
“The greatest mathematicians, as Archimedes, Newton, and Gauss, 
always united theory and applications in equal measure.”

-Felix Klein

Chapter

1 Applications of Matrices and Determinants

1.1 Introduction
	     Matrices are very important and indispensable in handling system 
of linear equations which arise as mathematical models of real-world 
problems. Mathematicians Gauss, Jordan, Cayley, and Hamilton have 
developed the theory of matrices which has been used in investigating 
solutions of systems of linear equations. 
      	In this chapter, we present some applications of matrices in 
solving system of linear equations. To be specific, we study four 
methods, namely (i) Matrix inversion method, (ii) Cramer’s rule   
(iii) Gaussian elimination method, and (iv) Rank method. Before knowing 
these methods, we introduce the following: (i) Inverse of a non-singular 
square matrix, (ii) Rank of a matrix, (iii) Elementary row and column 
transformations, and (iv) Consistency of system of  linear equations.

Learning Objectives

	 Upon completion of this chapter, students will be able to 
	 ●	 Demonstrate  a few fundamental  tools for solving systems of linear equations:
		  ̵	 Adjoint of a square matrix
		  ̵	 Inverse of a non-singular matrix
		  ̵	 Elementary row and column operations
		  ̵	 Row-echelon form
		  ̵	 Rank of a matrix
	 ●	 Use row operations to find the inverse of a non-singular matrix
	 ●	 Illustrate the following techniques in solving system of linear equations by 
		  ̵	 Matrix inversion method
		  ̵	 Cramer’s rule
		  ̵	 Gaussian elimination method 
	 ●	 Test the consistency of system of non-homogeneous linear equations
	 ●	 Test for non-trivial solution of system of homogeneous linear equations

Carl Friedrich Gauss 
(1777-1855)  

German mathematician and 
physicist
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1.2 Inverse of a Non-Singular Square Matrix
	 We recall that a square matrix is called a non-singular matrix if its determinant is not equal to 
zero  and a square matrix is called singular if its determinant is zero. We have already learnt about 
multiplication of a matrix by a scalar, addition of two matrices, and multiplication of two matrices. 
But a rule could not be formulated to perform division of a matrix by another matrix since a matrix is 
just an arrangement of numbers and has no numerical value. When we say that, a matrix A  is of order 
n,  we mean that A  is a square matrix having n  rows and n  columns. 

	 In the case of a real number x ¹ 0, there exists a real number y
x

=







1 , called the inverse (or 

reciprocal) of x such that xy yx= =1. In the same line of thinking, when a matrix A  is given, we 
search for a matrix B  such that the products AB and BA  can be found and AB BA I= = ,  where I  is 
a unit matrix.

	 In this section, we define the inverse of a non-singular square matrix and prove that a non-singular 
square matrix has a unique inverse. We will also study some of the properties of inverse matrix. For 
all these  activities, we need a matrix called the adjoint of a square matrix.  

1.2.1 Adjoint of a Square Matrix
	 We recall the properties of the cofactors of the elements of a square matrix. Let A  be a square 

matrix of by order n  whose determinant is denoted A A or det ( ).Let aij be the element sitting at the 

intersection of the i th  row and j th column of A.  Deleting the i th  row and j th column of A,  we obtain 

a sub-matrix of order ( ).n −1 The determinant of this sub-matrix is called minor of the element aij .  It 

is denoted by Mij .The product of Mij and ( )− +1 i j  is called cofactor of the element aij .  It is denoted 

by Aij .  Thus the cofactor of  aij  is A Mij
i j

ij== −− ++( ) .1

	 An important property connecting the elements of a square matrix and their cofactors is that the 
sum of the products of the entries (elements) of a row and the corresponding cofactors of the elements 
of the same row is equal to the determinant of the matrix; and the sum of the products of the entries 
(elements) of a row and the corresponding cofactors of the elements of any other row is equal to  0. 
That is, 

a A a A a A
A i j

i ji j i j in jn1 1 2 2 0
++ ++ ++ ==

==
≠≠







   if  
      if  ,

where A  denotes the determinant of the square matrix A. Here A is read as  “determinant  of A ” 

and  not as “ modulus of A ”.  Note that A  is just a real number and it can also be negative. For 

instance, we have 
2 1 1
1 1 1
2 2 1

2 1 2 1 1 2 1 2 2 2 1 0 1= − − − + − = − + + = −( ) ( ) ( ) .

Definition 1.1
	 Let A  be a square matrix of order n.Then  the matrix of cofactors of A  is defined as the matrix 

obtained by replacing each element aij  of A  with the corresponding cofactor Aij . The adjoint matrix 

of A  is defined as the transpose of the matrix of cofactors of A.  It is denoted byadj A.
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Note
	 adj A is a square matrix of order n  and adj A A Mij

T i j
ij

T
==   == −− 

++( ) .1

	 In particular,  adj A  of  a  square matrix of order 3  is given below:

	             adj A
M M M
M M M
M M M

A AT

==
++ −− ++
−− ++ −−
++ −− ++

















==
11 12 13

21 22 23

31 32 33

11 112 13

21 22 23

31 32 33

11 21 31

12 22 32

13

A
A A A
A A A

A A A
A A A
A A

T
















==

223 33A
















.

   Theorem 1.1
	 For every square matrix A  of order n , A A A A A In( ) ( ) .adj adj = =  

Proof 
	 For simplicity, we prove the theorem for n = 3 only.

Consider A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

. Then, we get 

a A a A a A A a A a A a A a A11 11 12 12 13 13 11 21 12 22 13 23 11 30+ + = + + =, ,       11 12 32 13 33

21 11 22 12 23 13 21 21 22

0

0

+ + =

+ + = +

a A a A

a A a A a A a A a A

;

,      222 23 23 21 31 22 32 23 33

31 11 32 12 33 13

0+ = + + =

+ +

a A A a A a A a A

a A a A a A

, ;  

== + + = + + =0 031 21 32 22 33 23 31 31 32 32 33 33, ,          a A a A a A a A a A a A AA .

By using the above equations, we get 

	 A A( )adj =  
a a a
a a a
a a a

A A A
A A A
A

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13















 AA A23 33

















	= 	
A

A
A

A A I
0 0

0 0
0 0

1 0 0
0 1 0
0 0 1

3

















=
















=  	 … (1)

	 ( )adjA A =
A A A
A A A
A A A

a a a
a a a
a

11 21 31

12 22 32

13 23 33

11 12 13

21 22 23

31















 aa a32 33

















	= 	
A

A
A

A A I
0 0

0 0
0 0

1 0 0
0 1 0
0 0 1

3

















=
















= , 	 … (2)

where I3   is the identity matrix of order 3. 
	 So, by equations (1) and (2), we get  A A A A A I( ) ( ) .adj adj = = 3

Note
	 If A  is a singular matrix of order n , then A = 0  and  so A A A A On( ) ( ) ,adj adj = =  where On   

denotes zero matrix of order n.
Example 1.1

	 If A =
−

− −
−

















8 6 2
6 7 4

2 4 3
, verify that A A A A A I( ) ( ) | | .adj adj   = = 3

Solution

		  We find that | |A 	 = 	
8 6 2
6 7 4

2 4 3
8 21 16 6 18 8 2 24 14 40 60 20 0

−
− −

−
= − + − + + − = − + =( ) ( ) ( ) .
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By the definition of adjoint, we get 

                                       
adj A =

− − − + −
− − + − − − +

−

( ) ( ) ( )
( ) ( ) ( )
( )

21 16 18 8 24 14
18 8 24 4 32 12

24 14 −− − + −

















=














( ) ( )
.

32 12 56 36

5 10 10
10 20 20
10 20 20

T

So, we get 

		  A A( )adj 	= 	

8 6 2
6 7 4

2 4 3

5 10 10
10 20 20
10 20 20

−
− −

−

































			  = 	

40 60 20 80 120 40 80 120 40
30 70 40 60 140 80 60 140 80

10

− + − + − +
− + − − + − − + −

− 440 30 20 80 60 20 80 60

0 0 0
0 0 0
0 0 0

0 3

+ − + − +

















=
















= =I A II3,

	 Similarly, we get 

		  ( )adj A A 	= 	

5 10 10
10 20 20
10 20 20

8 6 2
6 7 4

2 4 3

















−
− −

−

















			  = 	

40 60 20 30 70 40 10 40 30
80 120 40 60 140 80 20 80 60
80 120

− + − + − − +
− + − + − − +
− ++ − + − − +

















=
















= =
40 60 140 80 20 80 60

0 0 0
0 0 0
0 0 0

0 3I A II3.

		 Hence,  A A( )adj 	= 	( ) .adj A A A I= 3

1.2.2 Definition of inverse matrix of a square matrix 
	 Now, we define the inverse of a square matrix.
Definition 1.2

	 Let A  be a square matrix of order n. If there exists a square matrix B  of order n such that 

AB BA In= = ,  then the matrix B  is called an inverse of A.

  Theorem 1.2
	 If a square matrix has an inverse, then it is unique. 
Proof
	 Let A  be a square matrix order n  such that an inverse of A  exists. If possible, let there be two 

inverses B and C of A.Then, by definition, we have AB BA In= = and  AC CA In= = . 

	 Using these equations, we get 

                                    C CI C AB CA B I B Bn n= = = = =( ) ( ) .  

	 Hence the uniqueness follows. 
	 Notation  The inverse of a matrix A  is denoted by A−1.
Note 
	 AA A A In

− −= =1 1 .
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  Theorem 1.3
	 Let A  be square matrix of order n.Then, A−1 exists if and only if A  is non-singular. 

Proof
	 Suppose that A−1 exists. Then AA A A In

− −= =1 1 .

	 By the product rule for determinants, we get 

	 det( ) det( )det( ) det( )det( ) det( ) .AA A A A A In
− − −= = = =1 1 1 1 So, A A= ≠det( ) .0

	 Hence A  is non-singular. 
	 Conversely, suppose that A  is non-singular. 
	 Then A ¹ 0. By Theorem 1.1, we get              

                                                   A A A A A In(adj ) (adj ) .  = =

	 So, dividing by A , we get A
A

A
A

A A In
1 1adj adj 









 =









 = .

	 Thus, we are able to find a matrix B
A

A=
1 adj  such that AB BA In= = .

	 Hence, the inverse of A exists and it is given by  A
A

A−− ==1 1 adj .

Remark 
	 The determinant of a singular matrix is 0 and so a singular matrix has no inverse. 

Example 1.2

	 If A
a b
c d

=








 is non-singular, find A−1.

Solution

	 We first find adj A.  By definition, we get adj A
M M
M M

d c
b a

d b
c a

T T

=
+ −
− +









 =

−
−









 =

−
−











11 12

21 22

.

	 Since A  is non-singular, A ad bc= − ≠ 0.

	 As A
A

A− =1 1 adj ,  we get A
ad bc

d b
c a

− =
−

−
−











1 1 .

Example 1.3

	 Find the inverse of the matrix  
2 1 3
5 3 1
3 2 3

−
−
−
















.

Solution

	 Let A 	 = 	
2 1 3
5 3 1
3 2 3

−
−
−

















 .  Then | | ( ) ( ) ( ) .A =
−

−
−

= + − + − = − ≠
2 1 3
5 3 1
3 2 3

2 7 12 3 1 1 0

Therefore, A−1  exists. Now, we get 
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	 adj A 	 = 	

+ −
−
−

+
−
−

−
−

+
−

−
−

−

+
−

−
−

+
−

−

 3 1
2 3

5 1
3 3

5 3
3 2

1 3
2 3

2 3
3 3

2 1
3 2

1 3
3 1

2 3
5 1

2 1
5 3























=
−
−

− −

















=
−

T

T7 12 1
9 15 1
10 17 1

7 9 10
12 115 17

1 1 1
−

− −
















.

	 Hence, A−1 	 = 	
1 1

1

7 9 10
12 15 17

1 1 1

7 9 10
12 15 1

| |
( )

( )A
Aadj =

−

−
−

− −

















=
− −
− − 77

1 1 1−

















 .

1.2.3 Properties of inverses of matrices
	 We state and prove some theorems on non-singular matrices.

  Theorem 1.4
	 If A  is non-singular, then

           (i) A
A

− =1 1

   
(ii)	 A AT T( ) = ( )− −1 1 	(iii) λ

λ
λA A( ) =− −1 11 ,   where   is a non-zero scalar.

Proof	
	 Let A  be non-singular. Then A ¹ 0  and A−1 exists. By definition, 

                                        AA A A In
− −= =1 1 . 			   …(1)

	 (i)	 By (1), we get AA A A In
− −= =1 1 .

		  Using the product rule for determinants, we get  A A In
− = =1 1.

		 Hence, A
A

− =1 1 .

	 (ii)	From (1), we get AA A A I
T T

n
T− −( ) = ( ) = ( )1 1 .

		 Using the reversal law of transpose, we get A A A A I
T T T T

n
− −( ) = ( ) =1 1 .Hence 

A AT T( ) = ( )− −1 1 .

	 (iii)	Since λ  is a non-zero scalar, from (1), we get  λ
λ λ

λA A A A In( )





 = 






( ) =− −1 11 1 .

		 So, λ
λ

A A( ) =− −1 11 .

  Theorem 1.5  (Left Cancellation Law)
       Let A B C, ,  and  be square matrices of order n. If A  is non-singular and AB AC= , then  B C= .

Proof
	 Since A  is non-singular, A−1 exists and AA A A In

− −= =1 1 .  Taking AB AC= and pre-multiplying 

both sides by A−1,  we get A AB A AC− −=1 1( ) ( ). By using the associative property of matrix 

multiplication and property of inverse matrix, we get B C= .
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  Theorem1.6  (Right Cancellation Law)

	 Let A B C, ,  and  be square matrices of order n. If A  is non-singular and BA CA= , then  B C= .

Proof

	 Since A  is non-singular, A−1 exists and AA A A In
− −= =1 1 .  Taking BA CA= and post-multiplying 

both sides by A−1,  we get ( ) ( ) .BA A CA A− −=1 1 By using the associative property of matrix multiplication 

and property of inverse matrix, we get B C= .

Note
	 If A  is singular and AB AC=  or BA CA= , then B and C need not be equal. For instance, 

consider the following matrices:

A B C=








 =

−







 =

−









1 1
2 2

1 1
0 1

0 1
1 1

, . and 

	 We note that  A AB AC B C= = ≠0 and  but ; . 	

  Theorem 1.7  (Reversal Law for Inverses)

	 If A  and B  are non-singular matrices of the same order, then the product AB is also non-singular 

and ( ) .AB B A− − −=1 1 1

Proof

	 Assume that A  and B  are non-singular matrices of same order n.  Then, | | , ,A B¹ ¹0 0 both 

A B− −1 1 and exist and they are of order n.The products AB and B A− −1 1  can be found and they are also 

of  order n. Using the product rule for determinants, we get AB A B= ≠| || | .0 So, AB is non-singular 

and 
( )( ) ( ( )) ( ) ;

( )( ) (

AB B A A BB A AI A AA I

B A AB B
n n

− − − − − −

− −

= = = =

=

1 1 1 1 1 1

1 1 −− − − −= = =1 1 1 1( )) ( ) .A A B B I B B B In n

	 Hence ( ) .AB B A− − −=1 1 1

 Theorem 1.8 (Law of Double Inverse)

	 If A  is non-singular, then A−1  is also non-singular and ( ) .A A− − =1 1

Proof
	 Assume that A  is non-singular. Then A A≠ −0 1,  and   exists. 

