EXERCISE 1(A)

Question 1.

Add, each pair of rational numbers, given below, and show that their addition (sum) is also a rational number.

(i)
$$\frac{-5}{8}$$
 and $\frac{3}{8}$

Solution:

$$\frac{-5}{8}$$
 and $\frac{3}{8}$

Adding addition sign in between,

$$=\frac{-5}{8}+\frac{3}{8}$$

(∵ Denominators are same, LCM=8)

$$\frac{-5}{8} + \frac{3}{8} = \frac{-5+3}{8}$$

$$= \frac{-2}{8} = \frac{-1}{4}$$
 (Cancelling numerator and denominator by 2)

Which is a rational number.

(ii)
$$\frac{-8}{13}$$
 and $\frac{-4}{13}$

solution:

(ii)
$$\frac{-8}{13}$$
 and $\frac{-4}{13}$

Adding addition sign in between

$$=\frac{-8}{13}+\left(\frac{-4}{13}\right)$$

(∵ Denominators are same, LCM=13)

$$\frac{-8}{13} + \left(\frac{-4}{13}\right) = \frac{-8-4}{13} = \frac{-12}{13}$$

Which is a rational number.

(iii)
$$\frac{6}{11}$$
 and $\frac{-9}{11}$

$$\frac{6}{11}$$
 and $\frac{-9}{11}$

Adding addition sign in between

$$=\frac{6}{11}+\left(\frac{-9}{11}\right)$$

(∵ Denominators are same, ∴LCM=11)

$$=\frac{6-9}{11}=\frac{-3}{11}$$

Which is a rational number.

(iv)
$$\frac{5}{-26}$$
 and $\frac{8}{39}$

Solution:

$$\frac{5}{-26}$$
 and $\frac{8}{39}$

Adding addition sign in between

$$=\frac{5}{-26}+\frac{8}{39}$$

Taking L.C.M.

::LCM of 26 and 39 = $2 \times 3 \times 13 = 78$

$$\frac{5}{-26} + \frac{8}{39} = \frac{-5 \times 3}{26 \times 3} + \frac{8 \times 2}{39 \times 2}$$

$$=\frac{-15+16}{78}$$

$$=\frac{1}{78}$$

Which is a rational number.

$$(v) \frac{5}{-6} \text{ and } \frac{2}{3}$$

$$\frac{5}{-6}$$
 and $\frac{2}{3}$

Adding addition sign in between

$$=\frac{-5}{6}+\frac{2}{3}$$

Taking L.C.M.

∴ LCM OF 6, 3=2×3=6

$$\frac{-5}{6} + \frac{2}{3} = \frac{-5 \times 1}{6 \times 1} + \frac{2 \times 2}{3 \times 2}$$

(∵LCM of 6 and 3=6)

$$=\frac{-5+4}{6}=\frac{-1}{6}$$

Which is a rational number.

(vi)–2 and
$$\frac{2}{5}$$

Solution:

$$-2$$
 and $\frac{2}{5}$

Adding addition sign in between

$$=\frac{-2}{1}+\frac{2}{5}$$
 (::LCM of 1 and 5=5)

$$=\frac{-2\times5}{1\times5}+\frac{2\times1}{5\times1}$$

$$=\frac{-10+2}{5}=\frac{-8}{5}$$

Which is a rational number.

(vii)
$$\frac{9}{-4}$$
 and $\frac{-3}{8}$

$$\frac{9}{-4}$$
 and $\frac{-3}{8}$

Adding addition sign in between

$$=\frac{-9}{4}+\left(\frac{-3}{8}\right)$$

Taking L.C.M.

2	4,8
2	2,4
2	2,2
	1 1

∴LCM of 4 and 8=2×2×2=8

$$\frac{-9}{4} + \left(\frac{-3}{8}\right) = \frac{-9 \times 2}{4 \times 2} - \frac{3 \times 1}{8 \times 1}$$

$$=\frac{-18-3}{8}=\frac{-21}{8}$$

Which is a rational number.

(viii)
$$\frac{7}{-18}$$
 and $\frac{8}{27}$

Solution:

$$\frac{7}{-18}$$
 and $\frac{8}{27}$

Adding addition sign in between

$$\frac{7}{-18} + \frac{8}{27}$$

2	18,27
3	9,27
3	3,9
3	1,3
	1,1

∴LCM of 18 and 27=2×3×3×3=54

$$=\frac{-21+16}{54}=\frac{-5}{54}$$

Which is a rational number.

Question 2

Evaluate:

(i)
$$\frac{5}{9} + \frac{-7}{6}$$

Solution:

$$\frac{5}{9} + \frac{-7}{6}$$

Taking L.C.M.

