred from the agency to the object. 

But the work done by the restoring force 

in this case is negative since restoring 

force is in the opposite direction to the 

displacement direction. 

(c) During compression also the potential 

energy stored in the object is the same.  

U = 
1

2
0 00312kx J. .

Work done by the restoring spring force 

during compression is given by

 Ws = s
0 0

F .d k îr ˆ. d i
x x

x x

In the case of compression, the restoring 

spring force acts towards positive x-axis and 

displacement is along negative x direction.

 W k d k Js � ��  � � � �C
0

21

2
0 0031

x

x x x .

h
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A C

B D

Path 2
(ACDB)

y

x0

h

Solution

Force 
� � �F mg mg= −( ) = −j j

Displacement vector dr dx dy
� � �= +i j

(As the displacement is in two dimension; 

unit vectors î  and ĵ are used)

(a) Since the motion is only vertical, 

horizontal displacement component 

dx is zero. Hence, work done by the 

force along path 1 (of distance h).

 

W F dr mg dy

mg dy mgh

A

B

A

B

h

path j j1

0

= = −( ) ( )
= − = −

∫ ∫

∫

� � � �. .

 W F dr F dr F dr F dr
A

B

A

C

C

D

D

B

path 2 = = + +∫ ∫ ∫ ∫. . . .

Non-conservative force

A force is said to be non-conservative if the 

work done by or against the force in moving 

a body depends upon the path between 

the initial and final positions. This means 

that the value of work done is different in 

different paths.

1. Frictional forces are non-conservative 

forces as the work done against friction 

depends on the length of the path moved 

by the body.

2. The force due to air resistance, viscous 

force are also non-conservative forces as 

the work done by or against these forces 

depends upon the velocity of motion.

The properties of conservative and non-

conservative forces are summarized in the 

Table 4.3.

EXAMPLE 4.11

Compute the work done by the gravitational 

force for the following cases

A

B

Path 1
(AB)

y

x0

h

Table 4.3 Comparison of conservative and non-conservative forces

S.No Conservative forces Non-conservative forces

1. Work done is independent of the path Work done depends upon the path

2. Work done in a round trip is zero Work done in a round trip is not zero

3 Total energy remains constant Energy is dissipated as heat energy

4 Work done is completely recoverable Work done is not completely recoverable.

5 Force is the negative gradient of  

potential energy

No such relation exists.

Total work done for path 2 is
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The work done by the external force 

W F dext � � � �20 10 200J

The work done by the force of kinetic 

friction W f dk k  = −( ) × = −18 10 180 J.  

Here the negative sign implies that the 

force of kinetic friction is opposite to the 

direction of displacement.

The total work done on the object 

W W Wtotal ext k= + = − =200 180 20J J J .

Since the friction is a non-conservative 

force, out of 200 J given by the external 

force, the 180 J is lost and it can not be 

recovered.

4.2.8  Law of conservation of 
energy

When an object is thrown upwards its 

kinetic energy goes on decreasing and 

consequently its potential energy keeps 

increasing (neglecting air resistance). When 

it reaches the highest point its energy is 

completely potential. Similarly, when the 

object falls back from a height its kinetic 

energy increases whereas its potential 

energy decreases. When it touches the 

ground its energy is completely kinetic. At 

the intermediate points the energy is both 

kinetic and potential as shown in Figure 4.13. 

When the body reaches the ground the 

kinetic energy is completely dissipated into 

some other form of energy like sound, heat, 

light and deformation of the body etc.

In this example the energy transformation 

takes place at every point. The sum of kinetic 

energy and potential energy i.e., the total 

mechanical energy always remains constant, 

implying that the total energy is conserved. 

This is stated as the law of conservation of 

energy.

But 

 
A

C

A

C

F dr mg dx∫ ∫= −( ) ( ) =
� � � �. .j i 0

  

C

D

C

D

h

F dr mg dy

mg dy mgh

∫ ∫

∫

= −( ) ( )
= − = −

� � � �. .j j

0

 
D

B

D

B

F dr mg dx∫ ∫= −( ) −( ) =
� � � �. .j i 0 

Therefore, the total work done by the force 

along the path 2 is 

 W F dr mgh
A

B

path 2 � � �C .

Note that the work done by the conservative 

force is independent of the path. 

EXAMPLE 4.12

Consider an object of mass 2 kg moved 

by an external force 20 N in a surface 

having coefficient of kinetic friction 0.9 

to a distance 10 m. What is the work  

done by the external force and kinetic 

friction ? Comment on the result. (Assume 

g = 10 ms 2)

Solution

m = 2 kg, d = 10 m, F
ext

 = 20 N, μ
k
 = 0.9.

When an object is in motion on the 

horizontal surface, it experiences two 

forces. 

(a) External force, Fext 20 N

(b) Kinetic friction,  

fk = Fk mgg � ��  �0 9 2. �10 18 N .
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(d) What will be the speed of the object 

when it hits the ground?

(Assume g 10  m s-2)

Solution

(a) The gravitational force is a conservative 

force. So the total energy remains 

constant throughout the motion. At 

h 10 m, the total energy E  is entirely 

potential energy.

 E U mgh= = = × × =1 10 10 100 J  

(b) The potential energy of the object at 

h 4 m is 

 U mgh� � � � �1 10 4 40J 

(c) Since the total energy is constant 

throughout the motion, the 

kinetic energy at h 4 m must be 

KE E U= = =− −100 40 60J  

Alternatively, the kinetic energy could 

also be found from velocity of the object at 

4 m. At the height 4 m, the object has fallen 

through a height of 6 m. 

The velocity after falling 6 m is calculated 

from the equation of motion,

 v gh� � � � �2 2 10 6 120  m s-1;

v2 120

The kinetic energy is KE mv= = ×1

2

1

2
12

J× =120 60

(d) When the object is just about to hit the 

ground, the total energy is completely 

kinetic and the potential energy, U 0.

Figure 4.13 Conservation of energy

h

y

h−y

C

U = mgh, KE = 0, E = U 

U ≠ 0, KE ≠ 0, E = U + KE 

U = 0, KE ≠ 0, E = KE 

B

A

The law of conservation of energy 

states that energy can neither be created nor 

destroyed. It may be transformed from one 

form to another but the total energy of an 

isolated system remains constant.

