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9.1 

LEARNING OBJECTIVES

In this unit, the student is exposed to
• necessity of kinetic theory of gases 
• the microscopic origin of pressure and temperature
• correlate the internal energy of the gas and translational kinetic energy of gas molecules
• meaning of degrees of freedom
• calculate the total degrees of freedom for mono atomic, diatomic and triatomic molecules
• law of equipartition of energy
• calculation of the ratio of CP and CV
• mean free path and its dependence with pressure, temperature and number density
• Brownian motion and its microscopic origin

KINETIC THEORY

9.1.1 Introduction

Th ermodynamics is basically a macroscopic 
science. We discussed macroscopic 
parameters like pressure, temperature and 
volume of thermodynamical systems in unit 
8. In this unit we discuss the microscopic 
origin of pressure and temperature by 
considering a thermodynamic system as 
collection of particles or molecules. Kinetic 
theory relates pressure and temperature to 
molecular motion of sample of a gas and it 
is a bridge between Newtonian mechanics 
and thermodynamics. Th e present chapter 
introduces the kinetic nature of gas 
molecules.

U N I T

9 KINETIC THEORY OF GASES

“With thermodynamics one can calculate almost everything crudely; with kinetic theory, one can 
calculate fewer things, but more accurately.” - Eugene Wigner

9.1.2  Postulates of kinetic 
theory of gases

Kinetic theory is based on certain 
assumptions which makes the mathematical 
treatment simple. None of these assumptions 
are strictly true yet the model based on these 
assumptions can be applied to all gases.

1. All the molecules of a gas are identical, 
elastic spheres.

2. Th e molecules of diff erent gases are 
diff erent.

3. Th e number of molecules in a gas is 
very large and the average separation 
between them is larger than size of the 
gas molecules.

4. Th e molecules of a gas are in a state of 
continuous random motion.

5. The molecules collide with one another 
and also with the walls of the container.
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165Unit 9   Kinetic Theory of Gases

9.2

The molecules of the gas are in random 
motion. They collide with each other and 
also with the walls of the container. As the 
collisions are elastic in nature, there is no 
loss of energy, but a change in momentum 
occurs.

The molecules of the gas exert pressure 
on the walls of the container due to collision 
on it. During each collision, the molecules 
impart certain momentum to the wall. 
Due to transfer of momentum, the walls 
experience a continuous force. The force 
experienced per unit area of the walls of the 
container determines the pressure exerted by 
the gas. It is essential to determine the total 
momentum transferred by the molecules in 
a short interval of time.

A molecule of mass m moving with 
a velocity v  having components (vx, vy, 
vz) hits the right side wall. Since we have 
assumed that the collision is elastic, the 
particle rebounds with same speed and its 
x-component is reversed. This is shown 
in the Figure 9.1 (b). The components of 
velocity of the molecule after collision are  
(—vx, vy, vz).

The x-component of momentum of the 
molecule before collision = mvx

6.	 These collisions are perfectly elastic so 
that there is no loss of kinetic energy 
during collisions.

7.	 Between two successive collisions, a 
molecule moves with uniform velocity.

8.	 The molecules do not exert any force 
of attraction or repulsion on each other 
except during collision. The molecules 
do not possess any potential energy and 
the energy is wholly kinetic.

9.	 The collisions are instantaneous. The 
time spent by a molecule in each 
collision is very small compared to the 
time elapsed between two consecutive 
collisions.

10.	These molecules obey Newton’s laws 
of motion even though they move 
randomly.

PRESSURE EXERTED BY  
A GAS

9.2.1  Expression for 
pressure exerted by a gas

Consider a monatomic gas of N molecules 
each having a mass m inside a cubical 
container of side l as shown in the Figure 9.1 
(a).

Gas molecule Container

Figure 9.1  (a) Container of gas molecules

Figure 9.1  (b) Collision of a molecule 
with the wall
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166 Unit 9  Kinetic Theory of Gases

Not all the n molecules will move to the 
right, therefore on an average only half of 
the n molecules move to the right and the 
other half moves towards left  side.

Th e number of molecules that hit the right 
side wall in a time interval 

∆t = n
2

Avx ∆t (9.1)

In the same interval of time ∆t, the total 
momentum transferred by the molecules 

∆p = n
2

Avx ∆t × 2mvx = Av2
x  mn∆t (9.2)

From Newton’s second law, the change in 
momentum in a small interval of time gives 
rise to force. 

Th e force exerted by the molecules on the 
wall (in magnitude) 

F = ∆
∆
p
t

 = nmAv2
x   (9.3)

Pressure, P = force divided by the area of the 
wall 

P = F
A

 = nmv2
x   (9.4)

Since all the molecules are moving 
completely in random manner, they do not 
have same speed. So we can replace the term 
vx

2  by the average vx
2  in equation (9.4) 

Th e x-component of momentum of the 
molecule aft er collision = −mvx

Th e change in momentum of the molecule 
in x direction
=Final momentum – initial momentum = 
−mvx −mvx = −2mvx

According to law of conservation of linear 
momentum, the change in momentum of 
the wall = 2mvx

In x direction, the total 
momentum of the system 
before collision is equal to 
momentum of the molecule 

(mvx) since the momentum of the 
wall is zero. According to the law 
of conservation of momentum the 
total momentum of system aft er 
the collision must be equal to total 
momentum of system before collision. 
Th e momentum of the molecule 
(in x direction) aft er the collision is 
−mvx and the momentum of the wall 
aft er the collision is 2mvx. So total 
momentum of the system aft er the 
collision is (2mvx−mvx) = mvx which 
is same as the total momentum of the 
system before collision.

NoteNote

Th e number of molecules hitting the right 
side wall in a small interval of time ∆t is 
calculated as follows.

Th e molecules within the distance of vx∆t  
from the right side wall and moving towards 
the right will hit the wall in the time interval ∆t. 
Th is is shown in the Figure 9.2. Th e number 
of molecules that will hit the right side wall 
in a time interval ∆t is equal to the product 
of volume (Avx∆t) and number density of the 
molecules (n). Here A is area of the wall and n 
is number of molecules per unit volume N

V




 . 

We have assumed that the number density is 
the same throughout the cube.

Figure 9.2 Number of molecules hitting 
the wall 
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167Unit 9  Kinetic Theory of Gases

molecules on the wall is independent of 
area of the wall.