∴LCM of 9 and 6=2×3×3=18

$$\frac{5}{9} + \frac{-7}{6}$$

$$=\frac{5\times 2}{9\times 2}-\frac{7\times 3}{6\times 3}$$

(∵LCM of 9 and 6=18)

$$=\frac{10-21}{18}=\frac{-11}{8}$$

(ii)
$$4 + \frac{3}{-5}$$

$$4 + \frac{3}{-5}$$

$$4 + \frac{3}{-5} = \frac{4}{1} + \left(\frac{-3}{5}\right)$$

$$=\frac{4}{1}-\frac{3}{5}$$

Taking L.C.M.

LCM of 1 and 5=5

$$4 + \frac{3}{-5} = \frac{4 \times 5}{1 \times 5} - \frac{3 \times 1}{5 \times 1}$$

$$=\frac{20-3}{5}=\frac{17}{5}=3\frac{2}{5}$$
 (Displaying the answer in mixed fraction)

(iii)
$$\frac{1}{-15} + \frac{5}{-12}$$

Solution:

$$\frac{1}{-15} + \frac{5}{-12}$$

$$=\frac{-1}{15}+\left(\frac{-5}{12}\right)$$

$$=\frac{-1}{15}-\frac{5}{12}$$

Taking L.C.M.

∴LCM of 15 and 12=2×2×3×5=60

$$=\frac{-1\times4}{15\times4}-\frac{5\times5}{12\times5}$$

LCM of 15 and 12=60

$$\frac{1}{-15} + \frac{5}{-12} = \frac{-4 - 25}{60} = \frac{-29}{60}$$

(iv)
$$\frac{5}{9} + \frac{3}{-4}$$

$$\frac{5}{9} + \frac{3}{-4}$$

$$=\frac{5}{9}-\frac{3}{4}$$
 (Manipulating the signs)

LCM of 9 and 4=2×2×3×3=36

$$\frac{5}{9} + \frac{3}{-4} = \frac{5 \times 4}{9 \times 4} - \frac{3 \times 9}{4 \times 9}$$

$$=\frac{20-27}{36}=\frac{-7}{36}$$

$$=\frac{-7}{36}$$

$$(v)^{\frac{-8}{9}} + \frac{-5}{12}$$

Solution:

$$\frac{-8}{9} + \frac{-5}{12}$$

Taking L.C.M.

∴ LCM of 9, 12=2×2×3×3=36

$$\frac{-8}{9} + \frac{-5}{12} = \frac{-8 \times 4}{9 \times 4} - \frac{5 \times 3}{12 \times 3}$$

$$=\frac{-32-15}{36}$$

$$=\frac{-47}{36}$$

(vi)
$$0 + \frac{-2}{7}$$

$$0+\frac{-2}{7}$$

LCM of 0 and 7=7

By cross multiplying

$$0 + \frac{-2}{7} = \frac{0 \times 7}{1 \times 7} - \frac{2 \times 1}{7 \times 1}$$

$$=\frac{0-2}{7}=\frac{-2}{7}$$

(vii)
$$\frac{5}{-11} + 0$$

Solution:

$$\frac{5}{-11} + 0$$

LCM of 0 and 11=11

By cross multiplying

$$\frac{5}{-11} + 0 = \frac{-5 \times 1}{11 \times 1} + \frac{0 \times 11}{1 \times 11}$$

$$=\frac{-5+0}{11}=\frac{-5}{11}$$

(viii)
$$2 + \frac{-3}{5}$$

Solution:

$$=\frac{2}{1}-\frac{3}{5}$$

LCM of 1 and 5=5

$$=\frac{2\times5}{1\times5}-\frac{3\times1}{5\times1}$$

$$=\frac{10-3}{5}=\frac{7}{5}=1\frac{2}{5}$$

$$(ix)\frac{4}{-9}+1$$

$$\frac{-4}{9} + \frac{1}{1}$$

LCM of 9 and 1=9

$$\frac{-4}{9} + \frac{1}{1} = \frac{-4 \times 1}{9 \times 1} + \frac{1 \times 9}{1 \times 9}$$

$$=\frac{-4+9}{9}=\frac{5}{9}$$

Question 3.

