

Exercise 1.3

Page: 14

Write the following in decimal form and say what kind of decimal expansion each has :

 (i) 36/100

Solution:

= 0.36 (Terminating)

Solution:

= 0.0909... = 0.09 (Non terminating and repeating)

Solution:

$$4\frac{1}{8} = \frac{33}{8}$$

= 4.125 (Terminating)

= $0.230769... = 0.\overline{230769}$ (Non terminating and repeating)

	0.18
11	2
	0
	20
	11
	90
	88
	2

= $0.181818181818... = 0.\overline{\overline{18}}$ (Non terminating and repeating)

https://byjus.com

NCERT Solution For Class 9 Maths Chapter 1- Number System

	0.8225
400	329
	0
	3290
	3200
	900
	800
	1000
	800
	2000
	2000
	0

= 0.8225 (Terminating)

2. You know that ¹/₇ = 0.142857. Can you predict what the decimal expansions of ²/₇, ³/₇, ⁴/₇, ⁵/₇, ⁶/₇ are, without actually doing the long division? If so, how?
[Hint: Study the remainders while finding the value of ¹/₇ carefully.] Solution:

$$\frac{1}{7} = 0.\overline{142857}$$

$$2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

$$3 \times \frac{1}{7} = 3 \times 0.\overline{142857} = 0.\overline{428571}$$

$$4 \times \frac{1}{7} = 4 \times 0.\overline{142857} = 0.\overline{571428}$$

$$5 \times \frac{1}{7} = 5 \times 0.\overline{142857} = 0.\overline{714285}$$

$$6 \times \frac{1}{7} = 6 \times 0.\overline{142857} = 0.\overline{857142}$$

- 3. Express the following in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- (i) 0.6

Solution: 0. $\bar{6} = 0.666...$ Assume that x = 0.666...Then, 10x = 6.666... 10x = 6 + x 9x = 6 $x = \frac{2}{3}$

(ii) 0.47 — Solution:

https://byjus.com

NCERT Solution For Class 9 Maths Chapter 1- Number System

$$0.47 = 0.4777...$$

= $\frac{4}{10} + \frac{0.777}{10}$
Assume that $x = 0.777...$
Then, $10x = 7.777...$
 $10x = 7 + x$
 $x = \frac{7}{9}$
$$\frac{4}{10} + \frac{0.777...}{10} = \frac{4}{10} + \frac{7}{90} (= x = \frac{7}{9} \text{ and } x = 0.777... \Rightarrow \frac{0.777...}{10} = \frac{7}{9 \times 10} = \frac{7}{90})$$

= $\frac{36}{90} + \frac{7}{90} = \frac{43}{90}$

(iii) 0. 001[—]

Solution: 0. $\overline{001}$ = 0.001001... Assume that x = 0.001001...Then, 1000x = 1.001001... 1000x = 1 + x 999x = 1 $x = \frac{1}{999}$

4. Express 0.99999.... in the form $\frac{p}{q}$. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Solution: Assume that x = 0.9999... Eq. (a) Multiplying both sides by 10, 10x = 9.9999... Eq. (b) Eq.(b) – Eq.(a), we get $10x = 9.9999... - \frac{x = 0.9999...}{9x = 9}$ x = 1

The difference between 1 and 0.9999999 is 0.000001 which is negligible. Hence, we can conclude that, 0.999 is too much near 1, therefore, 1 as the answer can be justified.

5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer.

Solution:

Dividing 1 by 17:

	0.0588235294117647
17	1
	0
	10
	0
	100
	85
	150
	136
	140
	136
	40
	34
	60
	51
	90
	<u> </u>
	30 34
	160
	153
	70
	68
	20
	17
	30
	17
	130
	119
	110
	102
	80
	68
	120
	119

1 17

0.0588235294117647

There are 16 digits in the repeating block of the decimal expansion of $\frac{1}{177}$

6. Look at several examples of rational numbers in the form $\frac{p}{q}$ (q \neq 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy? Solution:

We observe that when q is 2, 4, 5, 8, 10... Then the decimal expansion is terminating. For example:

= 0. 875, denominator $q = 2^3$

 $\frac{1}{2} = 0.5$, denominator $q = 2^{1}$ $\frac{1}{2} = 0.875$, denominator q = 1 $\frac{1}{2} = 0.8$, denominator $q = 5^{1}$

We can observe that the terminating decimal may be obtained in the situation where prime factorization of the denominator of the given fractions has the power of only 2 or only 5 or both.

7. Write three numbers whose decimal expansions are non-terminating non-recurring. Solution:

We know that all irrational numbers are non-terminating non-recurring. In three numbers with decimal expansions that are non-terminating non-recurring are:

a)
$$\sqrt{3} = 1.732050807568$$

- b) $\sqrt{26} = 5.099019513592$
- c) $\sqrt{101} = 10.04987562112$

8. Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{44}$.

Solution:

$$\frac{5}{7} = 0. \overline{714285}$$

 $\frac{9}{11} = 0.\overline{81}$

Three different irrational numbers are: a) 0.7307300730007300073...

- b) 0.75075007300075000075...
- c) 0.7607600760007600076...

9. Classify the following numbers as rational or irrational according to their type:

https://byjus.com

(i) **√23**

Solution: $\sqrt{23} = 4.79583152331...$

Since the number is non-terminating non-recurring therefore, it is an irrational number.

(ii) **√225**

Solution:

 $\sqrt{225} = 15 = 15/1$

Since the number can be represented in $\frac{\mathbb{P}}{\mathbb{Q}}$ form, it is a rational number.

(iii) 0.3796

Solution: Since the number, 0.3796, is terminating, it is a rational number.

(iv) 7.478478

Solution: The number, 7.478478, is non-terminating but recurring, it is a rational number.

(v) 1.101001000100001...

Solution:

Since the number, 1.101001000100001..., is non-terminating non-repeating (non-recurring), it is an irrational number.