	 Now A
A

A− −= ≠ ⇒1 11 0
 
is also non-singular, and AA A A I− −= =1 1 .

	 Now, AA I AA I A A I− − − − − −= ⇒ ( ) = ⇒ ( ) =1 1 1 1 1 1 . 	 ... (1)

	 Post-multiplying by A  on both sides of equation (1), we get A A− −( ) =1 1
.
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   Theorem 1.9
	 If A  is a non-singular square matrix of order n ,  then

	 (i)	 adj  adjA A
A

A( ) = ( ) =− −1 1 1 	 (ii)	 adj A A n= −| | 1

	 (iii)	 adj adj  A A An( ) = −| | 2  	 (iv)	 adj adj   is a nonzero scalar( ) ( ),λ λ λA An= −1  

	 (v)	 adj adj( ) ( )A A n= −1 2

 	 (vi)	 ( )adj adjA AT T= ( )  

Proof
	   Since A  is a non-singular square matrix, we have A ¹ 0 and so, we get

	 (i)	 A
A

A A A A
A

AA A A− − − − −−= ⇒ ⇒ = ( ) = (=1 1 1 1 111 1
| |

( ) ( )
| |

| |adj adj adj   )) =
−1 1

| |A
A .

		  Replacing A  by A−1  in adj A A A= −1 , we get adj A A A
A

A− − − −( ) = ( ) =1 1 1 1 1 .

		  Hence, we get adj  adjA A
A

A( ) = ( ) =− −1 1 1 .

	 (ii)	 A A A A A In( ) ( ) | |adj adj   = = 	 ⇒ 	det adj det adj  detA A A A A In( ) ( ) | |( ) = ( ) = ( )  

				   ⇒ 	A A A A An nadj  adj = ⇒ = −| | | | 1 .

	 (iii)	 For any non-singular matrix B of  order n,  we have B B B B B In( ) ( ) | | .adj adj   = =

		  Put B A= adj .  Then, we get   adj adj adj  adj A A A In( ) ( ) =( ) | | .

		  So, since adj A A n= −| | 1 , we get adj adj adj  A A A In
n( ) ( ) = −( ) | | .1

		  Pre-multiplying both sides by A, we get A A A A A In
nadj adj adj  ( ) ( )( )( ) = ( )−| | .1

		  Using the associative property of matrix multiplication, we get 

		  A A A A A In
nadj adj adj  ( )( ) ( ) = ( )−| | 1 .

		  Hence, we get A I A A An
n( ) ( )( ) = −adj adj  | | .1 That is, adj adj  A A An( ) = −| | .2

	 (iv)	 Replacing A  by λ A  in adj( )A A A= −1  where λ is a non-zero scalar,  we get

		  adj adj( ) ( ) ( )λ λ λ λ
λ

λ λA A A A A A A An n n= = = =− − − − −1 1 1 1 11 .

	 (v)	 By (iii), we have adj adj A A An( ) = −| | 2 . So, by taking determinant on both sides, we get

		   adj adj( ) | | | | | |( ) ( )A A A A A A An n n n n n= = ( ) = =− − − + −2 2 2 1 12 2

.

	 (vi)	 Replacing A by AT  in A
A

A− =1 1
| |

adj  , we get A
A

AT
T

T( ) = ( )−1 1
| |

adj  and hence, we 

get  adj  adj A A A A A A A A
A

AT T T T T( ) = ( ) = ( ) = ( ) =










− − −| | | | | | | |
| |

1 1 1 1
TT

TA= ( )adj .
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Note

	 If  A  is a non-singular matrix of order 3, then, | |A ¹ 0 . By theorem 1.9 (ii), we get adjA A=| |2  

and so, adj A is positive. Then, we get A A= ± adj .

	 So, we get A
A

A−− == ±±1 1
adj 

adj .

	 Further, by property (iii), we get A
A

A= ( )1 adj adj .

	 Hence,  if A  is a non-singular matrix of order 3, then we get A
A

A== ±± (( ))1
adj 

adj adj .

Example 1.4

	 If A  is a non-singular matrix of odd order, prove that  adj A  is positive. 

Solution 

	 Let A  be a non-singular matrix  of order 2 1 0 1 2m m+ =, , , , . where   Then, we get A ¹ 0  and, 

by theorem 1.9 (ii), we have adj A A Am m= =+ −| | | | .( )2 1 1 2  

	 Since | |A m2  is always positive, we get that adj A  is positive. 

Example 1.5

	 Find a matrix A  if adj( ) .A =
−

−
















7 7 7
1 11 7

11 5 7
Solution

	 First, we find adj( ) ( ) ( ) ( ) .A =
−

− = − − − − − − − = >
7 7 7
1 11 7

11 5 7
7 77 35 7 7 77 7 5 121 1764 0  

	 So, we get

			   A
A

A= ± ( )1
adj 

adj adj 	 = 	 ±
+ − − − − + − −
− + + + − −
+

1
1764

77 35 7 77 5 121
49 35 49 77 35 77
4

( ) ( ) ( )
( ) ( ) ( )
( 99 77 49 7 77 7+ − − + +















) ( ) ( )

T

 

				   =  ±
−

−
−

















= ±
−

−
−









1
42

42 84 126
84 126 42

126 42 84

1 2 3
2 3 1
3 1 2

T








 .

Example 1.6

	 If adj A =
−















1 2 2
1 1 2
2 2 1

,  find A−1 .
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Solution

			   We compute  adj A 	= 	
−

=
1 2 2

1 1 2
2 2 1

9  .

			   So, we get  A
A

A− = ±1 1
adj

adj
( )

( ) 	=  ±
−















= ±
−















1
9

1 2 2
1 1 2
2 2 1

1
3

1 2 2
1 1 2
2 2 1

 .

Example1.7

	 If A  is symmetric, prove that adj  A is also symmetric. 

Solution

	 Suppose A  is symmetric. Then, A AT =  and so, by theorem 1.9  (vi), we get

	 adj adj adj adj adj  is symmetric.A A A A AT T T( ) = ( ) ⇒ = ( ) ⇒

  Theorem 1.10 

	 If A  and B  are any two non-singular square matrices of order n ,  then 

                                                          adj adj  adj( ) ( )( ).AB B A=

Proof
			   Replacing A  by AB  in adj( )A 	 = 	 A A−1 , we get

			   adj( )AB 	 = 	 | | ( ) | | | | adj( ) adj( )AB AB B B A A B A− − −= ( )( ) =1 1 1 .

Example 1.8

	 Verify the property A AT T( ) = ( )− −1 1 with A =










2 9
1 7

.

Solution

For the given A, 	 we get A 	=  	( )( ) ( )( )2 7 9 1 14 9 5− = − = . So, A− =
−

−








 =

−

−



















1 1
5

7 9
1 2

7
5

9
5

1
5

2
5

 .

			   Then, A
T−( )1 	= 	

7
5

1
5

9
5

2
5

1
5

7 1
9 2

−

−



















=
−

−








  .	 ... (1)

For the given A,	 We get  AT 	= 	
2 1
9 7









 . So AT = − =( )( ) ( )( )2 7 1 9 5 .

			   Then,  AT( )−1
	= 	 1

5
7 1
9 2

−
−









  .	 ... (2)

	 From  (1) and (2), we get A
T−( )1 = 	 AT( )−1

.  Thus, we have verified the given property.
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Example 1.9

	 Verify ( )AB B A− − −=1 1 1 with A B=
−







 =

− −
−











0 3
1 4

2 3
0 1

, .

Solution

		  We get	 AB 	= 	
0 3
1 4

2 3
0 1

0 0 0 3
2 0 3 4

0 3
2 7

−









− −
−









 =

+ +
− + − −









 =

− −










			   AB( )−1 	= 	 1
0 6

7 3
2 0

1
6

7 3
2 0( )+

− −







 =

− −







 	 … (1)

			   A−1 	= 	 1
0 3

4 3
1 0

1
3

4 3
1 0( )+ −









 =

−










			   B−1 	= 	 1
2 0

1 3
0 2

1
2

1 3
0 2( )−

−
−









 =

−
−











			   B A− −1 1 	= 	 1
2

1 3
0 2

1
3

4 3
1 0

1
6

7 3
2 0

−
−









 −









 =

− −







 .	 … (2)

	 As the matrices in (1) and (2) are same, ( )AB B A− − −=1 1 1  is verified.

Example 1.10

	 If A =










4 3
2 5

,  find x  and y  such that A xA yI O2
2 2+ + = .  Hence, find  A−1.

Solution

			   Since  A2 	 = 	
4 3
2 5

4 3
2 5

22 27
18 31



















 =









  , 

			   A xA yI O2
2 2+ + = 	⇒ 	

22 27
18 31

4 3
2 5

1 0
0 1

0 0
0 0









 +









 +









 =









x y

				   ⇒ 	
22 4 27 3

18 2 31 5
0 0
0 0

+ + +
+ + +









 =











x y x
x x y

 .

	 So, we get 22 4 0 31 5 0 27 3 0+ + = + + = + =x y x y x, ,  and 18 2 0+ =x .

	 Hence x = −9  and y =14.Then, we get A A I O2
2 29 14− + = .

	 Post-multiplying this equation by A−1,  we get A I A O− + =−9 142
1

2.  Hence, we get   

	
A I A− = −( ) =









 −



















 =

−
−




1

2
1

14
9 1

14
9

1 0
0 1

4 3
2 5

1
14

5 3
2 4




 .
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1.2.4 Application of matrices to Geometry
	 There is a special type of non-singular matrices which are widely used in applications of matrices 
to geometry. For simplicity, we consider two-dimensional analytical geometry. 

	 Let O  be the origin, and x O x'  and y Oy'  be the x -axis and  

y -axis. Let P  be a point in the plane whose coordinates are ( , )x y

with respect to the coordinate system.  Suppose that we rotate the 
x -axis and  y -axis about the origin, through an angle θ  as shown 

in the figure. Let X OX'  and Y OY'  be the new X -axis and new 

Y -axis. Let ( , )X Y  be the new set of coordinates of  P  with 

respect to the new coordinate system. Referring to Fig.1.1,  
we get

	 x 	 = 	OL ON LN X QT X Y= − = − = −cos cos sinθ θ θ ,

	 y 	 = 	 PL PT TL QN PT X Y= + = + = +sin cosθ θ .

	 These equations provide transformation of  one coordinate system into another coordinate system. 
The above two equations can be written in the matrix form

	
x
y









 	= 	

cos sin
sin cos

θ θ
θ θ

−



















X
Y

 .	

	 Let W 	= 	
cos sin
sin cos

θ θ
θ θ

−







 . Then 

x
y

W
X
Y









 =









  and W = + =cos sin2 2 1θ θ .

	 So, W  has inverse  and W − =
−











1 cos sin
sin cos

θ θ
θ θ

.  We note that W WT− =1 . Then, we get the 

inverse transformation by the equation

	
X
Y









 	= 	W

x
y

x
y

x y
x

− 







 =

−


















 =

−1 cos sin
sin cos

cos sin
si

θ θ
θ θ

θ θ
nn cosθ θ+









y

.	

	
Hence, we get the transformation X x y= −cos sinθ θ , Y x y= +sin cosθ θ .

	 This transformation is used in Computer Graphics and determined by the matrix 

W =
−









cos sin
sin cos

θ θ
θ θ

. We note that the matrix W  satisfies a special property W WT− =1 ; that is, 

WW W W IT T= = .  

Definition 1.3

	 A square matrix A  is called orthogonal if AA A A IT T= = .

Note
	 A  is orthogonal if and only if A  is non-singular and A AT−− ==1 .

q
O

X
T

L�x

P

Q

x

R

Y

�y

y

�Y

�X

M

N

q

Fig.1.1
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Example 1.11

	 Prove that 
cos sin
sin cos

θ θ
θ θ

−







  is orthogonal.

Solution

	 Let A =
−









cos sin
sin cos

θ θ
θ θ

. Then, AT
T

=
−







 =

−










cos sin
sin cos

cos sin
sin cos

θ θ
θ θ

θ θ
θ θ

.

So, we get 

			   AAT 	= 	
cos sin
sin cos

cos sin
sin cos

θ θ
θ θ

θ θ
θ θ

−







 −











				   = 	
cos sin cos sin sin cos

sin cos cos sin sin cos

2 2

2 2

θ θ θ θ θ θ
θ θ θ θ θ θ

+ −
− +









 =









 =

1 0
0 1 2I  .

	 Similarly, we get A AT = I2 . Hence AAT = A AT = I2 ⇒   A  is orthogonal.

Example 1.12 

	 If  A
a

b
c

=
−
−

















1
7

6 3
2 6

2 3
 is orthogonal, find a b,  and c ,  and hence A−1 .

Solution

	 If A  is orthogonal, then AA A AT T= = I3 . So, we have 

	 AAT 	 = 	 I3 ⇒
1
7

6 3
2 6

2 3

1
7

6 2
3 2

6 3

−
−

















− −
















a
b

c

b
c

a
=

1 0 0
0 1 0
0 0 1

















		 ⇒ 	
45 6 6 6 12 3 3

6 6 6 40 2 2 18
12 3 3 2 2 18

2

2

2

+ + + − +
+ + + − +
− + − +

a b a c a
b a b b c

c a b c c ++















13

=  49
1 0 0
0 1 0
0 0 1

















		 ⇒ 	

45 49
40 49
13 49

6 6 6 0
12 3 3 0
2 2 18 0

2

2

2

+ =

+ =

+ =
+ + =
− + =
− + =









a
b
c
b a

c a
b c

























 ⇒
a b c
a b a c b c

2 2 24 9 36
1 4 9

= = =
+ = − − = − − = −









, , ,
, ,

 ⇒ a b c= = − =2 3 6, ,

	 So, we get A =
−

− −
















1
7

6 3 2
3 2 6

2 6 3
 and hence, A AT− = =

−
− −

















1 1
7

6 3 2
3 2 6

2 6 3
.
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1.2.5 Application of matrices to  Cryptography
	 One of the important applications of inverse of a non-singular square 
matrix is in cryptography.  Cryptography is an art of communication 
between two people by keeping the information not known to others. It is 
based upon two factors, namely encryption and decryption. Encryption 
means the process of transformation of an information (plain form)  into an 
unreadable form (coded form).  On the other hand, Decryption  means the 
transformation of the coded message back into original form. Encryption and decryption require a  
secret technique which is known only to the  sender and the receiver. 
	 This secret is called a key. One way of generating a key is by using a non-singular matrix to 
encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the original 
message by using the inverse of the matrix. The matrix used for encryption is called encryption 
matrix (encoding matrix) and that used for decoding is called decryption  matrix (decoding 
matrix). 
	 We explain the process of encryption and decryption by means of an example.
	 Suppose that the sender and receiver consider messages in alphabets A Z−  only, both assign the 
numbers 1-26 to the letters A Z−   respectively, and the number 0 to a blank space. For simplicity, the 
sender employs a key as post-multiplication by a non-singular matrix of order 3 of his own choice. 
The receiver uses post-multiplication by the inverse of the matrix which has been chosen by the 
sender. 
	 Let the encoding matrix be  

                                                        A =
−
−

















1 1 1
2 1 0
1 0 0

.