Evaluate:

(i)
$$\frac{3}{7} + \frac{-4}{9} + \frac{-11}{7} + \frac{7}{9}$$

$$= \left(\frac{3}{7} + \frac{-11}{7}\right) + \left(\frac{-4}{9} + \frac{7}{9}\right)$$

$$=\frac{3-11}{7}+\frac{-4+7}{9}$$

$$=\frac{-8}{7}+\frac{3}{9}$$

$$=\frac{-8}{7}+\frac{1}{3}$$

Taking LCM of 7 and 3

∴LCM of 3 and 7=3×7=21

$$\frac{-8}{7} + \frac{1}{3} = \frac{-8 \times 3}{7 \times 3} + \frac{1 \times 7}{3 \times 7}$$

$$=\frac{-24+7}{21}=\frac{-17}{21}$$

(ii)
$$\frac{2}{3} + \frac{-4}{5} + \frac{1}{3} + \frac{2}{5}$$

$$=\left(\frac{2}{3}+\frac{1}{3}\right)+\left(\frac{-4}{5}+\frac{2}{5}\right)$$

$$=\frac{2+1}{3}+\frac{-4+2}{5}$$

$$=\frac{3}{3}+\left(\frac{-2}{5}\right)$$

Taking LCM,

∴LCM of 3 and 5=3×5=15

$$\frac{3}{3} + \left(\frac{-2}{5}\right) = \frac{3\times5}{3\times5} + \frac{-2\times3}{5\times3}$$

$$=\frac{15-6}{15}=\frac{9}{15}=\frac{3}{5}$$

(iii)
$$\frac{4}{7} + 0 + \frac{-8}{9} + \frac{-13}{7} + \frac{17}{9}$$

$$=\frac{4}{7}+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{9}$$

$$= \left[\frac{4}{7} + \left(\frac{-13}{7}\right)\right] + \left(\frac{-8}{9} + \frac{17}{9}\right)$$

$$=\left[\frac{4}{7}-\frac{13}{7}\right]+\left[\frac{-8}{9}+\frac{17}{9}\right]$$

$$=\frac{-9}{7}+\frac{9}{9}=\frac{-9}{7}+1$$

$$=\frac{-9\times1}{7\times1}+\frac{1\times7}{1\times7}$$
 (::LCM of 1 and 7=7)

$$=\frac{-9}{7}+\frac{7}{7}=\frac{-2}{7}$$

(iv)
$$\frac{3}{8} + \frac{-5}{12} + \frac{3}{7} + \frac{3}{12} + \frac{-5}{8} + \frac{-2}{7}$$

$$= \left(\frac{3}{8} - \frac{5}{8}\right) + \left(\frac{-5}{12} + \frac{3}{12}\right) + \left(\frac{3}{7} - \frac{2}{7}\right)$$

$$=\frac{-2}{8}-\frac{2}{12}+\frac{1}{7}$$

$$=\frac{-1}{4}-\frac{1}{6}+\frac{1}{7}$$

∴LCM of 4, 6 and 7=2×2×3×7=84

$$\frac{-1}{4} - \frac{1}{6} + \frac{1}{7} = \frac{-1 \times 21}{4 \times 21} - \frac{1 \times 14}{6 \times 14} + \frac{1 \times 12}{7 \times 12}$$

$$=\frac{-21-14+12}{84}$$

$$=\frac{-35+12}{84}=\frac{-23}{84}$$

Question 4.

For each pair of rational numbers, verify commutative property of addition of rational numbers:

(i)
$$\frac{-8}{7}$$
 and $\frac{5}{14}$

To prove:
$$\frac{-8}{7} + \frac{5}{14} = \frac{5}{14} + \frac{-8}{7}$$

LHS =
$$\frac{-8}{7} + \frac{5}{14}$$

Taking LCM of 7 and 14

∴LCM of 2 and 7=14

$$\frac{-8}{7} + \frac{5}{14} = \frac{-8 \times 2}{7 \times 2} + \frac{5 \times 1}{14 \times 1}$$

$$=\frac{-16+5}{14}=\frac{-11}{14}$$

RHS =
$$\frac{5}{14} + \frac{-8}{7}$$

$$= \frac{5\times 1}{14\times 1} + \left(\frac{-8\times 2}{7\times 2}\right)$$
 (:LCM of 2 and 7=14)

$$=\frac{5-16}{14}=\frac{-11}{14}$$

♣ RHS = LHS

i.e.
$$\frac{-8}{7} + \frac{5}{14} = \frac{5}{14} + \frac{-8}{7}$$

Hence, the commutative property for the addition of rational numbers is verified.

(ii)
$$\frac{5}{9}$$
 and $\frac{5}{-12}$

To prove:
$$\frac{5}{9} + \frac{5}{-12} = \frac{5}{-12} + \frac{5}{9}$$

LHS =
$$\frac{5}{9} + \frac{5}{-12}$$

LCM of 9 and 12=2×2×3×3=36

$$LHS = \frac{5 \times 4}{9 \times 4} - \frac{5 \times 3}{12 \times 3}$$

$$=\frac{20-15}{36}=\frac{5}{36}$$

RHS =
$$\frac{5}{-12} + \frac{5}{9}$$

$$= \frac{5\times3}{-12\times3} + \frac{5\times4}{9\times4}$$
 (::LCM of 9 and 12 = 36)

$$=\frac{-15+20}{36}=\frac{5}{36}$$

i.e.
$$\frac{5}{9} + \frac{5}{-12} = \frac{5}{-12} + \frac{5}{9}$$

Hence, the commutative property for the addition of rational numbers is verified.

