
U N I T

5
MOTION OF SYSTEM OF 
PARTICLES AND RIGID BODIES

LEARNING OBJECTIVES

5.1
INTRODUCTION

Most of the objects that we come across in 

our day to day life consist of large number of 

particles. In the previous Units, we studied 

the motion of bodies without considering 

their size and shape. So far we have treated 

even the bulk bodies as only point objects. In 

this section, we will give importance to the 

size and shape of the bodies. Th ese bodies 

are actually made up of a large number of 

particles. When such a body moves, we 

consider it as the motion of collection of 

particles as a whole. We defi ne the concept 

of center of mass to deal with such a system 

of particles. 

Th e forces acting on these bulk bodies 

are classifi ed into internal and external 

In this unit, the student is exposed to

• relevance of the center of mass  in various systems of particles

• torque and angular momentum in rotational motion

• types of equilibria with appropriate examples

• moment of inertia of diff erent rigid bodies

• dynamics of rotation of rigid bodies

• distinguishing translational motion from rotational motion

• rolling motion, slipping and sliding motions.

forces. Internal forces are the forces acting 

among the particles within a system that 

constitute the body. External forces are 

the forces acting on the particles of a 

system from outside. In this unit, we deal 

with such system of particles which make 

diff erent rigid bodies. A rigid body is the 

one which maintains its defi nite and fi xed 

shape even when an external force acts on it. 

Th is means that, the interatomic distances 

do not change in a rigid body when an 

external force is applied. However, in real 

life situation, we have bodies which are 

not ideally rigid, because the shape and 

size of the body change when forces act on 

them. For the rigid bodies we study here, 

we assume that such deformations are 

negligible. Th e deformations produced on 

non-rigid bodies are studied separately in 

Unit 7 under elasticity of solids. 

“In nature, we have to deal not with material points but with material bodies ... – Max Planck

208
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For bodies of regular shape and uniform 

mass distribution, the center of mass is at the 

geometric center of the body. As examples, for 

a circle and sphere, the center of mass is at their 

centers; for square and rectangle, at the point 

their diagonals meet; for cube and cuboid, it is 

at the point where their body diagonals meet. 

For other bodies, the center of mass has to be 

determined using some methods. The center 

of mass could be well within the body and in 

some cases outside the body as well.

5.1.3  Center of Mass for 
Distributed Point 
Masses

A point mass is a hypothetical point particle 

which has nonzero mass and no size or shape. 

To find the center of mass for a collection of 

n point masses, say, m
1
, m

2
, m

3
 . . . m

n 
we have 

to first choose an origin and an appropriate 

coordinate system as shown in Figure  5.2. 

Let, x
1
, x

2
, x

3
 . . . x

n 
be the X-coordinates of 

the positions of these point masses in the X 

direction from the origin. 

Figure  5.2 Center of mass for 
distributed point masses

5.1.1
CENTER OF MASS

When a rigid body moves, all particles  that 

constitute the body need not take the same 

path. Depending on the type of motion,  

different particles of the body may take 

different paths. For example, when a wheel 

rolls on a surface, the path of the center point 

of the wheel and the paths of other points 

of the wheel are different. In this Unit, we 

study about the translation, rotation and 

the combination of these motions of rigid 

bodies in detail.

5.1.2  Center of Mass of  
a Rigid Body

When a bulk object (say a bat) is thrown at 

an angle in air as shown in Figure 5.1; do all 

the points of the body take a parabolic path? 

Actually, only one point takes the parabolic path 

and all the other points take different paths.

Figure  5.1 Center of mass tracing the 
path of a parabola

The one point that takes the parabolic 

path is a very special point called center of 

mass (CM) of the body. Its motion is like the 

motion of a single point that is thrown. The 

center of mass of a body is defined as a point 

where the entire mass of the body appears to 

be concentrated. Therefore, this point can 

represent the entire body. 

o

Y

X

Z

(xCM, yCM, zCM)

m1 m2

m3

m4

rCM
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The equation for the x coordinate of the 

center of mass is,

x
m x

m
CM

i i

i

= ∑
∑

where, mi  is the total mass M of all the 

particles, ∑ =( )m Mi . Hence,

 x
m x

M
CM

i i= ∑
 (5.1)

Similarly, we can also find y and z 

coordinates of the center of mass for these 

distributed point masses as indicated in 

Figure (5.2).

 y
m y

M
CM

i i= ∑
 (5.2)

 z
m z

M
CM

i i= ∑
 (5.3)

Hence, the position of center of mass of 

these point masses in a Cartesian coordinate 

system is (x
CM

, y
CM

, z
CM

). In general, the 

position of center of mass can be written in 

a vector form as,

 �
�

r
m r

M
CM

i i= ∑  (5.4)

where, � � �
�
CM CM CM CM

r x i y j z ˆˆ ˆ k is the 

position vector of the center of mass and

i i i i
r x i y k̂ˆ ĵ z� � �
�

 is the position vector of 

the distributed point mass; where, i,  j ˆ ˆ and k̂ 

are the unit vectors along X, Y and Z-axes 

respectively.

5.1.4  Center of Mass of Two 
Point Masses

With the equations for center of mass, let 

us find the center of mass of two point 

masses m
1
 and m

2
, which are at positions 

x
1
 and x

2 
respectively on the X-axis. For 

this case, we can express the position of 

center of mass in the following three ways 

based on the choice of the coordinate 

system.

(i) When the masses are on positive X-axis:

The origin is taken arbitrarily so that the 

masses m
1
 and m

2
 are at positions x

1
 and x

2
 on 

the positive X-axis as shown in Figure 5.3(a). 

The center of mass will also be on the positive 

X-axis at x
CM

 as given by the equation,

 x
m x m x

m m
CM =

+
+

1 1 2 2

1 2

(ii) When the origin coincides with any one 

of the masses:

The calculation could be minimised if the 

origin of the coordinate system is made to 

coincide with any one of the masses as shown 

in Figure 5.3(b). When the origin coincides 

with the point mass m
1
, its position x

1
 is 

zero, (i.e. x
1
 = 0). Then,

 x
m m x

m m
CM =

( ) +
+

1 2 2

1 2

0

The equation further simplifies as,

 x
m x

m m
CM =

+
2 2

1 2

(iii) When the origin coincides with the 

center of mass itself:

If the origin of the coordinate system is 

made to coincide with the center of mass, 
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EXAMPLE 5.1

Two point masses 3 kg and 5 kg are at  

4 m and 8 m from the origin on X-axis. 

Locate the position of center of mass of the  

two point masses (i) from the origin and 

(ii) from 3 kg mass.

Solution

Let us take, m
1
 = 3 kg and m

2
= 5 kg

(i) To find center of mass from the origin:

The point masses are at positions, x
1
 = 4 m, 

x
2
 = 8 m from the origin along X axis.

CM3 kg 5 kg

4 m
8 m

xCM

o

Y

X

The center of mass x
CM 

can be obtained 

using equation 5.4.

 x
m x m x

m m
CM =

+
+

1 1 2 2

1 2

 xCM =
×( ) + ×( )

+
3 4 5 8

3 5

 x mCM = + = =12 40

8

52

8
6 5.

The center of mass is located 6.5 m from 

the origin on X-axis.

(ii) To find the center of mass from 3 kg mass:

The origin is shifted to 3 kg mass along  

X-axis. The position of 3 kg point mass is 

zero (x
1
 = 0) and the position of 5 kg point 

mass is 4 m from the shifted origin (x
2
 = 4 m).

CM3 kg
5 kg

4 m
xCM

o

Y

X

then, x
CM

 = 0 and the mass m
1
 is found 

to be on the negative X-axis as shown in  

Figure  5.3(c). Hence, its position x
1 

is 

negative, (i.e. -x
1
).

 

  

The equation given above is known as 

principle of moments. We will learn more 

about this in Section 5.3.3.

Figure 5.3. Center of mass of two 
point masses determined by shifting 
the origin

(b) When the origin coincides with any
one of the masses

m1

x2
xCM

CM
o

Y

X

(c) When the origin coincides with the center
of mass itself

m1
m2

(−x1) (+x2)

CM
o

Y

X

(a) When the masses are on positive X axis

m1
m2

CM

x2
xCM

o

Y

X
x1

0 1 1 2 2

1 2

=
−( ) +

+
m x m x

m m

0 1 1 2 2= −( ) +m x m x

m x m x1 1 2 2
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R/2R

mM-m

x R/2

Hence, the remaining portion of the 

disc should have its center of mass to the 

left of the origin; say, at a distance x. We 

can write from the principle of moments,

 M m x m
R−( ) = ( )
2

 x
m

M m

R=
−( )

⎛

⎝⎜
⎞

⎠⎟ 2

If σ is the surface mass density (i.e. mass 

per unit surface area), σ =
M

Rπ 2
; then, the 

mass m of small disc is,

 m surface mass density surfacearea= ×

 m
R

= × ⎛
⎝
⎜

⎞
⎠
⎟σ π

2

2

  m
M

R

R M

R

R M
= ⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ = =

π
π

π
π

2

2

2

2

2 4 4

substituting m in the expression for x

  

x

M

M
M

R
M

M

R

x
R

=
−⎛

⎝
⎜

⎞
⎠
⎟

× =
⎛
⎝
⎜

⎞
⎠
⎟

×

=

4

4

2
4

3

4

2

6

 xCM =
×( ) + ×( )

+
3 0 5 4

3 5

 x mCM = + = =0 20

8

20

8
2 5.

The center of mass is located 2.5 m from 

3 kg point mass, (and 1.5 m from the  

5 kg point mass) on X-axis. 

This result shows that the center of 

mass is located closer to larger mass. 

If the origin is shifted to the center 

of mass, then the principle of 

moments holds good. m x m x1 1 2 2; 

3 2 5 5 1 5× = ×. . ; 7 5 7 5. .

When we compare case (i) with case 

(ii), the x mCM = 2 5.  from 3 kg mass could 

also be obtained by subtracting 4  m (the 

position of 3 kg mass) from 6.5 m, where 

the center of mass was located in case (i)

EXAMPLE 5.2

From a uniform disc of radius R, a small 

disc of radius R
2

 is cut and removed as 

shown in the diagram. Find the center 

of mass of the remaining portion of  

the disc. 

Solution

Let us consider the mass of the uncut full 

disc be M. Its center of mass would be at 

the geometric center of the disc on which 

the origin coincides. 

Let the mass of the small disc cut and 

removed be m and its center of mass is at 

a position R
2

 to the right of the origin as 

shown in the figure. 
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5.1.5  Center of mass for uniform 
distribution of mass

If the mass is uniformly distributed in a bulk 

object, then a small mass (Δm) of the body can 

be treated as a point mass and the summations 

can be done to obtain the expressions for the 

coordinates of center of mass. 

On the other hand, if the small mass 

taken is infinitesimally  small (dm) then, the 

summations can be replaced by integrations as 

given below.

EXAMPLE 5.4

Locate the center of mass of a uniform rod 

of mass M and length  .

Solution

Consider a uniform rod of mass M and 

length  whose one end coincides with the 

origin as shown in Figure. The rod is kept 

along the x axis. To find the center of mass 

The center of mass of the remaining portion 

is at a distance 
R

6
 to the left from the center 

of the disc. 

If, the small disc is removed 

concentrically from the large disc, 

what will be the position of the 

center of mass of the remaining 

portion of disc? 

EXAMPLE 5.3

The position vectors of two point masses 

10 kg and 5 kg are ˆˆˆ( 3 2 4 )i j k� � �  m and 
ˆˆˆ(3 6 5 )i j k� �  m respectively.  Locate the 

position of center of mass.

Solution

 

�

�

� � � �

� � �

�
�

�

�

�

� ��

1

2

1

2

1 1 2 2

1 2

10

5

ˆˆˆ( 3 2 4 )

ˆˆˆ(3 6 5 )

m kg

m kg

r i j k m

r i j k m

m r m r
r

m m

 ∴ =r  
� � � � � �

�

ˆ ˆˆ ˆˆ ˆ10( 3 2 4 ) 5(3 6 5 )

10 5

i j k i j k

 

ˆ ˆˆ ˆˆ ˆ30 20 40 15 30 25

15

ˆˆˆ15 50 65

15

i j k i j k

i j k

� � � � � �
�

� � �
�

        r  = 
4 5� � �6 78 9

10 13 ˆˆˆ
3 3

i j k m

The center of mass is located at position r .

y
m y

m
CM

i i

i

=
( )∑
∑

Δ

Δ

x
m x

m
CM

i i

i

=
( )∑
∑

Δ

Δ

z
m z

m
CM

i i

i

=
( )∑
∑

Δ

Δ

(5.5)

x
xdm

dm
cm = ∫

∫
y

ydm

dm
cm = ∫

∫

z
zdm

dm
cm = ∫

∫

(5.6)

∗ Infinitesimal quantity is an extremely small 

quantity. 
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5.1.6  Motion of Center of 
Mass 

When a rigid body moves, its center of 

mass will also move along with the body. 

For kinematic quantities like velocity vCM( ) 

and acceleration aCM( ) of the center of 

mass, we can differentiate the expression 

for position of center of mass with respect 

to time once and twice respectively. 

For simplicity, let us take the motion  

along X direction only. 

In the absence of external force, i.e. Fext 0,  

the individual rigid bodies of a system 

can move or shift only due to the internal 

forces. This will not affect the position of 

the center of mass. This means that the 

center of mass will be in a state of rest 

or uniform motion. Hence, vCM will be 

zero when center of mass is at rest and 

constant when center of mass has uniform 

motion v  or v constantCM CM= =( )0 . There 

will be no acceleration of center of mass, 
�
a CM =( )0 .

of this rod, we choose an infinitesimally 

small mass dm of elemental length dx at a 

distance x from the origin. 

λ is the linear mass density (i.e. mass 

per unit length) of the rod. λ 
M

The mass of small element (dm) is, 

dm
M

dx

Now, we can write the center of mass 

equation for this mass distribution as, 

 x
xdm

dm
CM

= ∫
∫

 x

x
M

dx

M
xdx

CM

o

o

=

⎛
⎝
⎜

⎞
⎠
⎟

=
∫

∫

�

��
�
1

 =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎛

⎝
⎜

⎞

⎠
⎟

1

2

1

2

2

0

2x
l

 x
CM

=
�
2

As the position 
2

 is the geometric center 

of the rod, it is concluded that the center 

of mass of the uniform rod is located at its 

geometric center itself.

x

dx

o

v
dx

dt

m
dx

dt

m
CM

CM

i
i

i

= =

⎛
⎝
⎜

⎞
⎠
⎟∑

∑

a
d

dt

dx

dt

dv

dt

m
dv

dt

m
CM

CM CM

i
i

i

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=

⎛
⎝⎜

⎞
⎠⎟∑

∑

a
m a

m
CM

i i

i

= ∑
∑

(5.8)

v
m v

m
CM

i i

i

= ∑
∑

(5.7)
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[Given: There is friction between the man 

and the boat and no friction between the 

boat and water.]

Solution

 Mass of the man (m
1
) is, m

1
= 50 kg 

 Mass of the boat (m
2
) is, m

2
 = 300 kg

With respect to a stationary observer:

The man moves with a velocity, v
1
 = 

2 m s-1 and the boat moves with a velocity 

v
2
 (which is to be found)

(i) To determine the velocity of the boat with 

respect to a stationary observer on land:

As there is no external force acting on the 

system, the man and boat move due to the 

friction, which is an internal force in the  

boat-man system. Hence, the velocity of 

the center of mass is zero (v
CM

 = 0).

Using equation 5.7,

 0 1 1 2 2

1 2

= =
+
+

∑
∑

m v

m

m v m v

m m

i i

i

 0 1 1 2 2= +m v m v

 − =m v m v2 2 1 1

 v
m

m
v2

1

2

1= −

 v2

50

300
2

100

300
= − × = −

 

The negative sign in the answer implies 

that the boat moves in a direction opposite 

to that of the walking man on the boat to a 

stationary observer on land.

(ii) To determine the velocity of the  

boat with respect to the walking man:

We can find the relative velocity as,

 v v v21 2 1= −

From equation 5.7 and 5.8,

 0

0

�

� �

Y
Y

Y
Y

m v

m
constant 

v
m v

m
a

i i

i

CM

i i

i

CM

�

�
�

�

(or) ,

;

Here, the individual particles may still 

move with their respective velocities and 

accelerations due to internal forces. 

In the presence of external force, (i.e. 

Fext ≠ 0 ), the center of mass of the system 

will accelerate as given by the following 

equation.

 
� � � � �

�
F m a F Ma a

F

M
;ext i CM ext CM CM

ext= ( ) = =∑ ;

EXAMPLE 5.5

A man of mass 50 kg is standing at one end of 

a boat of mass 300 kg floating on still water. 

He walks towards the other end of the boat 

with a constant velocity of 2 m s-1 with respect 

to a stationary observer on land. What will be 

the velocity of the boat, (a) with respect to the 

stationary observer on land? (b) with respect 

to the man walking in the boat?

m� m�CM

m�m� CM

v m s2

10 33= − −.
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Solution

It is an explosion of its own without any 

external influence. After the explosion, the 

center of mass of the projectile will continue 

to complete the parabolic path even though 

the fragments are not following the same 

parabolic path. After the fragments have 

fallen on the ground, the center of mass 

rests at a distance R (the range) from the 

point of projection as shown in the diagram.

2 kg3 kg

CMR

d3
4R 1

4R

R+d

If the origin is fixed to the final position 

of the center of mass, the principle of 

moments holds good.

 m x m x1 1 2 2

where, m
1
 = 3 kg, m

2
 = 2 kg, x

1
 = 

1

4
R. The 

value of x
2 
= d

 3
1

4
2× = ×R d;

 d R
3

8

The distance between the point of launching 

and the position of 2 kg mass is R+d.

 R d R R R R+ = + = =
3

8

11

8
1 375.

The other fragment falls at a distance of 

1.375R from the point of launching. (Here 

R is the range of the projectile.)

where, v21 is the relative velocity of the boat 

with respect to the walking man.

 v21 0 33 2= −( ) − ( ).

 v ms21

12 33= − −.

The negative sign in the answer implies that 

the boat appears to move in the opposite 

direction to the man walking in the  

boat.

The magnitude of the relative 

velocity of the boat with respect to 

the walking man is greater than the 

magnitude of the relative velocity of 

the boat with respect to the stationary  

observer. 

The negative signs in the two 

answers indicate the opposite 

direction of the boat with respect 

to the stationary observer and the 

walking man on the boat.

Center of mass in explosions:

Many a times rigid bodies are broken in to 

fragments. If an explosion is caused by the 

internal forces in a body which is at rest or 

in motion, the state of the center of mass is 

not affected. It continues to be in the same 

state of rest or motion. But, the kinematic 

quantities of the fragments get affected. If the 

explosion is caused by an external agency, 

then the kinematic quantities of the center 

of mass as well as the fragments get affected.

EXAMPLE 5.6

A projectile of mass 5 kg, in its course 

of motion explodes on its own into two 

fragments. One fragment of mass 3 kg falls at 

three fourth of the range R of the projectile. 