	 Let the message to be sent by the sender be “WELCOME”. 
	 Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the 
message is cut into pieces (WEL), (COM), (E), each of length 3, and converted into a sequence of  
row matrices of numbers: 
                                                        [23 5 12],[3 15 13],[5 0 0]. 
	 Note that, we have included two zeros in the last row matrix. The reason is to get a row matrix 
with 5 as the first entry. 
	 Next, we encode the message by post-multiplying each row matrix as given below:
	 Uncoded	 Encoding	 Coded
	 row matrix	 matrix	 row matrix

			   23 5 12
1 1 1
2 1 0
1 0 0

  [ ]
−
−

















	= 	[ ];45 28 23   −

			   3 5 13
1 1 1
2 1 0
1 0 0

 1  [ ]
−
−

















	= 	[ ];46 18 3   −

			   5  0  0[ ]
−
−

















1 1 1
2 1 0
1 0 0

	= 	[ ].5 5     5−
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	 So the encoded message is [ ] [ ] [ ]45 28 23 46 18 3 5 5           5− − −
	 The receiver will decode the message by the reverse key, post-multiplying by the inverse of  A. 
	 So the decoding matrix is   

                                             A
A

A− = = −
−

















1 1
0 0 1
0 1 2
1 1 1

adj .

	 The receiver decodes the coded message as follows:

	 Coded	 Decoding	 Decoded
	 row matrix	 matrix	 row matrix

			   45 28 23
0 0 1
0 1 2
1 1 1

   −[ ] −
−

















	 = 	 [ ];23  5  12

			   [ ]46 18 3
0 0 1
0 1 2
1 1 1

   − −
−

















	 = 	 3 5 13 1  [ ];

			   [ ]5 5
0 0 1
0 1 2
1 1 1

     5− −
−

















	 = 	 5  0  0[ ].

	 So, the sequence of decoded row matrices is 23 5 12 3 15 13 5 0 0      [ ] [ ] [ ], , .

	 Thus, the receiver reads the message as “WELCOME”.

EXERCISE 1.1
	 1.	 Find the adjoint of the following:

			  (i)	
−









3 4
6 2

    (ii)	
2 3 1
3 4 1
3 7 2

















    (iii)  1
3

2 2 1
2 1 2

1 2 2
−

−

















	 2.		 Find the inverse (if it exists) of the following:

			  (i)	
−

−










2 4
1 3

    (ii)  	
5 1 1
1 5 1
1 1 5

















    (iii)  
2 3 1
3 4 1
3 7 2

















	 3.	 If F ( )
cos sin

sin cos
α

α α

α α
=

−

















0
0 1 0

0
, show that F F( ) ( ).α α[ ] = −−1

	 4.	 If A =
− −











5 3
1 2

, show that A A I O2
2 23 7− − = . Hence find A−1 .

	 5.	 If A =
−

−

















1
9

8 1 4
4 4 7
1 8 4

, prove that A AT− =1 .
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	 6.	 If A =
−

−










8 4
5 3

, verify that A A A A A I( ) ( )adj adj = = 2 .

	 7.	 If A B=








 =

− −









3 2
7 5

1 3
5 2

 and ,  verify that ( )AB B A− − −1 1 1= .

	 8.	 If adj( ) ,A =
−

− −
−

















2 4 2
3 12 7
2 0 2

 find A.

	 9.	 If adj( ) ,A =
−

−
−

















0 2 0
6 2 6
3 0 6

 find A−1.

	 10.	 Find  adj adj( ( ))A  if adj A =
−

















1 0 1
0 2 0
1 0 1

.

	 11.	 A
x

x
=

−










1
1

tan
tan

,  show that A A
x x
x x

T − =
−









1 2 2
2 2

cos sin
sin cos

.

	 12.	 Find the matrix A  for which A
5 3
1 2

14 7
7 7− −









 =









  .

	 13.		 Given A B=
−







 =

−









1 1
2 0

3 2
1 1

,   and C =










1 1
2 2

,  find a matrix X  such that AXB C= .

	 14.	 If A =
















0 1 1
1 0 1
1 1 0

, show that A A I− = −( )1 21
2

3 .

	 15.	 Decrypt the received encoded message 2 3 20 4−[ ][ ]with the encryption matrix
− −









1 1
2 1

and the decryption matrix as its inverse, where the system of  codes  are described by the 
numbers 1-26 to  the letters A Z−  respectively, and the number 0 to  a blank space.

1.3  Elementary Transformations of a Matrix
		 A matrix can be transformed to another matrix by certain operations called elementary row 
operations and elementary column operations. 

1.3.1 Elementary row and column operations
	 Elementary row (column) operations on a matrix are as follows:
	 (i)	 The interchanging of any two rows (columns) of the matrix
	 (ii)	 Replacing a row (column) of the matrix by a non-zero scalar multiple of the row (column) by a  

non-zero scalar.
	 (iii)	 Replacing a row (column) of the matrix by a sum of the row (column) with a non-zero scalar 

multiple of another row (column) of the matrix.
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	 Elementary row operations and elementary column operations on  a matrix are known as 
elementary transformations. 
	 We use the following notations for elementary row transformations:
	 (i)	 Interchanging of ith  and  jth rows is denoted byR Ri j↔ .
	 (ii)	 The multiplication of each element of ith row by a non-zero constant λ is denoted by R Ri i→ λ .

	 (iii)	 Addition to  ith row, a non-zero constant λ multiple of  jth  row is denoted byR R Ri i j→ + λ .

	 Similar notations are used for elementary column transformations. 

Definition 1.4
	 Two matrices A  and B  of same order are said to be equivalent to one another if one can be 
obtained from the other by the applications of elementary transformations. Symbolically, we write 
A B  to mean that the matrix A  is equivalent to the matrix B . 	

	 For instance, let us consider a matrix A =
−

−
− −

















1 2 2
1 1 3

1 1 4
.

	 After performing the elementary row operation R R R2 2 1→ + on A , we get a matrix B  in which 

the second row is the sum of the second row in A and the first row  in A . 

	 Thus, we get A  B =
−
−
− −

















1 2 2
0 1 5
1 1 4

.

	 The above elementary row transformation is also represented as follows: 

	

1 2 2
1 1 3

1 1 4

1 2 2

1 1 4
0 1 52 2 1

−
−

− −

















 →
−

− −













−→ +R R R


. 	

Note
	 An elementary transformation transforms a given matrix into another matrix which need not be 
equal to the given matrix. 

1.3.2 Row-Echelon form
	 Using the row elementary operations, we can transform a given non-zero matrix to a simplified 
form called a Row-echelon form. In a row-echelon form, we may have rows all of whose entries are 
zero.  Such rows are called zero rows. A non-zero row is one in which at least one of the entries is not 

zero. For instance, in the matrix 
6 0 1
0 0 1
0 0 0

−















, R R1 2 and are non-zero rows and R3 is a zero row.

Definition 1.5

		  A non-zero matrix E is said to be in a row-echelon form if:
	 (i)	 All zero rows of E  occur below every non-zero row of E.
	 (ii)	 The first non-zero element in any row i  of E  occurs in the j th  column of E , then all other 

entries in the j th   column of E  below the first non-zero element of row i  are zeros.
	 (iii)	The first non-zero entry in the i th  row of E  lies  to the left of the first non-zero entry in 

( )i +1 th  row of E .
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Note
	 A non-zero matrix is in a row-echelon form if all zero rows occur as bottom rows of the 
matrix, and if the first non-zero element in any lower row occurs to the right of the first non-
zero entry in the higher row. 

	 The following matrices are in row-echelon form:(i) 
0 1 1
0 0 3
0 0 0

















,(ii) 
1 0 1 2
0 0 2 8
0 0 0 6

−















	

	 Consider the matrix in (i). 	Go up row by row from the last row of the matrix. The third row is a 
zero row. The first non-zero entry in the second row occurs in the third column and it lies to the right 
of the first non-zero entry in the first row which occurs in the second column. So the matrix is in row-
echelon form.
	 Consider the matrix in (ii). 	Go up row by row from the last row of the matrix. All the rows are 
non-zero rows. The first non-zero entry in the third row occurs in the fourth column and it occurs 
to the right of the first non-zero entry in the second row which occurs in the third column. The first  
non-zero entry in the second row occurs in the third column and it occurs to the right of the first  
non-zero entry in the first row which occurs in the first column.  So the matrix is in row-echelon form.
	 The following matrices are not in row-echelon form:

	 (i) 
1 2 0
0 0 5
0 1 0

−















,	 (ii) 
0 3 2
5 0 0
3 2 0

−















.

		 Consider the matrix in (i). In this matrix, the first non-zero entry in the third row occurs in the 
second column and it is on the left of the first non-zero entry in the second row which occurs in the 
third column. So the matrix is not in row-echelon form.
	 Consider the matrix in (ii). 	In this matrix, the first non-zero entry in the second row occurs in the 
first column and it is on the left of the first non-zero entry in the first row which occurs in the second 
column. So the matrix is not in row-echelon form.

Method to reduce a matrix aij m n
  ×  

 to a row-echelon form.

Step 1
	 Inspect the first row. If the first row is a zero row, then the row is interchanged with a non-zero 
row below the first row. If a11  is not equal to 0, then go to step 2. Otherwise, interchange the first row 
R1  with any other row below the first row which has a non-zero element in the first column; if no row 
below the first row has non-zero entry in the first column, then consider a12. If a12  is not equal to 0, 
then go to step 2. Otherwise, interchange the first row R1  with any other row below the first row which 
has a non-zero element in the second column; if no row below the first row has non-zero entry in the 
second column, then consider a13.Proceed in the same way till we get a non-zero entry in the first row. 
This is called pivoting and the first non-zero element in the first row is called the pivot of the first row. 

Step 2
	 Use the first row and elementary row operations to transform all elements under the pivot to 
become zeros.
Step 3
	 Consider the next row as first row and perform steps 1 and 2 with the rows below this row only. 
Repeat the step until all rows are exhausted.
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Example 1.13

	 Reduce the matrix  
3 1 2
6 2 4
3 1 2

−
−
−

















 to a row-echelon form.

Solution

	
3 1 2
6 2 4
3 1 2

3 1 2
0 0 8
0 0 4

2 2 1

3 3 1

2−
−
−

















 →
−→ +

→ +
R R R
R R R

,















 →
−















→ −R R R3 3 2

1
2

3 1 2
0 0 8
0 0 0

.

Note

	
3 1 2
0 0 8
0 0 0

3 1 2

0 0 0
0 0 12 2 8

−















 →
−















→R R / .

 

This is also a row-echelon form of the given matrix. 

	 So, a row-echelon form of a matrix is not necessarily unique.

Example 1.14

	 Reduce the matrix  
0
1

4

3
0
2

1
2
0

6
5
0

−
















    to a row-echelon form.

Solution

	

0
1

4

3
0
2

1
2
0

6
5
0

0
4

3
2

1
0

6
0

1 0 2 5
1 2−

















 →








−
↔      R R







 →
−















→ +R R R3 3 14
1

0
0
3

2
1

5
6

0 2 8 20
   

                            
R R R3 3 2

2
3

1
0

0
3

2
1

5
6

0 0 22
3

16

→ −
 →

−




















 →
−















→R R3 23
1

0
0
3

2
1

5
6

0 0 22 48
   .

1.3.3 Rank of a Matrix
	 To define the rank of a matrix, we have to know about sub-matrices and minors of a matrix. 
	 Let A  be a given matrix. A matrix obtained by deleting some rows and some columns of A  is 

called a sub-matrix of A.  A matrix is a sub-matrix of itself because it is obtained by leaving zero 

number of rows and zero number of columns.

	 Recall that the determinant of a square sub-matrix of a matrix is called a minor of the matrix. 

Definition 1.6
	 The rank of a matrix A is defined as the order of a highest order non-vanishing minor of the 

matrix A.  It is denoted by the symbol ρ( ).A The  rank of a zero matrix is defined to be 0. 
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Note
	 (i)	 If a matrix contains at-least one non-zero element, then ρ( ) .A ≥1

	 (ii)	 The rank of the identity matrix In  is n.
	 (iii)	 If the rank of a matrix A  is r, then there exists at-least one minor of A of order r  which does 

not vanish and every minor of A of order r +1  and higher order (if any) vanishes. 
	 (iv)	 If A is an m n× matrix, then ρ( ) , , .A m n m n≤  min{ } =  minimum of  

	 (v)	 A square matrix A  of order n  has inverse if and only if ρ( ) .A n=

Example 1.15

	 Find the rank of each of the following matrices:   (i) 
3 2 5
1 1 2
3 3 6















   

(ii) 
4
3

6

3
1

7

1
2
1

2
4
2

− − −
−

−















   

Solution

	 (i)	 Let A =
















3 2 5
1 1 2
3 3 6

. Then A  is a matrix of order 3 3× . So ρ( ) min ,A ≤ { } =3 3 3 . The highest 

order of minors of A is 3 . There is only one third order minor of A .

		  It is 
3 2 5
1 1 2
3 3 6

3 6 6 2 6 6 5 3 3 0= − − − + − =( ) ( ) ( ) . So, ρ( )A < 3 .

		  Next consider the second-order minors of A . 

		  We find that the second order minor 
3 2
1 1

3 2 1 0= − = ≠ . So ρ( )A = 2 .

	 (ii)	 Let A = − − −
−

−















4
3

6

3
1

7

1
2
1

2
4
2

   . Then A  is a matrix of order 3 4× . So ρ( ) min ,A ≤ { } =3 4 3 . 

		  The highest order of minors of A is 3 . We search for a non-zero third-order minor of A . But 
we find that all of them vanish. In fact, we have

			 
4 3 1
3 1 2

6 7 1
− − −

−
	= 0 ;

4 3 2
3 1 4

6 7 2

−
− − = 0;

4 1 2
3 2 4

6 1 2

−
− −

−
= 0; 

3 1 2
1 2 4

7 1 2

−
− −

−
= 0.

		  So, ρ( )A < 3 .	 Next, we search for a non-zero second-order minor of A .

		  We find that 
4 3
3 1

4 9 5 0
− −

= − + = ≠ . So, ρ( )A = 2 .

Remark
	 Finding the rank of a matrix by searching a highest order non-vanishing minor is quite tedious 
when the order of the matrix is quite large. There is another easy method for finding the rank of a 
matrix even if the order of the matrix is quite high. This method is by computing the rank of an 
equivalent row-echelon form of the matrix. If a matrix is in row-echelon form, then all entries below 
the leading diagonal (it is the line joining the positions of the diagonal elements a a a11 22 33, , , . of the 
matrix) are zeros. So, checking whether a minor is zero or not, is quite simple.  
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Example 1.16
	 Find the rank of the following matrices which are in row-echelon form :

		 (i) 
2 0 7
0 3 1
0 0 1

−















	 (ii)	
− −















2 2 1
0 5 1
0 0 0

 	 (iii)	

6
0
0
0

0
2
0
0

9
0
0
0

     

−

















Solution

	 (i)	 Let A =
−















2
3

1

0 7
0 1
0 0

.  Then A  is a matrix of order 3 3×  and ρ( )A ≤ 3

		  The third order minor A =
−

= = ≠
2

3
1

0 7
0 1
0 0

2 3 1 6 0( )( )( ) .  So, ρ( )A = 3 .

		

Note that there are three non-zero rows. 

	 (ii)	 Let A =
− −















2 2 1
0 5 1
0 0 0

. Then A  is a matrix of order 3 3×  and ρ( )A ≤ 3 .

		  The only third order minor  is A =
−

= − =
−2

5
0

2 1
0 1
0 0

2 5 0 0( )( )( ) . So ρ( )A ≤ 2 .