(iii)
$$\frac{-4}{5}$$
 and $\frac{-13}{-15}$

To prove:

$$\frac{-4}{5} + \frac{-13}{-15} = \frac{-13}{-15} + \left(\frac{-4}{5}\right)$$

LHS =
$$\frac{-4}{5} + \frac{13}{15}$$

Taking LCM

∴LCM of 5 and 15=5×3=15

$$LHS = \frac{-4 \times 3}{5 \times 3} + \frac{13 \times 1}{15 \times 1}$$

$$=\frac{-12+13}{15}=\frac{1}{15}$$

$$RHS = \frac{13}{15} + \frac{-4}{5}$$

$$= \frac{13\times1}{15\times1} + \frac{-4\times3}{5\times3}$$
 (:LCM of 5 and 15 = 15)

$$=\frac{13-12}{15}=\frac{1}{15}$$

i.e.
$$\frac{-4}{5} + \frac{-13}{-15} = \frac{-13}{-15} + \frac{-4}{5}$$

Hence, the commutative property for the addition of rational numbers is verified.

(iv)
$$\frac{2}{-5}$$
 and $\frac{11}{-15}$

To prove:
$$\frac{2}{-5} + \frac{11}{-15} = \frac{11}{-15} + \frac{2}{-5}$$

$$LHS = \frac{2}{-5} + \frac{11}{-15}$$

Taking LCM

∴LCM of 5 and 15=15

$$LHS = \frac{-2 \times 3}{5 \times 3} - \frac{11 \times 1}{15 \times 1}$$

$$=\frac{-6-11}{15}=\frac{-17}{15}$$

RHS =
$$\frac{11}{-15} + \frac{2}{-5}$$

= $\frac{-11 \times 1}{15 \times 1} - \frac{2 \times 3}{5 \times 3}$ (:LCM of 5 and 15 = 15)
= $\frac{-11 - 6}{15} = \frac{-17}{15}$

i.e.
$$\frac{2}{-5} + \frac{11}{-15} = \frac{11}{-15} + \frac{2}{-5}$$

Hence, the commutative property for the addition of rational numbers is verified.

(v) 3 and
$$\frac{-2}{7}$$

To prove:
$$\frac{3}{1} + \frac{-2}{7} = \frac{-2}{7} + \frac{3}{1}$$

LHS =
$$\frac{3}{1} + \frac{-2}{7}$$

$$=\frac{3\times7}{1\times7} - \frac{2\times1}{7\times1}$$
 (:LCM of 1 and 7=7)

$$=\frac{21-2}{7}=\frac{19}{7}$$

RHS =
$$\frac{-2}{7} + \frac{3}{1}$$

$$= \frac{-2 \times 1}{7 \times 1} + \frac{3 \times 7}{1 \times 7}$$
 (::LCM of 1 and 7=7)

$$=\frac{-2+21}{7}=\frac{19}{7}$$

i.e.
$$\frac{3}{1} + \frac{-2}{7} = \frac{-2}{7} + \frac{3}{1}$$

Hence, the commutative property for the addition of rational numbers is verified.

vi)
$$-2$$
 and $\frac{3}{-5}$

To prove:
$$\frac{-2}{1} + \frac{-3}{5} = \frac{-3}{5} + \frac{-2}{1}$$

$$LHS = \frac{-2}{1} + \frac{-3}{5}$$

$$= \frac{-2 \times 5}{1 \times 5} + \frac{-3 \times 1}{5 \times 1}$$
 (::LCM of 1 and 5=5)

$$=\frac{-10-3}{5}=\frac{-13}{5}$$

RHS =
$$\frac{-3}{5} + \frac{-2}{1}$$

$$=\frac{-3\times 1}{5\times 1}+\frac{-2\times 5}{1\times 5}$$

(∵LCM of 1 and 5=5)

i.e.
$$-\frac{2}{1} + \frac{-3}{5} = \frac{-3}{5} + \frac{-2}{1}$$

Hence, the commutative property for the addition of rational numbers is verified.

Question 5.