Where will the other fragment fall?
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where, r  is the position vector of the point 

where the force F is acting on the body as 

shown in Figure 5.4. 

Figure 5.4. Torque on a 
rigid body

F
θ

O
r

Here, the product of r  and F is called the 

vector product or cross product. Th e vector 

product of two vectors results in another 

vector that is perpendicular to both the 

vectors (refer Section 2.5.2). Hence, torque 

τ( ) is a vector quantity.  

Tor que has a magnitude rFsinθ( )  and 

direction perpendicular to r  and F . Its unit 

is N m.

 �  rFs ˆin n& � 3
�  (5.10)

Here, θ is the angle between r  and F, and 

n̂ is the unit vector in the direction of . 

Torque τ( ) is sometimes called as a pseudo 

vector as it needs the other two vectors r  and 

F for its existence.

Th e direction of torque is found using 

right hand rule. Th is rule says that if fi ngers 

of right hand are kept along the position 

vector with palm facing the direction of the 

force and when the fi ngers are curled the 

thumb points to the direction of the torque. 

Th is is shown in Figure 5.5.

Th e direction of torque helps us to fi nd 

the type of rotation caused by the torque. 

For example, if the direction of torque is out 

5.2
TORQUE AND ANGULAR 
MOMENTUM

When a net force acts on a body, it produces 

linear motion in the direction of the applied 

force. If the body is fi xed to a point or an 

axis, such a force rotates the body depending 

on the point of application of the force on 

the body. Th is ability of the force to produce 

rotational motion in a body is called torque 

or moment of force. Examples for such 

motion are plenty in day to day life. To 

mention a few; the opening and closing of a 

door about the hinges and turning of a nut 

using a wrench.

Th e extent of the rotation depends on 

the magnitude of the force, its direction 

and the distance between the fi xed point 

and the point of application. When torque 

produces rotational motion in a body, its 

angular momentum changes with respect 

to time. In this Section we will learn 

about the torque and its eff ect on rigid 

bodies. 

5.2.1 

Torque is defi ned as the moment of the 

external applied force about a point or axis 

of rotation. Th e expression for torque is,

 τ = ×r F  (5.9)
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separately. For direction, we use the vector 

rule or right hand rule. For magnitude, we 

use scalar form as, 

 τ θ= r F  sin  (5.11)

The expression for the magnitude of 

torque can be written in two different ways 

by associating sin θ either with r or F in the 

following manner.

 τ θ= ( ) = × ⊥( )r F r F sin   (5.12)

 τ θ= ( ) = ⊥( )×r F r F sin  (5.13)

Here, F sinθ( ) is the component of F 

perpendicular to r . Similarly, r sinθ( ) is the 

component of r  perpendicular to F. The 

two cases are shown in Figure 5.7.

of the paper, then the rotation produced by 

the torque is anticlockwise. On the other 

hand, if the direction of the torque is into 

the paper, then the rotation is clockwise as 

shown in Figure 5.6. 

In many cases, the direction and 

magnitude of the torque are found 

Figure 5.6. Direction of torque and the 
type of rotation

(a) anticlockwise rotation

(b) clockwise rotation

τ
r

Page 

Page 

θ

θ
τ r

F

F

Figure 5.5. Direction of torque using 
right hand rule

F

&

r

Figure 5.7. Two ways of calculating the 
torque.

F

O

O

r

F cos θ

θ

θ

θ

F sin θ

(a) τ = r (F sin θ) = r(F⊥)

(b) τ =(r sin θ) F = (r⊥)F

F

r
r cos θ

r sin θ
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Solution

Arm length of the spanner, r = 15 cm  

= 15×10−2m

Force, F = 2.5 N

Angle between r and F, θ = 90o

  (i) Torque, τ θ= rF sin

 τ = × × × °( )−15 10 2 5 902 . sin  

         [here, sin 90° = 1]

 

 (ii)  As per the right hand rule, the 

direction of torque is out of the page.

(iii)  The type of rotation caused by the 

torque is anticlockwise.

EXAMPLE 5.8

A force of �  ˆˆ ˆ4i 3j 5k� �  N is applied at a point 

whose position vector is �  ˆˆ ˆ7i 4j 2k� �  m. 

Find the torque of  force about the origin.

Solution

 r 7i 4j ˆˆ kˆ 2� � �
�

 F 4i 3j ˆˆ kˆ 5� � �
�

Torque, τ = ×r F

 

i j k

7 4 2

4

ˆ

3 5

ˆ ˆ

& � �
�

�

 �  �  �  i 20 6 j 35 8 k 21ˆˆ 1ˆ 6& � � � � � � �
�

 �  14i 4 ˆˆ 3̂j 37k& � � �
�  N m

τ = × −37 5 10 2. N m

Based on the angle θ between r  and F, 

the torque takes different values.

The torque is maximum when, r  and F 

are perpendicular to each other. That is when 

θ = 90o and sin 90o = 1, Hence, τmax = rF.

The torque is zero when r  and F are 

parallel or antiparallel. If parallel, then θ = 

0o and sin 0o = 0. If antiparallel, then θ = 180o 

and sin 180o = 0. Hence, τ = 0. 

The torque is zero if the force acts at the 

reference point. i.e. as r 0, τ = 0. The different 

cases discussed are shown in Table 5.1.

Table 5.1  The Value of τ for 

different cases.

F

O
r

F

r
O

θ = 90ο; τmax = rF θ = 0ο; τ = 0

F

r

O

F

O

θ = 180ο; τ = 0 r = 0; τ = 0

EXAMPLE 5.7
If the force applied is perpendicular to 

the handle of the spanner as shown in the 

diagram, find the (i) torque exerted by the 

force about the center of the nut, (ii) direction 

of torque and (iii) type of rotation caused by 

the torque about the nut.

15 cm

2.5 N

15 cm

2.5 N 
90°
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 τ θ= r F sin

 τ = × × ( )20 20000 150sin

 = × +( )400000 90 60sin

      [here, sin cos90o +( ) =θ θ]

 = × ( )400000 60cos

 = ×400000
1

2
 cos 60

1

2
=⎡

⎣⎢
⎤
⎦⎥

 200000 N m

 τ = ×2 105 N m

Method – II

Let us take the force and perpendicular 

distance from the point where the arm is 

fi xed to the crane.

 τ = ⊥( )r F

 τ φ= r mgcos  

 τ = × ×20 60 20000cos

 = × ×20
1

2
20000

 200000 Nm

 τ = ×2 105 Nm

Method – III

Let us take the distance from the fi xed 

point and perpendicular force.

EXAMPLE 5.9

A crane has an arm length of 20 m inclined 

at 30o with the vertical. It carries a container 

of mass of 2 ton suspended from the top end 

of the arm. Find the torque produced by the 

gravitational force on the container about 

the point where the arm is fi xed to the crane. 

[Given: 1 ton = 1000 kg; neglect the weight of 

the arm. g = 10 m s-2]

Solution

In many problems, the angle 

θ between r  and F will not 

be directly given. Th us, 

the students must get accustomed to 

identify and denote always the angle 

between the r  and F as θ. Th e other 

angles in the arrangement may be 

denoted as α, β, ϕ etc.

Note

Th e force F at the point of suspension is 

due to the weight of the hanging mass. 

 F = mg = 2 × 1000 × 10 = 20000 N; 

 Th e arm length, r = 20 m

We can solve this problem by three diff erent 

methods.

Method – I

Th e angle (θ) between the arm length (r) 

and the force (F) is, θ = 150o

Th e torque (τ) about the fi xed point of 

the arm is, 

30�

r

3�150�

\�60�
mg 

r

r

\�60�
mg 

r s
in

 6
0

r cos 60

r
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5.2.2 

In the earlier sections, we have dealt with 

the torque about a point. In this section we 

will deal with the torque about an axis. Let 

us consider a rigid body capable of rotating 

about an axis AB as shown in Figure 5.8. Let 

the force F act at a point P on the rigid body. 

The force F may not be on the plane ABP. We 

can take the origin O at any random point 

on the axis AB. 

Figure 5.8. Torque about  
an axis

F

r
O

P

A

B

 τ = ⊥( )r F

 τ φ= r mg cos

 τ = × ×20 20000 60cos

 = × ×20 20000
1

2

 200000 Nm

 τ = ×2 105 Nm

All the three methods, give the same 

answer. 

Tamil Nadu is known for creative and innovative 

tradi tional games played by children. One such 

very popular game is “silli” ( ) or “sillukodu” 

( ). There is a rectangular area which 

is further partitioned as seen in the Figure. One 

has to hop through the rectangles. While doing so, 

children lean on one side. 

What is the reason?

Naturally the body takes this position to balance 

the gravitational force (mg) and Normal force 

(N) acting on the body and to nullify the torque. 

Failing which, both these forces act along 

different lines leading to a net torque which 

makes one to fall.

r

φ=60°

T=mg 
mg cos 60mg sin 60

60°
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Hereaft er,  for the calculation of torques on 

rigid bodies we will:

1. Consider only those forces that lie on 

planes perpendicular to the axis (and do 

not intersect the axis).

2. Consider position vectors which are 

perpendicular to the axis. 

EXAMPLE 5.10

Th ree mutually perpendicular beams AB, 

OC, GH are fi xed to form a structure which 

is fi xed to the ground fi rmly as shown in 

the Figure. One string is tied to the point 

C and its free end D is pulled with a force 

F. Find the magnitude and direction of the 

torque produced by the force,

 (i)  about the 

points D, C, O 

and B 

(ii)  about the axes 

CD, OC, AB 

and GH.

Th e torque of the force F about O is, 

τ = ×r F. Th e component of the torque along 

the axis is the torque of F about 

the axis. To fi nd it, we should fi rst fi nd the 

vector τ = ×r F and then fi nd the angle φ 

between τ and AB. (Remember here, F is not 

on the plane ABP). Th e torque about AB is 

the parallel component of the torque along 

AB, which is r F  cos φ. And the torque 

perpendicular to the axis AB is r F  sin φ.

Th e torque about the axis will rotate the 

object about it and the torque perpendicular 

to the axis will turn the axis of rotation. 

When both exist simultaneously on a rigid 

body, the body will have a precession. One 

can witness the precessional motion in a 

spinning top when it is about to come to rest 

as shown in Figure 5.9.

Figure 5.9. Precession of a spinning top

Rotation

mg

Precession

Study of precession is beyond the scope of 

the higher secondary physics course. Hence, 

it is assumed that there are constraints 

to cancel the eff ect of the perpendicular 

components of the torques, so that the 

fi xed position of the axis is maintained. 

Th erefore, perpendicular components of 

the torque need not be taken into account. 

•  Forces parallel to the 

axis will give torques 

perpendicular to the axis 

of rotation and need not 

be taken into account.

•  Forces that intersect (pass 

through) the axis cannot 

produce torque as r = 0. 

•  Position vectors along the 

axis will result in torques 

perpendicular to the axis and 

need not be taken into account.

Note
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Th e torque of a force about an axis is 

independent of the choice of the origin as 

long as it is chosen on that axis itself. Th is 

can be shown as below. 

Let O be the origin on the axis AB, which 

is the rotational axis of a rigid body. F is the 

force acting at the point P. Now, choose 

another point O’ anywhere on the axis as 

shown in Figure 5.10. 

Figure 5.10. Torque about 
an axis is independent of origin

F

r

O

P

A

B

O′

Solution

 (i)  Torque about point D is zero. (as F 

passes through D).

  Torque about point C is zero. (as F 

passes through C).

  Torque about point O is OC F( )×
� �

 and 

direction is along GH.

  Torque about point B is BD F�  �
� �

 and 

direction is along GH

  (Th e ⊥ of BD
�

 with respect to F
�

 is OC
�

).

(ii)  Torque about axis CD is zero (as F  is 

parallel to CD).

  Torque about axis OC is zero (as F 

intersects OC).

  Torque about axis AB is zero (as F is 

parallel to AB).

  Torque about axis GH is OC F( )×
� �

 and 

direction is along GH.

Identify the direction of torque in country press shown in picture

(in Tamil, ‘Marasekku’ )
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 τ α= ( )mr2   (5.14)

Hence, the torque of the force acting 

on the point mass produces an angular 

acceleration α( ) in the point mass about the 

axis of rotation. 

In vector notation,

 τ α= ( )mr2   (5.15)

The directions of τ and α are along 

the axis of rotation. If the direction of τ is 

in the direction of α, it produces angular 

acceleration. On the other hand if, τ is 

opposite to α, angular deceleration or 

retardation is produced on the point mass.

The term mr2 in equations 5.14 and 5.15 

is called moment of inertia (I) of the point 

mass. A rigid body is made up of many such 

point masses. Hence, the moment of inertia 

of a rigid body is the sum of moments of 

inertia of all such individual point masses 

that constitute the body I m ri i=( )∑ 2  .   

Hence, torque for the rigid body can be  

written as,

 τ α= ( )∑m ri i

2   (5.16)

 τ α= I   (5.17)

We will learn more about the moment of 

inertia and its significance for bodies with 

different shapes in section 5.4.

5.2.4 Angular Momentum

The angular momentum in rotational 

motion is equivalent to linear momentum 

in translational motion. The angular 

The torque of F about O’ is,  

′ ′

′

× = +( )×

= ×( ) + ×( )
O P F O O OP F

O O F OP F

� ��� � � ���� � ��� �

� ���� � � ��� �

As ′ ×O O F
� ���� �

 is perpendicular to O O
� ����

, this 

term will not have a component along AB. 

Thus, the component of  ′ ×O P F
� ��� �

 is equal to 

that of OP F
� ��� �

.

5.2.3 
Acceleration

Let us consider a rigid body rotating about 

a fixed axis. A point mass m in the body will 

execute a circular motion about a fixed axis 

as shown in Figure 5.11. A tangential force 

F acting on the point mass produces the 

necessary torque for this rotation. This force 

F is perpendicular to the position vector r  

of the point mass. 

Figure 5.11. Torque and Angular 
acceleration

α
τ

F

r m

The torque produced by the force on 

the point mass m about the axis can be  

written as,

 τ = =r F r Fsin90   sin90 1=[ ]
 τ = r ma  F ma=( )⎡⎣ ⎤⎦
 τ α α= =r mr mr2   a r=( )⎡⎣ ⎤⎦α
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EXAMPLE 5.11

A particle of mass (m) is moving with 

constant velocity (v). Show that its angular 

momentum about any point remains 

constant throughout the motion. 

Solution

θ
θ

d

O

p

r

Q

Let the particle of mass m move with 

constant velocity v. As it is moving with 

constant velocity, its path is a straight line. 

Its momentum p mv=( )  is also directed 

along the same path. Let us fix an origin 

(O) at a perpendicular distance (d) from 

the path. At a particular instant, we can 

connect the particle which is at positon Q 

with a position vector 
� � ���
r OQ=( ). 

Take, the angle between the r  and p as θ. 

The magnitude of angular momentum of 

that particle at that instant is, 

L OQ p OQmv mv OQ= = = ( )sin sin sinθ θ θ

The term OQsinθ( )  is the perpendicular 

distance (d) between the origin and line 

along which the mass is moving. Hence, 

the angular momentum of the particle 

about the origin is, 

 L mvd

The above expression for angular 

momentum L, does not have the angle θ.  
As the momentum (p = mv) and the 

momentum of a point mass is defined as 

the moment of its linear momentum. In 

other words, the angular momentum L of a 

point mass having a linear momentum p at 

a position r with respect to a point or axis is 

mathematically written as, 

 L r p= ×  (5.18)

The magnitude of angular momentum could 

be written as, 

 L r p= sinθ  (5.19)

where, θ is the angle between r  and p. L is 

perpendicular to the plane containing r  and 

p. As we have written in the case of torque, 

here also we can associate sin θ with either 

r  or p.

 L r p r p= ( ) = ⊥( )sinθ   (5.20)

 L r p r p= ( ) = ⊥( )sinθ   (5.21)

where, p  is the component of linear 

momentum p perpendicular to r, and r  is the 

component of position r perpendicular to p. 

The angular momentum is zero L =( )0 , 

if the linear momentum is zero (p = 0) or if 

the particle is at the origin r =( )0  or if r  and 

p are parallel or antiparallel to each other (θ 

= 00 or 1800).

There is a misconception that the angular 

momentum is a quantity that is associated 

only with rotational motion. It is not true. 

The angular momentum is also associated 

with bodies in the linear motion. Let us 

understand the same with the following 

example.
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 L rmr= ω

 L mr= ( )2 ω (5.22)

The directions of L and ω are along the 

axis of rotation. The above expression can be 

written in the vector notation as,

 L mr= ( )2 ω  (5.23)

As discussed earlier, the term mr2 in 

equations 5.22 and 5.23 is called moment of 

inertia (I) of the point mass. A rigid body 

is made up of many such point masses. 

Hence, the moment of inertia of a rigid 

body is the sum of moments of inertia of all 

such individual point masses that constitute 

the body I m ri i=( )∑ 2 . Hence, the angular 

momentum of the rigid body can be 

written as,

 L m ri i= ( )∑ 2 ω  (5.24)

 L I= ω  (5.25) 

The study about moment of inertia (I) is 

reserved for Section 5.4. 

5.2.6 
Momentum

We have the expression for magnitude of 

angular momentum of a rigid body as, 

L I= ω. The expression for magnitude of 

torque on a rigid body is, τ α= I

We can further write the expression for 

torque as, 

  τ
ω

= I
d

dt
 α

ω
=⎛

⎝
⎜

⎞
⎠
⎟

d

dt
 (5.26)

perpendicular distance (d) are constants, 

the angular momentum of the particle is also 

constant. Hence, the angular momentum  

is associated with bodies with linear motion 

also. If the straight path of the particle 

passes through the origin, then the angular 

momentum is zero, which is also a constant.

5.2.5  Angular Momentum 
and Angular Velocity

Let us consider a rigid body rotating about 

a fixed axis. A point mass m in the body will 

execute a circular motion about the fixed 

axis as shown in Figure 5.12. 

Figure 5.12. Angular momentum 
and angular velocity 

ω

P

L

r m

The point mass m is at a distance r from 

the axis of rotation. Its linear momentum 

at any instant is tangential to the circular 

path. Then the angular momentum L is 

perpendicular to r  and p. Hence, it is 

directed along the axis of rotation. The angle 

θ between r  and p in this case is 90o. The 

magnitude of the angular momentum L 

could be written as,

 L r mv r mvsin90

where, v is the linear velocity. The relation 

between linear velocity v and angular velocity 

ω in a circular motion is, v r= ω. Hence, 
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there is no net force acting on the body. 

There is a lot of difference between the 

terms “no force” and “no net force” acting 

on a body. The same argument holds good 

for rotational conditions in terms of torque 

or moment of force.

A rigid body is said to be in mechanical 

equilibrium when both its linear momentum 

and angular momentum remain constant.

When the linear momentum remains 

constant, the net force acting on the body 

is zero.

 Fnet 0 (5.28)

In this condition, the body is said to be in 

translational equilibrium. This implies that 

the vector sum of different forces 
� � �

…F F F1 2 3, ,  

acting in different directions on the body is 

zero.