Figure 4.13 illustrates that, if an object 

starts from rest at height h, the total energy 

is purely potential energy (U=mgh) and the 

kinetic energy (KE) is zero at h. When the 

object falls at some distance y, the potential 

energy and the kinetic energy are not zero 

whereas, the total energy remains same as 

measured at height h. When the object is 

about to touch the ground, the potential 

energy is zero and total energy is purely 

kinetic.

EXAMPLE 4.13

An object of mass 1 kg is falling from the 

height h = 10 m. Calculate

(a) The total energy of an object at h 10  m

(b) Potential energy of the object when it 

is at h 4  m

(c) Kinetic energy of the object when it is 

at h 4 m
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be equal to the gravitational force, 

F mg1 100 10 1000� � � �  N

The distance moved along path (1) is, 

h 10 m

The work done on the object along  

path (1) is 

 W F h 1000 � �10 10 000,  J

Along path (2):

In the case of the ramp, the minimum force 

F2  that we apply on the object to take it 

up is not equal to mg , it is rather equal to 

mg sin  . mg sin3 M�  mg . 

Here, angle θ = 30o

Therefore, F
2
 = mg sinθ = 100 × 10 × 

sin30o = 100 × 10 × 0.5 500 N

Hence, mg sin3 M�  mg

The path covered along the ramp is,  

l = 
h

m
sin .30

10

0 5
20

The work done on the object along path 

(2) is, W = F
2 
l = 500 × 20 = 10,000 J

Since the gravitational force is a 

conservative force, the work done by 

gravity on the object is independent of the 

path taken.

In both the paths the work done by the 

gravitational force is 10,000 J

Along path (1):  more force needs to be 

applied against gravity to 

cover lesser distance .

Along path (2):  lesser force needs to be 

applied against the gravity 

to cover more distance. 

As the force needs to be applied along 

the ramp is less, it is easier to move the 

object along the ramp.

 E KE mv J= = =1

2
1002

 v
m

KE
1

100 m s= = × = ≈ −2 2
200 14 12 1.

EXAMPLE 4.14

A body of mass 100 kg is lifted to a height 10 

m from the ground in two different ways as 

shown in the figure. What is the work done 

by the gravity in both the cases? Why is it 

easier to take the object through a ramp?

Path (1) straight up

Path (2) along the ramp

Solution

m = 100 kg, h = 10 m

Along path (1):

The minimum force F1 required to move 

the object to the height of 10 m should 

h = 10 m

30°

30°

h = 10 m
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EXAMPLE 4.16

An object of mass 2 kg attached to a spring 

is moved to a distance x 10  m from its 

equilibrium position. The spring constant 

k 1 N m-1 and assume that the surface is 

frictionless.

(a) When the mass crosses the equilibrium 

position, what is the speed of the mass? 

(b) What is the force that acts on the object 

when the mass crosses the equilibrium 

position and extremum position  

x =  10 m.

Solution

(a) Since the spring force is a conservative 

force, the total energy is constant. At 

x 10 m, the total energy is purely 

potential.

 E = U = 
1

2

1

2
1 10 502 2

k x = × ( ) × ( ) = J

When the mass crosses the equilibrium 

position x ��  0 , the potential energy 

 U = 
1

2
1 0 0� ��  �   J

The entire energy is purely kinetic energy 

at this position. 

 E KE mv= = =1

2
502 J

The speed 

v
KE

m
ms ms= = × = ≈− −2 2 50

2
50 7 071 1.

EXAMPLE 4.15

An object of mass m is projected from the 

ground with initial speed v0. 

Find the speed at height h.

Solution

Since the gravitational force is conservative;  

the total energy is conserved throughout 

the motion. 

Initial Final

Kinetic 

energy
1

2
0

2mv
1

2

2mv

Potential 

energy

0 mgh

Total 

energy
1

2
0

1

2
0

2

0

2mv mv� �
1

2

2mv mgh

Final values of potential energy, kinetic 

energy and total energy are measured at 

the height h. 

By law of conservation of energy,  

the initial and final total energies are the 

same.

 
1

2

1

2
0

2 2mv mv mgh� �

 v v gh0

2 2 2� �

 v v gh� �0

2 2

Note that in section (2.11.2) similar result 

is obtained  using kinematic equation 

based on calculus method. However, 

calculation through energy conservation 

method is much easier than calculus 

method.
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Figure 4.14 Motion in vertical circle

C B

D

O

r
A

T
r

θ

θ

v

mgcos θ

mgsinθ
mg

where, a
dv

dt
is tangential retardationt � �

In the radial direction,

 

T mg cos m a

T mg cos
mv

r

r− =

− =

θ

θ
2  (4.29)

  where, a
v

r
r

2

 is the centripetal  

acceleration.

The circle can be divided into four 

sections A, B, C, D for better understanding 

of the motion. The four important facts to 

be understood from the two equations are 

as follows:

(i) The mass is having tangential 

acceleration (g sin θ) for all values of 

θ (except θ = 0o), it is clear that this 

vertical cirular motion is not a uniform 

circular motion.

(ii) From the equations (4.28) and (4.29) it 

is understood that as the magnitude of 

velocity is not a constant in the course 

of motion, the tension in the string is 

also not constant. 

(b) Since the restoring spring force is  

F = - kx, when the object crosses the 

equilibrium position, it experiences 

no force. Note that at equilibrium 

position, the object moves very fast. 

When the object is at x = +10 m 

(elongation), the force F = − k x

F = − (1) (10) = − 10 N. Here the 

negative sign implies that the force 

is towards equilibrium i.e., towards 

negative x-axis and when the object is at 

x = − 10m (compression), it experiences 

a forces F = − (1) (− 10) = +10 N. Here 

the positive sign implies that the force 

points towards positive x-axis.

The object comes to momentary rest 

at x = 10m even though it experiences 

a maximum force at both these points.

4.2.9  Motion in a vertical circle

Imagine that a body of mass (m) attached 

to one end of a massless and inextensible 

string executes circular motion in a vertical 

plane with the other end of the string fixed. 

The length of the string becomes the radius 

(r ) of the circular path (Figure 4.14). 

Let us discuss the motion of the body 

by taking the free body diagram (FBD) at 

a position where the position vector ( r )  

makes an angle θ with the vertically 

downward direction and the instantaneous 

velocity is as shown in Figure 4.14.

There are two forces acting on the mass.