For each set of rational numbers, given below, verify the associative property of addition of rational numbers:

(I)
$$\frac{1}{2}$$
, $\frac{2}{3}$ and $-\frac{1}{6}$

Solution:

To prove:
$$\frac{1}{2} + \left(\frac{2}{3} + \frac{-1}{6}\right) = \left(\frac{1}{2} + \frac{2}{3}\right) + \frac{-1}{6}$$

LHS =
$$\frac{1}{2} + \left(\frac{2}{3} + \frac{-1}{6}\right)$$

Taking LCM

∴LCM of 3 and 6=6

$$\mathsf{LHS} = \frac{1}{2} + \left(\frac{2 \times 2}{3 \times 2} + \frac{-1 \times 1}{6 \times 1} \right)$$

$$=\frac{1}{2}+\left(\frac{4}{6}-\frac{1}{6}\right)$$

$$= \frac{1}{2} + \left(\frac{4-1}{6}\right)$$
$$= \frac{1}{2} + \left(\frac{3}{6}\right)$$

$$=\frac{1\times3}{2\times3}+\frac{3\times1}{6\times1}$$
 (::LCM of 2 and 6=3)

$$=\frac{3+3}{6}=\frac{6}{6}=1$$

RHS =
$$\left(\frac{1}{2} + \frac{2}{3}\right) + \frac{-1}{6}$$

Taking LCM

∴LCM of 2 and 3=6

RHS =
$$\left(\frac{1\times3}{2\times3} + \frac{2\times2}{3\times2}\right) + \frac{-1}{6}$$

$$=\frac{3+4}{6}+\frac{-1}{6}$$

$$=\frac{7-1}{6}=\frac{6}{6}=1$$

i.e.
$$\frac{1}{2} + \left(\frac{2}{3} + \frac{-1}{6}\right) = \left(\frac{1}{2} + \frac{2}{3}\right) + \frac{-1}{6}$$

Hence, the associative property for the addition of rational numbers is verified.

(ii)
$$\frac{-2}{5}$$
, $\frac{4}{15}$ and $\frac{-7}{10}$

To prove:
$$\frac{-2}{5} + \left(\frac{4}{15} + \frac{-7}{10}\right) = \left(\frac{-2}{5} + \frac{4}{15}\right) + \frac{-7}{10}$$

LHS =
$$\frac{-2}{5} + \left(\frac{4}{15} + \frac{-7}{10}\right)$$

Taking LCM

5	5,5
	1,1

 \therefore LCM of 15 and 10 = 2 × 3 × 5 = 30

$$LHS = \frac{-2}{5} + \left(\frac{4\times2}{15\times2} + \frac{-7\times3}{10\times3}\right)$$

$$= \frac{-2}{5} + \left(\frac{4 \times 2}{15 \times 2} + \frac{-7 \times 3}{10 \times 3}\right)$$

$$=\frac{-2}{5}+\left(\frac{8-21}{30}\right)$$

$$= \frac{-2}{5} - \frac{13}{30} = \frac{-2\times6}{5\times6} - \frac{13\times1}{30\times i}$$
 (:LCM of 5 and 30=30)

$$=\frac{-12-13}{30}=\frac{-25}{30}=\frac{-5}{6}$$

RHS =
$$\left(\frac{-2}{5} + \frac{4}{15}\right) + \frac{-7}{10}$$

Taking LCM

-LCM of 5 and 15=3×5=15

$$RHS = \left(\frac{-2 \times 3}{5 \times 3} + \frac{4 \times 1}{15 \times 1}\right) + \frac{-7}{10}$$

$$=\frac{-6+4}{15}+\frac{-7}{10}$$

$$=\frac{-2}{15}+\frac{-7}{10}$$

$$=\frac{-2\times 2}{15\times 2}-\frac{7\times 3}{10\times 3}$$

(::LCM of 15 and 10=30)

$$=\frac{-4}{30}-\frac{21}{30}=\frac{-25}{30}=\frac{-5}{6}$$

i.e.
$$\frac{-2}{5} + \left(\frac{4}{15} + \frac{-7}{10}\right) = \left(\frac{-2}{5} + \frac{4}{15}\right) + \frac{-7}{10}$$

Hence, the associative property for the addition of rational numbers is verified.

(iii)
$$\frac{-7}{9}$$
, $\frac{2}{-3}$ and $\frac{-5}{18}$

To prove:
$$\frac{-7}{9} + \left(\frac{2}{-3} + \frac{-5}{18}\right) = \left(\frac{-7}{9} + \frac{2}{-3}\right) + \frac{-5}{18}$$