		  There are several second order minors. We find that there is a second order minor, for 

example, 
−

= − = − ≠
2 2

0 5
2 5 10 0( )( ) . So, ρ( )A = 2 .

		  Note that there are two non-zero rows. The third row is a zero row.

	 (iii)	 Let A =

−

















6
0
0
0

0
2
0
0

9
0
0
0

     . Then A  is a matrix of order  4 3×  and ρ( )A ≤ 3 .

		  The last two rows are zero rows. There are several second order minors. We find that there 

is a second order minor, for example, 
6 0
0 2

6 2 12 0= = ≠( )( ) . So, ρ( )A = 2 .

		  Note that there are two non-zero rows. The third and fourth rows are zero rows.
		  We observe from the above example that the rank of a matrix in row echelon form is equal 

to the number of non-zero rows in it. We state this observation as a theorem without proof.

 Theorem 1.11
	 The rank of a matrix in row echelon form is the number of non-zero rows in it. 

	 The rank of a matrix which is not in a row-echelon form, can be found by applying the following 
result which is stated without proof. 
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  Theorem 1.12
	 The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form 
of the matrix.

Example 1.17

	 Find the rank of the matrix
1 2 3
2 1 4
3 0 5

















by reducing it to a row-echelon form.

Solution

	 Let A =
















1 2 3
2 1 4
3 0 5

.  Applying elementary row operations, we get 

	

A
R R R
R R R R R R

2 2 1

3 3 1 3 3 2

2
3 2

1 2 3
0 3 2
0 6 4

→ −
→ − → − →

















− −
− −

 → − −
















1 2 3
0 3 2
0 0 0

.

	 The last equivalent matrix is in row-echelon form. It has two non-zero rows. So, ρ( ) .A = 2  

Example 1.18

	 Find the rank of the matrix 
2
3

6

2
4
2

4
2
1

3
1

7
−

−
−
−

−
















    by reducing it to an echelon form.

Solution
	 Let A  be the matrix. Performing elementary row operations, we get	

	

A R R= −
−

−
−

−
















 →
−

−
− −→

2
3

6

2
4
2

4
2
1

3
1

7

2

6

2

2

4

1
6 8 42 22          

3

7

2 2 4 3
2 0 2 8 7

0 8 13

2 2 1

3 3 1

3
3−

















 →
−

−

→ +
→ −

R R R
R R R

−−















2

.

            R R R R3 3 2 34
2
0

2
2

4
8

3
7

0 0 45 30

→ − → →
−













− −

RR3 15
2
0

2
2

4
8

3
7

0 0 3 2

÷ − →
−















( )    .

	 The last equivalent matrix is in row-echelon form. It has three non-zero rows. So, ρ( )A = 3 .
	 Elementary row operations on a matrix can be performed by pre-multiplying the given matrix by 
a special class of matrices called elementary matrices. 
Definition 1.7
	 An elementary matrix is defined as a matrix which is obtained from an identity matrix by 
applying only one elementary transformation.

Remark
	 If we are dealing with matrices with three rows, then all elementary matrices are square matrices 
of order 3 which are obtained by carrying out only one elementary row operations on the unit 
matrix I3. Every elementary row operation that is carried out on a given matrix A can be obtained by  
pre-multiplying A with elementary matrix. Similarly, every elementary column operation that is 
carried out  on a given matrix A can be obtained by post-multiplying Awith an elementary matrix. In 
the present chapter, we use elementary row operations only.
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	 For instance, let us consider the matrix A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

.

	 Suppose that we do the transformation R R R2 2 3→ + λ  on A, where λ ≠ 0  is a constant. Then, we get

	 A
a a a

a a a
a a a a a aR R R2 2 3

11 12 13

31 32 3

21 31 22 32 23 33
→ + → + + +λ λ λ λ

33
















.                      	 ….(1)

	 The matrix 
1 0 0
0 1
0 0 1

λ
















 is an elementary matrix, since we have 
1 0 0
0 1 0
0 0 1

1 0 0

0 0 1
0 12 2 3

















 →
















→ +R R Rλ λ .

Pre-multiplying  A by 
1 0 0
0 1
0 0 1

λ
















, we get 

	

1 0 0
0 1
0 0 1

11 12 13

21 22 23

31 32 33

λ
































=
a a a
a a a
a a a

a111 12 13

21 31 22 32 23 33

31 32 33

a a
a a a a a a

a a a
+ + +

















λ λ λ .              	 ... (2)

	 From (1) and (2), we get    A AR R R2 2 3

1 0 0

0 0 1
0 1→ + →

















λ λ .

	 So, the effect of applying the elementary transformation R R R2 2 3→ + λ  on A  is the same as that 

of pre-multiplying the matrix A  with the elementary matrix 
1 0 0
0 1
0 0 1

λ
















. 

	 Similarly, we can show that  

	 (i)	 the effect of applying the elementary transformation R R2 3↔  on A  is the same as that of  

pre-multiplying the matrix A  with the elementary matrix 
1 0 0
0 0 1
0 1 0

















 .

	 (ii)	 the effect of applying the elementary transformation R R2 2→ λ  on A  is the same as that of  

pre-multiplying the matrix A  with the elementary matrix  
1 0 0
0 0
0 0 1

λ
















 .

	 We state the following result without proof. 
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 Theorem 1.13
	 Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary 
row operations. 

	 As an illustration of the above theorem, let us consider the matrix A =
−









2 1
3 4

.

	 Then, A = + = ≠12 3 15 0.So, A  is non-singular. Let us transform A  into I2 by a sequence of 

elementary row operations. First, we search for a row operation to make a11  of A  as 1. The elementary 

row operation needed for this is R R1 1
1
2

→ 





 .The corresponding elementary matrix is E1

1
2

0

0 1
=














.

Then, we get E A1
1
2

0

0 1

2 1
3 4

1 1
2

3 4
=















−







 =

−












.

	 Next, let us make all elements below a11  of E A1  as 0. There is only one element a21 . 

	 The elementary row operation needed for this is  R R R2 2 13→ + −( ) .

	 The corresponding elementary matrix is E2

1 0
3 1

=
−









 .

	 Then, we get E E A2 1

1 0
3 1

1 1
2

3 4

1 1
2

0 11
2

( ) =
−











−













=
−

















.

	 Next, let us make a22  of E E A2 1( )  as 1. The elementary row operation needed for this is 

R R2 2
2

11
→ 






 .

	 The corresponding elementary matrix is E3

1 0

0 2
11

=













.

	 Then, we get E E E A3 2 1

1 0

0 2
11

1 1
2

0 11
2

1 1
2

0 1
( )( ) =















−

















=
−












.

	 Finally, let us find an elementary row operation  to make a12 of E E E A3 2 1( )( ) as 0.  The elementary 

row operation needed for this is R R R1 1 2
1
2

→ + 





 .The corresponding elementary matrix is 

E4
1 1

2
0 1

=













.
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	 Then, we get E E E E A I4 3 2 1 2
1 1

2
0 1

1 1
2

0 1

1 0
0 1

( )( )( ) =














−













=








 = .

	 We write the above sequence of elementary transformations in the following manner:

	

Example 1.19

	 Show that the matrix 
3 1 4
2 0 1
5 2 1

−
















 is non-singular and reduce it to the identity matrix by 

elementary row transformations.

Solution

	 Let A = −
















3 1 4
2 0 1
5 2 1

.Then, A = + − + + − = − + = ≠3 0 2 1 2 5 4 4 0 6 7 16 15 0( ) ( ) ( ) .  So, A  is  

non-singular. Keeping the identity matrix as our goal, we perform the row operations sequentially on 
A as follows:

      

3 1 4
2 0 1
5 2 1

2 0 1
5 2 1

1
1
3

4
3

1 1

1
3− −

















 →





















→R R RR R R R R R2 2 1 3 3 12 5

1
1
3

4
3

0
2
3

11
3

0
1
3

17
3

→ − → − →










− −

−

,   

















 →












→ −







−

R R2 2

3
2

1
1
3

4
3

0
1
3

17
3

0 1
11
2















    

R R R R R R1 1 2 3 3 2

1
3

1
3

1 0 1
2

0 1 11
2

0 0 15
2

→ − → −
 →













−

−

, 













 →

−
















→ −






R R3 3

2
15

1 0 1
2

0 1 11
2

0 0 1







 →
















→ + → −R R R R R R1 1 3 2 2 3

1
2

11
2

1 0 0
0 1 0
0 0 1

,
..

1.3.4  Gauss-Jordan Method
	 Let A  be a non-singular square matrix of order n . Let B  be the inverse of A.

	 Then, we have AB BA In= = . By the property of In , we have A I A AIn n= = .

	 Consider the equation A = I An 				    …(1)
	 Since A  is non-singular, pre-multiplying by a sequence of elementary matrices (row operations) 
on both sides of (1), A  on the left-hand-side of (1) is transformed to the identity  matrix In and the 
same sequence of elementary matrices (row operations) transforms In  of the right-hand-side of (1) to 
a matrix B.  So, equation (1) transforms to I BAn = .Hence, the inverse of A  is B.  That is, A B− =1 .

A
R R

R R R
=

−


 


 −







 →














→
→ + −2 1

3 4
3 4

1
1

2
1 1

2 2 1

1

2 3( ) →



















 →







−
−



 


→1

1

2 1
1

2
0

11

2
0 1

2 2

2

11
R R 






 → 





→ +

 


R R R

1 1 2

1

2 1 0

0 1
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Note
	 If  E E Ek1 2, , ,  are elementary matrices (row operations) such that E E E A Ik n 2 1( ) = ,  then 

A E E Ek
− =1

2 1 .

	 Transforming a non-singular matrix A  to the form In  by applying elementary row operations, is 
called Gauss-Jordan method. The steps in finding A−1 by Gauss-Jordan method are given below: 

Step 1
	 Augment the identity matrix In on the right-side of A  to get the matrix A In|[ ] .

Step 2
	 Obtain elementary matrices (row operations) E E Ek1 2, , , such that E E E A Ik n 2 1( ) = .

	 Apply E E Ek1 2, , , on A In|[ ] . Then E E E A E E E Ik k n 2 1 2 1( ) ( ) | .That is, I An | .− 
1

Example 1.20

	 Find the inverse of the non-singular matrix A =
−











0 5
1 6

, by Gauss-Jordan method. 

Solution

	 Applying Gauss-Jordan method, we get 

	

A I R R| 2
0
1

5
6

1
0

0
1 0 5 1 0

1 6 0 1
1 2[ ] =

−








  →






−↔  
     

  
    


  →











− −→ −R R1 11 1 6 0 1
0 5 1 0

( )      

                            
R R R R R2 2

1 1 2

1
5 61 6 0 1

0 1 1 5 0
1→ → + →

− −







  →

( / ) 00 1 1 5 0
0 6 5 1

      
( / )
( / )

.
−









	 So, we get A− =
−







 =

−









1 6 5 1
1 5 0

1
5

6 5
1 0

( / )
( / )

.

Example 1.21

	 Find the inverse of A =
















2 1 1
3 2 1
2 1 2

 by Gauss-Jordan method.

Solution
	 Applying Gauss-Jordan method, we get 

	

A I
R R

|
(

3

1
2

2
3
2

1
2
1

1
1
2

1
0
0

0
1
0

0
0
1

3
2

1 1
1 1

[ ] =
















 →
→

      
// ) ( / ) ( / )2 1 2 1 2 0 0
2
1

1
2

0
0

1
0

0
1

    
















	

R R R
R R R

2 2 1

3 3 1

3
2

1 1 2 1 2 1 2
0 1 2 1 2
0 0 1

→ −
→ − → −   

( / ) ( / ) ( /
( / ) ( / )

)) ( / ) ( / )
( / )−
−

















 → −→3 2 1 0
1 0 1

0 0 1

0

1 2

0

1 2
0 1 12 22    R R

11

1 2

1

0

0

0

1
3 2 0   

( / )
−
−

















Chapter 1 Matrices.indd   26 17-03-2019   14:22:20



Applications of Matrices and Determinants27

	

R R R R R
1 1 2

1
1
2

1 0 1 2 1 0
0
0

1
0

1
1

3
1

2
0

0
1

→ − →

 → − −
−

















−
     

11 3

2 2 3

1 0 0 3 1 1
0 1 0 4 2 1
0 0 1 1 0 1

−
→ + →

−

















−
− −R

R R R      .

	 So, A− =
− −

−
−

















1

3 1 1
4 2 1
1 0 1

.

EXERCISE 1.2
	 1.	 Find the rank of the following matrices by minor method:

			  (i)	
2 4
1 2

−
−









 	 (ii)	

−
−
−

















1
4
3

3
7
4

 
 

  
  

	 (iii)	
1
3

2
6

1
3

0
1

   
−
−

−
−









 	 (iv)	

1 2 3
2 4 6
5 1 1

−
−
−

















	  (v) 
0 1 2 1
0 2 4 3
8 1 0 2

















 

	 2.	 Find the rank of the following matrices by row reduction method:

			  (i)	
1
2
5

1
1
1

1
3
7

3
4

11
   −
−

















	 (ii)	

1
3
1
1

2
1
2
1

1
2
3
1

  
−
−
−

−

















	 (iii)	
3 8 5 2
2 5 1 4
1 2 3 2

−
−

− −

















 

	 3.	 Find the inverse of each of the following by Gauss-Jordan method:

		  (i)	
2 1
5 2

−
−









 	 (ii)	

1 1 0
1 0 1
6 2 3

−
−

− −

















	 (iii)	
1 2 3
2 5 3
1 0 8

















1.4 Applications of Matrices: Solving System of Linear Equations
	 One of the important applications of matrices and determinants is solving of system of linear 
equations. Systems of linear equations arise as mathematical models of several phenomena occurring 
in biology, chemistry, commerce, economics, physics and engineering. For instance, analysis of 
circuit theory, analysis of input-output models, and analysis of chemical reactions require solutions 
of systems of linear equations. 

1.4.1 Formation of a System of Linear Equations 
	 The meaning of a system of linear equations can be understood by formulating a mathematical 
model of a simple practical problem.

	 Three persons A, B and C go to a supermarket to purchase same brands of rice and sugar. Person A 
buys 5 Kilograms of rice and 3 Kilograms of sugar and pays ̀  440. Person B purchases 6 Kilograms of rice 
and 2 Kilograms of sugar and pays ` 400. Person C purchases 8 Kilograms of rice and 5 Kilograms of 
sugar and pays ` 720. Let us formulate a mathematical model to compute the price per Kilogram of rice 
and the price per Kilogram of sugar.  Let x be the price in rupees per Kilogram of rice and y  be the price 
in rupees per Kilogram of sugar.  Person A buys 5 Kilograms of rice and 3 Kilograms sugar and pays   
` 440 . So,5 3 440x y+ = . Similarly, by considering Person B and Person C, we get 6 2 400x y+ =  and 
8 5 720x y+ = . Hence the mathematical model is to obtain x  and y  such that 

5 3 440x y+ = ,  6 2 400x y+ = ,  8 5 720x y+ = .
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Note
	 In the above example, the values of x  and y  which satisfy one equation should also satisfy all 
the other equations. In other words, the equations are to be satisfied by the same values of x  and y  
simultaneously. If such values of  x  and y  exist, then they are said to form a solution for the system 
of linear equations. In the three equations, x  and y  appear in first degree only. Hence they are said 
to form a system of linear equations in two unknowns x  and y . They are also called simultaneous 
linear equations in two unknowns x  and y . The system has three linear equations in two unknowns 
x  and y .