9.2.2 Kinetic interpretation 
of temperature

To understand the microscopic origin of 
temperature in the same way,

Rewrite the equation (9.6)

 P N
V
mv= 1

3

2

 
PV Nmv= 1

3

2

 (9.7)

Comparing the equation (9.7) with ideal gas 
equation PV=NkT, 

 NkT= 1

3
Nmv2

 kT= 1

3
mv2  (9.8)

Multiply the above equation by 3/2 on both 
sides, 

3

2

1

2

2kT mv=  (9.9)

R.H.S of the equation (9.9) is called average 
kinetic energy of a single molecule (KE).

Th e average kinetic energy per molecule

KE = ∈ = 3

2
 kT (9.10)

Equation (9.9 ) implies  that the temperature 
of a gas is a measure of the average 
translational kinetic energy per molecule of 
the gas.

Compare this with the 
defi nition of temperature 
studied in lower classes: 

Temperature is the degree of hotness 
or coldness!

Note

Temperature is the degree of hotness 

Note

Equation 9.10 is a very important result 
from kinetic theory of gas. We can infer the 
following from this equation. 

P = nm vx
2  (9.5)

Since the gas is assumed to move in random 
direction, it has no preferred direction 
of motion (the eff ect of gravity on the 
molecules is neglected). It implies that the 
molecule has same average speed in all the 
three direction. So, vx

2  = v vy z
2 2= . Th e mean 

square speed is written as 

 v v v v vx y z x
2 2 2 2 23= + + =

 v vx
2 21

3
=

Using this in equation (9.5), we get
P nmv= 1

3

2  or P
N
V
mv= 1

3

2  (9.6)

as n N
V

=





Th e following inference can be made 
from the above equation. Th e pressure 
exerted by the molecules depends on

(i)  Number density n
N
V

= . It implies that 
if the number density increases then 
pressure will increase. For example 
when we pump air inside the cycle 
tyre or car tyre essentially the number 
density increases and as a result the 
pressure increases.

(ii)  Mass of the molecule Since the pressure 
arises due to momentum transfer to 
the wall, larger mass will have larger 
momentum for a fi xed speed. As a 
result the pressure will increase.

(iii)  Mean square speed  For a fi xed mass 
if we increase the speed, the average 
speed will also increase. As a result the 
pressure will increase.

For simplicity the cubical container is taken 
into consideration. The above result is true 
for any shape of the container as the area 
A does not appear in the fi nal expression 
(9.6). Hence the pressure exerted by gas 
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168 Unit 9   Kinetic Theory of Gases

U RT=
3
2

µ

Since Nk = μR. Here μ is number of moles.

Gas constant R = 8.31 J
mol k

Temperature T =273+27=300K

U = 3

2
 × 0.5 × 8.31 × 300 = 1869.75J

This is approximately equivalent to the 
kinetic energy of a man of 57 kg running 
with a speed of 8 m s-1.

9.2.3  Relation between 
pressure and mean kinetic 
energy 

From earlier section, the internal energy of 
the gas is given by

U NkT= 3

2

The above equation can also be written as  

U = 3

2
 PV 

since PV = NkT

P = 2

3

2

3

U
V

u= � (9.12)

From the equation (9.12), we can state 
that the pressure of the gas is equal to two 
thirds of internal energy per unit volume or 
internal energy density (u = U

V
).

Writing pressure in terms of mean kinetic 
energy density using equation (9.6)

P nmv v= =
1
3

1
3

2 2ρ � (9.13)

where ρ = nm = mass density (Note n is 
number density)

Multiply and divide R.H.S of equation (9.13) 
by 2, we get

P v=










2
3 2

2ρ

P KE=
2
3

� (9.14)

(i)		  The average kinetic energy of the 
molecule is directly proportional to 
absolute temperature of the gas. The 
equation (9.9) gives the connection 
between the macroscopic world 
(temperature) to microscopic world 
(motion of molecules). 

(ii)		  The average kinetic energy of each 
molecule depends only on temperature 
of the gas not on mass of the molecule. 
In other words, if the temperature 
of an ideal gas is measured using 
thermometer, the average kinetic 
energy of each molecule can be 
calculated without seeing the molecule 
through naked eye.

By multiplying the total number of gas 
molecules with average kinetic energy of 
each molecule, the internal energy of the gas 
is obtained.

Internal energy of ideal gas U N mv= 





1

2

2

By using equation (9.9) 

U NkT= 3

2
� (9.11)

From equation (9.11), we understand that 
the internal energy of an ideal gas depends 
only on absolute temperature and is 
independent of pressure and volume.

EXAMPLE 9.1

A football at 27°C has 0.5 mole of air 
molecules. Calculate the internal energy of 
air in the ball.

Solution

The internal energy of ideal gas = 3

2
 NkT. 

The number of air molecules is given in 
terms of number of moles so, rewrite the 
expression as follows
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169Unit 9   Kinetic Theory of Gases

From equation (9.6)

P N
V
m v N

V
m v= =1

3

1

3

1
1 1

2 2
2 2

2 � (9.15)

where v1

2  and v2
2  are the mean square speed 

for two gases and N1 and N2 are the number 
of gas molecules in two different gases. 

At the same temperature, average kinetic 
energy per molecule is the same for two 
gases.

1

2

1

2
1 1

2

2 2

2m v m v= � (9.16)

Dividing the equation (9.15) by (9.16) we 
get N1  = N2 

This is Avogadro’s law. It is sometimes 
referred to as Avogadro’s hypothesis or 
Avogadro’s Principle.

9.2.5  Root mean square 
speed (vrms)

Root mean square speed (vrms) is defined as the 
square root of the mean of the square of speeds 

of all molecules. It is denoted by vrms = v2

Equation (9.8) can be re-written as,

mean square speed v kT
m

2 3= � (9.17)

root mean square speed,

vrms = 3
1 73

kT
m

kT
m

= . � (9.18)

From the equation (9.18) we infer the 
following
(i)		  rms speed is directly proportional to 

square root of the temperature and 
inversely proportional to square root 
of mass of the molecule. At a given 
temperature the  molecules of lighter 
mass move faster on an average than 
the molecules with heavier masses. 

From the equation (9.14), pressure is equal to 
2/3 of mean kinetic energy per unit volume.

9.2.4  Some elementary 
deductions from kinetic 
theory of gases

Boyle’s law:

From equation (9.12), we know that�PV U= 2

3

But the internal energy of an ideal gas is equal 
to N times the average kinetic energy (∈) of 
each molecule.