LHS =
$$\frac{-7}{9} + \left(\frac{2}{-3} + \frac{-5}{18}\right)$$

Taking LCM

∴LCM of 3 and 18=2×3×3=18

$$LHS = \frac{-7}{9} + \left(\frac{-2 \times 6}{3 \times 6} + \frac{-5 \times 1}{18 \times 1}\right)$$

$$=\frac{-7}{9}+\left(\frac{-12-5}{18}\right)$$

$$=\frac{-7}{9}+\frac{-17}{18}$$

$$=\frac{-7\times2}{9\times2}-\frac{17\times1}{18\times1}$$

(::LCM of 9 and 18=18)

$$=\frac{-14-17}{18}=\frac{-31}{18}$$

$$RHS = \left(\frac{-7}{9} + \frac{2}{-3}\right) + \frac{-5}{18}$$

Taking LCM

∴LCM of 3 and 9 = 3

$$\text{RHS} = \left(\frac{-7 \times 1}{9 \times 1} + \frac{-2 \times 3}{3 \times 3}\right) + \frac{-5}{18}$$

$$=\frac{-7-6}{9}+\frac{-5}{18}$$

$$= \frac{-13}{9} + \frac{-5}{18}$$

$$= \frac{-13 \times 2}{9 \times 2} + \frac{-5 \times 1}{18 \times 1} \qquad (\because LCM \text{ of } 9 \text{ and } 18=18)$$

$$= \frac{-26-5}{18} = \frac{-31}{18}$$

-RHS = LHS

i.e.
$$\frac{-7}{9} + \left(\frac{2}{-3} + \frac{-5}{18}\right) = \left(\frac{-7}{9} + \frac{2}{-3}\right) + \frac{-5}{18}$$

Hence, the associative property for the addition of rational numbers is verified.

(iv)
$$-1, \frac{5}{6}$$
 and $\frac{-2}{3}$
To prove: $\frac{-1}{1} + \left(\frac{5}{6} + \frac{-2}{3}\right) = \left(\frac{-1}{1} + \frac{5}{6}\right) + \frac{-2}{3}$
LHS = $\frac{-1}{1} + \left(\frac{5}{6} + \frac{-2}{3}\right)$

Taking LCM

-LCM of 6 and 3 = 6

LHS =
$$\frac{-1}{1} + \left(\frac{5\times1}{6\times1} + \frac{-2\times2}{3\times2}\right)$$

= $\frac{-1}{1} + \left(\frac{5-4}{6}\right)$

$$=\frac{-1}{1}+\frac{1}{6}$$

$$= \frac{-1 \times 6}{1 \times 6} + \frac{1 \times 1}{6 \times 1}$$
 (::LCM of 1 and 6=6)

$$=\frac{-6+1}{6}=\frac{-5}{6}$$

RHS =
$$\left(\frac{-1}{1} + \frac{5}{6}\right) + \frac{-2}{3}$$

Chapter 1 – Rational Numbers

$$= \left(\frac{-1 \times 6}{1 \times 6} + \frac{5 \times 1}{6 \times 1}\right) + \frac{-2}{3} \quad (: LCM \text{ of 1 and 6 = 6})$$

$$= \left(\frac{-6+5}{6}\right) + \frac{-2}{3} = -\frac{1}{6} + \frac{-2}{3}$$

$$= \frac{-1 \times 1}{6 \times 1} + \frac{-2 \times 2}{3 \times 2}$$
 (::LCM of 6 and 3=6)

$$=\frac{-1-4}{6}=\frac{-5}{6}$$

i.e.
$$\frac{-1}{1} + \left(\frac{5}{6} + \frac{-2}{3}\right) = \left(\frac{-1}{1} + \frac{5}{6}\right) + \frac{-2}{3}$$

Hence, the associative property for the addition of rational numbers is verified.

Question 6.

Write the additive inverse (negative) of:

(i)
$$\frac{-3}{8}$$

(iv)
$$\frac{-4}{-13}$$

(viii)
$$-\frac{1}{3}$$

$$(ix) \frac{-3}{1}$$

(i) The additive inverse of
$$\frac{-3}{8} = \frac{3}{8}$$

- (ii) The additive inverse of $\frac{4}{-9} = \frac{4}{9}$
- (iii) The additive inverse of $\frac{-7}{5} = \frac{7}{5}$
- (iv) The additive inverse of $\frac{-4}{-13}$ or $\left(\frac{4}{13}\right) = -\frac{4}{13}$
- (v) The additive inverse of 0 = 0
- (vi) The additive inverse of -2 = 2
- (vii) The additive inverse of 1 = -1
- (viii) The additive inverse of $-\frac{1}{3} = \frac{1}{3}$
- (ix) The additive inverse of $\frac{-3}{1} = 3$

Question 7

Fill in the blanks:

- (ii) $\frac{-5}{-12}$ + its additive inverse = _____.
- (iii) If $\frac{a}{b}$ is additive inverse of $\frac{-c}{d}$, then $\frac{-c}{d}$ is additive inverse of ______.