1. Gravitational force which acts downward

2. Tension along the string.

Applying Newton’s second law on the mass, 

In the tangential direction,

 

mg ma

mg m
dv

dt

tsin

sin

3

3

�

� � 4
8
6

5
9
7
 (4.28)
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body (vertically downwards) and another 

one is the tension T
1
 acting vertically 

upwards, i.e. towards the center. From the 

equation (4.29), we get 

 T mg
mv

r
1

1

2

� �  (4.30)

 T
mv

r
mg1

1

2

� �  (4.31)

V 2

V 1

T 2

T 1

r

2

mg

mg

1

Figure 4.15 Motion in 
vertical circle shown for 
lowest and highest points

For the highest point (2)

At the highest point 2, both the gravitational 

force mg  on the body and the tension T
2
 act 

downwards, i.e. towards the center again.

 T mg
mv

r
2

2

2

+ =  (4.32)

 T
mv

r
mg2

2

2

= −  (4.33)  

From equations (4.31) and (4.33), it is 

understood that T T1 2. The difference in 

tension T T1 2 is obtained by subtracting 

equation (4.33) from equation (4.31).

(iii) The equation (4.29),T mg cosθ
mv

r
= +

2

highlights that in sections A and D 

of the circle, for  cos  � M M4
8
6

� 3 �
3

2 2
;

is positive
5
9
7, the term mg cosθ is  always 

greater than zero. Hence the tension 

cannot vanish even when the velocity 

vanishes.

(iv) The equation (4.29), 
mv

r
T mg cos

2

� � 3 ;  

further highlights that in sections B 

and C of the circle, for  
� �
2

3

2
M M4

8
6 3 ;

cos  is negative
5
9
73 , the second term 

is always greater than zero. Hence 
velocity cannot vanish, even when the 

tension vanishes.

These points are to be kept in mind 

while solving problems related to motion in 

vertical circle. 

To start with let us consider only two 

positions, say the lowest point 1 and the 

highest point 2 as shown in Figure 4.15 for 

further analysis. Let the velocity of the body 

at the lowest point 1 be v
1
, at the highest 

point 2 be v
2
 and v  at any other point. 

The direction of velocity is tangential to 

the circular path at all points. Let T1 be the 

tension in the string at the lowest point and 

T2 be the tension at the highest point and T  

be the tension at any other point. Tension 

at each point acts towards the center. 

The tensions and velocities at these two 

points can be found by applying the law of 

conservation of energy. 

For the lowest point (1)

When the body is at the lowest point 1,  the 

gravitational force m g  which acts on the 
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From the law of conservation of energy 

given in equation (4.35), we get

 
1

2
2

1

2
1

2

2

2mv mgr mv� �

Aft er rearranging,

 
1

2
21

2

2

2m v v mgr��  �

 v v gr1

2

2

2 4� �  (4.36)

Substituting equation (4.36) in equation 

(4.34) we get,

 T T
m

r
gr mg1 2 4 2− = [ ] +

Th erefore, the diff erence in tension is 

 T T  mg1 2 6� �  (4.37)

Minimum speed at the highest point (2)

Th e body must have a minimum speed 

at point 2 otherwise, the string will slack 

before reaching point 2 and the body will 

not loop the circle. To fi nd this minimum 

speed let us take the tension T
2
 = 0 in 

equation (4.33).

 0 2

2

� �
mv

r
mg

 
mv

r
mg2

2

 v rg2

2

 v gr2  (4.38)  

 T T
mv

r
mg

mv

r
mg1 2

1

2

2

2

� � � � �
4

8
6

5

9
7

 = 
mv

r
mg

mv

r
mg1

2

2

2

� � �

  T T
m

r
v v mg1 2 1

2

2

2 2� � �NO PQ �  (4.34)

Th e term v v1

2

2

2�NO PQ can be found easily 

by applying law of conservation of energy at 

point 1 and also at point 2.

Th e tension will not do any 

work on the mass as the tension 

and the direction of motion is 

always perpendicular.

Th e gravitational force is doing work 

on the mass, as it is a conservative 

force the total energy of the mass is 

conserved throughout the motion.

Note

 Total Energy at point 1(E1) is same as the 

total energy at a point 2 (E2)

 E1 = E2 (4.35)

Potential Energy at point 1, U1 0 (by 

taking reference as point 1)

Kinetic Energy at point 1, KE1 1

21

2
= mv

Total Energy at point 1, E U KE1 1 1= + =

1

2

1

20
1

2

1

2
= + =mv mv

Similarly, Potential Energy at point 2, 

U2 2mg r)(  (h is 2r from point 1)

Kinetic Energy at point 2, KE2 2

21

2
= mv

Total Energy at point 2, E U KE2 2 2= =+

2

22
1

2
+ mg r mv
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4.3

Solution

Radius of circle r = 0.5 m

The required speed at the highest point 

v gr2 10 0 5 5� � � �.  ms 1. The speed 

at lowest point v gr gr1 5 5 5� � � �  

5  = 5 ms 1

POWER

4.3.1 

Power is a measure of how fast or slow a 

work is done. Power is defined as the rate of 

work done or energy delivered. 

  Power P
work done W

time taken t
�  �

�  
�  

 

 P
W

t
 

Average power

The average power (P
av

) is defined as the  

ratio of the total work done to the total time 

taken.

   P
total work done

total time taken
av  

The body must have a speed at point 2, 

v gr2  to stay in the circular path.

Minimum speed at the lowest point 1

To have this minimum speed v gr2 ��   
at point 2, the body must have minimum 

speed also at point 1. 

By making use of equation (4.36) we can 

find the minimum speed at point 1.

 v v gr1

2

2

2 4� �

Substituting equation (4.38) in (4.36),

 v gr gr1

2 4� �

 v gr1

2 5

 v gr1 5  (4.39)

The body must have a speed at point 1, 

v gr1 5  to stay in the circular path.

From equations (4.38) and (4.39), it is 

clear that the minimum speed at the lowest 

point 1 should be 5 times more than the 

minimum speed at the highest point 2, so 

that the body loops without leaving the 

circle.

EXAMPLE 4.17

Water in a bucket tied with rope is whirled 

around in a vertical circle of radius 0.5 m.  

Calculate the minimum velocity at the 

lowest point so that the water does not 

spill from it in the course of motion.  

(g = 10 ms-2)
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in watt and time in second is written as,  

1 J =1 W s. When electrical appliances are 

put in use for long hours, they consume 

a large amount of energy. Measuring the 

electrical energy in a small unit watt.

second (W s) leads to handling large 

numerical values. Hence, electrical energy 

is measured in the unit called kilowatt 

hour (kWh).