 
� � � �

�F F F Fn1 2 3 0+ + + + =   (5.29)

If the forces 
� � �

…F F F1 2 3, ,  act in different 

directions on the body, we can resolve them 

into horizontal and vertical components 

and then take the resultant in the respective 

directions. In this case there will be horizontal 

as well as vertical equilibria possible. 

Similarly, when the angular momentum 

remains constant, the net torque acting on 

the body is zero.

 τnet = 0  (5.30)

Under this condition, the body is said to 

be in rotational equilibrium. The vector sum 

of different torques 
� � � …1 2 3, ,  producing 

different senses of rotation on the body is zero.

Where, ω is angular velocity and α is 

angular acceleration. We can also write 

equation 5.26 as,

 τ
ω

=
( )d I

dt

 τ =
dL

dt
 (5.27)

The above expression says that an 

external torque on a rigid body fixed to 

an axis produces rate of change of angular 

momentum in the body about that axis. 

This is the Newton’s second law in rotational 

motion as it is in the form of F
dp

dt
 which 

holds good for translational motion. 

Conservation of angular momentum:

From the above expression we could 

conclude that in the absence of external 

torque, the angular momentum of the rigid 

body or system of particles is conserved.

 If τ = 0 then, 
dL

dt
constant= =0; L

The above expression is known as law 

of conservation of angular momentum. 

We will learn about this law further in 

section 5.5.

5.3
EQUILIBRIUM OF RIGID 
BODIES

When a body is at rest without any motion 

on a table, we say that there is no force 

acting on the body. Actually it is wrong 

because, there is gravitational force acting 

on the body downward and also the normal 

force exerted by table on the body upward. 

These two forces cancel each other and thus 
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� � � ��τ τ τ τ1 2 3 0+ + + + =n   (5.31)

Thus, we can also conclude that a rigid 

body is in mechanical equilibrium when the 

net force and net torque acts on the body is 

zero.

 Fnet 0 and  τnet = 0 (5.32)

As the forces and torques are vector 

quantities, the directions are to be taken 

with proper sign conventions.

5.3.1 

Based on the above discussions, we come to a 

conclusion that different types of equilibrium 

are possible based on the different conditions. 

They are consolidated in Table 5.2.

Table 5.2 Different types of Equilibrium and their Conditions.

Type of 

equilibrium

Conditions

Translational 

equilibrium

Linear momentum is constant.

Net force is zero.

Rotational 

equilibrium

Angular momentum is constant.

Net torque is zero.

Static  

equilibrium

Linear momentum and angular momentum are zero.

Net force and net torque are zero.

Dynamic 

equilibrium

Linear momentum and angular momentum are constant.

Net force and net torque are zero.

Stable  

equilibrium

Linear momentum and angular momentum are zero.

The body tries to come back to equilibrium if slightly disturbed and 

released.

The center of mass of the body shifts slightly higher if disturbed from 

equilibrium.

Potential energy of the body is minimum and it increases if disturbed.

Unstable 

equilibrium

Linear momentum and angular momentum are zero.

The body cannot come back to equilibrium if slightly disturbed and 

released.

The center of mass of the body shifts slightly lower if disturbed from 

equilibrium.

Potential energy of the body is not minimum and it decreases if disturbed.

Neutral  

equilibrium

Linear momentum and angular momentum are zero.

The body remains at the same equilibrium if slightly disturbed and 

released.

The center of mass of the body does not shift higher or lower if disturbed 

from equilibrium.

Potential energy remains same even if disturbed.
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For rotational equilibrium:

The net torque acting on the log 

must be zero. For ease of calculation, 

we can take the torque caused by all the 

forces about the point A on the log. The 

forces are perpendicular to the distances.  

Hence, 

 0 4 7 0R mg RA B( ) + −( ) + ( ) = .

Here, the reaction force R
A
 cannot 

produce any torque as the reaction forces 

pass through the point of reference A. The 

torque of force mg produces a clockwise 

turn about the point A which is taken 

negative and torque of force R
B
 causes 

anticlockwise turn about A which is taken 

positive.

 7 4R mgB

 R mgB

4

7

 R NB = × × =
4

7
28 10 160

By substituting for R
B 

we get,

 R mg RA B= −

 R NA = × − = − =28 10 160 280 160 120

As R
B
 is greater than R

A
, it is concluded 

that Babu bears more weight than Arun. 

The one closer to center of mass of the log 

bears more weight.

EXAMPLE 5.12

Arun and Babu carry a wooden log of mass 

28  kg and length 10  m which has almost 

uniform thickness. They hold it at 1 m and 

2  m from the ends respectively. Who will 

bear more weight of the log?  [g = 10 ms-2]

Solution

Let us consider the log is in mechanical 

equilibrium. Hence, the net force and net torque 

on the log must be zero. The gravitational force 

acts at the center of mass of the log downwards. 

It is cancelled by the normal reaction forces  

R
A
 and R

B 
applied upwards by Arun and Babu 

at points A and B respectively. These reaction 

forces are the weights borne by them.

The total weight, W = mg = 28 × 10 = 

280 N, has to be borne by them together. 

The reaction forces are the weights borne 

by each of them separately. Let us show all 

the forces acting on the log by drawing a 

free body diagram of the log. 

For translational equilibrium:

The net force acting on the log must be 

zero.

 R mg RA B+ −( ) + = 0

Here, the forces R
A
 an R

B 
are 

taken  positive as they act upward. The 

gravitational force acting downward is 

taken negative. 

 R R mgA B+ =
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cause the same sense of rotation in the 

rod. Th us, the rod undergoes a rotational 

motion or turning even though the rod is in 

translational equilibrium.

A pair of forces which are equal in 

magnitude but opposite in direction and 

separated by a perpendicular distance so 

that their lines of action do not coincide that 

causes a turning eff ect is called a couple. We 

come across couple in many of our daily 

activities as shown in Figure 5.14. 

 Th ere are cases in which the 

two forces may not cancel 

each other. If the two forces 

are not equal or the direction of the 

forces is not exactly opposite, then the 

body will have both translational as 

well as rotational motion.

Note

5.3.3 Principle of Moments

Consider a light rod of negligible mass 

which is pivoted at a point along its length. 

Let two parallel forces F
1
 and F

2
 act at the two 

ends at distances d
1
 and d

2
 from the point 

of pivot and the normal reaction force N at 

5.3.2 Couple

Consider a thin uniform rod AB. Its center 

of mass is at its midpoint C. Let two forces 

which are equal in magnitude and opposite 

in direction be applied at the two ends 

A and B of the rod perpendicular to it. Th e 

two forces are separated by a distance of 2r 

as shown in Figure 5.13.

Figure 5.13. Couple

A B
Cr r

As the two equal forces are opposite in 

direction, they cancel each other and the 

net force acting on the rod is zero. Now the 

rod is in translational equilibrium. But, the 

rod is not in rotational equilibrium. Let us 

see how it is not in rotational equilibrium. 

Th e moment of the force applied at the end 

A taken with respect to the center point 

C, produces an anticlockwise rotation. 

Similarly, the moment of the force applied 

at the end B also produces an anticlockwise 

rotation. Th e moments of both the forces 

Figure 5.14. Turning eff ect of Couple

F
F

F

F

r r

r

r
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 Mechanical Advantage MA
d

d
 ( ) = 2

1

 (5.35)

There are many simple machines that 

work on the above mentioned principle. 

5.3.4 Center of Gravity

Each rigid body is made up of several point 

masses. Such point masses experience 

gravitational force towards the center of 

Earth. As the size of Earth is very large 

compared to any practical rigid body we 

come across in daily life, these forces appear 

to be acting parallelly downwards as shown 

in Figure 5.16.

W1

W2

W3 W5

W4W

C

Figure 5.16. Center of gravity

The resultant of these parallel forces 

always acts through a point. This point 

is called center of gravity of the body 

(with respect to Earth). The center of 

gravity of a body is the point at which the 

entire weight of the body acts irrespective 

of the position and orientation of the 

body. The center of gravity and center of 

mass of a rigid body coincide when the 

gravitational field is uniform across the 

body. The concept of gravitational field 

is dealt in Unit 6. 

the point of pivot as shown in Figure 5.15. 

If  the rod has to remain stationary in 

horizontal position, it should be in 

translational and rotational equilibrium. 

Then, both the net force and net torque 

must be zero. 

Figure 5.15. Principle of Moments

F1 F2

N

d2d1

For net force to be zero, − + − =F N F1 2 0

 N F F= +1 2

For net torque to be zero, d F d F1 1 2 2 0− =

 d F d F1 1 2 2 (5.33)

The above equation represents the principle of 

moments. This forms the principle for beam 

balance used for weighing goods with the 

condition d
1
 = d

2
; F

1
 = F

2
. We can rewrite the 

equation 5.33 as, 

 
F

F

d

d
1

2

2

1

 (5.34)

If F
1
 is the load and F

2
 is our effort, we 

get advantage when, d
1
< d

2
. This implies 

that F
1
> F

2
. Hence, we could lift a large load 

with small effort. The ratio 
d

d
2

1

⎛

⎝
⎜

⎞

⎠
⎟ is called 

mechanical advantage of the simple lever. 

The pivoted point is called fulcrum. 



Unit 5  Motion of System of Particles and R igid B odies232

points like P, Q, R as shown in Figure 5.18, 

the vertical lines PP', QQ', RR' all pass 

through the center of gravity. Here, reaction 

force acting at the point of suspension and 

the gravitational force acting at the center 

of gravity cancel each other and the torques 

caused by them also cancel each other.

5.3.5  Bending of Cyclist in 
Curves

Let us consider a cyclist negotiating a 

circular level road (not banked) of radius r 

with a speed v. The cycle and the cyclist are 

considered as one system with mass m. The 

center gravity of the system is C and it goes 

in a circle of radius r with center at O. Let us 

choose the line OC as X-axis and the 

vertical line through O as Z-axis as shown  

in Figure 5.19. 

We can also determine the center of gravity 

of a uniform lamina of even an irregular 

shape by pivoting it at various points by trial 

and error. The lamina remains horizontal 

when pivoted at the point where the net 

gravitational force acts, which is the center of 

gravity as shown in Figure 5.17. When a body 

is supported at the center of gravity, the sum 

of the torques acting on all the point masses 

of the rigid body becomes zero. Moreover the 

weight is compensated by the normal reaction 

force exerted by the pivot. The body is in static 

equilibrium and hence it remains horizontal. 

C

Figure 5.17. Determination of 
center of gravity of plane lamina by 
pivoting

There is also another way to determine 

the center of gravity of an irregular lamina. 

If we suspend the lamina from different 

Figure 5.18. Determination of center of 
gravity of plane lamina by suspending Figure 5.19. Bending of cyclist

P

Q

R

P

P:
Q

Q:

R R:
C
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The torque due to the gravitational force 

about point A is mg AB( ) which causes a 

clockwise turn that is taken as negative. 

The torque due to the centripetal force is 

mv

r
BC

2⎛

⎝
⎜

⎞

⎠
⎟ which causes an anticlockwise 

turn that is taken as positive.

 − + =mg AB
mv

r
BC

2

0

 mg AB
mv

r
BC

2

From Δ ABC,  

 AB AC= sinθ  and  BC AC= cosθ

 mg AC
mv

r
ACsin cosθ θ=

2

 tanθ =
v

rg

2

 θ =
⎛

⎝
⎜

⎞

⎠
⎟

−tan 1
2v

rg
 (5.36)

While negotiating a circular level road of 

radius r at velocity v, a cyclist has to bend by 

an angle θ from vertical given by the above 

expression to stay in equilibrium (i.e. to 

avoid a fall). 

EXAMPLE 5.13

A cyclist while negotiating a circular path 

with speed 20 m s-1 is found to bend an 

angle by 30o with vertical. What is the 

radius of the circular path? (given,  

g = 10 m s-2)

The system as a frame is rotating 

about Z-axis. The system is at rest in 

this rotating frame. To solve problems 

in rotating frame of reference, we have 

to apply a centrifugal force (pseudo 

force) on the system which will be 
mv

r

2

.  

This force will act through the center of 

gravity. The forces acting on the system 

are, (i)  gravitational force (mg), (ii) 

normal force (N), (iii) frictional force (f ) 

and (iv) centrifugal force 
mv

r

2⎛
⎝⎜

⎞
⎠⎟

. As the 

system is in equilibrium in the rotational 

frame of reference, the net external force 

and net external torque must be zero. Let 

us consider all torques about the point A in  

Figure 5.20. 

Figure 5.20 Force diagrams for 
the cyclist in turns

C

mg

θ

θ

mv2

R

A

N

f B

For rotational equilibrium,

 τnet = 0
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motion, moment of inertia is a measure 

of rotational inertia. The unit of moment 

of inertia is, kg m2. Its dimension is M L2.  

In general, mass is an invariable quantity 

of matter (except for motion comparable 

to that of light). But, the moment of inertia 

of a body is not an invariable quantity. It 

depends not only on the mass of the body, 

but also on the way the mass is distributed 

around the axis of rotation.

To find the moment of inertia of a 

uniformly distributed mass; we have to 

consider an infinitesimally small mass (dm) 

as a point mass and take its position (r) with 

respect to an axis. The moment of inertia of 

this point mass can now be written as, 

 dI dm r= ( ) 2  (5.39)

We get the moment of inertia of the entire 

bulk object by integrating the above 

expression. 

 I dI dm r= = ( )∫ ∫ 2  

 I r dm= ∫ 2   (5.40)

We can use the above expression for 

determining the moment of inertia of some 

of the common bulk objects of interest like 

rod, ring, disc, sphere etc.

5.4.1  Moment of Inertia of a 
Uniform Rod

Let us consider a uniform rod of mass (M) 

and length ( ) as shown in Figure 5.21. Let 

us find an expression for moment of inertia 

of this rod about an axis that passes through 

the center of mass and perpendicular to 

Solution

Speed of the cyclist, v = 20 m s-1

Angle of bending with vertical, θ = 30o

Equation for angle of bending, tanθ =
v

rg

2

Rewriting the above equation for radius  

r
v

g
=

2

tanθ

Substituting, 

 

r =
( )

( )×
=

×

( )×

=
⎛

⎝
⎜

⎞

⎠
⎟×

20

30 10

20 20

30 10

400

1

3
10

2

tan tan

 r = ( )× = ×3 40 1 732 40.

 r m69 28.

5.4
MOMENT OF INERTIA

In the expressions for torque and angular 

momentum for rigid bodies (which are 

considered as bulk objects), we have come 

across a term m ri i

2. This quantity is called 

moment of inertia (I) of the bulk object. For 

point mass m
i
 at a distance r

i
 from the fixed 

axis, the moment of inertia is given as, m ri i

2.

Moment of inertia for point mass, 

 I m ri i

2 (5.37)

Moment of inertia for bulk object,

 I m ri i= ∑ 2 (5.38)

In translational motion, mass is a measure 

of inertia; in the same way, for rotational 
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 I
M

x dx
M x

= =
⎡

⎣
⎢

⎤

⎦
⎥

− −
∫

/

/

/

/

2

2
2

3

2

2

3

 I
M M

= − −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ = +

⎡

⎣
⎢

⎤

⎦
⎥

3 3 3 3

24 24 24 24

 I
M

=
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥2

24

3

 I M= 1

12

2  (5.41)

EXAMPLE 5.14

Find the moment of inertia of a uniform 

rod about an axis which is perpendicular 

to the rod and touches any one end of  

the rod. 

Solution

The concepts to form the integrand to find 

the moment of inertia could be borrowed 

from the earlier derivation. Now, the origin 

is fixed to the left end of the rod and the 

limits are to be taken from 0 to .

dx

dm

x

�

 I
M

x dx
M x M

= =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥∫

0

2
3

0

3

3 3

 I M
1

3

2

the rod. First an origin is to be fixed for 

the coordinate system so that it coincides 

with the center of mass, which is also the 

geometric center of the rod. The rod is now 

along the x axis. We take an infinitesimally 

small mass (dm) at a distance (x) from the 

origin. The moment of inertia (dI) of this 

mass (dm) about the axis is, 

 dI dm x= ( ) 2

As the mass is uniformly distributed, the 

mass per unit length (λ) of the rod is, λ M

The (dm) mass of the infinitesimally 

small length as, dm = λ dx = 
M

dx

The moment of inertia (I) of the entire 

rod can be found by integrating dI, 

 I dI dm x
M

dx x= = ( ) = ⎛
⎝
⎜

⎞
⎠
⎟∫ ∫ ∫2 2

 I
M

x dx= ∫ 2

As the mass is distributed on either side 

of the origin, the limits for integration are 

taken from / 2 to / 2.

Figure 5.21 Moment of inertia of 
uniform rod

�/2−�/2

dx

dm

x

O

O
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distributed, the mass per unit length (λ) is, 

 λ = =
mass

length

M

R2π

Th e mass (dm) of the infi nitesimally 

small length is, dm = λ dx = 
M

R
dx

2π
Now, the moment of inertia (I) of the 

entire ring is, 

 I dI dm R
M

R
dx R= = ( ) = ⎛

⎝
⎜

⎞
⎠
⎟∫ ∫ ∫2 2

2π

 I
MR

dx= ∫2π

To cover the entire length of the ring, the 

limits of integration are taken from 0 to 2πR.

 I
MR

dx
R

= ∫2
0

2

π

π

 I
MR

x
MR

R
R

= [ ] = −[ ]
2 2

2 0
0

2

π π
π

π

 I MR2 (5.42)

5.4.3  Moment of Inertia of a 
Uniform Disc

Consider a disc of mass M and radius R. Th is 

disc is made up of many infi nitesimally small 

rings as shown in Figure 5.23. Consider one 

such ring of mass (dm) and thickness (dr) 

and radius (r). Th e moment of inertia (dI) 

of this small ring is,

 dI dm r= ( ) 2

As the mass is uniformly distributed, the 

mass per unit area (σ) is, σ = =
mass

area

M

Rπ 2

Th e moment of inertia of 

the same uniform rod is 

diff erent about diff erent axes 

of reference. Th e reference axes could 

be even outside the object. We have two 

useful theorems to calculate the moments 

of inertia about diff erent axes. We shall 

see these theorems in Section 5.4.5.

Note

5.4.2  Moment of Inertia of a 
Uniform Ring

Let us consider a uniform ring of mass M 

and radius R. To fi nd the moment of inertia 

of the ring about an axis passing through its 

center and perpendicular to the plane, let us 

take an infi nitesimally small mass (dm) of 

length (dx) of the ring. Th is (dm) is located 

at a distance R, which is the radius of the 

ring from the axis as shown in Figure 5.22. 

Figure 5.22 Moment of 
inertia of a uniform ring

dm

dxR

Th e moment of inertia (dI) of this small 

mass (dm) is, 

 dI dm R= ( ) 2

Th e length of the ring is its circumference 

2πR( ). As the mass is uniformly 
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5.4.4 Radius of Gyration

For bulk objects of regular shape with 

uniform mass distribution, the expression 

for moment of inertia about an axis involves 

their total mass and geometrical features 

like radius, length, breadth, which take care 

of the shape and the size of the objects. But, 

we need an expression for the moment of 

inertia which could take care of not only 

the mass, shape and size of objects, but also 

its orientation to the axis of rotation. Such 

an expression should be general so that it is 

applicable even for objects of irregular shape 

and non-uniform distribution of mass. The 

general expression for moment of inertia is 

given as, 

 I MK2  (5.44)

where, M is the total mass of the object and 

K is called the radius of gyration. 