	 U = N∈

For a fixed temperature, the average 
translational kinetic energy ∈ will remain 
constant. It implies that

PV = 
2

3
 N∈ 	 Thus 	 PV = constant

Therefore, pressure of a given gas is inversely 
proportional to its volume provided  
the temperature remains constant. This is 
Boyle’s law.

Charles’ law:

From the equation (9.12), we get� PV U= 2

3

For a fixed pressure, the volume of the gas 
is proportional to internal energy of the gas 
or average kinetic energy of the gas and the 
average kinetic energy is directly proportional 
to absolute temperature. It implies that 

V α T or V
T

 = constant

This is Charles’ law.

Avogadro’s law:

This law states that at constant temperature 
and pressure, equal volumes of all gases 
contain the same number of molecules. For 
two different gases at the same temperature 
and pressure, according to kinetic theory of 
gases,
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170 Unit 9  Kinetic Theory of Gases

EXAMPLE 9.2

A room contains oxygen and hydrogen 
molecules in the ratio 3:1. Th e temperature 
of the room is 27°C. Th e molar mass of 02 
is 32 g mol-1 and for H2 2 g mol-1. Th e value 
of gas constant R is 8.32 J mol-1 K-1

Calculate 

(a)  rms speed of oxygen and hydrogen 
molecule

(b)  Average kinetic energy per oxygen 
molecule and per hydrogen 
molecule

(c)  Ratio of average kinetic energy of 
oxygen molecules and hydrogen 
molecules

Solution

(a)  Absolute Temperature 
T=27°C =27+273=300 K.

Gas constant R=8.32 J mol-1 k-1

 For Oxygen molecule: Molar mass 
M=32 gm=32 x 10-3 kg mol-1

rms speed vrms= 3 3 8 32 300

32 10
483 73 484

3

1 1RT
M

m s m s= × ×
×

= ≈−
− −.

.

 3 3 8 32 300

32 10
483 73 484

3

1 1RT
M

m s m s= × ×
×

= ≈−
− −.

.

For Hydrogen molecule:

Molar mass M = 2 × 10-3 kg mol-1

rms speed vrms= 3 3 8 32 300

2 10
1934 1 93

3

1 1RT
M

ms k m s= × ×
×

= =−
− −.

.

 3 3 8 32 300

2 10
1934 1 93

3

1 1RT
M

ms k m s= × ×
×

= =−
− −.

.

Note that the rms speed is inversely 
proportional to M  and the molar mass of 
oxygen is 16 times higher than molar mass 
of hydrogen. It implies that the rms speed 
of hydrogen is 4 times greater than rms 
speed of oxygen at the same temperature. 
1934

484
≈ 4 .

Example: Lighter molecules like 
hydrogen and helium have high ‘vrms’ than 
heavier molecules such as oxygen and 
nitrogen at the same temperature.
(ii)  Increasing the temperature will 

increase the r.m.s speed of molecules

We can also write the vrms in terms of gas 
constant R.  Equation (9.18) can be rewritten 
as follows

vrms = 3N kT
N m
A

A

 Where NA is Avogadro 
number.

Since NAk = R and NAm = M (molar mass)

Th e root mean square speed or r.m.s speed

vrms = 3RT
M

 (9.19)

Th e equation (9.6) can also be written in 
terms of rms speed P nmv rms= 1

3

2

since v vrms
2 2=

Root mean square speed 
is not the same as average 
speed. Average speed is 0.92 
times of r.m.s speed.

NoteNote

Impact of vrms in nature:

1. Moon has no atmosphere.
 Th e escape speed of gases on the surface 
of Moon is much less than the root mean 
square speeds of gases due to low gravity. 
Due to this all the gases escape from the 
surface of the Moon.

2. No hydrogen in Earth’s atmosphere.
 As the root mean square speed of 
hydrogen is much less than that of 
nitrogen, it easily escapes from the earth’s 
atmosphere.

 In fact, the presence of nonreactive 
nitrogen instead of highly combustible 
hydrogen deters many disastrous 
consequences.
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171Unit 9   Kinetic Theory of Gases

9.2.7.  �Most probable speed 
(Vmp)

It is defined as the speed acquired by most of 
the molecules of the gas.

  v RT
M

kT
mmp = =2 2 � (9.22)

  v
kT
mmp = 1 41. � (9.23)

The derivation of equations (9.20), (9.22) is 
beyond the scope of the book

Comparison of vrms, v and vmp

Among the speeds vrms is the largest and vmp  
is the least

vrms > v > vmp  
Ratio-wise,

vrms: v :vmp = 3 8 2 1 732 1 6 1 414: : . : . : .π =

EXAMPLE 9.3

Ten particles are moving at the speed of  
2, 3, 4, 5, 5, 5, 6, 6, 7 and 9 m s-1. Calculate 
rms speed, average speed and most 
probable speed.

Solution

The average speed  
v m s= + + + + + + + + + = −2 3 4 5 5 5 6 6 7 9

10
5 2 1.

To find the rms speed, first calculate the mean 
square speed v2

v m s2
2 2 2 2 2 2 2 2 2 2

2 22 3 4 5 5 5 6 6 7 9
30 6

10
= + + + + + + + + + = −.

v m s2
2 2 2 2 2 2 2 2 2 2

2 22 3 4 5 5 5 6 6 7 9
30 6

10
= + + + + + + + + + = −.

The rms speed 

v v m srms = = = −2 130 6 5 53. .

The most probable speed is 5 m s-1 because 
three of the particles have that speed.

(b)	� The average kinetic energy per 

molecule is 3

2
kT . It depends 

only on absolute temperature 
of the gas and is independent of 
the nature of molecules. Since 
both the gas molecules are at the 
same temperature, they have the 
same average kinetic energy per 
molecule. k is Boltzmaan constant.

3
2

3
2

1 38 10 300 6 21 1023 21kT J= =× × × ×− −. .