 1 electrical unit =  1 kWh = 1  (103 W)  

 (3600 s)

 1 electrical unit = 3600×103 W s 

 1 electrical unit = 3.6×106 J 

 1 kWh = 3.6×106 J

Electricity bills are generated in units 

of kWh for electrical energy consumption. 

1 unit of electrical energy is 1 kWh.  

(Note: kWh is unit of energy and not of 

power.)

EXAMPLE 4.18

Calculate the energy consumed in 

electrical units when a 75 W fan is  

used for 8 hours daily for one month  

(30 days).

Solution

Power, P = 75 W

Time of usage, t = 8 hour × 30 days = 

240 hours

Electrical energy consumed is the 

product of power and time of usage.

Instantaneous power

The instantaneous power (P
inst

) is defined as 

the power delivered at an instant (as time 

interval approaches zero),

 P
dW

dt
inst  

4.3.2 

Power is a scalar quantity. Its dimension is 

[ML2T–3]. The SI unit of power is watt (W), 

named after the inventor of the steam engine 

James Watt. One watt is defined as the power 

when one joule of work is done in one second, 

(1 W = 1 J s–1).

The higher units are kilowatt(kW), 

megawatt(MW), and Gigawatt(GW).

 1kW = 1000 W = 103 watt

 1MW = 106 watt

 1GW = 109 watt

For motors, engines and some 

automobiles an old unit of power still 

commercially in use which is called as the 

horse-power (hp). We have a conversion 

for horse-power (hp) into watt (W)  

which is,

 1 hp = 746 W  

All electrical goods come with a 

definite power rating in watt printed on 

them. A 100 watt bulb consumes 100 joule  

of electrical energy in one second. The 

energy measured in joule in terms of power 



Unit 4  Work,  Energy and Power192

Substituting equation (4.41) and equation 

(4.42) in equation (4.40), we get

 C C� "�  dW

dt
dt F dtv

 C � "4
8
6

5
9
7 �

dW

dt
F dtv 0

This relation is true for any arbitrary value 

of dt. This implies that the term within the 

bracket must be equal to zero, i.e., 

 dW

dt
F� " �v 0  

Or 

 
dW

dt
F� "v  (4.43)

EXAMPLE 4.19

A vehicle of mass 1250 kg is driven with an 

acceleration 0.2 ms 2  along a straight level 

road against an external resistive force 500 N.  

Calculate the power delivered by the 

vehicle’s engine if the velocity of the vehicle 

is 30 m s 1 . 

Solution

The vehicle’s engine has to do work against 

resistive force and make vechile to move 

with an acceleration. Therefore, power 

delivered by the vehicle engine is 

P =  (resistive force + mass   

acceleration) (velocity) 

 
P F v F F v

P F v F ma v

tot resistive

tot resistive

� � �

� " � �
� ( )

( )

   =  (500 N + (1250 kg)  (0.2 ms 2 ))  

(30 ms 1) = 22.5 kW

Electrical energy = power × time of 

usage = P × t

 � �75 240 watt  hour

 18000 watt hour

 18 18 kilowatt hour kWh

 1 1 electrical unit  kWh

 Electrical energy  unit18

Incandescent lamps glow for 

1000 hours. CFL lamps glow 

for 6000 hours. But LED lamps 

glow for 50000 hrs (almost 25 years at 5.5 

hour per day).

4.3.3  Relation between 

The work done by a force F for a displacement 

dr  is 

 W F dr� "C  (4.40)

Left hand side of the equation (4.40) can be 

written as 

 W dW
dW

dt
dt� �C C   

 (multiplied and divided by dt) 

 (4.41)

Since, velocity is v
dr

dt
; dr v dt . Right 

hand side of the equation (4.40) can be 

written as 

C C C" � "4
8
6

5
9
7 � "�  �N

OR
P
QS

F dr F dt F dt
dr

dt
v v

dr

dt
 

  (4.42)
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 lim
'

'
't

p p p p

H

��  
�

��  
�

0

1 2 1 2 0
t

d

dt

The above expression implies that the total 

linear momentum is a conserved quantity. 

Note: The momentum is a vector quantity. 

Hence, vector addition has to be followed to 

find the total momentum of the individual 

bodies in collision.

4.4.1 

In any collision process, the total linear 

momentum and total energy are always 

conserved whereas the total kinetic energy 

need not be conserved always. Some part 

of the initial kinetic energy is transformed 

to other forms of energy. This is because, 

the impact of collisions and deformation 

occurring due to collisions may in general, 

produce heat, sound, light etc. By taking 

these effects into account, we classify the 

types of collisions as follows:

(a) Elastic collision 

(b) Inelastic collision

(a) Elastic collision

In a collision, the total initial kinetic energy 

of the bodies (before collision) is equal to 

the total final kinetic energy of the bodies 

(after collision) then, it is called as elastic 

collision. i.e.,

Total kinetic energy before collision = 

Total kinetic energy after collision

(b) Inelastic collision

In a collision, the total initial kinetic energy 

of the bodies (before collision) is not equal 

4.4
COLLISIONS

Collision is a common phenomenon that 

happens around us every now and then. 

For example, carom, billiards, marbles, etc.,. 

Collisions can happen between two bodies 

with or without physical contacts. 

Linear momentum is conserved in 

all collision processes. When two bodies 

collide, the mutual impulsive forces acting 

between them during the collision time 

(Δt) produces a change in their respective 

momenta. That is, the first body exerts a 

force F12 on the second body. From Newton’s 

third law, the second body exerts a force F21 

on the first body. This causes a change in 

momentum Δp1 and Δp2  of the first body 

and second body respectively. Now, the 

relations could be written as, 

  ' 'p F t1 12�  (4.44)

  ' 'p F t2 21�   (4.45)

Adding equation (4.44) and equation (4.45), 

we get 

 ' ' ' ' 'p p F t F t F F t1 2 12 21 12 21� � � � ��  

According to Newton’s third law, F F12 21� �

 ' 'p p1 2 0� �

 ' p p1 2 0��  �

Dividing both sides by t and taking limit 

't H 0 , we get
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vehicle and they move together with the 

same velocity. 

4.4.2  Elastic collisions in one 
dimension

Consider two elastic bodies of masses m
1
 and 

m
2
 moving in a straight line (along positive 

x direction) on a frictionless horizontal 

surface as shown in Figure 4.16. 