The radius of gyration of an object is 

the perpendicular distance from the axis of 

rotation to an equivalent point mass, which 

would have the same mass as well as the same 

moment of inertia of the object. 

As the radius of gyration is distance, its 

unit is m. Its dimension is L.

A rotating rigid body with respect to any 

axis, is considered to be made up of point 

masses m
1
, m

2
, m

3
, . . .m

n
 at perpendicular 

distances (or positions) r
1
, r

2
, r

3
 . . . r

n
 

respectively as shown in Figure 5.24.

The moment of inertia of that object can 

be written as,  

I m r m r m r m r m ri i n n= = + + + +∑ 2

1 1

2

2 2

2

3 3

2 2

If we take all the n number of individual 

masses to be equal, 

The mass of the infinitesimally small 

ring is,

 dm rdr
M

R
rdr= =σ π

π
π2 2

2

where, the term 2πr dr( )  is the area of this 

elemental ring (2πr is the length and dr is 

the thickness). dm
M

R
rdr

2
2

 dI
M

R
r dr

2
2

3

The moment of inertia (I) of the entire 

disc is, 

 I dI= ∫

 I
M

R
dr

M

R
dr

RR

= = ∫∫ 2 2
2

3

2

3

00

r r

 I
M

R

M

R
=

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥

2

4

2

4
0

2

4

0

2

4r R
R

 I MR
1

2

2 (5.43)

Figure 5.23 Moment of inertia of a 
uniform disc
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In fact, the moment of inertia of any object 

could be expressed in the form, I = MK2. 

For example, let us take the moment 

of inertia of a uniform rod of mass M and 

length . Its moment of inertia with respect 

to a perpendicular axis passing through the 

center of mass is, I M= 1

12

2

In terms of radius of gyration, I MK2

Hence, MK M2 21

12
=

  K2 21

12
=

K
l=
12

 or K
l=

2 3
 or K = ( )0 289.

EXAMPLE 5.15

Find the radius of gyration of a disc of 

mass M and radius R rotating about an axis 

passing through the center of mass and 

perpendicular to the plane of the disc.

Solution

The moment of inertia of a disc about an 

axis passing through the center of mass 

and perpendicular to the disc is, I MR
1

2

2

 In terms of radius of gyration, I MK2

 Hence, MK MR2 21

2
; K R2 21

2

  K
l

R
2

 or K
l

R
1 414.

 or K R= ( )0 707.

From the case of a rod and also a disc, we 

can conclude that the radius of gyration 

of the rigid body is always a geometrical 

feature like length, breadth, radius or their 

combinations with a positive numerical 

value multiplied to it. 

Figure 5.24 Radius of gyration

m1

r3

C

r4

m3

m2 r1

m4

r2

 m m m m mn= = = = =1 2 3 . . .

then, 

 I mr mr mr mrn= + + + +1

2

2

2

3

2 2

 = + + + +( )m r r r rn1

2

2

2

3

2 2

 =
+ + + +⎛

⎝
⎜

⎞

⎠
⎟nm

r r r r

n
n1

2

2

2

3

2 2

 I MK2

where, nm is the total mass M of the body 

and K is the radius of gyration.

 K
r r r r

n
n=

+ + + +1

2

2

2

3

2 2

 (5.45)

The expression for radius of gyration 

indicates that it is the root mean square (rms) 

distance of the particles of the body from the 

axis of rotation. 
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If IC is the moment of inertia of the body 

of mass M about an axis passing through the 

center of mass, then the moment of inertia I 

about a parallel axis at a distance d from it is 

given by the relation, 

 I I MdC= + 2   (5.46)

Let us consider a rigid body as shown in 

Figure 5.25. Its moment of inertia about an 

axis AB passing through the center of mass 

is I
C
.  DE is another axis parallel to AB at 

a perpendicular distance d from AB. Th e 

moment of inertia of the body about DE is 

I. We attempt to get an expression for I in 

terms of I
C
. For this, let us consider a point 

mass m on the body at position x from its 

center of mass.

Figure 5.25 Parallel axis theorem

d

C

E

P

D

B

x

A

Th e moment of inertia of the point mass 

about the axis DE is, m x d+( )2
. 

Th e moment of inertia I of the whole 

body about DE is the summation of the 

above expression.

 I m x d= +( )∑ 2

5.4.5  Theorems of Moment 
of Inertia

As the moment of inertia depends on the 

axis of rotation and also the orientation 

of the body about that axis, it is diff erent 

for the same body with diff erent axes of 

rotation. We have two important theorems 

to handle the case of shift ing the axis of 

rotation.

(i) Parallel axis theorem:

Parallel axis theorem states that the moment 

of inertia of a body about any axis is equal 

to the sum of its moment of inertia about a 

parallel axis through its center of mass and 

the product of the mass of the body and the 

square of the perpendicular distance between 

the two axes.

Obesity, torque and 

Moment of Inertia!

Obesity and associated ailments like back 

pain, joint pain etc. are due to the shift  

in center of mass of the body. Due to this 

shift  in center of mass, unbalanced torque 

acting on the body leads to ailments. As 

the mass is spread away from center of the 

body the moment of inertia is more and 

turning will also be diffi  cult.

mg
mg

N N

r
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the body about X and Y-axes are IX and IY 

respectively and IZ  is the moment of inertia 

about Z-axis, then the perpendicular axis 

theorem could be expressed as, 

 I I IZ X Y= +   (5.47)

To prove this theorem, let us consider a plane 

laminar object of negligible thickness on 

which lies the origin (O). The X and Y-axes 

lie on the plane and Z-axis is perpendicular 

to it as shown in Figure 5.26. The lamina is 

considered to be made up of a large number 

of particles of mass m. Let us choose one such 

particle at a point P which has coordinates 

(x, y) at a distance r from O. 

Figure 5.26 Perpendicular axis theorem

m

Z

X
r

p

Y

O
y

x

The moment of inertia of the particle 

about Z-axis is, mr2

The summation of the above expression 

gives the moment of inertia of the entire 

lamina about Z-axis as, I mrZ = ∑ 2

Here, r x y2 2 2= +

Then, I m x yZ = +( )∑ 2 2

 I mx myZ = +∑ ∑2 2

In the above expression, the term mx2 is 

the moment of inertia of the body about the 

This equation could further be written as, 

 I m x d xd= + +( )∑ 2 2 2

 I mx md dmx= + +( )∑ 2 2 2

 I mx md d mx= + +∑ ∑ ∑2 2 2

Here, mx∑ 2 is the moment of inertia of 

the body about the center of mass. Hence, 

I mxC = ∑ 2

The term, ∑ =mx 0 because, x can take 

positive and negative values with respect to 

the axis AB. The summation ∑( )mx  will be 

zero. 

Thus, I I md I m dC C= + = + ( )∑ ∑2 2

Here, m is the entire mass M of the 

object ∑ =( )m M

 I I MdC= + 2

Hence, the parallel axis theorem is 

proved. 

(ii) Perpendicular axis theorem:

This perpendicular axis theorem holds good 

only for plane laminar objects. 

The theorem states that the moment of 

inertia of a plane laminar body about an 

axis perpendicular to its plane is equal to 

the sum of moments of inertia about two 

perpendicular axes lying in the plane of the 

body such that all the three axes are mutually 

perpendicular and have a common point.

Let the X and Y-axes lie in the plane and 

Z-axis perpendicular to the plane of the 

laminar object. If the moments of inertia of 
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 I MR
1

2

2

 I = × ×( ) = × × ×
1

2
3 0 5 0 5 3 0 5 0 5

2
. . . .

 I kg m0 375 2.

(ii)  The moment of inertia (I) about an axis 

touching the edge and perpendicular 

to the plane of the disc by parallel axis 

theorem is,

 I I MdC= + 2

where, I MRC

1

2

2 and d = R

 I MR MR MR= + =
1

2

3

2

2 2 2 

 I = × ×( ) = × × ×
3

2
3 0 5 1 5 3 0 5 0 5

2
. . . .

 I kg m1 125 2.

Y-axis and similarly the term my2 is the 

moment of inertia about X-axis. Thus, 

 I myX = ∑ 2 and I mxY = ∑ 2

Substituting in the equation for I
z
 gives,

 I I IZ X Y= +

Thus, the perpendicular axis theorem is 

proved.

EXAMPLE 5.16

Find the moment of inertia of a disc of mass 

3 kg and radius 50 cm about the following 

axes.

  (i)  axis passing through the center 

and perpendicular to the plane of  

the disc, 

 (ii)  axis touching the edge and 

perpendicular to the plane of the disc 

and 

(iii)  axis passing through the center 

and lying on the plane of the  

disc.

Solution

The mass, M = 3 kg, radius R = 50 cm =  

50 × 10−2 m = 0.5 m

(i)  The moment of inertia (I) about an 

axis passing through the center and 

perpendicular to the plane of the  

disc is,
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Solution
The structure is made up of three objects; 
one thin rod and two solid spheres.

The mass of the rod, M = 3 kg and the 
total length of the rod, ℓ = 80 cm = 0.8 m

The moment of inertia of the rod 

about its center of mass is, I Mrod

1

12

2  

Irod = × ×( ) = ×
1

12
3 0 8

1

4
0 64

2
. .

 I kg mrod 0 16 2.

The mass of the sphere, M = 5 kg and the 
radius of the sphere, R = 10 cm = 0.1 m

The moment of inertia of the sphere 

about its center of mass is, I MRC

2

5

2

The moment of inertia of the sphere 

about geometric center of the structure is, 

I I Mdsph C= + 2

Where, d = 40 cm + 10 cm = 50 cm = 0.5 m

 I MR Mdsph = +
2

5

2 2

 Isph = × ×( ) + ×( )2

5
5 0 1 5 0 5

2 2
. .

 Isph = × + × = +( . ) ( . ) . .2 0 01 5 0 25 0 02 1 25

 I kg msph 1 27 2.

As there are one rod and two similar solid 
spheres we can write the total moment of 
inertia (I) of the given geometric structure 
as, I I Irod sph= + ×( )2

 I = + × = +( . ) ( . ) . .0 16 2 1 27 0 16 2 54

 I kg m2 7 2.

(iii)  The moment of inertia (I) about an 

axis passing through the center and 

lying on the plane of the disc is,

 I I IZ X Y= +

where,  I I IX Y  and I MRZ

1

2

2

 I IZ 2 ; I I
1

2
Z

 I MR MR= × =
1

2

1

2

1

4

2 2

 I = × ×( ) = × × ×
1

4
3 0 5 0 25 3 0 5 0 5

2
. . . .

 I kg m0 1875 2.

About which of the above axis it is 

easier to rotate the disc? 

It is easier to rotate the disc about 

an axis about which the moment of 

inertia is the least. Hence, it is case (iii).

EXAMPLE 5.17

Find the moment of inertia about the 

geometric center of the given structure made 

up of one thin rod connecting two similar 

solid spheres as shown in Figure.

5.4.6 Moment of Inertia of 
Different Rigid Bodies
The moment of inertia of different objects 
about different axes is given in the Table 5.3.
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Solution

m1

m2

R

Let the mass of the disc be m
1
 and its 

radius R. The mass of the suspended  

body is m
2
. 

 m
1
 = 500 g = 500×10−3 kg =0.5 kg

 m
2
 = 100 g = 100×10−3 kg = 0.1 kg

 R = 10 cm = 10×10−2 m = 0.1 m

As the light inextensible string is wound 

around the disc several times it makes 

the disc rotate without slipping over it. 

The translational acceleration of m
2
 and 

tangential acceleration of m
1
 will be the 

same. Let us draw the free body diagram 

(FBD) of m
1
 and m

2
 separately. 

FBD of the disc:

T

R

N

m1g

m1

5.5
ROTATIONAL DYNAMICS

The relations among torque, angular 

acceleration, angular momentum, 

angular velocity and moment of inertia 

were seen in Section 5.2. In continuation 

to that, in this section, we will learn the 

relations among the other dynamical 

quantities like work, kinetic energy in 

rotational motion of rigid bodies. Finally 

a comparison between the translational 

and rotational quantities is made with a 

tabulation.

5.5.1 
Rigid Bodies

A rigid body which has non zero external 

torque τ( ) about the axis of rotation would 

have an angular acceleration α( ) about 

that axis. The scalar relation between the 

torque and angular acceleration is, 

 τ α= I  (5.48)

where, I is the moment of inertia of the rigid 

body. The torque in rotational motion is 

equivalent to the force in linear motion. 

EXAMPLE 5.18

A disc of mass 500 g and radius 10 cm 

can freely rotate about a fixed axis as 

shown in figure. light and inextensible 

string is wound several turns around 

it and 100 g body is suspended at its  

free end. Find the acceleration of this 

mass. [Given: The string makes the 

disc to rotate and does not slip over it.  

g = 10 m s-2.] 
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  m g m K

a

R
m a2 1

2

2 2−( ) =   

m g m K
a

R
m a2 1

2

2 2= ( ) +

 m g m
K

R
m a2 1

2

2 2=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥

 a
m

m
K

R
m

g=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥

2

1

2

2 2

The expression 
K

R

2

2

⎛

⎝
⎜

⎞

⎠
⎟ for a disc rotating 

about an axis passing through the center 

and perpendicular to the plane is, 
K

R

2

2

1

2
.  

(Ref Table 5.3) Now the expression for 

acceleration further simplifies as, 

  a
m

m
m

g=
⎛
⎝
⎜

⎞
⎠
⎟ +

⎡

⎣
⎢

⎤

⎦
⎥

2

1
2

2

 ; a
m

m m
g=

+[ ]
2

2
2

1 2

substituting the values, 

 a =
×
+[ ] ×

2 0 1

0 5 0 2
10

.

. .
 = 0 2

0 7
10

.

.

 a ms= −2 857 2.

5.5.2  Conservation of 
Angular Momentum

When no external torque acts on the body, 

the net angular momentum of a rotating 

rigid body remains constant. This is 

known as law of conservation of angular 

momentum.

Its gravitational force (m
1
g) acts downward 

and normal force N exerted by the fixed 

support at the center acts upward. The 

tension T acts downward at the edge. The 

gravitational force (m
1
g) and the normal 

force (N) cancel each other. m
1
g = N

The tension T produces a torque (R T), 

which produces a rotational motion in the 

disc with angular acceleration, α =⎛
⎝
⎜

⎞
⎠
⎟

a

R
. 

Here, a is the linear acceleration of a point 

at the edge of the disc. If the moment of 

inertia of the disc is I and its radius of 

gyration is K, then 

 R T I= α; R T m K
a

R
= ( )1

2

 T m K
a

R
= ( )1

2

2

FBD of the body:

Its gravitational force (m
2
g) acts downward 

and the tension T acts upward. As 

(T < m
2
g), there is a resultant force (m

2
a) 

acting on it downward.

T

m2g

m2am2

 m g T m a2 2− =

Substituting for T from the equation for 

disc,
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thus the angular velocity increases resulting 

in faster spin.

A diver while in air as in Figure 5.28 

curls the body close to decrease the moment 

of inertia, which in turn helps to increase 

the number of somersaults in air.

Figure 5.28 Conservation of angular 
momentum for a diver

  τ =
dL

dt

If τ = 0 then, L constant (5.49)

As the angular momentum is L I= ω, the 

conservation of angular momentum could 

further be written for initial and fi nal 

situations as,

 I Ii i f fω ω=  (or) I  = constant (5.50)

Th e above equations say that if I increases 

ω will decrease and vice-versa to keep the 

angular momentum constant. 

Th ere are several situations where 

the principle of conservation of angular 

momentum is applicable. One striking 

example is an ice dancer as shown in 

Figure 5.27. Th e dancer spins slowly when 

the hands are stretched out and spins faster 

when the hands are brought close to the 

body. Stretching of hands away from body 

increases moment of inertia, thus the angular 

velocity decreases resulting in slower spin. 

When the hands are brought close to the 

body, the moment of inertia decreases, and 

Figure 5.27 Conservation of angular momentum for ice dancer

I - large

ω - small

I - small

ω - large
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Figure 5.29 Work done by torque

 dw Fds

As the distance ds, the angle of rotation dθ 

and radius r are related by the expression,

 ds r d= θ

The expression for work done now becomes, 

 dw = F ds; dw = F r dθ

The term (Fr) is the torque τ produced by 

the force on the body.

 dw d= τ θ   (5.51)

This expression gives the work done by the 

external torque τ, which acts on the body 

rotating about a fixed axis through an angle dθ. 

The corresponding expression for work 

done in translational motion is,  

 dw Fds

EXAMPLE 5.19

A jester in a circus is standing with his 

arms extended on a turn table rotating with 

angular velocity ω. He brings his arms closer 

to his body so that his moment of inertia is 

reduced to one third of the original value. 

Find his new angular velocity. [Given: There 

is no external torque on the turn table in 

the given situation.]

Solution

Let the moment of inertia of the jester 

with his arms extended be I. As there is 

no external torque acting on the jester 

and the turn table, his total angular 

momentum is conserved. We can write 

the equation,

 I Ii i f fω ω=

 I Iω ω=
1

3
f  I If =⎛

⎝
⎜

⎞
⎠
⎟

1

3

 ω ωf = 3

The above result tells that the final angular 

velocity is three times that of initial angular 

velocity.

5.5.3 

Let us consider a rigid body rotating 

about a fixed axis. Figure 5.29 shows a 

point P on the body rotating about an axis 

perpendicular to the plane of the page. A 

tangential force F is applied on the body.

It produces a small displacement ds 

on the body. The work done (dw) by the  

force is, 
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where, the term m ri i

2  is the moment of 

inertia I of the whole body. I m ri i= Σ 2

Hence, the expression for KE of the rigid 

body in rotational motion is,

 KE I=
1

2

2ω  (5.52)

This is analogous to the expression for 

kinetic energy in translational motion. 

 KE Mv
1

2

2 

Relation between rotational kinetic energy 

and angular momentum

Let a rigid body of moment of inertia I rotate 

with angular velocity ω.

The angular momentum of a rigid body 

is, L I= ω

The rotational kinetic energy of the rigid 

body is, KE I=
1

2

2ω

By multiplying the numerator and 

denominator of the above equation with I, 

we get a relation between L and KE as, 

 KE
I

I

I

I
= =

( )1

2

1

2

2 2
2

ω ω

 KE
L

I

2

2
 (5.53)

EXAMPLE 5.20

Find the rotational kinetic energy of a ring 

of mass 9 kg and radius 3 m rotating with 

240 rpm about an axis passing through its 

center and perpendicular to its plane. (rpm 

is a unit of speed of rotation which means 

revolutions per minute)

5.5.4  Kinetic Energy in 
Rotation

Let us consider a rigid body rotating with 

angular velocity ω about an axis as shown 

in Figure 5.30. Every particle of the body 

will have the same angular velocity ω and 

different tangential velocities v based on its 

positions from the axis of rotation.