(c)	 �Average kinetic energy of total 
oxygen molecules = 

3
 O

2
N kT  where 

No- number of oxygen molecules in 
the room
Average kinetic energy of total 
hydrogen molecules = 3

 
2
N kTH   

where NH- number of hydrogen 
molecules in the room. 
It is given that the number of oxygen 
molecules is 3 times more than 
number of hydrogen molecules in 
the room. So the ratio of average 
kinetic energy of oxygen molecules 
with average kinetic energy of 
hydrogen molecules is 3:1

9.2.6  Mean (or) average 
speed (v)

It is defined as the mean (or) average of all 
the speeds of molecules

If v1, v2, v3…..vN are the individual speeds of 
molecules then

 
v

v v v v
N

RT
M

kT
m

n=
+ + +

= =1 2 3 8 8........
π π

�(9.20)

Here M- Molar Mass and m – mass of the 
molecule. 

 v kT
m

= 1 60. � (9.21)
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172 Unit 9   Kinetic Theory of Gases

section we calculated the rms speed of each 
molecule and not the speed of each molecule 
which is rather difficult. In this scenario we 
can find the number of gas molecules that 
move with the speed of 5 m s−1 to 10 m s−1 
or 10 m s−1to 15 m s−1 etc. In general our 
interest is to find how many gas molecules 
have the range of speed from v to v + dv. 
This is given by Maxwell’s speed distribution 
function.

N N m
kT

v ev

mv
kT=











−
4

2

3
2 2 2

2

π
π

� (9.24)

The above expression is graphically shown 
as follows

N��

�mp �avg

�rms

d�
���

N��

The number of molecules
having speeds ranging from �
to ��+ d��equals the area of
the rectangle, N����d��

Figure 9.3  Maxwell’s molecular speed 
distribution

From the Figure 9.3, it is clear that, for a 
given temperature the number of molecules 
having lower speed increases parabolically 
but decreases exponentially after reaching 
most probable speed. The rms speed, average 
speed and most probable speed are indicated 
in the Figure 9.3. It can be seen that the rms 
speed is greatest among the three.

EXAMPLE 9.4

Calculate the rms speed, average speed 
and the most probable speed of 1 mole of 
hydrogen molecules at 300 K. Neglect the 
mass of electron.

Solution

The hydrogen atom has one proton and one 
electron. The mass of electron is negligible 
compared to the mass of proton. 
Mass of one proton = 1.67 × 10−27kg. 
One hydrogen molecule = 2 hydrogen 
atoms = 2 × 1.67 × 10−27kg.
The average speed

	
v kT

m
kT
m

= = = =
× ×
×

×
−

−

8 1 60 1 60 1 38 10 300
2 1 67 10

1 78 1
23

27π
. . ( . ) )

( . )
.( 003 1ms−

�
v kT

m
kT
m

= = = =
× ×
×

×
−

−

8 1 60 1 60 1 38 10 300
2 1 67 10

1 78 1
23

27π
. . ( . ) )

( . )
.( 003 1ms−

(Boltzmann Constant k = 1.38 × 10−23 J K-1)

The rms speed	 v kT
m

kT
mrms = = = =× ×

×

−

−

3
1 73 1 73

1 38 10 300

2 1 67 10
1 93

23

27
. .

( . ) ( )

( . )
. ×× −103 1ms

�v kT
m

kT
mrms = = = =× ×

×

−

−

3
1 73 1 73

1 38 10 300

2 1 67 10
1 93

23

27
. .

( . ) ( )

( . )
. ×× −103 1ms

Most probable speed v
kT
m

kT
mmp = = = =× ×

×
×

−

−

2
1 41 1 41

1 38 10 300

2 1 67 10
1 57

23

27
. .

( . ) ( )

( . )
. 1103 1ms−

v kT
m

kT
mmp = = = =× ×

×
×

−

−

2
1 41 1 41

1 38 10 300

2 1 67 10
1 57

23

27
. .

( . ) ( )

( . )
. 1103 1ms−

Note that	 vrms > v > vmp  

9.2.8  Maxwell-Boltzmann 
speed distribution function

In a classroom, the air molecules are 
moving in random directions. The speed of 
each molecule is not the same even though 
macroscopic parameters like temperature 
and pressure are fixed.  Each molecule 
collides with every other molecule and 
they exchange their speed. In the previous 
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9.3

Interestingly once the 
gas molecule attains 
equilibrium, the number of 
molecules in the given range 

of speeds are fi xed. For example if  a 
molecule initially moving with speed 
12 m s-1, collides with some other 
molecule and changes its speed to 9 
m s-1, then the other molecule initially 
moving with diff erent speed reaches 
the speed 12 m s-1 due to another 
collision. So in general once the gas 
molecules attain equilibrium, the 
number of molecules that lie in the 
range of v to v+dv is always fi xed. 

NoteNote

DEGREES OF FREEDOM

9.3.1 Defi nition

Th e minimum number of independent 
coordinates needed to specify the position and 
confi guration of a thermo-dynamical system in 
space is called the degree of freedom of the system.

To know the number of molecules in the range 
of speed between 50 m s−1 and 60 m s−1, we 

need to integrate 4
2

50 60
50

60
3
2 2 2 1

2

π
π

N m
kT

v e dv N to ms
mv

kT∫








 =

− −( ) 

4
2

50 60
50

60
3
2 2 2 1

2

π
π

N m
kT

v e dv N to ms
mv

kT∫








 =

− −( ) . In general the 

number of molecules within the 
range of speed v and v+dv is given by 

4
2

3
2 2 2

2

π
π

N m
kT

v e dv N v to v dv
v

v dv mv
kT

+ −

∫








 = +( ) . 

Th e exact integration is beyond the scope of 
the book. But we can infer the behavior of 
gas molecules from the graph.

(i)��Th e area under the graph will give the total 
number of gas molecules in the system

(ii)�  Figure 9.4 shows the speed distribution 
graph for two diff erent temperatures. 
As temperature increases, the peak 
of the curve is shift ed to the right.  
It implies that the average speed of 
each molecule will increase. But the 
area under each graph is same since 
it represents the total number of gas 
molecules. 

Figure 9.4 Maxwell distribution graph for two diff erent temperatures
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about three mutually perpendicular axes 
(fi gure 9.5 b). But the moment of inertia 
about its own axis of rotation is negligible 
(about y axis in the fi gure 9.5). Th erefore, it 
has only two rotational degrees of freedom 
(one rotation is about Z axis and another 
rotation is about Y axis). Th erefore totally 
there are fi ve degrees of freedom.

f = 5

2. At High Temperature

At a very high temperature such as 5000 K, 
the diatomic molecules possess additional 

Example:
1. A free particle moving along x-axis 

needs only one coordinate to specify it 
completely. So its degree of freedom is 
one.