Before collision

u1

m1 m1m2 m2

u2 v1

After collision

v2

Figure 4.16 Elastic collision in one 
dimension

Mass Initial velocity Final velocity

Mass m
1

u
1

v
1

Mass m
2

u
2

v
2

In order to have collision, we assume that 

the mass m1 moves faster than mass m2 i.e., 

u u1 2. For elastic collision, the total linear 

momentum and kinetic energies of the 

two bodies before and after collision must 

remain the same.

to the total final kinetic energy of the bodies 

(after collision) then, it is called as inelastic 

collision. i.e.,

Total kinetic energy before collision ≠   

Total kinetic energy after collision

Total kinetic energy

after collision

Total kinetic en

  

 

  

4

8
6

5

9
7

�
eergy

before collision 

4

8
6

5

9
7

  

    
loss in energy

during collision

  

 

4

8
6

5

9
7 ΔQ  

Even though kinetic energy is not conserved 

but the total energy is conserved. This is 

because the total energy contains the kinetic 

energy term and also a term ΔQ , which 

includes all the losses that take place during 

collision. Note that loss in kinetic energy 

during collision is transformed to another 

form of energy like sound, thermal, etc. 

Further, if the two colliding bodies stick 

together after collision such collisions are 

known as completely inelastic collision or 

perfectly inelastic collision. Such a collision 

is found very often. For example when a clay 

putty is thrown on a moving vehicle, the clay 

putty (or Bubblegum) sticks to the moving 

Table 4.4 Comparison between elastic and inelastic collisions

S.No. Elastic Collision Inelastic Collision

1. Total momentum is conserved Total momentum is conserved

2. Total kinetic energy is conserved Total kinetic energy is not conserved

3. Forces involved are conservative forces Forces involved are non-conservative 

forces

4. Mechanical energy is not dissipated. Mechanical energy is dissipated into heat, 

light, sound etc.
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From the law of conservation of linear 

momentum, 

Total momentum before collision  

( pi) = Total momentum after collision ( pf )

Momentum of  

mass m
1

Momentum of  

mass m
2

Total linear momentum 

Before collision pi1 1 1m u pi2 2 2m u p p pi i i� �1 2

pi � �m u m u1 1 2 2

After collision pf 1 1 1m v pf 2 2 2m v p p pf f f� �1 2

pf � �m v m v1 1 2 2

  m u m u m v m v1 1 2 2 1 1 2 2� � �   (4.46)

 Or m u v m v u1 1 1 2 2 2��  � ��   (4.47)

Further, 

Kinetic energy of  

mass m
1

Kinetic energy of  

mass m
2

Total kinetic energy

Before 

collision  KEi1 1 1

21

2
= m u  KEi2 2 2

21

2
= m u

 KE KE KEi i i= +1 2

 

KEi � �
1

2

1

2
1 1

2

2 2

2m u m u

After 

collision  KE f 1 1 1

21

2
= m v  KE f 2 2 2

21

2
= m v

 KE KE KEi i i= +1 2

 

KE f = +1

2

1

2
1 1

2

2 2

2m v m v

For elastic collision,

Total kinetic energy before collision KEi  

= Total kinetic energy after collision KE f

 
1

2

1

2

1

2

1

2
1 1

2

2 2

2

1 1

2

2 2

2m u m u m v m v� � �
  

   
(4.48)

After simplifying and rearranging the 

terms,

m u v m v u1 1

2

1

2

2 2

2

2

2��  � ��  

Using the formula a b a b a b2 2� � ��  ��  , 
we can rewrite the above equation as 

m u v u v m v u v u1 1 1 1 1 2 2 2 2 2��  ��  � ��  ��   
 (4.49)

Dividing equation (4.49) by (4.47) gives, 
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Similarly, by substituting (4.51) in 

equation (4.47) or substituting equation 

(4.53) in equation (4.52), we get the final 

velocity of m2 as 

 v
m

m m
u

m m

m m
u2

1

1 2

1
2 1

1 2

2

2
�

�
4

8
6

5

9
7 �

�
�

4

8
6

5

9
7  (4.54)

Case 1: When bodies has the same mass 

i.e., m
1
 = m

2
,

 e qua tion ( 4.53)  ⇒ v  u
m

m
u1 1

2

2

20
2

2
� �  �

4

8
6

5

9
7   

              v u1 2 (4.55)

 equa tion ( 4.54)  ⇒ v m

m
u u2

1

1

1 2

2

2
0�

4

8
6

5

9
7 � �  

              v u2 1 (4.56)

The equations (4.55) and (4.56) show  

that in one dimensional elastic collision, 

when two bodies of equal mass collide 

after the collision their velocities are 

exchanged. 

Case 2: When bodies have the same 

mass i.e., m
1
  m

2
 and second body (usually 

called target) is at rest (u
2
  0),

By substituting m m1 2 and u2 0 in 

equations (4.53) and equations (4.54)  

we get,

 from e qua tion ( 4.53)  ⇒ v1 0 (4.57)

 from e qua tion ( 4.54)  ⇒ v u2 1 (4.58)

Equations (4.57) and (4.58) show that 

when the first body comes to rest the second 

  
m u v u v

m u v

m v u v u

m v u

1 1 1 1 1

1 1 1

2 2 2 2 2

2 2 2

��  ��  
��  

�
��  ��  

��  

 
u v v u

u u v v

1 1 2 2

1 2 2 1

� � �
� � �

 Rearranging, (4.50)

Equation (4.50) can be rewritten as 

 u u v v1 2 1 2� � � �( )

This means that for any elastic head 

on collision, the relative speed of the two 

elastic bodies after the collision has the 

same magnitude as before collision but in 

opposite direction. Further note that this 

result is independent of mass. 

Rewriting the above equation for v1
  

and v2 ,

 v v u u1 2 2 1� � �  (4.51)

Or 

 v u v u2 1 1 2� � �  (4.52)

To find the final velocities v1 and v2:

Substituting equation (4.52) in equation 

(4.47) gives the velocity of m1 as

 m u v m u v u u1 1 1 2 1 1 2 2��  � � � ��  
 m u v m u v u1 1 1 2 1 1 22��  � � ��  
 m u m v m u m v m u1 1 1 1 2 1 2 1 2 22� � � �

 m u m u m u m v m v1 1 2 1 2 2 1 1 2 12� � � �

 m m u m u m m v1 2 1 2 2 1 2 12��  � � ��  

 or v
m m

m m
u

m

m m
u1

1 2

1 2

1
2

1 2

2

2
�

�
�

4

8
6

5

9
7 �

�
4

8
6

5

9
7

 (4.53)
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(rebounds) in the opposite direction with the 

same initial velocity as it has a negative sign. 