Figure 5.30 Kinetic energy in rotation

ω

m

Let us choose a particle of mass m
i 

situated at distance r
i 

from the axis of 

rotation. It has a tangential velocity v
i
 given 

by the relation, v
i
 = r

i
 ω. The kinetic energy 

KE
i 
of the particle is, 

 KE m vi i i

1

2

2

Writing the expression with the angular 

velocity, 

 KE m r m ri i i i i= ( ) = ( )1

2

1

2

2 2 2ω ω

For the kinetic energy of the whole body, which 

is made up of large number of such particles, 

the equation is written with summation as,

 KE m r= ( )∑1

2

2 2

i i ω
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work done with respect to time, we get the 

instantaneous power (P). 

  P
dw d

dw d )= = =
dt dt

τ θ τ θ(

 P = τω (5.54)

The analogous expression for instantaneous 

power delivered in translational motion is, 

 P = ⋅F v

5.5.6  Comparison of 
Translational and 
Rotational Quantities

Many quantities in rotational motion 

have expressions similar to that of 

translational motion. The rotational 

terms are compared with the translational 

equivalents in Table 5.4. 

Table 5.4 Comparison of  Translational and Rotational Quantities

S.No Translational Motion Rotational motion about a fixed axis

 1 Displacement, x Angular displacement, θ

 2 Time, t Time, t

 3 Velocity, v
dx

dt
Angular velocity, ω =

d

dt

θ

 4 Acceleration, a
dv

dt
Angular acceleration, α =

d

dt

ω

 5 Mass, m Moment of inertia, I

 6 Force, F = ma Torque, τ = I α

 7 Linear momentum, p = mv Angular momentum, L = Iω

 8 Impulse, F Δt = Δp Impulse, τΔt = ΔL

 9 Work done, w = F s Work done, w = τ θ

10 Kinetic energy, KE m v
1

2

2 Kinetic energy, KE I=
1

2

2ω

11 Power, P = F v Power, P = τω

Solution

The rotational kinetic energy is, KE I=
1

2

2ω

The moment of inertia of the ring is, 

I MR2

 I kg m= × = × =9 3 9 9 812 2

The angular speed of the ring is, 

 ω
π

= =
× −240

240 2

60

1rpm rad s

 KE = × ×
×⎛

⎝
⎜

⎞
⎠
⎟ = × ×( )1

2
81

240 2

60

1

2
81 8

2
2π

π

 KE = × × ×( ) = ×( )1

2
81 64 2592

2 2
π π

 KE J≈ 25920  π( ) ≈
2

10

 KE = 25.920 kJ

5.5.5  Power Delivered by 

Power delivered is the work done per unit 

time. If we differentiate the expression for 
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undergo a path which has a combination 

of the translational and rotational motion. 

Especially the point on the edge undergoes 

a path of a cycloid as shown in the 

Figure 5.31. 

As the center of mass takes only a 

straight line path, its velocity v
CM

 is only 

translational velocity v
TRANS

 (v
CM

 = v
TRANS

). 

All the other points have two velocities. 

One is the translational velocity v
TRANS

, 

(which is also the velocity of center of 

mass) and the other is the rotational 

velocity v
ROT

 (v
ROT

 = rω). Here, r is the 

distance of the point from the center of 

mass and ω is the angular velocity. The 

rotational velocity v
ROT

 is perpendicular 

to the instantaneous position vector 

from the center of mass as shown in 

Figure 5.32(a). The resultant of these two 

velocities is v. This resultant velocity v is 

perpendicular to the position vector from 

the point of contact of the rolling object 

5.6
ROLLING MOTION

Th e rolling motion is the most commonly 

observed motion in daily life. Th e motion 

of wheel is an example of rolling motion. 

Round objects like ring, disc, sphere etc. are 

most suitable for rolling . 

Let us study the rolling of a disc on a 

horizontal surface. Consider a point P on 

the edge of the disc. While rolling, the point 

undergoes translational motion along with 

its center of mass and rotational motion 

with respect to its center of mass. 

5.6.1  Combination of 
Translation and 
Rotation

We will now see how these translational and 

rotational motions are related in rolling. If 

the radius of the rolling object is R, in one 

full rotation, the center of mass is displaced 

by 2πR (its circumference). One would 

agree that not only the center of mass, but 

all the points on the disc are displaced by the 

same 2πR aft er one full rotation. Th e only 

diff erence is that the center of mass takes 

a straight path; but, all the other points 

Figure 5.31 Rolling is combination of translation and rotation

Cycloid path followed
by the point on the rim

Object rolls one revolution
without slipping

2πR

R R

vcmvcmvcm
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with the surface on which it is rolling as 

shown in Figure 5.32(b). 

We shall now give importance to the 

point of contact. In pure rolling, the point 

of the rolling object which comes in contact 

with the surface is at momentary rest. This 

is the case with every point that is on the 

edge of the rolling object. As the rolling 

proceeds, all the points on the edge, one by 

one come in contact with the surface; remain 

at momentary rest at the time of contact and 

then take the path of the cycloid as already  

mentioned. 

Hence, we can consider the pure rolling 

in two different ways.

 (i)  The combination of translational 

motion and rotational motion about 

the center of mass. 

(or)

(ii)  The momentary rotational motion 

about the point of contact.

As the point of contact is at momentary 

rest in pure rolling, its resultant velocity v 

is zero (v = 0). For example, in Figure 5.33, 

at the point of contact, v
TRANS

 is forward (to 

right) and v
ROT

 is backwards (to the left). 

(b) with respect to point of contact

(a) with respect to center of mass

Figure 5.32 Resultant velocity at a point

Figure 5.33 In pure rolling, the point of contact is at rest

Motion of
the CM plus...

...motion of
the CM equals...

...motion of individuals
points on the wheel..

These two velocity
vectors sum to give

zero velocity at bottom.

The bottom of
the wheel is at
rest! But only
for an instant.

vCM

vCM

−vCM

2vCM

vCM

v = 0

=++ =
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5.6.2 Slipping and Sliding

When the round object moves, it always 

tends to roll on any surface which has a 

coefficient of friction any value greater than 

zero (μ > 0). The friction that enabling the 

rolling motion is called rolling friction. In 

pure rolling, there is no relative motion of 

the point of contact with the surface. When 

the rolling object speeds up or slows down, 

That implies that, v
TRANS

 and v
ROT

 are equal 

in magnitude and opposite in direction  

(v = v
TRANS

– v
ROT

 = 0). Hence, we conclude 

that in pure rolling, for all the points on the 

edge, the magnitudes of v
TRANS 

and v
ROT

 are 

equal (v
TRANS

= v
ROT

). As v
TRANS

 = v
CM

 and  

v
ROT

 = Rω, in pure rolling we have, 

 v
CM

 = R ω  (5.55)

We should remember the special feature 

of the equation 5.55. In rotational motion, 

as per the relation v = rω, the center point 

will not have any velocity as r is zero. But 

in rolling motion, it suggests that the 

center point has a velocity v
CM

 given by  

equation 5.55.

For the topmost point, the two velocities 

v
TRANS

 and v
ROT

 are equal in magnitude 

and in the same direction (to the right). 

Thus, the resultant velocity v is the sum 

of these two velocities, v = v
TRANS

 + v
ROT

. 

In other form, v = 2 v
CM

 as shown in  

Figure 5.34.

Perfect wheels were made with percession using conventional tools 
when sophisticated instruments were not avaliable

Figure 5.34 Velocity of different 
point in pure rolling

CM

Q

2vCM

vCM

P

P ′



Unit 5  Motion of System of Particles and R igid B odies254

from rest or the vehicle is stuck in mud. In 

this case, the point of contact has more of 

v
ROT 

than v
TRANS

. It has a resultant velocity 

v in the backward direction as shown in 

Figure 5.36. The kinetic frictional force (fk) 

opposes the relative motion. Hence it acts 

in the opposite direction of the relative 

velocity. This frictional force reduces 

the rotational velocity and increases the 

translational velocity till they become equal 

and the object sets pure rolling. Slipping 

is sometimes empahasised as backward 

slipping. 

Figure 5.36 Slipping

vROT vTRANS

fkv

EXAMPLE 5.21

A rolling wheel has velocity of its center of 

mass as 5 m s-1. If its radius is 1.5 m and 

angular velocity is 3 rad s-1, then check 

whether it is in pure rolling or not. 

it must accelerate or decelerate respectively. 

If this suddenly happens it makes the rolling 

object to slip or slide.  

Sliding

Sliding is the case when v
CM 

> Rω  
(or v

TRANS 
> v

ROT
). The translation is more 

than the rotation. This kind of motion 

happens when sudden break is applied in a 

moving vehicles, or when the vehicle enters 

into a slippery road. In this case, the point 

of contact has more of v
TRANS

 than v
ROT

. 

Hence, it has a resultant velocity v in the 

forward direction as shown in Figure 5.35. 

The kinetic frictional force (fk) opposes 

the relative motion. Hence, it acts in the 

opposite direction of the relative velocity. 

This frictional force reduces the translational 

velocity and increases the rotational velocity 

till they become equal and the object sets 

on pure rolling. Sliding is also referred as 

forward slipping. 

Figure 5.35 Sliding

vROT vTRANS

fk v

Slipping

Slipping is the case when v
CM 

<
 
Rω  

(or v
TRANS 

< v
ROT

). The rotation is more 

than the translation. This kind of motion 

happens when we suddenly start the vehicle 
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I MKCM

2 and v
CM

 = Rω. Here, K is radius  

of gyration.

  KE Mv MK
v

= + ( )1

2

1

2

2 2
2

2CM
CM

R
  

  KE Mv Mv
K

= +
⎛

⎝
⎜

⎞

⎠
⎟

1

2

1

2

2 2
2

2CM CM
R

 (5.58)

  KE Mv
K

R
= +

⎛

⎝
⎜

⎞

⎠
⎟

1

2
12

2

2CM   (5.59)

With point of contact as reference:

We can also arrive at the same expression by 

taking the momentary rotation happening 

with respect to the point of contact (another 

approach to rolling). If we take the point of 

contact as O, then,

 KE Io=
1

2

2ω   

Here, I
o
 is the moment of inertia of the object 

about the point of contact.  By parallel axis 

theorem, I I MRCMo = + 2. Further we can 

write, I MK MRo = +2 2. With v
CM

 = Rω or  

ωW
v

R
CM=

 KE MK MR
v

= +( )1

2

2 2
2

2

CM

R
  

 KE Mv
K

R
= +

⎛

⎝
⎜

⎞

⎠
⎟

1

2
12

2

2CM   (5.60)

As the two equations 5.59 and 5.60 are the 

same, it is once again confirmed that the 

Solution

Translational velocity (v
TRANS

) or velocity of 

center of mass, v
CM

 = 5 m s-1

The radius is, R = 1.5 m and the angular 

velocity is, ω = 3 rad s-1

Rotational velocity, v
ROT

 = Rω

 v
ROT

 = 1.5×3 

 v
ROT

 = 4.5 m s-1

As v
CM

 > Rω (or) v
TRANS

 >
 
Rω, It is not in 

pure rolling, but sliding. 

5.6.3  Kinetic Energy in Pure 
Rolling

As pure is the combination of translational 

and rotational motion, we can write the total 

kinetic energy (KE) as the sum of kinetic 

energy due to translational motion (KE
TRANS

) 

and kinetic energy due to rotational motion 

(KE
ROT

).

 KE KE KETRANS ROT= +   (5.56)

If the mass of the rolling object is M, the 

velocity of center of mass is v
CM

, its moment 

of inertia about center of mass is I
CM

 and 

angular velocity is ω, then

 KE Mv ICM= +
1

2

1

2

2 2

CM ω   (5.57)

With center of mass as reference:

The moment of inertia (I
CM

) of a rolling 

object about the center of mass is, 



Unit 5  Motion of System of Particles and R igid B odies256

 KE KE KE
K

R

K
TRANS ROT: : :: : :1 1

2

2

2

2
+

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

R

 Now, KE KE
K

TRANS ROT: :: :1
2

2R

⎛

⎝
⎜

⎞

⎠
⎟

 For a solid sphere, 
K2

2

2

5R

 Then, KE KETRANS ROT: :: :1
2

5
 or 

   KE KETRANS ROT: :: :5 2

5.6.4  Rolling on Inclined 
Plane

Let us assume a round object of mass m and 

radius R is rolling down an inclined plane 

without slipping as shown in Figure  5.37. 

There are two forces acting on the object along 

the inclined plane. One is the component of 

gravitational force (mg sinθ) and the other is the 

static frictional force (f). The other component 

of gravitation force (mg cosθ) is cancelled by 

the normal force (N) exerted by the plane. As 

the motion is happening along the incline, we 

shall write the equation for motion from the 

free body diagram (FBD) of the object. 

Figure 5.37 Rolling on inclined 
plane

mg sinθf
R

N 

mg cosθ mg

θ

θ

pure rolling problems could be solved by 

considering the motion as any one of the 

following two cases. 

(i)  The combination of translational motion 

and rotational motion about the center of 

mass. (or) 

(ii)  The momentary rotational motion about 

the point of contact.

EXAMPLE 5.22

A solid sphere is undergoing pure rolling. 

What is the ratio of its translational kinetic 

energy to rotational kinetic energy?

Solution

The expression for total kinetic energy in 

pure rolling is,

 KE KE KETRANS ROT= +   

For any object the total kinetic energy as 

per equation 5.58 and 5.59 is, 

 KE Mv Mv
K

= +
⎛

⎝
⎜

⎞

⎠
⎟

1

2

1

2

2 2
2

2CM CM
R

  

 KE Mv
K

R
= +

⎛

⎝
⎜

⎞

⎠
⎟

1

2
12

2

2CM   

Then, 

 
1

2
1

1

2

1

2

2
2

2

2 2
2

2
Mv

K

R
Mv Mv

K
CM CM CM

R
+

⎛

⎝
⎜

⎞

⎠
⎟ = +

⎛

⎝
⎜

⎞

⎠
⎟

The above equation suggests that in pure 

rolling the ratio of total kinetic energy, 

translational kinetic energy and rotational 

kinetic energy is given as, 
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v u as2 2 2= + . If the body starts rolling from 

rest, u 0. When h is the vertical height of 

the incline, the length of the incline s is, 

s
h

sin
=

θ

 v
g sin

K

R

h

sin

gh

K

R

2

2

2

2

2

2

1

2

1

=
+

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ =

+
⎛

⎝
⎜

⎞

⎠
⎟

θ
θ

  

By taking square root,  

 v
gh

K

R

=
+

⎛

⎝
⎜

⎞

⎠
⎟

2

1
2

2

  (5.63)

The time taken for rolling down the incline 

could also be written from first equation of 

motion as, v u at= + . For the object which 

starts rolling from rest, u 0. Then, 

 t
v

a

 t

gh

K

R

K

R

g sin

2

1

1
2

2

2

2

 t

h
K

R

g sin
=

+
⎛

⎝
⎜

⎞

⎠
⎟2 1

2

2

2θ
 (5.64)

The equation suggests that for a given 

incline, the object with the least value of 

radius of gyration K will reach the bottom 

of the incline first. 

For translational motion, mg sinθ  is the 

supporting force and f is the opposing force,

 mg sinθ _ f = ma (5.61)

For rotational motion, let us take the 

torque with respect to the center of the 

object. Then mg sinθ cannot cause torque as 

it passes through it but the frictional force f 

can set torque of Rf.

 Rf I= α 

By using the relation, a = r , and moment of 

inertia I mK2, we get, 

 Rf mK
a

R
; f ma

K

R
= =

⎛
⎝⎜

⎞
⎠⎟

2
2

2

Now equation (5.59) becomes, 

 mg sinθ ma
K

R
ma−

⎛

⎝
⎜

⎞

⎠
⎟ =

2

2
  

 mg sin ma ma
K

R
θ = +

⎛

⎝
⎜

⎞

⎠
⎟

2

2
  

 a
K

R
g sin1

2

2
+

⎛

⎝
⎜

⎞

⎠
⎟ = θ  

After rewriting it for acceleration, we get, 

 a
g sin

K

R

=
+

⎛

⎝
⎜

⎞

⎠
⎟

θ

1
2

2

 (5.62)

We can also find the expression for final 

velocity of the rolling object by using third 

equation of motion for the inclined plane. 
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 t

h
K

R

g sin
=

+
⎛

⎝
⎜

⎞

⎠
⎟2 1

2

2

2θ

Th e one with least value of radius of 

gyration K will take the shortest time to 

reach the bottom of the inclined plane. 

Th e order of objects reaching the bottom 

is fi rst, solid sphere; second, disc; third, 

hollow sphere and last, ring. 

EXAMPLE 5.23

Four round objects namely a ring, a disc, a 

hollow sphere and a solid sphere with same 

radius R start to roll down an incline at 

the same time. Find out which object will 

reach the bottom fi rst. 

Solution
For all the four objects namely the ring, 

disc, hollow sphere and solid sphere, the 

radii of gyration K are R, 
1

2
R, 

2

3
R , 

2

5
R (ref Table (5.3)). With numerical 

values the radius of gyration K are 1R, 

0.707R, 0.816R, 0.632R respectively. Th e 

expression for time taken for rolling has 

the radius of gyration K in the numerator 

as per equation 5.63

A rigid body is the one in which the distances between diff erent particles remain 

constant.

For regular shaped bodies with uniform mass distribution, center of mass always 

lies at the geometrical center. 

Net torque produces turning motion in rigid object.

A rigid body is in translational equilibrium if the total external force on it is zero.  It 

is in rotational equilibrium if the total external torque on it is zero.

Th e center of gravity of an extended body is that point where the total gravitational 

torque on the body is zero.

If the external torque acting on the body is zero, the component of angular 

momentum along the axis of rotation is constant.

Th ere are rotational equivalents for all the translational quantities.

Rolling motion is the combination of translational and rotational motions.

Rolling can also be treated as the momentary rotation about the point of contact.

In pure rolling, the total kinetic energy is the sum of kinetic energies of translational 

and rotational motions.

In sliding the translational motion is more than rotational motion.

In slipping the rotational motion is more than translational motion.

SUMMARY
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CONCEPT MAP
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EXERCISE  

I. Multi Choice Question

 1. Th e center of mass of a system of 

particles does not depend upon, 

(a) position of particles 

(b) relative distance between particles 

(c) masses of particles

(d) force acting on particle

[AIPMT 1997, AIEEE 2004] 

 2. A couple produces,

(a) pure rotation

(b) pure translation

(c) rotation and translation

(d) no motion

[AIPMT 1997]

 3. A particle is moving with a constant 

velocity along a line parallel to positive 

X-axis. Th e magnitude of its angular 

momentum with respect to the origin is,

(a) zero

(b) increasing with x 

(c) decreasing with x

(d) remaining constant 

[IIT 2002]

 4. A rope is wound around a hollow 

cylinder of mass 3 kg and radius 40 

cm. What is the angular acceleration of 

the cylinder if the rope is pulled with a 

force 30 N?