2. Similarly a particle moving over a plane 
has two degrees of freedom. 

3. A particle moving in space has three 
degrees of freedom.

Suppose if we have N number of gas 
molecules in the container, then the total 
number of degrees of freedom is f = 3N. 

But, if the system has q number of constraints 
(restrictions in motion) then the degrees of 
freedom decreases and it is equal to f = 3N-q 
where N is the number of particles.

9.3.2 Monoatomic molecule

A monoatomic molecule by virtue of its 
nature has only three translational degrees 
of freedom.

 Th erefore f = 3

Example: Helium, Neon, Argon

9.3.3 Diatomic molecule

Th ere are two cases.

1. At Normal temperature

A molecule of a diatomic gas consists of 
two atoms bound to each other by a force 
of attraction.  Physically the molecule can 
be regarded as a system of two point masses 
fi xed at the ends of a massless elastic spring.

Th e center of mass lies in the center of the 
diatomic molecule. So, the motion of the 
center of mass requires three translational 
degrees of freedom (fi gure 9.5 a). In 
addition, the diatomic molecule can rotate 

Figure 9.5 Degree of freedom of 
diatomic molecule

y

z

x

CM

Translational motion of 
the center of mass

y

z

x

Rotational motion about
the z axis

Rotational motion about
the x axis

Rotational motion about
the y axis

y

z

x y

z

x

Vibrational motion along
the molecular axis

Molecular
Axis

a

b

c
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two degrees of freedom due to vibrational 
motion[one due to kinetic energy of 
vibration and the other is due to potential 
energy] (Figure 9.5c). So totally there are 
seven degrees of freedom.

f = 7

Examples: Hydrogen, Nitrogen, Oxygen.

9.3.4 Triatomic molecules

Th ere are two cases.

Linear triatomic molecule

In this type, two atoms lie on either side of 
the central atom as shown in the Figure 9.6

Figure 9.6 A linear triatomic molecule.

OO C

Linear triatomic molecule has three 
translational degrees of freedom. It has two 
rotational degrees of freedom because it is 
similar to diatomic molecule except there is 
an additional atom at the center. At normal 
temperature, linear triatomic molecule 
will have fi ve degrees of freedom. At high 
temperature it has two additional vibrational 
degrees of freedom.

So a linear triatomic molecule has seven 
degrees of freedom.

Example: Carbon dioxide.

9.4

Non-linear triatomic molecule

In this case, the three atoms lie at the vertices 
of a triangle as shown in the Figure 9.7

Figure 9.7 A non-linear triatomic 
molecule

H H

O

It has three translational degrees of freedom 
and three rotational degrees of freedom 
about three mutually orthogonal axes. Th e 
total degrees of freedom,  f = 6

Example: Water, Sulphurdioxide.

LAW OF EQUIPARTITION 
OF ENERGY

We have seen in Section 9.2.1 that the 
average kinetic energy of a molecule moving 

in x direction is 1

2

1

2

2mv kTx = . 

Similarly, when the motion is in y direction,  
1

2

1

2

2mv kTy =  and 

For the motion z direction, 1

2

1

2

2mv kTz = .

According to kinetic theory, the average kinetic 
energy of system of molecules in thermal 
equilibrium at temperature T is uniformly 
distributed to all degrees of freedom (x or y or 
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For one mole, the molar specific heat at 

constant volume C dU
dT

d
dT

RTV = = 





3

2

C RV = 





3

2

C C R R R RP V= + = + =3

2

5

2
The ratio of specific heats, 

γ = = = =
C
C

R

R

P

V

5
2
3
2

5
3

1 67.

ii)  Diatomic molecule

Average kinetic energy of a diatomic 
molecule at low temperature = 5

2
kT

Total energy of one mole of gas

= 5

2

5

2
kT N RTA× =

(Here, the total energy is purely kinetic)

For one mole Specific heat at constant 
volume

	
C dU

dT
RT RV = = 





=5

2

5

2

But C C R R R RP V= + = + =5

2

7

2

∴ = = = =γ C
C

R

R

P

V

7
2
5
2

7
5 1 40.

Energy of a diatomic molecule at high 
temperature is equal to 7

2
RT

C dU
dT

RT RV = = 





=7

2

7

2

	 ∴ = + = +C C R R RP V
7

2

	 C RP = 9
2

Note that the CV and CP  are higher for diatomic 
molecules than the mono atomic molecules. 
It implies that to increase the temperature of 

z directions  of motion) so that each degree of 
freedom will get 1

2
kT of energy. This is called 

law of equipartition of energy.

Average kinetic energy of a monatomic 

molecule (with  f=3) = 3 1

2

3

2
× =kT kT

Average kinetic energy of diatomic 
molecule at low temperature (with f = 5)  

= 5 1

2

5

2
× =kT kT

Average kinetic energy of a diatomic 
molecule at high temperature (with f =7)  

= 7
1

2

7

2
× =kT kT

Average kinetic energy of linear triatomic 

molecule (with f = 7) = 7
1

2

7

2
× =kT kT

Average kinetic energy of non linear triatomic 

molecule (with f = 6) = 6
1

2
3× =kT kT

9.4.1  Application of law 
of equipartition energy in 
specific heat of a gas

Meyer’s relation CP − CV = R connects the 
two specific heats for one mole of an ideal 
gas. 

Equipartition law of energy is used to 
calculate the value of CP − CV and the ratio 

between them γ = C
C
P

V

. Here γ is called 

adiabatic exponent. 

i)  Monatomic molecule

Average kinetic energy of a molecule 

= 3

2
kT





Total energy of a mole of gas 

= 3

2

3

2
kT N RTA× =
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9.5

Solution
The specific heat of one mole of a monoatomic 

gas CV = 3

2
 R

For μ1 mole,	 CV = 3

2
 μ1 R  CP = 5

2
 μ1 R 

The specific heat of one mole of a diatomic 
gas 

	 CV = 5

2
 R

For μ2 mole,	 CV = 5

2
 μ2 R  CP = 7

2
 μ2 R

The specific heat of the mixture at constant 

volume CV = 3

2
 μ1 R + 5

2
 μ2 R

The specific heat of the mixture at constant 

pressure CP = 5

2
 μ1 R+ 7

2
 μ2 R

The adiabatic exponent γ = C
C

P

V

=
+
+

5 7
3 5

1 2

1 2

µ µ
µ µ

diatomic gas molecules by 1°C it require more 
heat energy than monoatomic molecules. 