The equation (4.60) implies that the second 

body which is heavier in mass continues 

to remain at rest even after collision. For 

example, if a ball is thrown at a fixed wall, 

the ball will bounce back from the wall with 

the same velocity with which it was thrown 

but in opposite direction. 

Case 4: 

The second body is very much lighter than 

the first body 

m m
m

m
2 1

2

1

1,
⎛
⎝⎜

⎞
⎠⎟

 the n the  ratio m

m
2

1

 ≈ 0

and a lso i f t he  t arge t i s a t r est u2 0��  
Dividing numerator and denominator of 

equation (4.53) by m1, we get

  v

m

m

m

m

u

m

m

m

m

1

2

1

2

1

1

2

1

2

1

1

1

2

1

0�
�

�

4

8

6
6
6
6

5

9

7
7
7
7

�
�

4

8

6
6
6
6

5

9

7
7
7
7

�  

  v u1 1

1 0

1 0

0

1 0
0�

�
�

4
8
6

5
9
7 �

�
4
8
6

5
9
7�  

 v u1 1  (4.61)

Similarly, 

Dividing numerator and denominator of 

equation (4.58) by m1, we get

 v
m

m

u

m

m

m

m

2
2

1

1

2

1

2

1

2

1

1

1

0�
�

4

8

6
66

5

9

7
77

�
�

�

4

8

6
6
6
6

5

9

7
7
7
7

�  

 v u2 1

2

1 0
�

�
4
8
6

5
9
7

 v u2 12  (4.62) 

body moves with the initial velocity of the 

first body. 

Case 3: 

The first body is very much lighter than the 

second body 

m m
m

m
1 2

1

2

1,
⎛
⎝⎜

⎞
⎠⎟

 the n the  ratio m

m
1

2

 ≈ 0 

and a lso i f t he  t arge t i s a t r est u2 0��  
Dividing numerator and denominator of 

equation (4.53) by m2, we get

  v

m

m

m

m

u
m

m

1

1

2

1

2

1
1

2

1

1

2

1

0�
�

�

4

8

6
6
6
6

5

9

7
7
7
7

�
�

4

8

6
6
6
6

5

9

7
7
7
7

�  

 v u1 1

0 1

0 1
�

�
�

4
8
6

5
9
7

 v u1 1� �  (4.59)

Similarly, 

Dividing numerator and denominator of 

equation (4.54) by m2, we get

 v

m

m

m

m

u

m

m

m

m

2

1

2

1

2

1

1

2

1

2

2

1

1

1

0�
�

4

8

6
6
6
6

5

9

7
7
7
7

�
�

�

4

8

6
6
6
6

5

9

7
7
7
7

�  

 v u

m

m

m

m

2 1

1

2

1

2

0

1

1

0� �  �
�

�

4

8

6
6
6
6

5

9

7
7
7
7

�  

 v2 0   (4.60)

The equation (4.59) implies that the 

first body which is lighter returns back 
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 v
m m

m m

m

m m
1

2

2
10

2 2

2
5�

�
�

4
8
6

5
9
7 �

�
�

4
8
6

5
9
7

 v1

1

3
10

4

3
5

10 20

3

10

3
� �4

8
6

5
9
7 � 4

8
6

5
9
7 �

� �
�

 v ms1

13 33� �.

 v
m

m m
u

m m

m m
u2

1

1 2

1
2 1

1 2

2

2
�

�
4

8
6

5

9
7 �

�
�

4

8
6

5

9
7

 v
m

m m

m m

m m
2

2

2
10

2

2
5�

�
4
8
6

5
9
7 �

�
�

4
8
6

5
9
7

 v2

2

3
10

1

3
5

20 5

3

25

3
� 4

8
6

5
9
7 � 4

8
6

5
9
7 �

�
�

 v ms2

18 33� �.

As the two speeds v
1
 and v

2
 are positive, 

they move in the same direction with 

the velocities, 3.33 m s−1 and 8.33 m s−1 

respectively.

4.4.3  Perfect inelastic 
collision

In a perfectly inelastic or completely 

inelastic collision, the objects stick together 

permanently aft er collision such that they 

move with common velocity. Let the two 

bodies with masses m
1
 and m

2
 move with 

initial velocities u
1
 and u

2
 respectively 

before  collision. Aft er perfect inelastic 

collision both the objects move together 

with a common velocity v as shown in 

Figure (4.17).

Since, the linear momentum is conserved 

during collisions, 

 m
1 
u

1
 + m

2 
u

2 
= (m

1
+ m

2
) v

Th e equation (4.61) implies that the fi rst 

body which is heavier continues to move 

with the same initial velocity. Th e equation 

(4.62) suggests that the second body which 

is lighter will move with twice the initial 

velocity of the fi rst body. It means that the 

lighter body is thrown away from the point 

of collision.

EXAMPLE 4.20

A lighter particle moving with a speed of 

10 m s-1 collides with an object of double 

its mass moving in the same direction with 

half its speed. Assume that the collision is 

a one dimensional elastic collision. What 

will be the speed of both particles aft er the 

collision?

Solution

m1=m 

u2=5 ms-1
u1=10 ms-1  

m2=2m 

Let the mass of the fi rst body be m which 

moves with an initial velocity, u
1 
= 10 m s-1. 

Th erefore, the mass of second body is 

2m and its initial velocity is u
2 

= 
1

2
 u

1 
=

1

2
10 1m s−( ) , 

Th en, the fi nal velocities of the bodies 

can be calculated from the equation (4.53) 

and equation (4.54) 

 

v
m m

m m
u

m

m m
u1

1 2

1 2
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The speed of the bullet is u
1
. The second 

body is at rest u2 0��  . Let the common 

velocity of the bullet and the object after the 

bullet is embedded into the object is v. 

 v
m u m u

m m
�

�
��  

1 1 2 2

1 2

 v
u

u= + ×
+( ) =0 05 0 45 0

0 05 0 45

0 05

0 50
1

1

. ( . )

. .

.

.

The combined velocity is the initial 

velocity for the vertical upward motion of 

the combined bullet and the object. From 

second equation of motion, 

 v gh2

 v � � � �2 10 1 8 36.

 v ms� �6 1

Substituting this in the above equation, the 

value of u
1
 is

 6
0 05

0 50
1

.

.
u  or u1

0 50

0 05
6 10 6� � � �

.