(a) 0.25 rad s–2  (b) 25 rad s–2

(c) 5 m s–2 (d) 25 m s–2.

[NEET 2017]

 5. A closed cylindrical container is 

partially fi lled with water. As the 

container rotates in a horizontal plane 

about a perpendicular 

bisector, its moment of inertia, 

(a) increases (b) decreases  

(c) remains constant 

(d) depends on direction of rotation.

[IIT 1998]

 6. A rigid body rotates with an angular 

momentum L. If its kinetic energy is 

halved, the angular momentum becomes, 

(a) L (b) L/2

(c) 2L (d) L/ 2

[AFMC 1998, AIPMT 2015]

 7. A particle undergoes uniform circular 

motion. Th e angular momentum of the 

particle remain conserved about, 

(a) the center point of the circle. 

(b)  the point on the circumference of 

the circle.

(c) any point inside the circle. 

(d) any point outside the circle.

[IIT 2003]

 8. When a mass is rotating in a plane about 

a fi xed point, its angular momentum is 

directed along,

(a)  a line perpendicular to the plane of 

rotation

(b)  the line making an angle of 45° to 

the plane of rotation

(c) the radius

(d) tangent to the path

[AIPMT 2012]

 9. Two discs of same moment of inertia 

rotating about their regular axis passing 

through center and perpendicular to
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the plane of disc with angular velocities 

ω
1
 and ω

2
. They are brought in to 

contact face to face coinciding the axis 

of rotation. The expression for loss of 

energy during this process is,

(a) 
1

4
I( )2 (b) I( )2

(c) 
1

8
I( )2 (d)

1

2
I( )2

[NEET 2017]

 10. A disc of moment of inertia I
a
 is rotating 

in a horizontal plane about its symmetry 

axis with a constant angular speed ω. 

Another discinitially at rest of moment 

of inertia I
b
 is dropped coaxially on to 

the rotating disc. Then, both the discs 

rotate with same constant angular 

speed. The loss of kinetic energy due to 

friction in this process is,

(a) 
1

2

2
2I

I I
b

a b+( )
ω  

(b) 
I

I I
b

a b

2
2

+( )
ω

(c) 
I I

I I

b a

a b

−( )
+( )

2

2ω

(d) 
1

2

2I I

I I
b b

a b+( )
ω  [AIPMT 2001]

 11. The ratio of the acceleration for a solid 

sphere (mass m and radius R) rolling 

down an incline of angle θ without 

slipping and slipping down the incline 

without rolling is,

(a) 5:7  (b)2:3  (c) 2:5  (d) 7:5

[AIPMT 2014]

 12. From a disc of radius R a mass M, a 

circular hole of diameter R, whose rim 

passes through the center is cut. What is 

the moment of inertia of the remaining 

part of the disc about a perpendicular 

axis passing through it

(a) 15MR2/32 (b) 13MR2/32

(c) 11MR2/32 (d) 9MR2/32

[NEET 2016]

 13. The speed of a solid sphere after rolling 

down from rest without sliding  on an 

inclined plane of vertical height h is,  

(a) 
4

3
gh  (b) 

10

7
gh

(c) 2gh  (d) 
1

2
gh

 14. The speed of the center of a wheel 

rolling on a horizontal surface is v
o
. A 

point on the rim in level with the center 

will be moving at a speed of speed of,

(a) zero (b) vo

(c) 2 vo (d) 2vo

[PMT 1992, PMT 2003, IIT 2004]

 15. A round object of mass M and radius 

R rolls down without slipping along 

an inclined plane. The fractional force, 

(a) dissipates kinetic energy as heat. 

(b) decreases the rotational motion.

(c)  decreases the rotational and 

transnational motion 

(d)  converts transnational energy into 

rotational energy

[PMT 2005]

Answers:

 1) d  2) a  3) d  4) b

 5) a  6) d  7) a  8) a

 9) a 10) d 11) a 12) b

13) a 14) c 15) d
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II. Short Answer Questions
 1. Define center of mass. 

 2. Find out the center of mass for the 

given geometrical structures.

a) Equilateral triangle

b) Cylinder c) Square

 3. Define torque and mention its unit.

 4. What are the conditions in which force 

can not produce torque?

 5. Give any two examples of torque in 

day-to-day life.

 6. What is the relation between torque 

and angular momentum?

 7. What is equilibrium?

 8. How do you distinguish between stable 

and unstable equilibrium?

 9. Define couple.

 10. State principle of moments.

 11. Define center of gravity.

 12. Mention any two physical significance 

of moment of inertia 

 13. What is radius of gyration?

 14. State conservation of angular  

momentum.

 15. What are the rotational equivalents for 

the physical quantities, (i) mass and (ii) 

force?

 16. What is the condition for pure rolling?

 17. What is the difference between sliding 

and slipping?

III. Long Answer Questions

 1. Explain the types of equilibrium with 

suitable examples.

 2. Explain the method to find the center of 

gravity of a irregularly shaped lamina.

 3. Explain why a cyclist bends while 

negotiating a curve road? Arrive at the 

expression for angle of bending for a 

given velocity.

 4. Derive the expression for moment of 

inertia of a rod about its center and 

perpendicular to the rod.

 5. Derive the expression for moment 

of inertia of a uniform ring about an 

axis passing through the center and 

perpendicular to the plane.

 6. Derive the expression for moment 

of inertia of a uniform disc about an 

axis passing through the center and 

perpendicular to the plane.

 7. Discuss conservation of angular 

momentum with example.

 8. State and prove parallel axis theorem.

 9. State and prove perpendicular axis 

theorem.

 10. Discuss rolling on inclined plane 

and arrive at the expression for the 

acceleration.

IV. Conceptual Questions

 1. When a tree is cut, the cut is made on 

the side facing the direction in which 

the tree is required to fall. Why?

 2. Why does a porter bend forward while 

carrying a sack of rice on his back?

 3. Why is it much easier to balance a 

meter scale on your finger tip than 

balancing on a match stick?

 4. Two identical water bottles one empty 

and the other filled with water are 

allowed to roll down an inclined plane. 
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Which one of them reaches the bottom 

first? Explain your answer. 

 5. Write the relation between angular 

momentum and rotational kinetic 

energy. Draw a graph for the same. 

For two objects of same angular 

momentum, compare the moment of 

inertia using the graph.

 6. A rectangle block rests on a horizontal 

table. A horizontal force is applied on 

the block at a height h above the table 

to move the block. Does the line of 

action of the normal force N exerted 

by the table on the block depend  

on h?

 7. Three identical solid spheres move 

down through three inclined planes 

A, B and C all same dimensions. A is 

without friction, B is undergoing pure 

rolling and C is rolling with slipping. 

Compare the kinetic energies E
A
, E

B
 

and E
C
 at the bottom.

 8. Give an example to show that the 

following statement is false. ‘any 

two forces acting on a body can be 

combined into single force that would 

have same effect’.

V. Numerical Problems

 1. A uniform disc of mass 100g has a 

diameter of 10 cm. Calculate the total 

energy of the disc when rolling along a 

horizontal table with a velocity of 20 cms-1. 

(take the surface of table as reference)

Ans: 0.1028 J

 2. A particle of mass 5 units is moving 

with a uniform speed of v = 3 2 units 

in the XOY plane along the line y = 

x + 4. Find the magnitude of angular 

momentum.

Ans: 60 units

 3. A fly wheel rotates with a uniform 

angular acceleration. If its angular 

velocity increases from 20p rad/s to 

40p rad/s in 10 seconds. Find the 

number of rotations in that period.

Ans: 150 rotations

 4. A uniform rod of mass m and length  

makes a constant angle  with an axis 

of rotation which passes through one 

end of the rod. Find the moment of 

inertia about this axis.

Ans: 1

12

2 2M sin θ

 5. Two particles P and Q of mass 1kg and 

3 kg respectively start moving towards 

each other from rest under mutual 

attraction. What is the velocity of their 

center of mass?

Ans: Zero

 6. Find the moment of inertia of a 

hydrogen molecule about an axis 

passing through its center of mass 

and perpendicular to the inter-atomic 

axis. Given: mass of hydrogen atom  

1.7 × 10−27 kg and inter atomic distance 

is equal to 4 × 10−10m.

Ans: 1.36 × 10−46 kg m2

 7. On the edge of a wall, we build a brick 

tower that only holds because of the 

bricks’ own weight. Our goal is to build 

a stable tower whose overhang    d is 

greater than the length    of a single 

brick. What is the minimum number 

of bricks you need? 

(Hint: Find the center of mass for each 

brick and add.)
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How long a skid mark do the wing 

wheels leave (assume their mass is 

100 kg which is distributed uniformly, 

radius is 0.7 m, and the coeffi  cient of 

friction with the ground is 0.5)?

Ans: 2.1 m 8. Th e 747 boing plane is landing at a 

speed of 70m s–1. Before touching the 

ground, the wheels are not rotating. 
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Moment of inertia

Which is harder to rotate: 

Circular ring or Circular disc?

STEPS:
•  Open the browser and type the given URL to open the PhET simulation on Torque. Click the picture 

link or the download button. Once downloaded, click ok to open the java applet.

•  Set platform mass 0.1 kg, Outer radius 4 m. (Keep inner radius = 0). Now it is a circular disc. Click the 

button ‘go’ to get the value of moment of inertia.

•  Adjust the values of mass and radius and then observe how moment of inertia changes in the middle 

graph.

•  Keep the inner and outer radius same (say R = r = 4 m.) and mass 0.1 kg. Now it becomes circular ring. 

Click the button ‘go’ to start the calculation.

•  Observe the moment of inertia from the middle graph. Compare the moment of inertia of a circular disc 

and circular ring with same mass and radius.

PhET simulation’s URL:

https://phet.colorado.edu/en/simulation/torque
* Pictures are indicative only.
*If browser requires, allow Flash Player or Java Script to load the page.

ICT CORNER

Step4

Step2Step1

Step3

Hint:
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1. Find the dimensions of a and b in 

the formula [P +
a

V
V b RT

2
][ ]� �  where 

P is pressure and V is the volume of 

the gas 

Solution:

By the principle of homogeneity, 

a / V2 is of the dimensions of 

pressure  and b is of the dimensions of 

volume.

[a] = [pressure] [V2] = [ML−1T−2] [L6]

 � �[ ]ML T5 2

[b] = [V] = L3

2. Show that (P�5 6 1 2 1 3/ / / )_ E  is of the 

dimension of time. Here P is the pressure, 

 is the density and E is the energy of a 

bubble)

Solution:

Dimension of Pressure = [ML 1 2T ]

Dimension of density = [ML 3]

Dimension of Energy = [ML2 2T ]

By substituting in the given equation,

 = [ML 1 2T ] 5 6 3 1 2/ /[ ] [ML ML2 2 1 3T ] /

 
�

� �

� � � � � �M L T

M L T T

5 6 1 2 1 3 5 6 3 2 2 3 5 3 2 3

0 0 1

/ / / / / / / /

[ ]

3. Find the dimensions of mass in terms of 

Energy, length and time

Solution:

Let the dimensions of Energy, Length 

and Time be [ ],[ ],[ ]E L T  respectively.

We know that Force = mass x 

acceleration

 

Mass �

�
�

Force

acceleration

Workdone or Energy

acceleration disp

( )

llacement

 [m] = 
Energy

acceleration displacement[ ][ ]

 = [ ]

[ ][ ]

[ ]

]
[ ]

E

LT L

E

L T
EL T� �

�� �
2 2 2

2 2

4. A physical quantity Q is found to 

depend  on quantities x,y,z obeying 

APPENDIX 1

SOLVED EXAMPLE UNIT-1
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 = 0.75% +0.2% = 0.95%

6. Using a Vernier Callipers, the length of 

a cylinder in diff erent measurements is 

found to be 2.36 cm, 2.27 cm, 2.26 cm, 

2.28 cm, 2.31 cm, 2.28 cm and 2.29 cm. 

Find the mean value, absolute error, the 

relative error and the percentage error of 

the cylinder.

Solution:

Th e given readings are 2.36 cm, 2.27 cm, 

2.26 cm, 2.28 cm, 2.31 cm, 2.28 cm and 

2.29 cm

Th e Mean value l  = 

2 36 2 27 2 26 2 28 2 31 2 28 2 29

7

. . . . . . .

 
16 05

7

.
 = 2.29 cm

Absolute errors in the measurement are,

 

'
'
'
'

l

l

l

l

1

2

3

4

2 29 2 36 0 07

2 29 2 27 0 02

2 29 2 26 0 03

� � � �
� � �
� � �

. . .

. . .

. . .

�� � �
� � � �
� � �
�

2 29 2 28 0 01

2 29 2 31 0 02

2 29 2 28 0 01

2

5

6

7

. . .

. . .

. . .

'
'
'

l

l

l .. . .29 2 29 0 00� �

Mean Absolute error

 

'lmean �
� � � � � �0 07 0 02 0 03 0 01 0 02 0 01 0 00

7

. . . . . . .

 = 
.

.
16

7
02

relation Q = 
x y

z

2 3

1
. Th e percentage 

errors in x, y and z are 2%, 3% and 1% 

respectively. Find the percentage error in 

Q.

Solution:

Let, Q = 
x y

z

2 3

.

 It is given, 
'x

x
� 2% 

'y

y
� 3% 

'z

z
�1%

 
'Q

Q
� 2

'x

x

4
8
6

5
9
7 � 3

'y

y

4

8
6

5

9
7 �1

'z

z

4
8
6

5
9
7  

 = 2(2%) + 3 (3%) + 1(1%)

 
'Q

Q
� 4% + 9% + 1% = 14%

5. Th e mass and volume of a body are 

found to be 4 .03 kg and 5 .01 m3

respectively. Th en fi nd the maximum 

possible percentage error in density.

Solution:

 Mass m = 4  0.03 kg (m + Δm)

 Volume V = 5  .01 m3 (V + ΔV)

 Density = ?

 Error in mass = = ×

=

Δm

m

0 03

4
100

0 75

.

. %

 

 Error in volume � � �

�

'V

V

0 01

5
100

0 2

.

. %

 Density = 
mass

volume
.

Error in density = error in mass + error 

in volume
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8. Calculate the number of times a  

human heart beats in the life of  

100 years old man. Time of one heart 

beat = 0.8s.

Solution:

Life of the man = 100 years

100 years includes 76 normal years and 

24 leap years

Total no of days = 76 × 365 + 24 × 366 

= 36524 days

Number of seconds = 36524 × 24 × 

3600 = 3.155 x 109 second

Number of heart beats =

 
Total no of Seconds

Time period of heart beat
 

 = 
3 155 10

8

9.

0.

�
s

 = 3.94 × 109

9. The parallax of a heavenly body measured 

from two points diametrically opposite 

on equator of earth is 2 . Calculate the 

distance of the heavenly body. [Given 

radius of the earth = 6400km] [1″ = 4.85 

x 10-6 rad]

Solution:

Angle θ = 21 = 2 x 60″ = 120″ = 120 × 4.85 

× 10-6 rad

  = 5.82 × 10-4 rad;

The distance of heavenly body

 D = 
d

3
�

�
� �

12800 10

5 82 10

3

4.

 D = 2.19 × 1010m

Relative error

 � � ` � ` � �'lmean

l

.

.
.

02

2 29
8 7 10 3

 Percentage error = ` � � ��8 7 10 1003.

 0 87 100 8 7 10 0 91. % ( . ) . %� � ` � ��

7. The shadow of a pole standing on a level 

ground is found to be 45 m longer when 

the sun’s altitude is 30° than when it was 

60°. Determine the height of the pole. 

[Given 3 1 73. ]

Solution:

Let the height of the pole be h.

 

h

30°60°

x 45 m

 Solution 
x

h

�
�

45
30cot ° T �h

x � 45

30°cot
 

 
x

h
cot 60° T �x hcot 60° 

Substituting the values of x in the above 

equation 

 h = 
hcot

cot

60°  45

30°


�

 h cot 30° = h cot 60° + 45

 h(cot 30°– cot 60°) = 45

 h = 
45 45

3
1

3

cot 30° – cot 60°
 = 38.97 m
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According to the principle of 

homogeneity, 

Dimensions of LHS = Dimensions 

of RHS

Substituting the dimensions in the 

given formula

S = ut + 1/4 at2, 
1

4
 is a number. It has 

no dimensions

 [L] = [LT-1] [T1]+[LT-2] [T2]

 [L] = [L] + [L]

As the dimensional formula of LHS 

is same as that of RHS, the equation is 

dimensionally correct.

Comment:

But actually it is a wrong equation. 

We know that the equation of motion is 

s = ut +1/2 at2

So, a dimensionally correct 

equation need not be the true (or) 

actual equation

But a true equation is always 

dimensionally correct.

12. Round - off the following numbers as 

indicated.

a) 17.234 to 3 digits 

b) 3.996 × 105 to 3 digits 

c) 3.6925 × 10-3 to 2 digits 

d) 124783 to 5 digits.

Solution:

a) 17.2 b) 4.00 × 105

c) 3.7 × 10-3  d) 124780

13. Solve the following with regard to 

significant figures.

a) 4 5 3 31. .

b) 5.9 × 105 42 3 10� �.

10. Convert a velocity of 72 kmh 1 into ms 1  

with the help of dimensional analysis.

Solution:

 n
1
= 72 kmh−1 n

2
= ? ms−1

 L
1 
= 1Km L

2
=1m

 T
1 
= 1h T

2
= 1s

 n
2 
= n

1
L

L

T

T

a b

1

2

1

2

N

O
R

P

Q
S

N

O
R

P

Q
S

The dimensional formula for velocity is 

[L T 1]

 a = 1 b = -1

 n
Km

m

h

s
2

1 1

72
1

1

1

1
� N

OR
P
QS

N
OR

P
QS

�

 n
m

m

s

s
2

1 1

72
1000

1

3600

1
� N

OR
P
QS

N
OR

P
QS

�

 = 72 × 1000 × 1/3600 = 20ms 1]

  72 kmh 1 = 20 ms 1

11. Check the correctness of the following 

equation using dimensional analysis. 

Make a comment on it.

S = ut + 1/4 at2 where s is the 

displacement, u is the initial velocity, 

t is the time and a is the acceleration 

produced.

Solution:

Dimension for distance s = [L]

Dimension for initial velocity 

v = [LT 1]

Dimension for time t = [T]

Dimension for acceleration 

a = [LT 2]
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 [ML2 2T ]= K [M]a[LT 1]b

By equating the dimensions,

 a = 1

 b = 2

 -b = -2

 E = k.mc2

The value of constant k = 1

E = mc2 This is Einstein’s mass 

energy relation

15. The velocity of a body is given by the 

equation v = b/t + ct2+dt3. Find the 

dimensional formula for b.

Solution:

(b/t) should have the dimensions of 

velocity

b has the dimensions of (velocity  

x time)

 [b] = [LT � � �1 0 1 0][ ] [ ] [ ]T L M LT

16. The initial and final temperatures of 

a  liquid in a container are observed 

to  be 75.4 0 5. °C and 56.8 0 2. °C. 