	
∴ = = = =γ C

C

R

R
P

V

9
2

7
2

9
7 1 28.

iii)  Triatomic molecule

	 a)  Linear molecule

Energy of one mole= 7

2

7

2
kT N RTA× =

C dU
dT

d
dT

RT

C R

C C R R R R

C
C

R

V

V

P V

P

V

= =












=

= + = + =

∴ = =

7
2

7
2

7
2

9
2

9
2
7

γ

22

9
7

1 28
R
= = .

	 b)  Non-linear molecule

Energy of a mole = 
6

2

6

2
3kT N RT RTA× = =

	

C dU
dT

R

C C R R R R
C
C

R
R

V

P V

P

V

= =

= + = + =

∴ = = = =

3

3 4
4
3

4
3

1 33γ .

Note that according to kinetic theory 
model of gases the specific heat capacity at 
constant volume and constant pressure are 
independent of temperature. But in reality it 
is not sure. The specific heat capacity varies 
with the temperature.

EXAMPLE 9.5

Find the adiabatic exponent γ for 
mixture of μ1 moles of monoatomic gas 
and μ2 moles of a diatomic gas at normal 
temperature.

MEAN FREE PATH

Usually the average speed of gas molecules 
is several hundred meters per second even 
at room temperature. Odor from an open 
perfume bottle takes some time to reach us 
even if we are closer to the room. The time 
delay is because the odor of the molecules 
cannot travel straight to us as it undergoes 
a lot of collisions with the nearby air 
molecules and moves in a zigzag path. This 
average distance travelled by the molecule 
between collisions is called mean free path  
(λ). We can calculate the mean free path 
based on kinetic theory.

Expression for mean free path

We know from postulates of kinetic theory 
that the molecules of a gas are in random 
motion and they collide with each other.  
Between two successive collisions, a molecule 
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 ∴ =λ
π

1
2 2n d  (9.26)

The equation (9.26) implies that the mean 
free path is inversely proportional to number 
density. When the number density increases the 
molecular collisions increases so it decreases 
the distance travelled by the molecule before 
collisions.

Case1: Rearranging the equation (9.26) using 
‘m’ (mass of the molecule)

 
∴ =λ

π
m
d mn2 2

But mn=mass per unit volume = ρ (density of 
the gas)

 ∴ =λ
π ρ
m

d2 2
 (9.27)

Also we know that PV = NkT

 P = =N
V
kT nkT

 
∴ =n P

kT

Substituting n= ∴ =n P
kT

 in equation (9.26), we get

 λ
π

=
kT

d P2 2
 (9.28)

Th e equation (9.28) implies the following

1. Mean free path increases with increasing 
temperature. As the temperature 
increases, the average speed of each 
molecule will increase. It is the reason 
why the smell of hot sizzling food 
reaches several meter away than smell of 
cold food.

2. Mean free path increases with decreasing 
pressure of the gas and diameter of the 
gas molecules.

moves along a straight path with uniform 
velocity. Th is path is called mean free path. 

Consider a system of molecules each with 
diameter d. Let n be the number of molecules 
per unit volume.  

Assume that only one molecule is in motion 
and all others are at rest as shown in the 
Figure 9.8

hit

hit

hit

miss
hit

vt

miss

miss

d
Collision
Diameter

Figure 9.8 Mean free path

If a molecule moves with average speed v in a 
time t, the distance travelled is vt. In this time t, 
consider the molecule to move in an imaginary 
cylinder of volume πd2vt. It collides with any 
molecule whose center is within this cylinder. 
Therefore, the number of collisions is equal 
to the number of molecules in the volume of 
the imaginary cylinder. It is equal to πd2vtn.
The total path length divided by the number of 
collisions in  time t is the mean free path.

Mean free path, λ =
distance travelled

Number of collisions

 λ
π π

= =
vt

n d vt n d2 2

1  (9.25)

 Though we have assumed that only 
one molecule is moving at a time and other 
molecules are at rest, in actual practice all the 
molecules are in random motion. So the average 
relative speed of one molecule with respect to 
other molecules has to be taken into account. 
After some detailed calculations (you will learn 
in higher classes) the correct expression for 
mean free path 

UNIT-9(XI-Physics_Vol-2).indd   178 20-08-2018   16:41:45



179Unit 9   Kinetic Theory of Gases

9.6

proposed that Brownian motion is due to 
the bombardment of suspended particles 
by molecules of the surrounding fluid. But 
during 19th century people did not accept 
that every matter is made up of small atoms 
or molecules. In the year 1905, Einstein 
gave systematic theory of Brownian motion 
based on kinetic theory and he deduced the 
average size of molecules.

	 According to kinetic theory, any 
particle suspended in a liquid or gas is 
continuously bombarded from all the 
directions so that the mean free path is 
almost negligible. This leads to the motion 
of the particles in a random and zig–zag 
manner as shown in Figure 9.9. But when we 
put our hand in water it causes no random 
motion because the mass of our hand is so 
large that the momentum transferred by the 
molecular collision is not enough to move 
our hand.

Figure 9.9  Particles in Brownian motion
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Brownian motion

Factors affecting Brownian Motion

1.	 Brownian motion increases with 
increasing temperature.

2.	 Brownian motion decreases with bigger 
particle size, high viscosity and density 
of the liquid (or) gas.

EXAMPLE 9.6

An oxygen molecule is travelling in air 
at 300 K and 1 atm, and the diameter of 
oxygen molecule is 1.2 × 10−10m. Calculate 
the mean free path of oxygen molecule.

Solution

From (9.26)		 λ
π

=
1

2 2nd
We have to find the number density n
By using ideal gas law

	
n N

V
P
kT

= = = ×
× ×−

101 3 10

1 381 10 300

3

23

.

.

	 =2.449× 1025 molecues/m3

	
λ

π
=

× × × × × −

1
2 2 449 10 1 2 1025 10 2. ( . )

	
=

×
1

15 65 105.

	 λ = 0.63 × 10−6m 

BROWNIAN MOTION 

In 1827, Robert Brown, a botanist reported 
that grains of pollen suspended in a liquid 
moves randomly from one place to other. 
The random (Zig - Zag path) motion 
of pollen suspended in a liquid is called 
Brownian motion. In fact we can observe 
the dust particle in water moving in 
random directions. This discovery puzzled 
scientists for long time. There were a lot 
of explanations for pollen or dust to move 
in random directions but none of these 
explanations were found adequate. After 
a systematic study, Wiener and Gouy 

UNIT-9(XI-Physics_Vol-2).indd   179 20-08-2018   16:41:47



180 Unit 9  Kinetic Theory of Gases

�� Kinetic theory explains the microscopic origin of macroscopic parameters like 
temperature, pressure.