.

     u1

160� �ms

4.4.4  Loss of kinetic energy 

collision

In perfectly inelastic collision, the loss 

in kinetic energy during collision is 

transformed to another form of energy 

like sound, thermal, heat, light etc. Let KE
i 

be the total kinetic energy before collision 

and KE
f 
be the total kinetic energy after 

collision.

Total kinetic energy before collision,  

Before collision

u1

m1 m1m2 m2

u2 v

After collision

Figure 4.17 Perfect inelastic collision in 
one dimension

Velocity  Linear 

momentum

Initial Final Initial Final

Mass m
1

u
1

v m
1
u

1
m

1
v

Mass m
2

u
2

v m
2
u

2
m

2
v

Total m
1
u

1
 + 

m
2
u

2

(m
1
+ 

m
2
) v

The common velocity can be computed by 

 
 
v

m u m u

m m
�

�
��  

1 1 2 2

1 2

  (4.63)

EXAMPLE 4.21

A bullet of mass 50 g is fired from below into 

a suspended object of mass 450 g. The object 

rises through a height of 1.8 m with bullet 

remaining inside the object. Find the speed 

of the bullet. Take g = 10 ms-2. 

Solution

m
1
 = 50 g = 0.05 kg;  m

2
 = 450 g = 0.45 kg
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 KEi = +1

2

1

2
1 1

2

2 2

2m u m u  (4.64)

Total kinetic energy after collision, 

 KE f = +( )1

2
1 2

2m m v   (4.65)

Then the loss of kinetic energy is 

Loss of KE, Q  = KE KEi f−  

= 1

2

1

2

1

2
1 1

2

2 2

2

1 2

2m u m u m m v� � ��  
 (4.66)

Substituting equation (4.63) in equation 

(4.66), and on simplifying (expand v by using 

the algebra a b a b��  � � �
2 2 2 2ab, we get

Loss of KE, Q = 
1

2
1 2

1 2

1 2

2m m

m m�
4

8
6

5

9
7 ��  u u  

 (4.67)

4.4.5   
restitution (e)

Suppose we drop a rubber ball and a plastic 

ball on the same floor. The rubber ball  

will bounce back higher than the plastic 

ball. This is because the loss of kinetic 

energy for an elastic ball is much lesser 

than the loss of kinetic energy for a plastic 

ball. The amount of kinetic energy after 

the collision of two bodies, in general, 

can be measured through a dimensionless 

number called the coefficient of restitution 

(COR). 

It is defined as the ratio of velocity of 

separation (relative velocity) after collision 

to the velocity of approach (relative velocity) 

before collision, i.e.,

 

e
velocity of separation after collision

velocity of appro
�

�  
aach before collision

v v

u u

�  
�

�
��  

( )2 1

1 2

  (4.68)

In an elastic collision, we have obtained the 

velocity of separation is equal to the velocity 

of approach i.e., 

u u v v
v v

u u
e1 2 2 1

2 1

1 2

1��  � ��  H
�
��  

� �
( )

This implies that, coefficient of restitution 

for an elastic collision, e 1. Physically, it 

means that there is no loss of kinetic energy 

after the collision. So, the body bounces 

back with the same kinetic energy which is 

usually called as perfect elastic. 

In any real collision problems, there 

will be some losses in kinetic energy due 

to collision, which means e is not always 

equal to unity. If the ball is perfectly plastic, 

it will never bounce back and therefore 

their separation of velocity is zero after the 

collision. Hence, the value of coefficient of 

restitution, e 0. 

In general, the coefficient of restitution 

for a material lies between 0 1e . 

EXAMPLE 4.22

Show that the ratio of velocities of equal 

masses in an inelastic collision when one 

of the masses is stationary is 
v

v

e

e
1

2

1

1
�

�
�

 . 

Solution

e
velocity of separation after collision

velocity of appro
�

�  
aach before collision�  
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Using the equation (2) for u
1
 in  (1), we get

 v v e v v2 1 1 2� � ��   

On simplification, we get

 
v

v

e

e
1

2

1

1
�

�
�

 �
�
��  

�
�
��  

�
�( ) ( ) ( )v v

u u

v v

u

v v

u
2 1

1 2

2 1

1

2 1

10

 T � �v v eu2 1 1   (1)

From the law of conservation of linear 

momentum,  

 m u m v m v u v v1 1 2 1 1 2� � T � �  (2)

When a force F dr , then the work done(W) by the 

force is W F dr. Fdr cos .
.

f

i
F drC
� �

K E
p

m
.

2

2
.

U F drextO

P

� C .

U mgh

U kx
1

2

2  . 
k

5gr r

P
W

t
F v.

velocity of separation after collision

velocity of approac

   

  

�  
hh before collision �  

SUMMARY 
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EXERCISE

 1. A uniform force of (2 ˆî j)+  N acts on 

a particle of mass 1 kg. Th e particle 

displaces from position (3 ˆĵ k ) m to 

(5ˆ 3ˆi j� ) m. Th e work done by the force 

on the particle is 

(AIPMT model 2013)

(a) 9 J (b) 6 J

(c) 10 J (d) 12 J

 2. A ball of mass 1 kg and another of mass 

2 kg are dropped from a tall building 

whose height is 80 m. Aft er, a fall of 40 

m each towards Earth, their respective 

kinetic energies will be in the ratio of

(AIPMT model 2004)

(a)  2  : 1 (b) 1 : 2

(c)  2 : 1 (d) 1 : 2

 3. A body of mass 1 kg is thrown upwards 

with a velocity 20 m s−1. It momentarily 

comes to rest aft er attaining a height of 

18 m. How much energy is lost due to 

air friction?.  

(Take g ms= −10 2
) (AIPMT 2009)

(a) 20 J  (b)  30 J 

(c) 40 J  (d) 10 J

 4. An engine pumps water continuously 

through a hose. Water leaves the hose 

with a velocity v and m is the mass per 

unit length of the water of the jet. What 

is the rate at which kinetic energy is 

imparted to water ?. 

(AIPMT 2009)

(a) 
1

2

2mv  (b) mv3

(c) 
3

2

2mv  (d) 
5

2

2mv

 5. A body of mass 4 m is lying in xy-plane 

at rest. It suddenly explodes into three 

pieces. Two pieces each of mass m 

move perpendicular to each other with 

equal speed v. Th e total kinetic energy 

generated due to explosion is

(AIPMT 2014)

(a) mv2 (b) 
3

2

2mv

(c) 2mv2 (d) 4mv2

 6. Th e potential energy of a system 

increases, if work is done

(a)  by the system against a conservative 

force

(b)  by the system against a non-

conservative force

(c)  upon the system by a conservative 

force

(d)  upon the system by a non-

conservative force 

 7. What is the minimum velocity with 

which a body of mass m must enter a 

vertical loop of radius R so that it can 

complete the loop?.