Solution:

- (i) Additive inverse of $\frac{-5}{-12} = -\frac{5}{12}$
- (ii) $\frac{-5}{-12}$ + its additive inverse = $\frac{-5}{-15}$ + $\left(-\frac{5}{15}\right)$ = 0
- (iii) $\frac{a}{b}$ is additive inverse of $\frac{-c}{d}$, then $\frac{-c}{d}$ is additive inverse of $\frac{a}{b}$

Question 8.

State, true or false:

$$(i)\frac{7}{9} = \frac{7+5}{9+5}$$

Solution: False

$$(ii)\frac{7}{9} = \frac{7-5}{9-5}$$

Solution: False

(iii)
$$\frac{7}{9} = \frac{7 \times 5}{9 \times 5}$$

Solution: True

(iv)
$$\frac{7}{9} = \frac{7+5}{9+5}$$

Solution: True

(v)
$$\frac{-5}{-12}$$
 is a negative rational number

Solution: False

(vi)
$$\frac{-13}{25}$$
 is smaller than $\frac{-25}{13}$.

Solution: False

Exercise - 1(B)

Question 1.

Evaluate:

(i)
$$\frac{2}{3} - \frac{4}{5}$$

$$\frac{2}{3} - \frac{4}{5}$$

Taking LCM

∴LCM of 3 and 5=15

$$\frac{2}{3} - \frac{4}{5} = \frac{2 \times 5}{3 \times 5} - \frac{4 \times 3}{5 \times 3}$$

$$=\frac{10-12}{15}=\frac{-2}{15}$$

(ii)
$$\frac{-4}{9} - \frac{2}{-3}$$

Solution:

$$\frac{-4}{9} - \frac{2}{-3}$$

Taking LCM

(∴LCM of 3 and 9=9)

$$\frac{-4}{9} - \frac{2}{-3} = \frac{-4 \times 1}{9 \times 1} - \frac{(-2 \times 3)}{3 \times 3}$$

$$=\frac{-4+6}{9}=\frac{2}{9}$$

(iii)—
$$1 - \frac{4}{9}$$

$$-1 - \frac{4}{9} = \frac{-1 \times 9}{1 \times 9} - \frac{4 \times 1}{9 \times 1}$$
 (: LCM of 3 and 9=9)
$$= \frac{-9 - 4}{9} = \frac{-13}{9}$$

(iv)
$$\frac{-2}{7} - \frac{3}{-14}$$

$$\frac{-2}{7} - \frac{3}{-14}$$

Taking LCM

∴LCM of 7 and 14=14

$$\frac{-2}{7} - \frac{3}{-14} = \frac{-2 \times 2}{7 \times 2} - \frac{(-3 \times 1)}{14 \times 1}$$

$$=\frac{-4+3}{14}=\frac{-1}{14}$$

$$(v)\frac{-5}{18}-\frac{-2}{9}$$

Taking LCM

 \therefore LCM of 9 and 18 = 2 \times 3 \times 3 = 18

$$\frac{-5}{18} - \frac{-2}{9} = \frac{-5 \times 1}{18 \times 1} - \frac{(-2 \times 2)}{9 \times 2}$$

$$=\frac{-5+4}{18}$$

$$=\frac{-1}{18}$$

(vi)
$$\frac{5}{21} - \frac{-13}{42}$$

Taking LCM

: LCM of 21,
$$42 = 2 \times 3 \times 7 = 42$$

$$=\frac{5\times 2}{21\times 2}-\frac{(-13\times 1)}{42\times 1}$$

$$=\frac{10+13}{42}=\frac{23}{42}$$

Question 2.

Subtract:

(i)
$$\frac{5}{8}$$
 from $\frac{-3}{8}$

(ii)
$$\frac{-8}{11}$$
 from $\frac{4}{11}$

(iii)
$$\frac{4}{9}$$
 from $\frac{-5}{9}$

(iv)
$$\frac{1}{4}$$
 from $\frac{-3}{8}$

(v)
$$\frac{-5}{8}$$
 from $\frac{-13}{16}$

(vi)
$$\frac{-9}{22}$$
 from $\frac{5}{33}$

(i) Subtracting
$$\frac{5}{8}$$
 from $\frac{-3}{8}$

$$\frac{-3}{8} - \frac{5}{8} = \frac{-3-5}{8}$$

$$=\frac{-8}{8}=-1$$

(ii) Subtracting
$$\frac{-8}{11}$$
 from $\frac{4}{11}$

$$\frac{4}{11} - \left(\frac{-8}{11}\right) = \frac{4+8}{11}$$

$$=\frac{12}{11}=1\frac{1}{11}$$

(iii) Subtracting
$$\frac{4}{9}$$
 from $\frac{-5}{9}$

$$\frac{-5}{9} - \frac{4}{9} = \frac{-5-4}{9}$$

$$=\frac{-9}{9}=-1$$

(iv) Subtracting
$$\frac{1}{4}$$
 from $\frac{-3}{8}$

Taking LCM

$$\therefore LCM \text{ of } 4.8 = 2 \times 2 \times 2 = 8$$

$$\frac{-3}{8} - \frac{1}{4} = \frac{-3 \times 1}{8 \times 1} - \frac{1 \times 2}{4 \times 2}$$