�� Th e pressure exerted on the walls of gas container is due to the momentum imparted 
by the gas molecules on the walls.

�� The pressure P nmv= 1

3

2 . The pressure is directly proportional to the number density, 
mass of molecule and mean square speed.

�� Th e temperature of a gas is a measure of the average translational kinetic energy per 
molecule of the gas. Th e average kinetic energy per molecule is directly proportional 
to absolute temperature of gas and independent of nature of molecules.

�� Th e pressure is also equal to 2/3 of internal energy per unit volume.

�� Th e rms speed of gas molecules = vrms = 
3kT
m

kT
m

=1.73 

�� The average speed of gas molecules v  =
8kT

m
kT
mπ

=1.60 

�� The most probable speed of gas molecules vmp =
2kT
m

kT
m

=1.41 

�� Among the speeds vrms is the largest and vmp is the least
vrms > v >vmp

�� Th e number of gas molecules in the range of speed v to v+dv is given by Maxwell-
Boltzmann distribution 

 
N dv N m

kT
v e dvv

mv
kT=











−
4

2

3
2 2 2

2

π
π

�� Th e minimum number of independent coordinates needed to specify the position 
and confi guration of a thermodynamical system in space is called the degrees of 
freedom of the system. If a sample of gas has N molecules, then the total degrees of 
freedom f = 3N. If there are q number of constraints then total degrees of freedom 
f = 3N-q.

�� For a monoatomic molecule, f = 3
For a diatomic molecule (at normal temperature), f = 5

S U M M A R Y 

Th e experimental verifi cation on Einstein’s theoretical explanation of Brownian 
motion was done by Jean Perrin in the year 1908. Th e Einstein’s explanation on 
Brownian motion and Perrin experiment was of great importance in physics 

because it provided direct evidence of reality of atoms and molecules.

NoteNote
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For a diatomic molecule (at high temperature), f = 7

For a triatomic molecule (linear type), f = 7

For a triatomic molecule (non-linear type), f = 6

�� The average kinetic energy of sample of gas is equally distributed to all the degrees of 

freedom. It is called law of equipartition of energy. Each degree of freedom will get 
1

2
kT  

energy.
�� The ratio of molar specific heat at constant pressure and constant volume of a gas

γ =












C
C

p

v

For 

Monoatomic molecule: 1.67

Diatomic molecule (Normal temperature) : 1.40

Diatomic molecule (High temperature): 1.28

Triatomic molecule (Linear type): 1.28.

Triatomic molecule (Non-linear type): 1.33

�� The mean free path λ
π

=
kT

d P2 2
. The mean free path is directly proportional to 

temperature and inversely proportional to size of the molecule and pressure of the molecule
�� The Brownian motion explained by Albert Einstein is based on kinetic theory. It 

proves the reality of atoms and molecules.
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Kinetic theory of gases

Origin of pressure Average Kinetic energy

Maxwell - Boltzmann
distribution function

Degree of freedomDegree of freedom Mean free path

Brownian motionLaw of equipartition 
of energy

Speci�c heat of gas

Origin of temperature

RMS speed

Most probable speed

Mean speed

C O N C E P T  M A P
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EVALUATION 

I. Multiple choice questions

 1. A particle of mass m is moving with 
speed u in a direction which makes 
60° with respect to x axis. It undergoes 
elastic collision with the wall. What is 
the change in momentum in x and y 
direction?

60º

v�

(a) ∆px = −mu, ∆py = 0
(b) ∆px = −2mu, ∆py = 0 
(c) ∆px = 0, ∆py = mu 
(d) ∆px = mu, ∆py = 0 

 2. A sample of ideal gas is at equilibrium. 
Which of the following quantity is 
zero?
(a) rms speed
(b) average speed
(c) average velocity
(d) most probable speed

 3. An ideal gas is maintained at constant 
pressure. If the temperature of an ideal 
gas increases from 100K to 1000K then 
the rms speed of the gas molecules
(a) increases by 5 times
(b) increases by 10 times
(c) remains same
(d) increases by 7 times

 4. Two identically sized rooms A and B are 
connected by an open door. If the room A 
is air conditioned such that its temperature 
is 4° lesser than room B, which room has 
more air in it?

(a) Room A
(b) Room B
(c) Both room has same air
(d) Cannot be determined

 5. Th e average translational kinetic 
energy of gas molecules depends on 

(a) number of moles and T
(b) only on T
(c) P and T
(d) P only

 6. If the internal energy of an ideal gas 
U and volume V are doubled then the 
pressure
(a) doubles
(b) remains same
(c) halves
(d) quadruples

 7. The ratio γ = 
C
C
p

v
 for a gas mixture 

consisting of 8 g of helium and 16 g of 
oxygen is (Physics Olympiad -2005)
(a) 23/15
(b) 15/23
(c) 27/11
(d) 17/27

8. A container has one mole of monoatomic 
ideal gas. Each molecule has f degrees of 

freedom. What is the ratio of γ = 
C
C
p

v

183
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(a) f	 (b) f
2

(c) f
f + 2

	 (d) f
f
+ 2

	 9.	 If the temperature and pressure of a 
gas is doubled the mean free path of 
the gas molecules
(a) remains same
(b) doubled
(c) tripled
(d) quadrapoled

	10.	 Which of the following shows the 
correct relationship between the 
pressure and density of an ideal gas at 
constant temperature? 

P P P P

(b) (c) (d)(a)

ρ ρ ρ ρ

	11.	 A sample of gas consists of μ1 moles 
of monoatomic molecules, μ2 moles of 
diatomic molecules and μ3 moles of linear 
triatomic molecules. The gas is kept at 
high temperature. What is the total number 
of degrees of freedom?