(a) 2gR   (b) 3gR

(c) 5gR  (d) gR

 8. Th e work done by the conservative 

force for a closed path is 

(a) always negative

(b) zero

(c) always positive

(d) not defi ned



Unit 4  Work,  Energy and Power204

 9. If the linear momentum of the object 

is increased by 0.1%, then the kinetic 

energy is increased by

(a) 0.1 %  (b) 0.2% 

(c) 0.4%  (d) 0.01% 

 10. If the potential energy of the particle 

is U V
�

2

2x , then force experienced by 

the particle is 

(a) F x�
V
2

2  (b) F x� V  

(c) F x� �V  (d) F x� �
V
2

2

11. A wind-powered generator converts 

wind energy into electric energy. 

Assume that the generator converts 

a fixed fraction of the wind energy 

intercepted by its blades into electrical 

energy.  For wind speed v, the electrical 

power output will be proportional to

(a) v  (b) v2

(c) v3 (d) v4

12. Two equal masses m1 and m2 are 

moving along the same straight line 

with velocities 5ms-1 and 9ms-1 

respectively. If the collision is elastic, 

then calculate the velocities after the 

collision of  m1 and m2, respectively

(a) 4 ms-1  and 10 ms-1  

(b) 10ms-1 and 0 ms-1

(c) 9ms-1 and 5 ms-1  

(d) 5 ms-1  and 1 ms-1

13. A particle is placed at the origin and 

a force F kx is acting on it (where k 

is a positive constant). If U 0 0�  � , the 

graph of U x�   versus x will be (where 

U  is the potential energy function)

(IIT 2004)

a) 

U(x)

x  b) x

U(x)

c) x

U(x)

  d) x

U(x)

 14. A particle which is constrained to 

move along x-axis, is subjected to a 

force in the same direction which 

varies with the distance x of the particle 

from the origin as F x kx ax�  � � � 3.  

Here, k and a are positive constants. 

For x ≥ 0, the functional form of the 

potential energy U(x) of the particle is 

(IIT 2002)

a) x

U(x)

  b) x

U(x)

c) 

x

U(x)

  d) 

x

U(x)

 15. A spring of force constant k is cut into 

two pieces such that one piece is double 

the length of the other. Then, the long 

piece will have a force constant of    

(a) 
2

3

k  (b) 
3

2

k

(c) 3k (d) 6k

Answers

 1) c 2) d 3) a 4) a 5) b

 6) a 7) c 8) b 9) b 10) c

 11) c 12) c 13) c 14) d 15) b
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 1. Explain how the definition of work in 

physics is different from general percep-

tion.

 2. Write the various types of potential  

energy. Explain the formulae.

 3. Write the differences between 

conservative and Non-conservative 

forces. Give two examples each.

 4. Explain the characteristics of elastic 

and inelastic collision.

 5. Define the following

a)  Coefficient of restitution

b) Power

c) Law of conservation of energy 

d)  loss of kinetic energy in inelastic 

collision.

 1. Explain with graphs the difference 

between work done by a constant force 

and by a variable force.

 2. State and explain work energy principle. 

Mention any three examples for it.

 3. Arrive at an expression for power and 

velocity. Give some examples for the 

same.

 4. Arrive at an expression for elastic 

collision in one dimension and discuss 

various cases.

 5. What is inelastic collision? In which 

way it is different from elastic collision. 

Mention few examples in day to day 

life for inelastic collision.

IV. Numerical Problems

 1. Calculate the work done by a force of 

30 N in lifting a load of 2kg to a height 

of 10m (g = 10ms−2) 

Ans: 300J

 2. A ball with a velocity of 5 ms−1 

impinges at angle of 60˚ with the 

vertical on a smooth horizontal plane. 

If the coefficient of restitution is 0.5, 

find the velocity and direction after  

the impact.

Ans: v = 0.3 m s–1

 3. A bob of mass m is attached to one 

end of the  rod of negligible mass 

and length r, the other end of which 

is pivoted freely at a fixed center O as 

shown in the figure. What initial speed 

must be given to the object to reach 

the top of the circle? (Hint: Use law of 

conservation of energy). Is this speed 

less or greater than speed obtained in 

the section 4.2.9?

Ans: v =  4gr  m s–1

 4. Two different unknown masses A and B 

collide. A is initially at rest when B has a 

speed v. After collision B has a speed v/2 

and moves at right angles to its original 
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direction of motion. Find the direction 

in which A moves aft er collision.

Ans:  = 26° 33′
 5. A bullet of mass 20 g strikes a pendulum 

of mass 5 kg. Th e centre of mass of 

pendulum rises a vertical distance of 10 

cm. If the bullet gets embedded into the 

pendulum, calculate its initial speed.

Ans: v = 351.4ms–1

 1. A spring which in initially in un-

stretched condition, is fi rst stretched 

by a length x and again by a further 

length x. Th e work done in the fi rst 

case W
1
 is one third of the work done 

in second case W
2
. True or false?

 2. Which is conserved in inelastic collision? 

Total energy (or) Kinetic energy?

 3. Is there any net work done by external 

forces on a car moving with a constant 

speed along a straight road?

 4. A car starts from rest and moves on 

a surface with uniform acceleration. 

Draw the graph of kinetic energy 

versus displacement. What 

information you can get from that 

graph?

 5. A charged particle moves towards 

another charged particle. Under 

what conditions the total momentum 

and the total energy of the system 

conserved?
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Energy Skate

Through this activity you will 

understand about potential 

energy and kinetic energy

STEPS:

•  Open the browser and type the given URL to open the PhET simulation on 

work power and energy. Click OK to open the activity.

•  Select the height to observe the change in the kinetic energy, potential  energy.

• Also observe the change by altering the mass.

•  You can also create your own optional friction or playground to observe 
the change in potential energy and kinetic energy.

PhET simulation’s URL:

https://phet.colorado.edu/en/simulation/energy-skate-park

*Pictures are indicative only.

*If browser requires, allow Flash Player or Java Script to load the page.

ICT CORNER

Step4

Step2Step1

Step3