$$=\frac{-3-2}{8}=\frac{-5}{8}$$

(v) Subtracting
$$\frac{-5}{8}$$
 from $\frac{-13}{16}$

Taking LCM

∴ LCM of 8 and 16= 16

$$\frac{-13}{16} - \left(\frac{-5}{8}\right) = \frac{-13 \times 1}{16 \times 1} + \frac{5 \times 2}{8 \times 2}$$

$$=\frac{-13+10}{16}=\frac{-3}{16}$$

(vi) Subtracting
$$\frac{-9}{22}$$
 from $\frac{5}{33}$

Taking LCM

∴LCM of 22 and 33=2×3×11=66

$$\frac{5}{33} - \left(\frac{-9}{22}\right) = \frac{5 \times 2}{33 \times 2} + \frac{9 \times 3}{22 \times 3}$$

$$=\frac{10+27}{66}=\frac{37}{66}$$

Question 3.

The sum of two rational numbers is $\frac{9}{20}$ If one of them is $\frac{2}{5}$, find the other.

Solution:

Given, the sum of two rational numbers $=\frac{9}{20}$

One of the numbers $=\frac{2}{5}$

To find the other number, we need to subtract the first number from the sum.

i.e. other rational number = $\frac{9}{20} - \frac{2}{5}$

Taking LCM

1,1

$$\frac{9}{20} - \frac{2}{5} = \frac{9 \times 1}{20 \times 1} - \frac{2 \times 4}{5 \times 4}$$

$$=\frac{9}{20}-\frac{8}{20}$$

$$=\frac{9-8}{20}=\frac{1}{20}$$

Question 4.

The sum of the two rational numbers is $\frac{-2}{3}$. If one of them is $\frac{-8}{5}$, find the other

Solution:

Given, the sum of two rational numbers $=\frac{-2}{3}$

One of the numbers $=\frac{-8}{5}$

To find the other number, we need to subtract the first number from the sum.

i.e. other rational number = $\frac{-2}{3} - \frac{-8}{15}$

Taking LCM

∴LCM of 3 and 15=15

$$\frac{-2}{3} - \frac{-8}{15} = \frac{-2 \times 5}{3 \times 5} + \frac{8 \times 1}{15 \times 1}$$

$$=\frac{-10+8}{15}=\frac{-2}{15}$$

Question 5.

The sum of the two rational numbers is -6. If one of them is $\frac{-8}{5}$, find the other

Given, the sum of two rational numbers = -6

One of the numbers $=\frac{-8}{5}$

To find the other number, we need to subtract the first number from the sum.

i.e. other rational number = $\frac{-6}{1} - \frac{-8}{5}$

$$=\frac{-6\times 5}{1\times 5}+\frac{8\times 1}{5\times 1}$$

$$=\frac{-30+8}{5}=\frac{-22}{5}$$

Question 6.

Which rational number should be added to $\frac{-7}{8}$ to get $\frac{5}{9}$?

Solution:

Required rational number

$$=\frac{5}{9}-\left(\frac{-7}{8}\right)$$

$$=\frac{5}{9}+\frac{7}{8}$$

Taking LCM

2	9,8
2	9,4
2	9,2
3	9,1
3	3,1
	1,1

∴LCM of 9 and 8=2×2×2×3×3=72

$$\frac{5}{9} + \frac{7}{8} = \frac{5 \times 8}{9 \times 8} + \frac{7 \times 9}{8 \times 9}$$

$$=\frac{\frac{40}{72}+\frac{63}{72}}{=\frac{40+63}{72}=\frac{103}{72}=1\frac{31}{72}$$

Question 7

Which rational number should be added to $\frac{-5}{9}$ to get $\frac{-2}{3}$

Solution.

Required rational number
$$= \frac{-2}{3} - \left(\frac{-5}{9}\right)$$

$$=\frac{-2}{3}+\frac{5}{9}$$

LCM of 3 and 9=9

$$\frac{-2}{3} + \frac{5}{9} = \frac{-2 \times 3}{3 \times 3} + \frac{5 \times 1}{9 \times 1}$$

$$=\frac{-6+5}{9}=\frac{-1}{9}$$