	 The equations represent three straight lines in two-dimensional analytical geometry.
	 In this section, we develop methods using matrices to find solutions of systems of linear equations. 

1.4.2 System of Linear Equations in Matrix Form
	 A system of m linear equations in n  unknowns is of the following form:

			 

a x a x a x a x b
a x a x a x a x b

n n

n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

+ + + + =

+ + + + =





,
,

     



                             
a x a x a x am m m m1 1 2 2 3 3+ + + + nn n mx b= ,

	 … (1)

where the coefficients a i m j nij , , , , ; , , ,= =1 2 1 2    and b k mk , , , ,=1 2   are constants. If all the 
bk 's  are zeros, then the above system is called a homogeneous system of linear equations. On the 
other hand,  if at least one of thebk 's is non-zero, then the above system is called a non-homogeneous 
system of  linear equations. If there exist values α α α1 2, ,  ,  n for x x xn1 2,  ,  ,  respectively which 
satisfy every  equation of (1), then the ordered n − tuple α α α1 2,  ,  ,  n( ) is called a solution of (1).

The above system  (1) can be put in a matrix form as follows:

	 Let A

a a a a
a a a a

n

n=

11 12 13 1

21 22 23 2

          
          
       





        
        

 

a a a am m m mn1 2 3



















 be the m n×  matrix formed by the coefficients of 

x x x xn1 2 3,  ,  ,   ,  .The first row of A  is formed by the coefficients of x x x xn1 2 3,  ,  ,   ,  in the same 
order in which they occur in the first equation. Likewise, the other rows of A are formed. The first 
column is formed by the coefficients of x1 in the m equations in the same order. The other columns 

are formed in a similar way. 

	 Let X

x
x

xn

=



















1

2



 be the n×1 order column matrix formed by the unknowns x x x xn1 2 3,  ,  ,   ,  .

	 Let B

b
b

bm

=



















1

2



 be the m×1 order column matrix formed by the right-hand side constants 

b b b bm1 2 3,  ,  ,   ,  .
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	 Then we get 

	

AX

a a a a
a a a a

n

n=

11 12 13 1

21 22 23 2

          
          
      

�
�

� � �      
        

� �
�

�
a a a a

x
x

xm m m mn n1 2 3

1

2





































=

+ + + +

+ + + +

a x a x a x a x
a x a x a x a

n n

n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

   
   
�
� xx

a x a x a x a

n

m m m

� � � � �
�

                            
 1 1 2 2 3 3+ + + + mmn n mx

b
b

b

B



















=



















=

1

2

�
.

	 Then AX B=  is a matrix equation involving matrices and it is called the matrix form of the  

system of linear equations (1). The matrix A  is called the coefficient matrix of the system and the 

matrix  

a a a a b
a a a a b

n

n

11 12 13 1 1

21 22 23 2

          
          

�
� 22

1 2 3

� � � � � �
�

            
        a a a a bm m m mn m

 is called the augmented matrix of the system. We denote the 

augmented matrix by A B| .[ ]

	 As an example, the matrix form of the system of linear equations 

	 2 3 5 7 0 7 2 3 17 6 3 8 24 0x y z y z x x y z+ − + = + − = − − + =, ,  is
2 3 5
3 7 2

6 3 8

7
17
24

−
−

− −

































=
−

−

















x
y
z

.

1.4.3 Solution to a System of Linear equations
	 The meaning of solution to a system of linear equations can be understood by considering the 
following cases : 

Case (i)
	 Consider the system of linear equations 
			   2x y− 	= 	5 ,	 ... (1)
			   x y+ 3 	= 	6 .	 ... (2)

	
These two equations represent a pair of straight 

lines in two dimensional analytical geometry (see the 
Fig. 1.2). Using (1),  we get

			     x 	= 	 5
2
+ y .	 ... (3)

	 Substituting (3) in (2) and simplifying, we get y =1.

	 Substituting y =1 in (1) and simplifying, we                      

get x = 3 .

	 Both equations (1) and (2) are satisfied by x = 3  and y =1. 

	 That is, a solution of (1) is also a solution of (2). 

	 So, we say that the system is consistent and has unique solution ( , )3 1 .
	 The point ( , )3 1  is the point of intersection of the two lines 2 5x y− =  and x y+ =3 6 .

Fig.1.2

6

5

4

3

2

1

O 1 2 3 4 5 6 7

2
5

x
y

�
=

( , )4 3

( , )3 1

( , )6 0

x y+
=3

6

( , )0 2

xx'

y

y'

( , )2 1��1
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–3 –2 –1 O 1 2 4 5 6 7
–1

–2

1

2

3

4

5

3
2

5

x
y

+
=

( , )1 1

( , )3 2�

xx'

y

y'

3

Case (ii)
	 Consider the system of linear equations 
		  3 2x y+ 	= 	 5 , 	 ... (1)
		  6 4x y+ 	= 	 10 	 ... (2)
	 Using equation (1), we get 

		  x 	= 	 5 2
3

− y  	 ... (3)

	 Substituting (3) in (2) and simplifying, we get 0 = 0 .

	 This informs us that equation (2) is an elementary 
transformation of equation (1). In fact, by dividing  equation 
(2) by 2, we get equation (1). It is not possible to find 
uniquely x  and y  with just a single equation (1).  

	 So we are forced to assume the value of one unknown, say y t= , where t  is any real number. 

Then, x t
=

−5 2
3

. The two equations (1) and (2) represent one and only one straight line (coincident 

lines) in two dimensional analytical geometry (see Fig. 1.3) . In other words, the system is  consistent (a 
solution of (1) is also a solution of (2)) and has infinitely many solutions, as t  can assume any real value. 

Case (iii)
	 Consider the system of linear equations 

			   4x y+ 	= 	 6 , 	 ... (1)

			   8 2x y+ 	= 	 18 .	 ... (2)
	 Using equation (1), we get 

			   x 	= 	 6
4
− y  	 ... (3)

	 Substituting (3) in (2) and simplifying, we get 12 =18 .

	 This is a contradicting result, which informs us 
that equation (2) is inconsistent with equation (1). So, 
a  solution of (1) is not a solution of (2). 
	 In other words, the system is inconsistent and has no solution. We note that the two equations 
represent two parallel straight lines (non-coincident) in two dimensional analytical geometry (see Fig. 
1.4). We know that two non-coincident parallel lines never meet in real points.
Note 
	 (1)	 Interchanging any two equations of a system of linear equations does not alter the solution 

of the system.

	 (2)	 Replacing an equation of a system of linear equations by a non-zero constant multiple of 
itself does not alter the solution of the system.

	 (3)		 Replacing an equation of a system of linear equations by addition of itself with a non-zero 
multiple of any other equation of the system does not alter the solution of the system. 

Fig.1.3

Fig.1.4

–3 –2 –1 O 1 2 3 4 5 6 7 8

1

2

3

4

5

–1

–2

xx'

y

y'

( , )1 5

( , )1 2

( , )2 2�

( , )2 1

4
6

x
y

+
= 8

2
18

x
y

+
=
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Definition 1.8

	 A system of linear equations having at least one solution is said to be consistent. A system 
of linear equations having no solution is said to be inconsistent.

Remark
	 If the number of the equations of a system of linear equations is equal to the number of unknowns 
of the system, then the coefficient matrix A of the system is a square matrix. Further, if A  is a  
non-singular matrix, then the solution of system of equations can be found by any one of the following 
methods :  (i) matrix inversion method, (ii) Cramer’s rule,  (iii) Gaussian elimination method.

1.4.3 (i) Matrix Inversion Method
	 This method can be applied only when the coefficient matrix is a square matrix and non-singular. 

	 Consider the matrix equation

			   AX 	 = 	 B ,	 … (1)
where A  is a square matrix and non-singular. Since A  is non-singular, A−1  exists and A A AA I− −= =1 1 .

	 Pre-multiplying both sides of (1) by A−1, we get A AX A B− −( ) =1 1 .  That is, A A X A B− −( ) =1 1 .

	 Hence, we get X A B= −1 .

Example 1.22
	 Solve the following system of  linear  equations, using matrix inversion method: 
	 5 2 3 3 2 5x y x y+ = + =,  .
Solution

	 The matrix form of the system is AX 	= 	 B , where A X
x
y
B=









 =









 =











5 2
3 2

3
5

, ,  .

	 We find  A = 	
5 2
3 2

10 6 4 0= − = ≠ .So, A−1  exists and A−1 =
1
4

2 2
3 5

−
−









 . 

	 Then, applying the formula X A B= −1 , we get 

	

x
y









 = 	1

4
2 2
3 5

3
5

1
4

6 10
9 25

1
4

4
16

4
4

1
−

−


















 =

−
− +









 =

−







 =

−

66
4

1
4



















=
−







 .

	

So the solution is x y= − =( )1 4, .

Example 1.23
	 Solve the following system of equations, using matrix inversion method:

	 2 3 3 5 2 4 3 2 31 2 3 1 2 3 1 2 3x x x x x x x x x+ + = − + = − − − =, , .     

Solution
	 The matrix form of the system is AX B= , where 

		  A 	 = 	
2 3 3
1 2 1
3 1 2

5
4

3

1

2

3

−
− −

















=
















= −
















, ,X
x
x
x

B .
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		  We find A 	 = 	
2 3 3
1 2 1
3 1 2

2 4 1 3 2 3 3 1 6 10 15 15 40 0−
− −

= + − − − + − + = + + = ≠( ) ( ) ( ) . 

	 So, A−1  exists and 

		  A−1 	 = 	 1 1
40

4 1 2 3 1 6
6 3 4 9 2 9

3
A

A( )
( ) ( ) ( )

( ) ( ) ( )
(

adj =
+ + − − − + − +

− − + + − − − − −
+ + 66 2 3 4 3

1
40

5 3 9
5 13 1
5 11 7) ( ) ( )− − + − −

















= −
−

















T

	 Then, applying X A B= −1 , we get

		
x
x
x

1

2

3

















 	= 	 1
40

5 3 9
5 13 1
5 11 7

5
4

3

1
40

25 12 27
25 52−

−

















−
















=
− +
+ + 33

25 44 21

1
40

40
80
40

1
2
1− −

















=
−

















=
−

















 .

	 So, the solution is x x x1 2 31 2 1= = = −( ), , .

Example 1.24

	 If A =
−
−

− −

















4 4 4
7 1 3

5 3 1
 and B =

−
− −

















1 1 1
1 2 2
2 1 3

,  find the products AB  and BA and hence solve the 

system of equations  x y z x y z x y z− + = − − = + + =4 2 2 9 2 3 1, , .

Solution

We find AB 	= 	
−
−

− −

















−
− −

















=
− + + − + −4 4 4

7 1 3
5 3 1

1 1 1
1 2 2
2 1 3

4 4 8 4 8 4 44 8 12
7 1 6 7 2 3 7 2 9

5 3 2 5 6 1 5 6 3

8 0 0
0 8 0
0

− +
− + + − + − − +

− − − + − + −

















=
00 8

8 3

















= I  

	 andBA 	= 	
1 1 1
1 2 2
2 1 3

4 4 4
7 1 3

5 3 1

4 7 5 4 1 3 4−
− −

















−
−

− −

















=
− + + − − −− −

− + − − + − +
− − + + − + −

















=
3 1

4 14 10 4 2 6 4 6 2
8 7 15 8 1 9 8 3 3

8 0 0
0 8 0
0 00 8

8 3

















= I . 

	 So, we get AB BA I= = 8 3.That is, 1
8

1
8 3A B B A I






 = 






 = .Hence, B A− =1 1

8
.

	 Writing the given system of equations in matrix form, we get 

		
1 1 1
1 2 2
2 1 3

−
− −

































x
y
z

 =  
4
9
1

















 .  That is,  B
x
y
z

















=
















4
9
1

.

	 So, 
x
y
z

















 = 	B A−

















= 























=
−
−

− −





1

4
9
1

1
8

4
9
1

1
8

4 4 4
7 1 3

5 3 1



























=
− + +
− + +

− −

















=
4
9
1

1
8

16 36 4
28 9 3

20 27 1

1
88

24
16
8

3
2
1

−
−

















= −
−

















 .

	

Hence, the solution is ( , , ).x y z= = − = −3 2 1
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EXERCISE 1.3
	 1.		 Solve the following system of linear equations by matrix inversion method:

			   (i)	 2 5 2 2 3x y x y+ = − + = −,   	 (ii)	 2 8 2 2x y x y− = + = −,   3

			   (iii)	 2 3 9 9 3 1x y z x y z x y z+ − = + + = − − = −, ,  

			   (iv)	 x y z x y z x y z+ + − = − + − = + + =2 0 4 5 31 0 2 2 13, , 6  5

	 2.	 If A =
−

−
−

















5 1 3
7 1 5
1 1 1

 and B =
















1 1 2
3 2 1
2 1 3

,  find the products AB  and BA and hence solve the 

system of equations  x y z x y z x y z+ + = + + = + + =2 1 3 2 7 2 3 2, , .        

	 3.	 A man is appointed in a job with a monthly salary of certain amount and a fixed amount of   
annual increment. If his salary was ` 19,800 per month at the end of the first month after 3 
years of service and  ` 23,400 per month  at the end of the first month after 9 years of service, 
find his starting salary and his annual increment.  (Use matrix inversion method to solve the 
problem.)

	 4.	 Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women 
can finish the same work jointly in 4 days. Find the time taken by one man alone and that of 
one woman alone to finish the same work by using matrix inversion method.

	 5.	 The prices of three commodities A B,  and C  are ` x y,  and z  per units respectively. A person 
P  purchases 4 units of B  and sells two units of A  and 5 units of C . Person Q  purchases 2 
units of C  and sells 3 units of A  and one unit of B . Person R  purchases one unit of A  and 
sells 3 unit of B  and one unit of C . In the process, P Q,  and R  earn  ` 15,000, ` 1,000 and  
` 4,000 respectively. Find the prices per unit of A B, and C . (Use matrix inversion method to 
solve the problem.)

1.4.3 (ii) Cramer’s Rule
	 This rule can be applied only when the coefficient matrix is a square matrix and non-singular.  It 
is explained by considering the following system of equations:

a x a x a x b
a x a x a x b
a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33

+ + =

+ + =
+ +

,
,

33 3= b ,

where the coefficient matrix  
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

   
  
  

















 is non-singular. Then 
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

0
   
  
  

¹ .

	Let us put  D 	=
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

   
  
  

 . Then, we have

	 x1D 	= 	x
a a a
a a a
a a a

a x a a
a x1

11 12 13

21 22 23

31 32 33

11 1 12 13

21 1

   
  
  

     
=      

    
  = 

+ +      
a a

a x a a

a x a x a x a a

22 23

31 1 32 33

11 1 12 2 13 3 12 13

aa x a x a x a a
a x a x a x a a

b

21 1 22 2 23 3 22 23

31 1 32 2 33 3 32 33

+ +     
+ +     

 =
11 12 13

2 22 23

3 32 33

1

     
    
    

a a
b a a
b a a

= ∆
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	 Since D 	¹ 	0 , we get x1
1=

∆
∆

 .

	 Similarly, we get x2 	= 	    where 
   
  
  

∆
∆

=
∆
∆

∆ = ∆ =2
3

3
2

11 1 13

21 2 23

31 3 33

3, , ,x
a b a
a b a
a b a

aa a b
a a b
a a b

11 12 1

21 22 2

31 32 3

   
  
  

 .