Find the fall in the temperature of the 

liquid.

Solution:

t
1
 = (75.4 ± 0.5)°C

t
2
 = (56.8 ± 0.2)°C

Fall in temperature = (75.4 0 5. °C) – 

(56.8 0 2. °C)

 t = (18.6 0 7. )°C

c) 7.18 + 4.3 

d) 6.5 + .0136

Solution:

a)  Among the two, the least number of 

significant after decimal is one

 4 5 3 31. .  = 1.19 =1.09

b) The number of minimum significant 

figures is 2

 5.9 × 105 42 3 10� �.  

= 5.9 × 105 50 23 10� �.  

= 5.67 × 105 = 5.7 × 105

c)  The lowest least number of significant 

digit after decimal is one

7.18 + 4.3 = 11.48 Rounding off we 

get 11.5

d)  The lowest least number of 

significant digit after decimal is one

 6.5 +.0136 = 6.5136 = 6.5

14. Arrive at Einstein’s mass-energy relation 

by dimensional method (E = mc2)

Solution: 

Let us assume that the Energy E depends 

on mass m and velocity of light c.

 E α ma cb

E =km ca b where K a constant 

Dimensions of E = [ML2 2T ]

Dimensions of m = [M]

Dimensions of c = [LT 1]

Substituting the values in the above 

equation
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18. A capacitor of capacitance C = 

3 0 0 1. .` FF is charged to a voltage of 

V = 18 0 4. Volt . Calculate the charge 

Q [Use Q= CV]

Solution:

(C + ΔC) = (3.0 ± 0.1) μf

(V + ΔV) = (18 ± 0.4) V

Q = CV

 Q = 3.0 × 10-6 × 18 = 54 × 10-6 coulomb

Error in C � �
'C

C
100

Error in V � �
'V

V
100

Error in Q = Error in C + Error in V 

   = 3.3% + 2.2% =5.5%

 Charge Q = (54 × 10-6  5.5%) C

SOLVED EXAMPLE UNIT-2

1. Th e position vector for a particle is 

represented be 2 ˆ 6ˆ3 5ˆr t i tj k= + +�
, fi nd the 

velocity and speed of the particle at t = 3 sec?

Solution:

�
���

v
dr

dt
 = 6 ˆˆ 5ti j+ .

Th e velocity at any time ‘t’ is given by 
ˆˆ6 5v ti j= +� . 

Th e magnitude of velocity is speed. Th e speed 

at any time ‘t’ is then given by 

� � �
0 1

3
100 3 3

.
. %

17. Two resistors of resistances R1 = 150 

2 Ohm and R2 220 6 Ohm are 

connected in parallel combination. 

Calculate the equivalent resistance.

 Hint: 
1 1 1

1 1 2R R R
� �

Solution:

Th e equivalent resistance of a parallel 

combination

 R′ = 
R R

R R
1 2

1 2

 = 
150 220

150 220

33000

370
89 1. Ohm

We know that, 
1 1 1

1 2R R Rʹ

 
'R

R

ʹ

( )ʹ2
 = 

' 'R

R

R

R
1

1

2

2

2

2
�

 '
': � :R R

R

R
( )2 1

1

2
 + (R′)2 R

R
2

2

2

 � 4

8
6

5

9
7 �

R

R
R

’

1

2

1' R

R
R

’

2

2

2

4

8
6

5

9
7 '

Substituting the value,

 

R
89 1

150
2

89 1

220
6

2 2
89 1. .

= 0.070 + 0.098 = 0.168

× ×

 R′ = 89.1 ±0.168 Ohm.

� � �
0 4

18
100 2 2

.
. %
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Then, Time taken to cover this 

distance = 
1100

150 9/
 s = 66 s

4. Draw the resultant direction of the two 

unit vectors  an ˆˆ d i j. Use a 2-dimensional 

Cartesian co-ordinate system. Is ˆî j+  a 

unit vector?

By using the triangular law of addition 
ˆî j+  as shown in the following figure,

x

y

j
∧

j
∧

j+ ∧i
∧

i
∧

i
∧

j+ ∧
i
∧

The definition of unit vector is Â.Â = 1

But here, 

( ) ( ) ˆ ˆ ˆ ˆˆ ˆ. . . . .ˆ ˆi j i j i i i j j i j j+ + = + + +

� � � � �1 0 0 1 2

So, ˆî j+  is not a unit vector.

To make any vector to a unit vector, 

must divide the vector by its magnitude, 

ˆ A
A

A
=

�
�

The norm of the vector ˆî j+  = 2.

Hence, the unit vector is 
ˆˆ

2

i j+

5. A swimmer moves across the Cauvery 

river of 750 m wide. The velocity of the 

swimmer relative to water (vsw) is 1.5ms-1 

and directed perpendicular to the water 

current. The velocity of water relative to 

the bank (vwb) is 1 ms-1. Calculate the

(a)  velocity of the swimmer with respect 

to the bank of the river (vsb).

(b)  time taken by the swimmer to cross 

the Cauvery river. 

Speed = 6 5
2 2t�  �  = 36 252t

Now the velocity at t = 3sec is given by

( ) ˆˆ6 3 5v i j= +�
 = 18ˆ 5 ˆi j+ .

and speed at t = 3 sec, is given by

speed = 349 m s/

2. A gun is fired from a place which is at 

distance 1.2 km from a hill. The echo of 

the sound is heard back at the same place 

of firing after 8 second. Find the speed of 

sound.

Solution:

The echo will be heard when the 

sound reaches back at the place of 

firing. So, the total distance travelled 

by sound is 2 × 1.2 km = 2.4 km  

= 2400 m.

speed = 
2400 m

300ms
8

1

s
� �

3. A train 100 m long is moving with a 

speed of 60 kmh−1. In how many seconds 

will it cross a bridge of 1 km long?

Solution: 

Total distance to be covered = 1 km + 

100 m = 1100 m (including both bridge 

and time)

Then, Speed  = 60 km h−1  

= 60 × 
5

18
m s−1 = 150

9

1ms
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6. A monkey hangs on a tree. A hunter 

aims a gun at the monkey and fires the 

bullet with velocity v0 which makes 

angle 0 with horizontal direction. At 

the instant gun fires, monkey leaves the 

branch and falls straight down to escape 

from the bullet as shown in the figure. 

Will bullet hit the monkey or will the 

monkey escape the bullet? (ignore air  

resistance)

As soon as the monkey begins to fall, it 

will have downward vertical motion with 

acceleration due to gravity g.

Its equation of motion at any time t is 

given by

  y h gtm � �
1

2

2 (1)

When the bullet comes out of the 

gun, it has both vertical and horizontal 

components of velocity given by

 v v cos v v sinx y0 0 0 0� �3 3;  (2)

Let us assume the horizontal distance 

between the monkey and hunter is ‘d’.

At time t, the horizontal distance 

travelled by the bullet x v cos t= 0  θ .

Solution:

(a) We can draw the following picture 

from the given data in the problem.

The velocity of the swimmer relative to 

the bank v v vsb sw wb� �

Since the swimmer travels in the 

perpendicular direction against the 

water current

The magnitude is given by

 v v vsb sw wb� �2 2  =  

 1 5 1 3 25 1 8022 2 1 1. . .� � a� �ms ms

The direction of the swimmer relative to 

the bank is given by

 tan
v

v
sw

wb

3 � � �
1 5

1
1 5

.
.

 3 � �  	 ��tan 1 1 5 56.

(c)  The time taken by the swimmer to 

cross the river is equal to the total 

distance covered by the swimmer 

with velocity 1.802 ms-1.

The total distance covered by him,  

d  =  
width of the river   

sin56
 = 

750

0 829
904 7

.
. m

The time taken by the swimmer,

 T
d

v
s

sb

904 7

1 802
502

.

.

θ
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is also located on Moon. If two people 

jump from the top of these buildings on 

Earth and Moon simultaneously, when 

will they reach the ground and at what 

speed? (g = 10 m s−2)

Solution:

Earth

g g/6

Moon

For both persons, the Kinematic equations 

are the same, with u = 0, a
e
 = g and  

a
moon

 = 
g

6
. Then

a g and a
g

e m  
6

For a person on earth, V ghearth � 2

g� �2 100 2×10×100

Hence Vearth, � 2000 m s−1 gives the 

velocity at the ground, on earth.

Similarly, for a person on the moon, 

V
gh

m s−1
moon � �

2

6

2000

6

The person on earth reaches ground 

with greater velocity than the person on 

the moon

8. The following graphs represent position 

– time graphs. Arrange the graphs in 

ascending order of increasing speed.

t

x x

t

(a) (b)

When the horizontal position of 

bullet, x d,  the time d v Tx0 . It implies 

that T d v x/ 0

At this time T, the vertical distance 

covered by the bullet is 

y v T gT
v d

v
gTb y

y

x

� � � �0

2 0

0

21

2

1

2
.

  

y
d v sin

v cos
gT

d tan gT

b � �

� �

0

0

2

2

1

2

1

2

 

 

 

3
3

3  (3)

But from the figure we can write, tan
h

d
3 �  .

  h d tan�  3 .

By substituting this in the equation (3), 

we get,

 y h gTb � �
1

2

2 (4)

At this same time T, the vertical position 

of the monkey can be calculated from 

the equation (1)

 y h gTm � �
1

2

2
 (5)

Note that at the time T, the y coordinate 

of both monkey and bullet is same. 

It implies that the bullet will hit the 

monkey. 

7. A three storey building of height 100m is 

located on Earth and a similar building 
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x x

(c) (d)

t t

The slope in the position – time graph 

will give the speed of the particle. 

In the graph (a) slope is zero. Graph 

(c) has higher slope than graphs (b) and 

(d). So we can arrange the speeds in 

ascending order as

v v v va d b cM M M

SOLVED EXAMPLE UNIT-3

1. A body of mass 100 kg is moving with 

an acceleration of 50 cm s 2. Calculate the 

force experienced by it.

Solution:

Mass m  100 kg

Acceleration a  50 cms−2 = 0.5 ms−2

Using Newton’s second law,

 F = ma

  F = 100 kg x 0.5 m s–2 = 50 N

2. Identify the free body diagram that 

represents the particle accelerating in 

positive x direction in the following.

The relative magnitude of forces 

should be indicated when the free body 

diagram for mass m is drawn. 

F1
F1

F1
F1

F3
F3

F3
F3

F4
F4

F4 F4

F2 F2

F2
F2

y

x

(a) (b)

(c) (d)

Case (a):

The forces F1 and F2 have equal length but 

opposite direction. So net force along 

y-direction is zero. Since the force is zero, 

acceleration is also zero along Y-direction 

(Newton’s second law). Similarly in the 

x direction, F3 and F4 have equal length 

and opposite in direction. So net force 

is zero in the x direction. So there is no 

acceleration in x direction.

Case (b):

The forces F1 and F2 are not equal in 

length and act opposite to each other. 

The figure (b) shows that there are 

unbalanced forces along the y-direction. 

So the particle has acceleration in  

the -y direction. The forces F3 and F4  

are having equal length and act in 

opposite directions. So there is no 

net force along the x direction. So the 

particle has no acceleration in the x 

direction.

Case (c):

The forces F1 and F2 are equal in 

magnitude and act opposite to each 
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other. The net force is zero in y direction. 

So in y-direction there is no acceleration. 

The forces F3 and F4 are not equal in 

magnitude and F3 is greater than F4. So 

there is a net acceleration in negative x 

direction

Case (d):

The forces F1 and F2 are equal in magnitude 

and act opposite to each other. The net 

force is zero in y direction. So there is no 

acceleration in y-direction. The forces F3 

and F4 are not equal in magnitude. The 

force F4 is greater than the force F3. So 

there is a net acceleration in the positive 

x direction.

3. A gun weighing 25 kg fires a bullet 

weighing 30 g with the speed of  

200 ms−1. What is the speed of recoil of 

the gun.

Solution:

Mass of the gun M = 25 kg 

Mass of the bullet m = 30 g = 30 × 10−3 kg

Speed of bullet v = 200 ms−1

Speed of gun V = ?

The motion is in one dimension.

As per law of conservation of momentum,

 MV + mv = 0

 V= 
mv

M

V = 
� � �

� � �
�

� �30 10 200

25
240 10

3
3 1ms

The negative sign shows that the gun 

moves in the opposite direction of the 

bullet. Further the magnitude of the 

recoil speed is very small compared to 

the bullet’s speed.

4. A wooden box is lying on an inclined 

plane. What is the coefficient of friction 

if the box starts sliding when the angle of 

inclination is 45°.

Solution:

Angle of inclination Θ = 45°

 Coefficient of friction m = tan Θ =  

tan 45° = 1

5. Two masses m
1
 = 5 kg and m

2
 = 4 kg 

tied to a string are hanging over a 

light frictionless pulley. What is the 

acceleration of each mass when left free 

to move? (g = 10ms 2)

 a = 
m m

m m
1 2

1 2

�
�

g

 = 
5 4

5 4
10

1

9
10 1 1 2�

�
� � � � �. ms

m2 = 4kg

m1 = 5kg

6. A block of mass m is pushed momentarily 

along a horizontal surface with an initial 

velocity u. If μk is the coefficient of 

kinetic friction between the object and 

surface, find the time at which the block 

comes to rest.
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Solution:

Vm

When the block slides, the force acting 

on the block is kinetic friction which is 

equal to f mgk k� F

From Newton’s second law 

ma mgk� �F

The negative sign implies that 

force acts on the opposite direction of  

motion.

The acceleration of the block while 

sliding a gk� �F .

The negative sign implies that the 

acceleration is in opposite direction of 

the velocity.

Note that the acceleration depends 

only on g and the coefficient of kinetic 

friction k

We can apply the following kinematic 

equation

 v u at� �

The final velocity is zero.

 0 � �u gtkF

 t
u

gk

�
F

7. Three blocks of masses 10 kg, 7 kg  

and 2 kg are placed in contact with  

each other on a frictionless table. A 

force of 50 N is applied on the heaviest  

mass. What is the acceleration of the 

system?

Solution:

50 N
10 kg 7 kg 2 kg

We know that

  a = 
F

m m m

N

kg kg kg

ms

1 2 3

2

50

10 7 2

50

19
2 63

� �
N

O
R

P

Q
S �

� �

� � �.

8. The coefficient of friction between a 

block and plane is 
1

3
. If the inclination 

of the plane gradually increases, at what 

angle will the object begin to slide?

Since the coefficient of friction is 
1

3

 Tan Θ = 
1

3
  Θ = 30°

9. Find the maximum speed at which a car 

can turn round a curve of 36 m radius 

on a level road. Given the coefficient of 

friction between the tyre and the road 

is 0.53.

Radius of the curve r = 36 m

Coefficient of friction μ = 0.53

Acceleration due to gravity g = 10 ms−1

  
v rg

ms

max 0 53 36 10

13 81 1

.

.

10. Calculate the centripetal acceleration 

of the Earth which orbits around the 
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Sun. The Sun to Earth distance is 

appriximately 150 million km. (Assume 

the orbit of Earth to be circular)

The centripetal acceleration a
v

r
c

2

V - velocity of Earth around the orbit 

r - radius of orbit or distance of 

Earth to Sun

Velocity of Earth is written in terms 

of angular velocity ( ) as

 v r� I

By substituting in the centripetal 

acceleration formula, a
r

r
c �

I2 2

 = 2r

But  = 
2π
T

 where T is time for the 

Earth to orbit around the sun, which is 

one year.

T = 365 days = 365 × 24 × 60 × 60  

  s = 3.1 × 107 s

 I � � �2 02 10 7. rad per sec  

   ac � ��  � ��  �2 02 10 150 107
2

8.

 a msc � � � �6 12 10 4 2.

11. A block 1 of mass m
1
, constrained to 

move along a plane inclined at angle  to 

the horizontal, is connected via a massless 

inextensible string that passes over a massless 

pulley, to a second block 2 of mass m
2
.  

Assume the coefficient of static friction 

between the block and the inclined plane is 

s and the coefficient of kinetic friction is k 

What is the relation between the 

masses of block 1 and block 2 such that 

the system just starts to slip?

Solution:

For all parts of this problem, it will 

be convenient to use different coordinate 

systems for the two different blocks. For 

block 1, take the positive x -direction to be 

up the incline, parallel to the plane, and the 

positive y -direction to be perpendicular to 

the plane, directed with a positive upward 

component. Take the positive direction of 

the position of block 2 to be downward.

The normal component N of the contact 

force between block 1 and the ramp will be

 N  m
1
g cos  . (1)

The net x -component of the force on 

block 1 is then

 F
1x

 = T− f
friction

 − m
1
 g sin θ  (2)

where T is the tension in the string

For the just-slipping condition, the 

frictional force has magnitude

 f
friction

 = s N = s m1
g cos θ. (3)

The tension in the string is the 

gravitational force of the suspended mass,

T

f fric
tio

n

m 1
 g sin

 θ

m
2
 g
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 T = m
2
 g . (4)

For the just-slipping condition, 

the net force on block 1 must be zero. 

Equations (2), (3) and (4) gives

0=m
2
g- s m1

g cos θ – m
1
g sin θ

m
2
=m

1
( s cos θ + sin θ)

12. Consider two objects of masses 5 kg and 

20 kg which are initially at rest. A force 

100 N is applied on the two objects for 

5 second. 

a)  What is the momentum gained by 

each object after 5 s.

b)  What is the speed gained by each 

object after 5 s. 

Final momentum on each object 

' 'P F t�  = 100X 5 = 500 kgms−1

Final speed on the object of mass  

5 kg = 500 /5 =100 m s–1

Final speed on the object of mass  

20 kg =500/20 =25 m s–1

Note that momentum on each object 

is the same after 5 seconds but speed 

is not the same after 5 seconds. The 

heavier mass acquires lesser speed than 

the one with lower mass.

13. An object of mass 5 kg is initially at rest 

on the surface. The surface has coefficient 

kinetic friction Fk � 0 6. . What initial 

velocity must be given to the object so 

that it travels 10 m before coming to rest?

When the object moves on the 

surface it will experience three forces.

a)  Downward gravitational force (mg)

b) Upward normal force (N)

c)  Frictional force opposite to the 

motion of the object.

Since there is no motion along the 

vertical direction, magnitude of normal 

force is equivalent to the magnitude of 

gravitational force.

  N mg

Applying Newton’s second law along 

the x direction

  ma  = ˆ− kmgiμ

The acceleration is a = ˆ− kmgiμ

Note that the acceleration is along the x 

direction since the frictional force acts 

along the negative x direction.

  Or  a gk� �F

Note that the acceleration is uniform 

during the entire motion. We can use 

Newton’s kinematic equation to find the 

final velocity.

   Along the x direction v u as2 2 2� �

Here v  = final velocity and u  

initial velocity to be given to travel a  

distance s.

In this problem s = 10 m

Since the particle comes to rest, the 

final velocity v = 0

 0 22� �u gskF

 u gsk� 2F

 
u 2 0 6 9 8. . 10 = 10.8 ms−1 
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14. In the section 3.7.3 (Banking of road) 

we have not included the friction 

exerted by the road on the car. Suppose 

the coefficient of static friction between 

the car tyre and the surface of the road 

is , calculate the minimum speed with 

which the car can take safe turn?