(a) [3μ1 + 7( μ2 + μ3)] NA

(b) [3μ1 + 7 μ2 + 6μ3] NA

(c) [7μ1 + 3( μ2 + μ3)] NA

(d) [3μ1 + 6( μ2 + μ3)] NA

	12.	 If sP and sV denote the specific heats 
of nitrogen gas per unit mass at 
constant pressure and constant volume 
respectively, then� (JEE 2007)
(a) sP - sV = 28R
(b) sP - sV = R/28
(c) sP - sV  = R/14
(d) sP - sV = R

	13.	 Which of the following gases will have 
least rms speed at a given temperature?
(a) Hydrogen
(b) Nitrogen
(c) Oxygen
(d) Carbon dioxide

	14.	 For a given gas molecule at a fixed 
temperature, the area under the 
Maxwell-Boltzmann distribution 
curve is equal to

(a) PV
kT

	 (b) kT
PV

(c) P
NkT

	 (d) PV

	15.	 The following graph represents the 
pressure versus number density for ideal 
gas at two different temperatures T1 and  
T2. The graph implies

P

n

T1

T2

(a) T1 = T2

(b) T1 > T2

(c) T1 < T2

d) Cannot be determined

Answers:

  1) a	   2) c	   3) b	   4) a
  5) a	   6) b	   7) c	   8) d
  9) a	 10) d	 11) a	 12) b
13) d	 14) a	 15) b
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	 5.	 Derive the ratio of two specific heat 
capacities of monoatomic, diatomic 
and triatomic molecules

	 6.	 Explain in detail the Maxwell 
Boltzmann distribution function.

	 7.	 Derive the expression for mean free 
path of the gas.

	 8.	 Describe the Brownian motion.

IV Numerical Problems

	 1.	 A fresh air is composed of nitrogen 
N2(78%) and oxygen O2(21%). Find the 
rms speed of N2  and O2  at 20°C.

� Ans: For vrms = 511 m s-1

� For O2vrms = 478 m s-1

	 2.	 If the rms speed of methane gas in 
the Jupiter’s atmosphere is 471.8 m s-1, 
show that the surface temperature of 
Jupiter is sub-zero.

� Ans: -130°C
	 3.	 Calculate the temperature at which the 

rms velocity of a gas triples its value at 
S.T.P.

� Ans: T1 = 273 K, T2 = 2457 K
	 4.	 A gas is at temperature 80°C and 

pressure 5 × 10-10N m-2. What is 
the number of molecules per m3 if 
Boltzmann’s constant is 1.38 × 10-23 J K-1

� Ans: 1.02 × 1011

	 5.	 From kinetic theory of gases, show 
that Moon cannot have an atmosphere 
(Assume k = 1.38 × 10-23 J K-1 

Temperature T=0°C=273K).
� Ans: vescape = vrms= 1.86 km s-1

	 6.	 If 1020 oxygen molecules per second 
strike 4 cm2 of wall at an angle of 30° 
with the normal when moving at a 
speed of 2 × 103 m s-1, find the pressure 

II. Short answer questions

	 1.	 What is the microscopic origin of 
pressure?

	 2.	 What is the microscopic origin of 
temperature?

	 3.	 Why moon has no atmosphere?
	 4.	 Write the expression for rms speed, 

average speed and most probable speed 
of a gas molecule.

	 5.	 What is the relation between the 
average kinetic energy and pressure?

	 6.	 Define the term degrees of freedom.
	 7.	 State the law of equipartition of energy.
	 8.	 Define mean free path and write down 

its expression.
	 9.	 Deduce Charles’ law based on kinetic 

theory.
	10.	 Deduce Boyle’s law based on kinetic 

theory.
11.	 Deduce Avogadro’s law based on 

kinetic theory.
12.	 List the factors affecting the mean free 

path.
13.	 What is the reason for Brownian 

motion?

III.  Long answer questions

	 1.	 Write down the postulates of kinetic 
theory of gases.

	 2.	 Derive the expression of pressure 
exerted by the gas on the walls of the 
container.

	 3.	 Explain in detail the kinetic 
interpretation of temperature.

	 4.	 Describe the total degrees of freedom 
for monoatomic molecule, diatomic 
molecule and triatomic molecule.

185 

UNIT-9(XI-Physics_Vol-2).indd   185 20-08-2018   20:01:35

Unit 9  Kinetic Theory of Gases



186 Unit 9   Kinetic Theory of Gases

BOOKS FOR REFERENCE
1.	 Serway and Jewett, Physics for scientist and Engineers with modern physics, Brook/Coole 

publishers, Eighth edition
2.	 Paul Tipler and Gene Mosca, Physics for scientist and engineers with modern physics, 

Sixth edition, W.H.Freeman and Company
3.	 H.C.Verma, Concepts of physics -Volume 2, Bharati Bhawan Publishers
4.	 Douglas C. Giancoli, Physics for scientist & Engineers, Pearson Publications, Fourth 

Edition
5.	 James Walker, Physics, Addison Wesley, Fourth Edition

exerted on the wall. (mass of 1 atom = 
1.67 × 10-27 kg)

� Ans: 92.4 N m-2

	 7.	 During an adiabatic process, the 
pressure of a mixture of monatomic 
and diatomic gases is found to be 
proportional to the cube of the 
temperature. Find the value of  
γ = (Cp/CV)

� Ans: 3/2
	 8.	 Calculate the mean free path of air 

molecules at STP. The diameter of N2 
and O2 is about 3 × 10-10 m

� Ans: λ≈9 × 10-8 m

	 9.	 A gas made of a mixture of 2 moles 
of oxygen and 4 moles of argon at 
temperature T. Calculate the energy 
of the gas in terms of RT. Neglect the 
vibrational modes.

� Ans: 11RT
	10.	 Estimate the total number of air 

molecules in a room of capacity 25 m3 
at a temperature of 27°C.

� Ans: 6.1 × 1026 molecules
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Th rough this activity you will be able to 
learn about the Brownian motion of the 

particles.

STEPS:
• Use the URL or scan the QR code to open ‘interactive’ simulation on “Brownian motion”. 

•  Observe the movement of particles (Big balls) suspended in the gas at the initial stage. 
Observe the molecules in the gas by dragging the first slider. ‘Drag to see what’s actually 
going on’

•  Find the variants such as “Energy”, “Size Ratio” and “Mass Ratio” below the first slider. 
These variants can be lowered or increased.

•  By dragging to the appropriate values of the variants, Brownian motion of the particles 
shall be observed.

URL:
http://labs.minutelabs.io/Brownian-Motion/

* Pictures are indicative only.
*  If browser requires, allow Flash Player or Java Script to load the page.

ICT CORNER

Step4

Step2Step1

Step3
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