	Thus, we have the Cramer’s rule x1  =     ∆
∆

=
∆
∆

=
∆
∆

1
2

2
3

3, , ,x x  

    where D   = 	
a a a
a a a
a a a

b a a
b a a

11 12 13

21 22 23

31 32 33

1

1 12 13

2 22 2

   
  
  

,
   
  ∆ = 33

3 32 33

2

11 1 13

21 2 23

31 3 33

3

11 1

b a a

a b a
a b a
a b a

a a

  

   
  
  

  
, ,∆ = ∆ =

22 1

21 22 2

31 32 3

 
  
  

b
a a b
a a b

Note
	 Replacing the first column elements a a a11 21 31, , of D  withb b b1 2 3, ,  respectively, we get D1.

	 Replacing the second column elements a a a12 22 32, , of D  withb b b1 2 3, ,  respectively, we get D2.

	 Replacing the third column elements a a a13 23 33, , of D  withb b b1 2 3, ,  respectively, we get D3.

	 If ∆ = 0, Cramer’s rule cannot be applied.

Example 1.25
	 Solve, by Cramer’s rule, the system of equations 

	 x x x x x x x1 2 1 2 3 2 33 2 3 4 17 2 7− = + + = + =, , .

Solution
	 First we evaluate the determinants

	 ∆ =
−

= ≠ ∆ =
− 1     0

 2    3    4
 0    1    2 

0, 
      0
 
3
1

1
6

1

1 77
7

  3    4
     1    2 

=12, ∆ = = − ∆ =
−

2 36
1 1        0

 2      4 
 0        2

 1      
 

3
17

7

3
, 22    3  

 0    1    
17

7
= 24.

	 By Cramer’s rule, we get  x x x1
1

2
2

3
12
6

2 6
6

1
6

4=
∆
∆

= = =
∆
∆

=
−

= − = =
     24, , .

	 So, the solution is ( , , )x x x1 2 32 1 4= = − = .

Example 1.26  
	 In a T20 match, Chennai Super Kings needed just 6 runs to win with 1 ball 
left to go in the last over.  The last ball was bowled and the batsman at the 
crease hit it high up. The ball traversed along a path in a vertical plane and the 
equation of the path is  y ax bx c= + +2  with respect to a xy -coordinate system 
in the vertical plane and the ball  traversed through the points 
( , ), ( , ), ( , )10 8 20 16 30 18 , can you conclude that  Chennai Super Kings won the 
match?
	 Justify your answer. (All distances are measured in metres and the meeting point of the plane of 
the path with the farthest boundary line is ( , ).)70 0

Solution 
	 The path y ax bx c= + +2  passes through the points ( , ), ( , ), ( , )10 8 20 16 40 22 . So, we get the 
system of equations  100 10 8 400 20 16 1600 40 22a b c a b c a b c+ + = + + = + + =, , .   To apply Cramer’s 
rule, we find
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	  D 	 = 	
100 10 1
400 20 1

1600 40 1
1000

1 1 1
4 2 1

16 4 1
1000 2 12 16 6000= = − + − = −[ ] ,

	 D1 	 = 	
8

16
22

10 1
20 1
40 1

20
4 1 1
8 2 1

11 4 1
20 8 3 10 100= = − + + =[ ] ,

	 D2 	 = 	
100 1
400 1

1600 1
200

1 4 1
4 8 1

16 11 1
200 3 48 84 7800

8
16
22

= = − + − = −[ ] ,

	 D3 	 = 	
100 10
400 20

1600 40
2000

1 1 4
4 2 8

16 4 11
2000 10 84 64 2000

8
16
22

= = − + − =[ ] 00 .

	 By Cramer’s rule, we get a 	= 	 ∆
∆

= − =
∆
∆

= = = =
∆
∆

= − = − = −1 2 31
60

7800
6000

78
60

13
10

20000
6000

20
6

1, ,b c 00
3

.

		 So, the equation of the path is y = − + −
1
60

13
10

10
3

2x x .

	 When x = 70, we get y = 6.So, the ball went by 6 metres high over the boundary line and it is  
impossible for a fielder standing even just before the boundary line to jump and catch the ball. Hence 
the ball  went for a super six and the Chennai Super Kings won the match.

EXERCISE 1.4
	 1.	 Solve the following systems of linear equations by Cramer’s rule:  

			   (i)	 5 2 16 0 3 7 0x y x y− + = + − =,

			   (ii)	 3 2 12 2 3 13
x

y
x

y+ = + =, 	

			   (iii)	 3 3 11 2 2 9 3 2 25x y z x y z x y z+ − = − + = + + =, ,  4

			   (iv)	 3 4 2 1 0 1 2 1 2 0 2 5 4 1 0
x y z x y z x y z

− − − = + + − = − − + =, ,

	 2.	  In a competitive examination, one mark is awarded for every correct answer while 1
4

 mark is 

deducted for every wrong answer. A student answered 100 questions and got 80 marks. How 
many questions did he answer correctly ? (Use Cramer’s rule  to solve the problem).

	 3.	 A chemist has one solution which is 50% acid and another solution which is 25% acid. How 
much each should be mixed to make 10 litres of a 40% acid solution ? (Use Cramer’s rule  to 
solve the problem).

	 4.	 A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However, 
pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse, 
then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by 
itself ? (Use Cramer’s rule  to solve the problem).
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	 5.	 A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies 
and two vadais is ` 150. The cost of the two dosai, two idlies and four vadais is ` 200. The 
cost of five dosai, four idlies and two vadais is ` 250. The family has ` 350 in hand and they 
ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the 
amount they had ? 

1.4.3 (iii) Gaussian Elimination Method

	
This method can be applied even if the coefficient matrix is singular matrix and rectangular 

matrix. It is essentially the method of substitution which we have already seen. In this method, we 
transform the augmented matrix of the system of linear equations into row-echelon form and then by 
back-substitution, we get the solution.

Example 1.27
	 Solve the following system of linear equations, by Gaussian elimination method :

	 4 3 6 25 5 7 13 9 1x y z x y z x y z+ + = + + = + + =, , .  2

Solution
	 Transforming the augmented matrix to echelon form, we get 

	
4
1
2

3
5
9

6
7
1

25
13
1

4
2

3
9

6
1

25
1 5 7 13

1 2            
















 →↔R R

11

1 5 7
0 17 22
0 1 13

2 2 1
3 3 1

4
2

















 → − −
− −

→ −
→ −

R R R
R R R

,

     
113
27
25

−
−

















	

R R
R R

2 2
3 3

1
1

1 5 7 13
0 17 22 27
0 1 13 25

→ ÷ −
→ ÷ − →













( ),
( )       




 →
















→ −R R R3 3 217

1
0

5
17

7
22

13
27

0 0 199 398
      .

	 The equivalent system is written by using the echelon form:

			   x y z+ +5 7 	= 	13 ,	 … (1)

			   17 22y z+ 	= 	 27 ,	 … (2)

			   199z 	= 	398 .	 … (3)

	 From (3), we get z = =
398
199

2 .

	 Substituting z = 2 in (2), we get y =
− ×

=
−

= −
27 22 2

17
17

17
1.

	 Substituting z y= = −2 1, in (1), we get x = − × − − × =13 5 1 7 2 4( ) .

	 So, the solution is ( , , )x y z= = − =4 1 2 .

	 Note. The above method of going from the last equation to the first equation is called the method 
of back substitution.
Example 1.28
	 The upward speed v t( ) of a rocket  at time t is approximated by  

v t at bt c( ) ,= + +2  0 100£ £t  where a b c, ,  and  are constants.  It has been 

found that the speed at times t t= =3 6, , and t = 9  seconds are respectively, 
64, 133, and 208 miles per second respectively. Find the speed at time 
t =15 seconds.  (Use Gaussian elimination method.)
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Solution
	 Since v v v( ) , ( ) , ( )3 64 6 133 9 208= = =  and , we get the following system of linear equations

			   9 3a b c+ + 	 = 	 64 ,

			   36 6a b c+ + 	 = 	133 ,

			   81 9a b c+ +  	= 	 208 .

	

We solve the above system of linear equations by Gaussian elimination method. 

	 Reducing the augmented matrix to an equivalent row-echelon form by using elementary row 
operations, we get 

  

[ | ] ,A B R R R R R R=

















 → − → −
9
36
81

3
6
9

1
1
1

64
133
208

2 2 1 3 3 14 9   →→
















− − −

− − −

→ ÷ −
9 3 1 64
0 6 3 123
0 18 8 368

2 2 3   R R R( ), 33 3

3 3

2

2

9 3 1 64
0 2 1 41
0 9 4 184

→ ÷ −

→

 →
















 →

R

R R

( )    


















 →→ −
9
0

3
2

1
1

64
41

9
0

3
2

1
1

0 18 8 368 0 0

3 3 29     R R R

−− −

















 →









→ −

1 1

64
41

9
0

3
2

1
1

64
41

0 0 1 1

3 31    R R( )






.

	 Writing the equivalent equations from the row-echelon matrix, we get 

	 9 3 64 41 1a b c b c c+ + = + = =, , . 2  

	 By back substitution, we get c b c a b c
= =

−
=

−
= =

− −
=

− −
=1 41

2
41 1

2
20 64 3

9
64 60 1

9
1
3

, ( ) ( ) , .  

	 So, we get v t t t( ) .= + +
1
3

20 12  Hence, v( ) ( ) ( ) .15 1
3

225 20 15 1 75 300 1 376= + + = + + =

EXERCISE 1.5

	 1.	� Solve the following systems of linear equations by  
Gaussian elimination method:  

			    (i)	 2 2 3 2 2 3 3 2 1x y z x y z x y z− + = + − = − + =, ,

			   (ii)	 2 4 6 22 3 8 5 27 2 2x y z x y z x y z+ + = + + = − + + =, ,

	 2.	 If ax bx c2 + +   is divided by x x+ −3 5, , and x −1,  the remainders are 21 61 9,  and  

respectively. Find a b c, . and  (Use Gaussian elimination method.)

	 3.	 An amount of ` 65,000 is invested in three bonds at the rates of 6 8%, %  and 10%  per annum 

respectively. The total annual income is ` 4,800. The income from the third bond is ` 600 
more than that from the second bond. Determine the price of each bond. (Use Gaussian 
elimination method.)

	 4.	 A boy is walking along the path y ax bx c= + +2  through the points ( , ),( , )− − −6 8 2 12 , and ( , )3 8 . He 

wants to meet his friend at P( , )7 60 . Will he meet his friend? (Use Gaussian elimination 

method.)
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1.5 Applications of Matrices: Consistency of System of  
      Linear Equations by Rank Method
	 In section 1.3.3, we have already defined consistency of a system of linear equation. In this 
section, we investigate it by using rank method. We state the following theorem without proof:
  Theorem 1.14 (Rouché - Capelli Theorem)

	 A system of linear equations, written in the matrix form as AX B= ,  is consistent if and only if the 
rank of the coefficient matrix is equal to the rank of the augmented matrix; that is, ρ ρ( ) ([ | ]).A A B=

	 We apply the theorem in the following examples.

1.5.1 Non-homogeneous Linear Equations 
Example 1.29
	 Test for consistency of the following system of linear equations and if possible solve: 
x y z x y z x y z x y z+ − = − + = − + = − + + =2 3 3 2 1 2 3 3 1 0, , ,   .

Solution
	 Here the number of unknowns is 3. 
	 The matrix form of the system is AX B= ,  where 

			   A 	 = 	

1
3
1
1

2
1
2
1

1
2
3
1

3
1
3
1

  
−
−
−

−

















=
















=

−






, ,X

x
y
z
B













.

	 The augmented matrix is	 [ | ]A B 	 = 	

1
3
1
1

2
1
2
1

1
2
3
1

3
1
3
1

   
−
−
−

−

−





















.

	 Applying Gaussian elimination method on [ | ],A B we get 

[ | ]

,
,
,A B

R R R
R R R
R R R

2 2 1

3 3 1

4 4 1

3 1 2 1
0 7 5
0 4 4
0 3 2

→ −
→ −
→ − →

−
−
−
−

    

3
8

0
4

2 2

3 3

4 4

1
1
1−

−





















 →

→ −
→ −
→ −

R R
R R
R R

( ) ,
,( )

( )

11 2 1 3
0 7 5 8
0 4 4 0
0 3 2 4

3 3 2

4

7 4

   

       

−



















−
−
−

→ −R R R
R

,
→→ − → →

−
−





















− −
7 34 2 3

1
0

2
7

1
5

3
8

0 0 8 32
0 0 1 4

R R R R   33 4 4 38

1
0

0

2
7

0

1
5

1

3
8

4
0 0 1 4

÷ − → − →

−
−





















( )    R R R →→

−
−





















1
0
0

2
7
0

1
5

1

3
8
4

0 0 0 0

   

	 There are three non-zero rows in the row-echelon form of  [ | ].A B So, ρ [ | ] .A B( ) = 3

	 So, the row-echelon form of  A   is  

1
0
0
0

2
7
0
0

1
5

1
0

  

−
−



















.  There are three non-zero rows in it. So ρ( ) .A = 3
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	 Hence,  ρ ρ( ) ([ | ]) .A A B= = 3

	 From the echelon form, we write the equivalent system of equations

	 x y z y z z+ − = − = = =2 3 7 5 8 4 0 0      , , , .

	 The last equation 0 0=  is meaningful. By the method of back substitution, we get 

			   z 	 = 	 4
			   7 20y − 	 = 	 8                ⇒     y = 4 ,
			   x 	 = 	 3 8 4− +     ⇒   x = −1 .

	 So, the solution is ( , , ).x y z= − = =1 4 4 (Note that A   is not a square matrix.)

	 Here the given system is consistent and the solution is unique.

Example 1.30
	 Test for consistency of the following system of linear equations and if possible solve: 
	 4 2 6 8 3 1 3 9 21x y z x y z x y z− + = + − = − − + =, , .  15

Solution
	 Here the number of unknowns is 3.

	 The matrix form of the system is AX B= ,  where 

			   A 	 = 	
4
1

15

2
1
3

6
3

9

8
1

21
    

−

−
−

















=
















= −












, ,X
x
y
z

B 



.

	

Applying elementary row operations on the augmented matrix[ | ],A B we get 

[ | ]A B R R=
−

−
− −

















 → −
−

↔
4
1

15

2
1
3

6
3

9

8
1

21
4

15
2
3

1 1
1 2     

−− −















 → −
−

→ −
→ −

3 1
6
9

8
21

1 1
0 6
0 18

2 2 1

3 3 1

4
15  

R R R
R R R

,

   

                                 

− −















3 1
18 12
54 36

            
R R
R R

2 2

3 3

6
18

1 1 3 1
0 1 3 2
0 1 3

→ ÷ −
→ ÷ − →

− −
− −
− −

( ),
( )

22

1
0

1
1

3
3

1
2

0 0 0 0

3 3 2

















 →
−
−

−
−

















→ −R R R    
 

 
 

..

	 So, ρ ρ( ) ([ | ]) .A A B= = 2 3 < From the echelon form, we get the equivalent equations
			   x y z+ − 3 	 = 	 −1, y z− 3 = −2 , 0 = 0 .
	 The equivalent system has two non-trivial equations and three unknowns. So, one of the unknowns 
should be fixed at our choice in order to get two equations for the other two unknowns. We fix z
arbitrarily as a real number t , and we get  y = 3 2t − , x = − − − + =1 3 2 3 1( )t t . So, the solution is 
x y t z t= = − =( )1 3 2, , , where  is realt . The above solution set is a one-parameter family of solutions. 