When the car takes turn in the 

banked road, the following three forces 

act on the car.

(1)  The gravitational force mg acting 

downwards

(2)  The normal force N acting 

perpendicular to the surface of the 

road

(3)  The static frictional force f acting 

on the car along the surface.

The following figure shows the forces 

acting on the horizontal and vertical 

direction.

When the car takes turn with the 

speed v, the centripetal force is exerted  

by horizontal component of normal 

force and static frictional force. It is 

given by

 N f
mv

r
 sin3 3� �cos

2

 (1)

In the vertical direction, there is no 

acceleration. It implies that the vertical 

component of normal force is balanced 

by downward gravitational force and 

downward vertical component of frictional 

force.  This can be expressed as 

 N mg fcos sin3 3� �

Or  N f mgcos sin3 3� �  (2)

Diving the equation (1) by equation (2), we 

get 

 
N f

N f

v

rg

sin cos

cos sin

3 3
3 3

�
�

�
2

 (3)

To calculate the maximum speed for the 

safe turn, we can use the maximum static 

friction is given by . By substituting this 

relation in equation (3), we get

 
N N

N N

v

rg
s

s

sin cos

cos sin
max3 F 3

3 F 3
�
�

�
2

 

By taking  outside the bracket in L.H.S of 

equation 

N
N

N

N
N

N

v
s

s

cos
sin

cos

cos
sin

cos

m

3 3
3

F

3 F 3
3

4
8
6

5
9
7 �

b
c
d

e
f
g

�4
8
6

5
9
7

�
1

aax

2

rg

 

tan

tan
max

3 F
F 3

��  
�

�s

s

v

rg1

2

 

The Maximum speed for safe turn is given 

by v rg s

s

max

tan

tan
�

��  
��  

3 F
F 31

 (4)

Suppose we neglect the effect of friction 

(μ
s
 = 0), then safe speed 

v rgsafe � tan3  (5)

Note that the maximum speed with which 

the car takes safe turn is increased by friction 

(equation (4)). Suppose the car turns with 

speed v vsafe , then the static friction acts up 

in the slope to prevent from inward skidding. 
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If the car turns with the speed little greater 

than, then the static friction acts down the 

slope to prevent outward skidding. But if the 

car turns with the speed greater than  then 

static friction cannot prevent from outward 

skidding.

SOLVED EXAMPLE UNIT-4

1. A force ˆˆ ˆF i 2j 3k= + +
�

 acts on a particle 

and displaces it through a distance 
ˆ ˆS 4i 6j= +

�
 Calculate the work done.

Solution:

Force ˆˆ ˆF i 2j 3k= + +
�

Distance ˆ ˆS 4i 6j= +
�

Work done = F S" � ˆˆ ˆ(i 2j 3k)+ + . ˆ ˆ(4i 6j)+
   = 4+12+0 = 16 J

2. A particle moves along X- axis from x=0 

to x=8 under the influence of a force 

given by F= 3 4 52x x� � . Find the work 

done in the process.

Solution:

Work done in moving a particle from 

x=0 to x=8 will be

W Fdx x x dx

x x
x

= = − + −

− +
⎡
⎣⎢

⎤
⎦⎥

∫ ∫
0

8

2

0

8

3 2
8

0

3 4 5

3

3

4

2
5

( )

W

J

� �
4
8
6

5
9
7 �

N

O
R

P

Q
S

� � � �

3
8

3
4

8

2
40

512 128 40 424

3 2( )

[ ]

3. A body of mass 10kg at rest is subjected 

to a force of 16N. Find the kinetic energy 

at the end of 10 s.

Solution:

Mass m = 10 kg

Force F = 16 N

time t = 10 s

 a = F m ms16

10
1 6 2.

 we know that, v  = u + at  

= 0 + 1.6 × 10 = 16 m s–1

Kinetic energy K.E  = 
1

2

2mv

1

2
10 16� � � �  16

1280J�

4. A body of mass 5kg is thrown up 

vertically with a kinetic energy of 1000 J.  

If acceleration due to gravity is 10ms−2,  

find the height at which the kinetic 

energy becomes half of the original value.

Solution:

Mass m = 5kg

K.E E = 1000J

g = 10ms−2

 At a height ‘h’, mgh = 
E

2

 

5 10
1000

2
500

50
10

� � �

� �

h

h m

5. Two bodies of mass 60 kg and 30 kg move 

in the same direction along straight line 

with velocity 40 cms−1 and 30 cms−1  
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respectively suffer one dimensional 

elastic collision. Find their velocities 

after collision.

Solution:

Mass m
1
 = 60 kg

Mass m
2
 = 30 kg

V  cms

V  cm s

1

1

2

1

40

30

Solution:

 

v
m m

m m
u

m

m m
u

v
m m

m m
u

1
1 2

1 2

1
2

1 2

2

2

2 1

1 2

2

2

1 2

1

2m
1

m m
u

Substituting the values, we get,

   
v1

60 30

90
40

2 30

90
30

( )

 

v

cms

1

1

1

90
1200 1800

3000

90
33 3

[ ]

.

Likewise, 

 

v

v

cms

2

2

30 60

90
30

2 60

90
40

1

90
900 4800

3900

90
43 3

�
�

� �
�

�

� � �

� � �

( )

[ ]

. 11

6. A particle of mass 70 g moving at  

50 cms−1 is acted upon by a variable force 

as shown in the figure. What will be its 

speed once the force stops?

Force (N)

C

BA
10

Time (s)

10−2
DE0

8 × 10−34 × 10−3

Solution: 

The area under the graph gives the impulse.

Impulse I = area of ΔOAE+ area of 

rectangle ABDE+ area of ΔDBC

 

I � � � � � � �

� � � � �

� � �

� �

�

� �

1

2
4 10 10 8 4 10

10
1

2
10 10 1 0 8

2 10 4 10

3 3

2

2

( )

( . )

22 2

2 1

1 10

7 10

� �

� �

�

� �kgms

But Impulse = 2 × initial momentum 

of the particle= 2 × m × u

 2mu = 7x10-2 

 
u �

�
�

�
�

� �
�

� �

�
�7 10

2

7 10

2 70 10
50

2 2

3

1

m
cms

Hence the particle will reverse its 

direction and move with its initial speed.

7. A particle strikes a horizontal frictionless 

floor with a speed u at an angle θ with the 

vertical and rebounds with the speed v at 

an angle f with an vertical. The coefficient 

of restitution between the particle and 

floor is e. What is the magnitude of v?

u

θ φ

v
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Solution:

Applying component of velocities,

v

v sin φ

u cos θ

u sin θ

v 
co

s 
φu

θ

θ

φ

The x - component of velocity is

 usin q = vsin f (1)

The magnitude of y – component of 

velocity is not same, therefore, using 

coefficient of restitution,

 e v
u

�
cos

cos

h
3

 (2)

Squaring (1) and (2) and adding we get

 

v u
v e u

adding
v u e u

2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

sin sin

cos cos

sin cos

h 3

h 3

3 3

�

�

� �

�� � �NO PQ

� �

v u e

v u e

2 2 2 2 2

2 2 2

sin cos

sin cos

3 3

3 3

8. A particle of mass m is fixed to one end 

of a light spring of force constant k and 

un-stretched length l. It is rotated with 

an angular velocity w  in horizontal 

circle. What will be the length increase 

in the spring?

Solution:

Mass spring = m

Force constant = k

Un-stretched length = l

Angular velocity = ω

Let ‘x’ be the increase in the length of 

the spring.

The new length = (l+x) = r

When the spring is rotated in a 

horizontal circle, 

Spring force = centripetal force.

 kx = m 2(l+x) 

9. A gun fires 8 bullets per second into a 

target X. If the mass of each bullet is 3 

g and its speed 600 ms−1. Then, calculate 

the power delivered by the bullets.

Solution:

Power = work done per second = total 

kinetic energy of 8 bullets per second

 

P � �

� � � ��  ��

8

8
1

2
3 10 6003

(kinetic energy of each

bullet per second)

��  2

 P = 4320W

 P = 4.320 kW

SOLVED EXAMPLE UNIT-5

1. Three particles of masses m1 = 1 kg, 

m2 2 kg and m3 3 kg are placed at the 

corners of an equilateral triangle of side 

Fs

x

 x = 0

xl

x =
mω2l

k–mω2
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1m as shown in Figure.  Find the position 

of center of mass.

Solution:

m1 m2

m3

(1,0)

( √ )

1
2

1 3
2 2

G

A
B

C

D

,

The center of mass of an equilateral 

triangle lies at its geometrical center G.

The positions of the mass m
1
, m

2
 and 

m
3
 are at positions A, B and C as shown 

in the Figure.

From the given position of the 

masses, the coordinates of the masses 

m
1
 and m

2
 are easily marked as (0,0) and 

(1,0) respectively. 

To find the position of m
3
 the 

Pythagoras theorem is applied.  As the 

ΔDBC is a right angle triangle,

 BC CD DB2 2 2� �

 CD BC DB2 2 2� �

 CD2 2

2

1
1

2
1

1

4

3

4
� � 4

8
6

5
9
7 � � 4

8
6

5
9
7 �

 CD 3

2

The position of mass m
3
 is 

       
1

2

3

2
,

4

8
66

5

9
77 or 0 5 0 5 3. , .�  

X Coordinate of center of mass, 

     x m x m x m x
m m mCM �

� �
� �

1 1 2 2 3 3

1 2 3

  xCM �
� � � � �

� �
�

( ) ( ) ( . ) .1 0 2 1 3 0 5

1 2 3

3 5

6
  

 xCM
7

12
 m 

Y Coordinate of center of mass, 

 y m y m y m y
m m mCM �

� �
� �

1 1 2 2 3 3

1 2 3

  

  yCM �
� � � � � �

� �
�

( ) ( ) ( . ) .1 0 2 0 3 0 5 3

1 2 3

1 5 3

6

 yCM
3

4
 m.

 The coordinates of center of mass G 

x yCM CM,�   is 
7

12

3

4
,

4

8
66

5

9
77

2. An electron of mass 9 � �10 31kg  revolves 

around a nucleus in a circular orbit 

of radius 0.53 Å. What is the angular 

momentum of the electron? (Velocity of 

electron is, v = 2.2 � �106 1ms )

Solution:

Mass of the electron, m = 9 × 10−31 kg
Radius of the electron, r = 0.53 Å = 

0.53 � �10 10 m

Velocity of the electron, v = 2.2 × 

106 1ms

Angular momentum of electron is,  

L = I ω

Electron is considered as a point mass. 

Hence, its moment of inertia is, I = m r2
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The relation, I �
v

r
  could be used.

Angular momentum, L = mr2 v

r
  

= mvr

  = 9.1 � � � � �� �10 2 2 10 0 53 1031 6 10. .

 L = 1.06 × 10−34 kg m2 s−1

3. A solid sphere of mass 20 kg and radius 

0.25 m rotates about an axis passing 

through the center.  What is the angular 

momentum if the angular velocity is 

5 rad s 1

Solution:

Mass of the sphere, m = 20 kg

Radius r = 0.25 m

Angular velocity ω = 5 rad s 1

Solution:

Angular momentum L = Iω = 
2

5

2mr

 = 
2

5
20 0 25 5 40 0 06252� � � � �( . ) ( . ) = 2.5

 L = 2.5 kg m2s 1

4. A solid cylinder when dropped from a 

height of 2 m acquires a velocity while 

reaching the ground. If the same cylinder 

is rolled down from the top of an inclined 

plane to reach the ground with same 

velocity, what must be the height of the 

inclined plane? Also compute the velocity.

Solution:

2m h hʹ

In the first case, 

 potential energy = kinetic energy

 mgh = 
1

2

2mv

 mg×2 = 
1

2

2mv  (1)

In second case,

  potential energy = translational kinetic 

energy + rotational kinetic energy 

 mghʹ = 
1

2

2mv + 
1

2

2I

 mghʹ = 
1

2

2mv  + 
1

2

mr v
r

2 2

22

4

8
6

5

9
7
4

8
6

5

9
7

  mghʹ = 
3

4

2mv  (2)

Dividing (2) by (1),

 
mgh

mg

mv

mv

’

2

3

4
1

2

2

2

 
3

4

2

1

3

2
� �   

 hʹ = 3m

From equation (1), 2
1

2

2mg mv

 v g g4 2

 v � �2 9 81.

 v ms� �6 3 1.
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5. A small particle of mass m is projected 

with an initial velocity v at an angle θ with x 

axis in X-Y plane as shown in Figure. Find 

the angular momentum of the particle.

Solution:

v cos θ

θ

v 
si

n 
θ

Let the particle of mass m cross a 

horizontal distance x in time t. 

 Angular momentum L dt� C&

 But & � �r F
 ˆˆr xi yj= +�

 and ˆF mgj= −
�

 
( ) ( )

( )
ˆ ˆˆ

ˆˆˆ

xi yj mgj

mgx i j mgxk

τ

τ

∴ = + × −

= − × = −

�

�   

  ( ) ( )ˆ ˆcosL mg xdt k mgv tdt kθ= − = −∫ ∫
�

Let initial time t = 0 and final time t = t
f

 2

0

1ˆ ˆcos cos
2

ft

fL   mgv tdt k mgv t kθ θ
⎛ ⎞
⎜ ⎟∴  = −                              = −
⎜ ⎟⎝ ⎠
∫

�

Negative sign indicates, L point inwards

6. From a complete ring of mass M and 

radius R, a sector angle θ is removed. 

What is the moment of inertia of the 

incomplete ring about axis passing 

through the center of the ring and 

perpendicular to the plane of the ring?

Solution:

Let R be the radius of the ring and M be 

the total mass of the complete ring.

Let m be the mass of the section 

removed from the ring then, mass of the 

incomplete ring is M-m

Mass, m

Mass, M-m

θ

Let us introduce a positive integer (n), 

such that, n3 � 360˚, or n = 
360�

3

 mass of incomplete ring M m   � �

 m M
� �

360
3

 � � � �mass of incomplete ring M M
   

360
3

mass of incomplete ring M M
n

M
n

n
   � � �

��  1

 For example, a when n) ;   3 � � �
�
�

�60
360

60
6

 � � �n 1 5

 mass of incomplete ring 
5

6
M

 b when n) ,   3 � � �
�
�

�30
360

30
12

      n � �1 11

 mass of incomplete ring = 
11

12
M
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 The moment of inertia of the 

incomplete ring is, I = M
n

n
R

��  1
2

7. A massless right tangled triangle is 

suspended with its right angle corner. 

A mass of 100 kg is suspended from 

another corner B which subtends an 

angle 53o. Find the mass m that should be 

suspended from other corner C so that 

BC (hypotenuse) remains horizontal. 

Solution:

A

90°

B           x1    D                    x2 C

100                                                              m 

53° 37°

From the principle of moments,

 100 × g � � � �x m g x1 2  

 100 × cos 53o = m × cos 37o (1)

Where, x
1
 and x

2
 are the arm lengths.

The right angle triangle with angles 

37o, 53o and 90o is a special triangle which 

has the respective sides in the ratio, 3:4:5 

as shown in the diagram. 

53°

37°

4
4

3

Substituting the values in equation (1),

 100 × cos 53o = m × cos 37o

 100
3

5

4

5
� � �m

 m � �100
3

4

 m kg75

8. If energy of 1000 J is spent in increasing 

the speed of a flywheel from 30 rpm to 

720 rpm, find the moment of inertia of 

the wheel.

Solution:

 I1 30� rpm = 2� � �30

60

1rads  =  rads

 I2 720� rpm  

= 2 � �� ��720

60
241rads rads 

Change in kinetic energy,  

ΔKE = 
1

2
2

2

1

2I( )I I�

  I = 
2

2

2

1

2

�
�

�
'KE

( )I I
 

2 1000

24
2 2

�

�  � �  � �

  I =  
2000

25 23� ��
 Remember:

 a2−b2 = (a + b) (a−b)

  I ≈ 0.35 kg m2 and � 2 10	

9. Consider two cylinders with same 

radius and same mass. Let one of the 

cylinders be solid and another one 

be hollow. When subjected to same 

torque, which one among them gets 

more angular acceleration than the 

other? 
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Solution:

Moment of inertia of a solid cylinder 

about its axis I MRs
1

2

2

Moment of inertia of a hollow cylinder 

about its axis I MRh
2

 I I I Is h h s
1

2
2 or 

 torque I & � a

 a = 
I

 U &
s

sI
�  and U &

h
hI

�

 U U U Us s h h s h
h

s

I I I
I

� T �

 Since,  
I I I

Ih s
h

s

s h

i T i

� i

1

U U

For the same torque, a solid cylinder gets 

more acceleration than a hollow cylinder.

Note:  The above two cylinders must be 

made up of materials of different 

density. (Say why?)

10.   A thin horizontal circular disc is 

rotating about a vertical axis passing 

through its center. An insect goes 

from A to point B along its diameter 

as shown in Figure. Discuss how the 

angular speed of the circular disc 

changes?

Solution:

As the disc is freely rotating, with the 

insect on it, the angular momentum of 

the system is conserved. 

 L I� I = constant

A B
O

When the insect moves towards the 

center (from A to O), the moment of 

inertia (I) decreases. Thus, the angular 

velocity (ω) increases.  When it moves 

away from center (from O to B), the 

moment of inertia (I) increases. Thus, 

the angular velocity (ω) decreases.

11.     (i)  What is the shape of the graph 

between Ekr  and L? (Ekr is the 

rotational kinetic energy and L is 

angular momentum)

 (ii)  What information can you get 

from the slope of the graph?

(iii)  You are given the graph of Ekr   

and L for two bodies A and B. 

Which one has more moment of 

inertia?

Solution:

i) We know that, Rotational kinetic 

Energy

 Ekr = 
1

2

2I

  = 
1

2

1

2

1

2

2

I L L
I

I I I� � �. .  
L I

L I
�

�
I

I

 Ekr = 
L
I

2

2

 L2 = 2IE
kr

 L = 2IEkr  = 2I Ekr.
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acceleration along the inclined plane 

if the angle of inclination is 45˚.

Solution:

The linear acceleration along the inclined 

plane can be computed by

 a g
K
R

�
�

sin3

1
2

2

For a thin uniform circular ring, axis 

passing through its center is I MR2

 � � T �K R K
R

2 2
2

2
1.

And the angle of inclination, θ = 45˚  

 (sin45˚ = 
1

2
)

Hence,

 
a

g

a g ms

=
+

= −

2

1 2

2 2

2

Graph of Ekr  and L:

√Ekr

L

The shape of the graph is a straight  

line

ii)  The slope of the graph gives the 

value of moment of inertia I.

iii)  We know that the slope gives  

the value of moment of Inertia.  

The line A has higher slope and 

hence more moment of Inertia.

√Ekr

L

A

B

12.   Consider a thin uniform circular ring 

rolling down in an inclined plane 

without slipping. Compute the linear 

COMPETITIVE EXAM CORNER