Here, the given system is consistent and has infinitely many solutions which form a one parameter 
family of solutions.

Note
	 In the above example, the square matrix A is singular and so matrix inversion method cannot be 
applied to solve the system of equations. However, Gaussian elimination method is applicable and we 
are able to decide whether the system is consistent or not. The next example also confirms the 
supremacy of Gaussian elimination method over other methods. 
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Example 1.31
	 Test for consistency of the following system of linear equations and if possible solve: 
x y z x y z x y z− + = − − + = − − + + =9 2 2 18 3 3 27 0, , . 2  3
Solution
	 Here the number of unknowns is 3.
	 The matrix form of the system is AX B= ,  where 

			   A 	 = 	
1
2
3

1
2
3

1
2
3

9
18
27

    
−
−
−

















=
















=
−
−
−









, ,X
x
y
z

B








.

	 Applying elementary row operations on the augmented matrix[ | ],A B we get 

	

[ | ]
,

A B
R R R
R R R=

−
−
−

−
−
−

















→ −
→ −

1
2
3

1
2
3

1
2
3

9
18
27

2 2 1

3 3 1

2
3    →

− −















1 1 1 9
0 0 0 0
0 0 0 0

   .

	 So, ρ ρ( ) ([ | ]) .A A B= =1 3 < 
	 From the echelon form, we get the equivalent equations x y z− + = − = =9 0 0 0, , .  0    
	 The equivalent system has one non-trivial equation and three unknowns. 
	 Taking y s z t= =, arbitrarily, we get x s t x s t− + = − = − + −9 9; . or 
	 So, the solution is x s t y s z t s t= − + − = =( )9 , , ,  where  and  are parameters.
	 The above solution set is a two-parameter family of solutions.
	 Here, the given system of equations is consistent and has infinitely many solutions which form a 
two parameter family of solutions.
Example 1.32
	 Test the consistency of the following system of linear equations                                     

	 x y z x y z x y z x y z− + = − − + = − + = − + =9 4 6 4 2 7, , , . 2  3
Solution
	 Here the number of unknowns is 3.
	 The matrix form of the system of equations is AX B= ,  where 

			   A 	 = 	

1
2
3
4

1
1
1
1

1
1
1
2

9
4
6
7

   

−
−
−
−



















=
















=

−




, ,X

x
y
z

B 












 .

	 Applying elementary row operations on the augmented matrix [ | ],A B we get  

[ | ]

,

A B

R R R
R

=

−
−
−
−

−



















→ −1
2
3
4

1
1
1
1

1
1
1
2

9
4
6
7

2 2 12

      
33 3 1

4 4 1

3
4

1 1 1 9
0 1 1 22
0 2 2 33
0 3 2 43

→ −
→ − →

− −



−
−
−

R R
R R R

,

      
















→ −

                                       
R R3 3 22

3
2

4 4 2

1
0

1
1

1
1

9
22

0 0 0 11
0 0 1 23

R
R R R

,
→ − →

−
−

−









−
−

      











 →

−
−

−















−
−

↔R R3 4

1
0

1
1

1
1

9
22

0 0 1 23
0 0 0 11

      




	 So, ρ ρ( ) ([ | ]) .A A B= =3 4 and   Hence ρ ρ( ) ([ | ]).A A B≠
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	 If we write the equivalent system of equations using the echelon form,  we get 

	 x y z y z z− + = − − = = − = −9 22 23 0 11, , , .         
	 The last equation is a contradiction.  

	 So the given system of equations is inconsistent and has no solution. 

	 By Rouché - Capelli theorem, we have the following rule:

	 •	 If there are n  unknowns in the system of equations and ρρ ρρ( ) ([ | ]) ,A A B n== ==  then the 
system AX B== , is consistent and has a unique solution. 

	 •	 If there are n  unknowns in the system AX B== , and ρρ ρρ( ) ([ | ]) ,A A B n k k== == −− ≠≠ 0  then the 
system is consistent and has infinitely many solutions and these solutions form a  
k −− parameter family. In particular, if there are 3  unknowns in a system of equations and 
ρρ ρρ( ) ([ | ]) ,A A B== == 2  then the system has infinitely many solutions and these solutions 
form a one parameter family. In the same manner, if there are 3  unknowns in a system of 
equations and ρρ ρρ( ) ([ | ]) ,A A B== == 1  then the system has infinitely many solutions and these 
solutions form a two parameter family. 

	 •	 If ρρ ρρ( ) ([ | ]),A A B≠≠  then the system AX B== is inconsistent and has no solution. 

Example 1.33
	 Find the condition on a b,  and c  so that the following system of linear equations has one 
parameter family of solutions: x y z a x y z b x y z c+ + = + + = + + =, , .  32 3 5 7

Solution
	 Here the number of unknowns is 3.

	 The matrix form of the system is AX B= ,  where A X
x
y
z
B

a
b
c

=
















=
















=
















1
1
3

1
2
5

1
3
7

    , , .

	 Applying elementary row operations on the augmented matrix [ | ],A B we get

	

[ | ]
,

A B
a
b
c

R R R
R R R=

















 →
→ −
→ −

1
1
3

1
2
5

1
3
7

1
0

2 2 1

3 3 13   
00 2 4 3

1 1

1
0

1
1

1
2

1 2

0 0 0

3 3 22

   

   

a

a

b a
c a

R R R

−
−

















 →→ − bb a
a
b a

c b ac a b a
−

















= −
− −











− − −( ) ( ) ( )3 2

1
0
0

1
1
0

1
2
0 2

   






.

	 In order that the system should have one parameter family of solutions, we must have 

	 ρ ρ( ) ([ , ]) .A A B= = 2 So, the third row in the echelon form should be a zero row. 

	 So, c b a− − =2 0   ⇒   c a b= + 2 .
Example 1.34
	 Investigate for what values of λ  and μ the system of linear equations                                     

	 x y z x y z x y z+ + = + + = + − =2 7 3 5 5, , λ µ
	 has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

Chapter 1 Matrices.indd   41 17-03-2019   14:28:03



42XII - Mathematics

Solution
	 Here the number of unknowns is 3.

	 The matrix form of the system is AX B= ,  where A X
x
y
z
B=

−

















=
















=
















1
1
1

2
1
3

1

5

7

5
    λ µ, , ..

	 Applying elementary row operations on the augmented matrix [ | ],A B we get  

	

[ | ]A B R R=
−

















 → −↔
1
1
1

2
1
3

1

5

7

5

1

1

2

1

1 7
1 3 5 52 3      λ µ

λ µ

















		

R R R
R R R R

2 2 1

3 3 1 3

1 2 1 7
0 1 6 2
0 1 1 7

→ −
→ − → →















− − −

− −
,

   
λ µ

RR R3 2

1
0

2
1

1
6

7
2

0 0 7 9

+ → − −














− −

   
λ µ

.

	 (i)	 If  λ = 7  and m ¹ 9 , then ρ ρ( ) ([ | ]) .A A B= =2 3 and   So ρ ρ( ) ([ | ]).A A B≠  Hence the 

given system is inconsistent and has no solution.

	 (ii)	 If  λ ≠ 7  and  m  is any real number, then ρ ρ( ) ([ | ]) .A A B= =3 3 and  

		  So ρ ρ( ) ([ | ]) .A A B= = =3  Number of unknowns  Hence the given system is consistent and 

has a unique solution.

	 (iii)	If  λ = 7  and µ = 9,  then ρ ρ( ) ([ | ]) .A A B= =2 2 and  

	 So, ρ ρ( ) ([ | ]) .A A B= = <2  Number of unknowns Hence the given system is consistent and has 

infinite number of solutions.

EXERCISE 1.6

	 1.	 Test for consistency and if possible, solve the following systems of equations by rank method.

			   (i)	 x y z x y z x y z− + = + + = − + =2 2 2 4 7 4 4, ,

			   (ii)	3 2 3 2 1 7 4 5x y z x y z x y z+ + = − + = − + =, ,

			   (iii)	 2 2 5 1 3 2 4x y z x y z x y z+ + = − + = + + =, ,

			   (iv)	 2 2 6 3 3 6 4 2 2 4x y z x y z x y z− + = − + = − + =, ,

	 2.	 Find the value of k  for which the equations kx y z x ky z x y kz− + = − + = − − + =2 1 2 2 2 1, ,  
have

	  	(i)	 no solution   	 (ii)	unique solution	 (iii)	 infinitely many solution

	 3.	 Investigate the values of λ  and m  the system of linear equations 2 3 5 9x y z+ + = ,

		  7 3 5 8 2 3x y z x y z+ − = + + =, λ µ , have

		  (i) 	no solution   (ii) a unique solution     (iii) an infinite number of solutions.
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1.5.2  Homogeneous system of linear equations 
	 We recall that a homogeneous system of linear equations is given by 

	

a x a x a x a x
a x a x a x a x

n n

n n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

0+ + + + =

+ + + +





   
  

,
  = 

                               
0

1 1 2 2 3

,
     

a x a x am m m+ + xx a xmn n3 0+ + =  ,

	 ... (1)

where  the coefficients a i m j nij , , , , ; , , ,= =1 2 1 2   are constants. The above system is always 

satisfied by x x xn1 20 0 0= = =, , , . This solution is called the trivial solution of (1). In other words, 

the system (1)  always possesses a solution.  

	 The above system (1) can be put in the matrix form AX Om= ×  1, where 

	

A

a a a a
a a a a

n

n=

11 12 13 1

21 22 23 2

          
          
       

�
�

� � �      
        

� �
�

�
a a a a

X

x
x

xm m m mn n1 2 3

1

2



















=














,





=



















×, .Om   1

0
0

0
�

	 We will denote Om   × 1  simply by the capital letter O.SinceO  is the zero column matrix, it is 

always true that ρ ρ( ) ([ | ]) .A A O m= ≤  So, by Rouché - Capelli Theorem, any system of 

homogeneous linear equations is always consistent.

	 Suppose that m n< , then there are more number of unknowns than the number of equations. So 

ρ ρ( ) ([ | ]) .A A O n= <  Hence, system (1) possesses a non-trivial solution. 

	 Suppose that m n= ,  then there are equal number of equations and unknowns:

	

a x a x a x a x
a x a x a x a x

n n

n n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

0+ + + + =

+ + + +





   
  

,
  = 

                             
0

1 1 2 2 3 3

,
     

a x a x a xn n n+ + ++ + = a xnn n  0,

	 ... (2)

	 Two cases arise. 

Case (i)
	 If ρ ρ( ) ([ | ]) ,A A O n= = then system (2) has a unique solution and it is the trivial solution. 

Since ρ( ) ,A n= A ¹ 0.  So for trivial solution | |A ¹ 0 .

Case (ii)
	 If ρ ρ( ) ([ | ]) ,A A O n= <  then system (2) has a non-trivial solution. Since ρ( ) ,A n< A = 0. In 
other words, the homogeneous system (2) has a non-trivial solution if and only if the determinant 
of the coefficient matrix is zero.  
	 Suppose that m n> ,  then there are more number of equations than the number of unknowns. 
Reducing the system by elementary transformations, we get ρ ρ( ) ([ | ]) .A A O n= ≤
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Example 1.35
	 Solve the following system: 

	 x y z x y z x y z+ + = + + = + + =2 3 0 3 4 4 0 7 10 12 0, , .  
Solution

	 Here the number of equations is equal to the number of unknowns.

	 Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

	

1
3
7

2
4

10

3
4

12

0
0
0

1 2
0
0

2 2 1

3 3 1

3
7   

















 → −
→ −
→ −

R R R
R R R

,

22 5 0
4 9 0

3 0 1 2
0 2
0

2 2

3 3

1
1

− −
−

















 →
→ ÷ −
→ ÷ −   

R R
R R

( ),
( )

44 9 0

3 0

1
0

2
2

3
5

0
0

5 0

0 0 1 0

3 3 22

   

    

















 →







−

→ −R R R











 →
















→ ÷ −R R3 3 1
1
0

2
2

3
5

0
0

0 0 1 0

( ) .   

	 So, ρ ρ( ) ([ | ]) .A A O= = =3 Number of unknowns  

	 Hence, the system has a unique solution. Since x y z= = =0 0 0,   ,   is always a solution of the 

homogeneous system, the only solution is the trivial solution x y z= = =0 0 0, .  ,  

Note

	 In the above example, we find that 

	

A = = − − − + − = − + = − ≠
1 2 3
3 4 4
7 10 12

1 48 40 2 36 28 3 30 28 8 16 6 2 0( ) ( ) ( ) .

Example 1.36

	 Solve the system: x y z x y z x y z+ − = − + = − + =3 2 0 2 4 0 11 14 0, , .  

Solution
	 Here the number of unknowns is 3. 

	 Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

     

1
2
1

3
1
11

2
4

14

0
0
0

1 3
0
0

2 2 1

3 3 1

2

   −

−

−















 →
→ −
→ −

R R R
R R R

,

−−

−

−















 →
→ ÷ −
→ ÷ −7 8 0

14 16 0

2 0 1 3
0
0

2 2

3 3

1
2  

R R
R R

( ),
( ) 77 8 0

07 8

2 0 1
0

3
7

2
8

0
0

0 0 0 0

3 3 2   
− −

−−

−

















 →








→ −R R R








.

    	

So,	 ρ ρ( ) ([ | ]) .A A O= = < =2 3 Number of unknowns  

	 Hence, the system has a one parameter family of solutions. 

	 Writing the equations using the echelon form, we get 

	 x y z y z+ − = − = =3 2 0 8 0 0, , .     7                0

	 Taking z t= ,  where t  is an arbitrary real number, we get by back substitution,
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z t

y t y t

x t t x t t

=

− = ⇒ =

+ 





 − = ⇒ +

−
= ⇒

,

7 8 0 8
7

3 8
7

2 0 24 14
7

0

     ,

       x t
= −

10
7

.

	 So, the solution is x t y t z t t= − = =







10
7

8
7

, , ,  where  is any real number.

Example 1.37
	 Solve the system: x y z x y z x y z x y z+ − = − + = − + = − + =2 0 2 3 0 3 7 10 0 6 9 10 0, , , .

Solution
	 Here the number of equations is 4 and the number of unknowns is 3. Reducing the augmented 
matrix to echelon-form, we get 

	

[ | ]

,

A O

R R R
R

=
−
−
−

−



















→ −1
2
3
6

1
3
7
9

2
1

10
10

0
0
0
0

2 2 12

     
33 3 1

4 4 1

3
6

1 1 2 0
0 5 5 0
0 10 16 0
0 15 22 0

→ −
→ − →

−



−
−
−

R R
R R R

,

      
















 →

−

−
−

→ ÷ −
→ ÷ −

R R
R R

2 2

3 3

5
2

1

0

1

15

2
0 1
0 5

( ),
( )     

11 0
8 0

0

22

0

0

1
0
0

3 3 2

4 4 2

5
15

−





















 →
→ −
→ +

  

 
R R R
R R R

,

      

1
1

2
1

0
0

0 3 0
0 7 0

3 3

4 4

3
7

−
−





















 →
−

→ ÷ −
→ ÷

R R
R R

( ),



−
−





















 →→ −

1
0

1
1

2
1

0
0

1
0
00 0 1 0

0 0 1 0 0

4 4 3     R R R        

1
1
0

2
1

1

0
0
0

0 0 0

−
−





















	

So,  Number of unknowns  
Hence the system 

ρ ρ( ) ([ | ]) .A A O= = =3
hhas trivial solution only.

Example 1.38
	 Determine the values of λ  for which the following system of equations      

	 ( ) , ( ) , ( )3 8 3 3 0 3 8 3 0 3 3 8 0λ λ λ− + + = + − + = + + − =x y z x y z x y z 3  3

	 has a non-trivial solution.

Solution
	 Here the number of unknowns is 3. So, if the system is consistent and has a non-trivial solution, 
then the rank of the coefficient matrix is equal to the rank of the augmented matrix and is less than 3. 
So the determinant of the coefficient matrix should be 0. 

	 Hence we get 

	
3 8

3
3

3
3 8

3

3
3

3 8

λ
λ

λ

−
−

−
  	 = 	0  or 

3 2
3
3

3 2
3 8

3

3 2
3

3 8
0

λ λ
λ

λ

λ

− −
−

−

−
=   (by applying R R R R1 1 2 3→ + + )

	 or ( )3 2
1
3
3

1
3 8

3

1
3

3 8
λ λ

λ
− −

−
  	 = 	0  (by taking out ( )3 2λ −  from R1 )
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	 or ( )3 2
1
0
0

1
3 11

0

1
0

3 11
λ λ

λ
− −

−
  	 = 	0  (by applying R R R R R R2 2 1 3 3 13 3→ − → −, )

	 or ( )( )3 2 3 11 2λ λ− − 	0 . So λ =
2
3

 and λ =
11
3

.

	 We now give an application of system of linear homogeneous equations to chemistry. You are 
already aware of balancing chemical reaction equations by inspecting the number of atoms present on 
both sides. A direct method is explained as given below. 
Example 1.39
	 By using Gaussian elimination method, balance the chemical reaction equation:

	 C H O CO H O5 8 2 2 2+ → + .  

	 (The above is the reaction that is taking place in the burning of organic compound called isoprene.)

Solution
	 We are searching for positive integers x x x x1 2 3 4, ,  and  such that 

	 x C H x O x CO x H O1 5 8 2 2 3 2 4 2+ = + .	 .. (1)

	 The number of carbon atoms on the left-hand side of  (1)  should be equal to the number of carbon 
atoms on the right-hand side of (1). So we get a linear homogenous equation 

	 5 1 3x x= 	⇒  5 01 3x x− =  .	 ... (2)

	 Similarly, considering hydrogen and oxygen atoms, we get respectively, 

	 8 21 4x x=  	⇒  4 = 0x x1 4− , 	 ... (3)

	 2 22 3 4x x x= + 	⇒  2 22 3 4x x x− − = 0 .	 ... (4)

	 Equations (2), (3), and (4) constitute a homogeneous system of linear equations in four unknowns. 

	 The augmented matrix is [ | ] .A B =
−

−
−
−

















5
4
0

0
0
2

1
0
2

0
1
1

0
0
0

        

	 By Gaussian elimination method, we get 

	

[ | ]A B R R RR1 2 32

4 0 0 1 0
5 0 1 0 0
0 2 2 1 0

↔ ↔ →
− −

















−
−

          →
−















− −
−

4 0 0 1 0
0 2 2 1 0
5 0 1 0 0

         

                                                         R R R3 3 14 5→ − → −
−
−















−

4
0

0
2

0
2

1
1

0
0

0 0 4 5 0
      .

	 Therefore,  Number of unknownsρ ρ( ) ([ | ]) .A A B= = < =3 4

	 The system is consistent and has infinite number of solutions.

	 Writing the equations using the echelon form, we get 4 0 2 2 0 4 5 01 4 2 3 4 3 4x x x x x x x− = − − = − + =, , .

	 So, one of the unknowns should be chosen arbitrarily as a non-zero real number. 

	 Let us choose x t t4 0= ≠, . Then, by back substitution, we get x t x t x t
3 2 1

5
4

7
4 4

= = =, , .
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	 Since  x x x x1 2 3 4, , , and  are positive integers,  let us choose  t = 4.

	 Then, we get  	x x x x1 2 3 41 7= =, , =5 and =4.

	 So, the balanced equation is  C H O CO H O5 8 2 2 27 5 4+ → + .

Example 1.40
	 If the system of equations px by cz ax qy cz ax by rz+ + = + + = + + =0 0 0, , has a non-trivial 

solution and p a q b r c¹ ¹ ¹, , ,  prove that p
p a

q
q b

r
r c−

+
−

+
−

= 2.

Solution
	 Assume that the system px by cz ax qy cz ax by rz+ + = + + = + + =0 0 0, ,  has a non-trivial 

solution. 

	 So, we have 
p b c
a q c
a b r

= 0.Applying R R R R R R2 2 1 3 3 1→ − → − and  in the above equation, 

we get 
p b c

a p q b
a p r c

p b c
p a q b
p a r c

− −
− −

= − − −
− − −

=0
0

0 0
0

0. ( )
( )

. That is, 

	 Since p a q b r c¹ ¹ ¹, , , we get ( )( )( )p a q b r c

p
p a

b
q b

c
r c

− − −
− − −

−
−

=1 1 0
1 0 1

0 .

	 So, we have   

p
p a

b
q b

c
r c− − −

−
−

=1 1 0
1 0 1

0.

	 Expanding the determinant, we get p
p a

b
q b

c
r c−

+
−

+
−

= 0.

	 That is,   p
p a

q q b
q b

r r c
r c

p
p a

q
q b

r
r c−

+
− −

−
+

− −
−

= ⇒
−

+
−

+
−

=
( ) ( ) .0 2   

EXERCISE 1.7
	 1.		Solve the following system of homogenous equations.
			  (i)	 3 2 7 0 4 3 2 0 5 9 23 0x y z x y z x y z+ + = − − = + + =, ,
			  (ii)	 2 3 0 2 0 3 3 0x y z x y z x y z+ − = − − = + + =, ,

	 2.	Determine the values of λ  for which the following system of equations      

			 x y z x y z x y z+ + = + + = + + =3 0 3 0 2 0, , 4  2λ  has 
		 (i) a unique solution 	 (ii) a non-trivial solution.

	 3.	By using Gaussian elimination method, balance the chemical reaction equation:
		 C H O H O CO2 6 2 2 2+ → +
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EXERCISE 1.8

Choose the Correct or the most suitable answer from the given four alternatives : 
	 1.	 If | ) | | |adj(adj A A= 9 , then the order of the square matrix A  is
		  (1) 3			   (2)  4	 (3) 2	 (4) 5
	 2.	 If A  is a 3 3×  non-singular matrix such that AA A AT T= and B A AT= −1 , then BBT =

		  (1) A 			  (2) B 	 (3) I3 	 (4) BT

	 3.	 If A =










3 5
1 2

, B A= adj  and C A= 3 , then | |
| |

adj B
C

 =

		  (1) 1
3

			  (2) 1
9

	 (3) 1
4

	 (4) 1

	 4.	 If A
1 2
1 4

6 0
0 6

−







 =









 , then A =

		  (1) 
1 2
1 4

−







     (2) 

1 2
1 4−









     (3) 

4 2
1 1−









     (4) 

4 1
2 1

−









	 5.	 If A =










7 3
4 2

, then 9 2I A− =

		  (1) A−1 	 (2) A−1

2
	 (3) 3 1A− 	 (4) 2 1A−

	 6.	 If A =










2 0
1 5

 and B =










1 4
2 0

 then | ( ) |adj AB =

		  (1) −40 	 (2) −80 	 (3) −60 	 (4) −20

	 7.	 If P
x

=
−

















1 0
1 3 0
2 4 2

 is the adjoint of 3 3×  matrix A and | |A = 4 , then x  is

		  (1) 15 		 (2) 12 	 (3) 14 	 (4) 11

	 8.	 If A =
−

−
−

















3 1 1
2 2 0
1 2 1

 and A
a a a
a a a
a a a

− =
















1
11 12 13

21 22 23

31 32 33

 then the value of a23  is

		  (1) 0 			  (2) −2 	 (3) −3 	 (4) −1

	 9.	 If A B,  and C  are invertible matrices of some order, then which one of the following is not 

true?
		  (1) adj A A A= −| | 1 	 (2) adj adj adj ( ) ( )( )AB A B=

		  (3) det (det )A A− −=1 1 	 (4) ( )ABC C B A− − − −=1 1 1 1

	 10.	 If ( )AB − =
−

−










1 12 17
19 27

and A− =
−

−










1 1 1
2 3

, then B− =1

		  (1) 
2 5
3 8

−
−









 	 (2) 

8 5
3 2









 	 (3) 

3 1
2 1









 	 (4) 

8 5
3 2

−
−










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	 11.	 If A AT −1  is symmetric, then A2 =

		  (1) A−1 	 (2) ( )AT 2 	 (3) AT 	 (4) ( )A−1 2

	 12.	 If A  is a non-singular matrix such that A− =
− −











1 5 3
2 1

, then ( )AT − =1

		  (1) 
−









5 3
2 1

	 (2) 
5 3
2 1− −









 	 (3) 

− −









1 3
2 5

	 (4) 
5 2
3 1

−
−











	 13.	 If A
x

=



















3
5

4
5
3
5

 and A AT = −1 , then the value of x  is

		  (1) −4
5

	 (2) −3
5

	 (3) 3
5

	 (4) 4
5

	 14.	 If A =
−



















1
2

2
1

tan

tan

θ

θ
and AB I= 2 , then B =

		  (1) cos2

2
θ






 A 	 (2) cos2

2
θ






 A

T 	 (3) (cos )2 θ I 	 (4) sin2

2
θ






 A

	 15.	 If A =
−











cos sin
sin cos

θ θ
θ θ

and A A
k
k

( )adj =










0
0

, then k =

		  (1) 0 			  (2) sinθ 	 (3) cosθ 	 (4) 1

	 16.	 If A =
−











2 3
5 2

 be such that λ A A− =1 , then λ  is

		  (1) 17 		 (2) 14 	 (3) 19 	 (4) 21

	 17.	 If adj A =
−











2 3
4 1

 and adj B =
−

−










1 2
3 1

 then adj ( )AB  is

		  (1) 
− −

−










7 1
7 9

	 (2) 
−
− −











6 5
2 10

	 (3) 
−
− −











7 7
1 9

	 (4) 
− −

−










6 2
5 10

	 18.	 The rank of the matrix 
1 2 3 4
2 4 6 8
1 2 3 4− − − −

















  is

		  (1) 1			   (2) 2 	 (3) 4 	 (4) 3

	 19.	 If  x y e x y e
m b
n d

a m
c n

a b
c d

a b m c d n= = ∆ = ∆ = ∆ =, , , , ,1 2 3  then the values of x   and y  

are respectively,

		  (1) e e( / ) ( / ),D D D D2 1 3 1   		  (2)  log( / ), log( / )D D D D1 3 2 3  
		 (3)  log( / ), log( / )D D D D2 1 3 1  		  (4) ) e e( / ) ( / ),D D D D1 3 2 3  
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	 20.	 Which of the following is/are correct?
			   (i)	Adjoint of a symmetric matrix is also a symmetric matrix.
			   (ii)	Adjoint of a diagonal matrix is also a diagonal matrix.
			   (iii)	 If A  is a square matrix of order n  and λ   is a scalar, then adj adj( ) ( )λ λA An= .

			   (iv)	 A A A A A I( ) ( ) | |adj adj= =

		  (1) Only (i)	 (2) (ii) and (iii)	 (3) (iii) and  (iv)	 (4) (i), (ii) and (iv)

	 21.	 If ρ ρ( ) ([ | ])A A B= , then the system AX B= of linear equations is
		  (1) consistent and has a unique solution	 (2) consistent
		  (3) consistent and has infinitely many solution	 (4) inconsistent

	 22.	 If 0 ≤ ≤θ π and the system of equations x y z x y z+ − = − + =(sin ) (cos ) ,(cos ) ,θ θ θ0 0

(sin )θ x y z+ − = 0 has a non-trivial solution then θ  is

		  (1) 2
3
p 	 (2) 3

4
p 	 (3) 5

6
p 	 (4) p

4

	 23.	 The augmented matrix of a system of linear equations is 
1 2 7 3
0 1 4 6
0 0 7 5λ µ− +

















 . The system 

has infinitely many solutions if
		  (1) λ µ= ≠ −7 5, 	 (2) λ µ= − =7 5, 	 (3) λ µ≠ ≠ −7 5, 	 (4) λ µ= = −7 5,

	 24.	 Let A =
−

− −
−

















2 1 1
1 2 1

1 1 2
 and 4

3 1 1
1 3
1 1 3

B x=
−

−

















 . If B  is the inverse of A , then the value of x  is

		  (1) 2  		 (2) 4  	 (3) 3  	 (4) 1 

	 25.	 If A =
−
−
−

















3 3 4
2 3 4
0 1 1

, then adj(adj A)  is 

		  (1) 
3 3 4
2 3 4
0 1 1

−
−
−

















	 (2) 
6 6 8
4 6 8
0 2 2

−
−
−

















	 (3) 
− −
− −

−

















3 3 4
2 3 4

0 1 1
	 (4) 

3 3 4
0 1 1
2 3 4

−
−
−

















SUMMARY
	 (1)	 Adjoint of a square matrix A = Transpose of the cofactor matrix of A .

	 (2)	 A A A A A In( ) ( ) .adj adj = =  

	 (3)	 A
A

A− =1 1 adj .  

	 (4)	 (i) A
A

− =1 1

   
(ii) A AT T( ) = ( )− −1 1    (iii) λ

λ
λA A( ) =− −1 11 ,   where   is a non-zero scalar.
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ICT CORNER

	 (5)	 (i) ( ) .AB B A− − −=1 1 1 	 (ii) ( )A A− − =1 1

	 (6)	 If A  is a non-singular square matrix of order n ,  then

	 (i)	 adj  adjA A
A

A( ) = ( ) =− −1 1 1 	 (ii)	 adj A A n= −| | 1

	 (iii)	 adj adj  A A An( ) = −| | 2  	 (iv)	 adj adj   is a nonzero scalar( ) ( ),λ λ λA An= −1  

	 (v)	 adj adj( ) ( )A A n= −1 2  	 (vi)	 ( )adj adjA AT T= ( )  

	 (vii)	 adj adj( ) ( )(adj )AB B A= 	

	 (7)	 (i) A
A

A− = ±1 1
adj 

adj .    (ii)  A
A

A= ± ( )1
adj 

adj adj .

	 (8)		  (i)	A matrix A is orthogonal if AA A A IT T= =  

			   (ii)	A matrix A is orthogonal if and only if A is non-singular and A AT− =1  
	 (8)	 Methods to solve the system of linear equations AX B=  
			   (i)	By matrix inversion method X A B A= ≠−1 0, | |  

			   (ii)	By Cramer’s rule x y z=
∆
∆

=
∆
∆

=
∆
∆

∆ ≠1 2 3 0, , , .

			   (iii)	By Gaussian elimination method

	 (9)	  	 (i)	 If ρ ρ( ) ([ | ])A A B= = number of unknowns, then the system has unique solution.

			   (ii)	 If ρ ρ( ) ([ | ])A A B= < number of unknowns, then the system has infinitely many 

solutions.
			   (iii)	 If ρ ρ( ) ([ | ])A A B≠ then the system is inconsistent and has no solution.

	 (10)	 The homogenous  system of linear equations AX = 0  

			   (i)	has the trivial solution, if   | |A ¹0 .
			   (ii)	has a non trivial solution, if  | |A = 0 .
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