

Exercise 15.1 Page: 283

1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution:

According to the question,

Total number of balls = 30

Numbers of boundary = 6

Number of time batswoman didn't hit boundary = 30 - 6 = 24

Probability she did not hit a boundary $= \frac{24}{30} = \frac{4}{5}$

2. 1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having

- (i) 2 girls
- (ii) 1 girl
- (iii) No girl

Also check whether the sum of these probabilities is 1.

Solution:

Total numbers of families = 1500

(i) Numbers of families having 2 girls = 475

Probability = Numbers of families having 2 girls/Total numbers of families

$$=\frac{475}{1500}=\frac{19}{60}$$

(ii) Numbers of families having 1 girls = 814

Probability = Numbers of families having 1 girls/Total numbers of families

$$=\frac{814}{1500}=\frac{407}{750}$$

(iii) Numbers of families having 2 girls = 211

Probability = Numbers of families having 0 girls/Total numbers of families

$$=\frac{211}{1500}$$

Sum of the probability = $\frac{19}{60} + \frac{407}{750} + \frac{211}{1500}$

$$=\frac{475+814+211}{1500}=\frac{1500}{1500}=1$$

Yes, the sum of these probabilities is 1.

3. Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was born in August.

Solution:

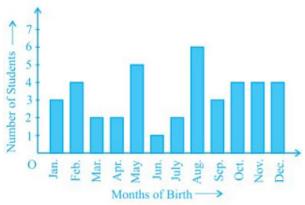


Fig. 14.1

Total numbers of students in the class = 40

Numbers of students born in August = 6 The probability that a student of the class was born in August, = $\frac{6}{40} = \frac{3}{20}$

4. Three coins are tossed simultaneously 200 times with the following frequencies of different

outcome	es:					
	Outcome	3 heads	2 heads	1 head	No head	
	Frequency	23	72	77	28	

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up. Solution:

Number of times 2 heads come up = 72 Total number of times the coins were tossed = $\frac{72}{200} = \frac{9}{25}$

5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income	Vehicles per family								
(in ₹)	0	1	2	Above 2					
Less than 7000	10	160	25	0					
7000-10000	0	305	27	2					
10000-13000	1	535	29	1					
13000-16000	2	469	59	25					
16000 or more	1	579	82	88					

Suppose a family is chosen. Find the probability that the family chosen is

- (i) earning ₹10000 13000 per month and owning exactly 2 vehicles.
- (ii) earning ₹16000 or more per month and owning exactly 1 vehicle.
- (iii) earning less than ₹7000 per month and does not own any vehicle.
- (iv) earning ₹13000 16000 per month and owning more than 2 vehicles.
- (v) owning not more than 1 vehicle.

Solution:

Total number of families = 2400

- (i) Numbers of families earning ₹10000 –13000 per month and owning exactly 2 vehicles = 29 ∴, the probability that the family chosen is earning ₹10000 – 13000 per month and owning exactly 2 vehicle = $\frac{29}{2400}$
- (ii) Number of families earning ₹16000 or more per month and owning exactly 1 vehicle = 579 ∴, the probability that the family chosen is earning ₹16000 or more per month and owning exactly 1 vehicle $=\frac{579}{2400}$
- (iii) Number of families earning less than ₹7000 per month and does not own any vehicle = 10 ∴, the probability that the family chosen is earning less than ₹7000 per month and does not own any vehicle $= \frac{10}{2400} = \frac{1}{240}$
- (iv) Number of families earning ₹13000-16000 per month and owning more than 2 vehicles = 25 ∴, the probability that the family chosen is earning ₹13000 – 16000 per month and owning more than 2 vehicles = $\frac{25}{2400} = \frac{1}{96}$
- (v) Number of families owning not more than 1 vehicle = 10+160+0+305+1+535+2+469+1+579= 2062 \therefore , the probability that the family chosen owns not more than 1 vehicle = $\frac{2062}{2400} = \frac{1031}{1200}$

6. Refer to Table 14.7, Chapter 14.

- (i) Find the probability that a student obtained less than 20% in the mathematics test.
- (ii) Find the probability that a student obtained marks 60 or above. Solution:

Number of students
7
10
10
20
20
15
8
90

Total number of students = 90

- (i) Number of students who obtained less than 20% in the mathematics test = 7 \therefore , the probability that a student obtained less than 20% in the mathematics test = $\frac{7}{90}$
- (ii) Number of students who obtained marks 60 or above = 15+8=23 \therefore , the probability that a student obtained marks 60 or above = $\frac{23}{90}$

7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random (i) likes statistics, (ii) does not like it.

Solution:

Total number of students = 135 + 65 = 200

- (i) Number of students who like statistics = 135
 - :, the probability that a student likes statistics = $\frac{135}{200} = \frac{27}{40}$
- (ii) Number of students who do not like statistics = 65
 - ∴, the probability that a student does not like statistics = $\frac{65}{200} = \frac{13}{40}$
- 8. Refer to Q.2, Exercise 14.2. What is the empirical probability that an engineer lives:
 - (i) less than 7 km from her place of work?
 - (ii) more than or equal to 7 km from her place of work?
 - (iii) within $\frac{1}{2}$ km from her place of work?

Solution:

The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31	19	10	12	17	18	11	3	2
17	16	2	7	9	7	8	3	5	12	15	18	3	12	14	2	9	6
15	15	7	6	12													

Total numbers of engineers = 40

- (i) Number of engineers living less than 7 km from their place of work = 9
 - :, the probability that an engineer lives less than 7 km from her place of work = $\frac{9}{40}$
- (ii) Number of engineers living more than or equal to 7 km from their place of work = 40 9 = 31
 - :, probability that an engineer lives more than or equal to 7 km from her place of work = $\frac{31}{40}$
- (iii) Number of engineers living within $\frac{1}{2}$ km from their place of work = 0
 - \therefore , the probability that an engineer lives within $\frac{1}{2}$ km from her place of work $=\frac{0}{40}=0$
- 9. Activity: Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.

Solution:

The question is an activity to be performed by the students.

Hence, perform the activity by yourself and note down your inference.

10. Activity: Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3? Remember that a number is divisible by 3, if the sum of its digits is divisible by 3.

Solution:

The question is an activity to be performed by the students.

Hence, perform the activity by yourself and note down your inference.

11. Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):

4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour. Solution:

Total number of bags present = 11

Number of bags containing more than 5 kg of flour = 7

 \therefore , the probability that any of the bags chosen at random contains more than 5 kg of flour = $\frac{7}{11}$

12. In Q.5, Exercise 14.2, you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days.

The data obtained for 30 days is as follows:

0.03 0.08 0.09 0.04 0.17 0.16 0.05 0.06 0.08 0.02 0.18 0.20 0.11 0.08 0.13 0.22 0.07 0.08 0.01 0.10 0.06 0.09 0.18 0.11 0.12 0.0 0.05 0.07 0.01 0.04

Solution:

Total number of days in which the data was recorded = 30 days

Numbers of days in which sulphur dioxide was present in between the interval 0.12-0.16=2

:, the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these

days =
$$\frac{2}{30} = \frac{1}{15}$$

13. In Q.1, Exercise 14.2, you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

The blood groups of 30 students of Class VIII are recorded as follows:

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O. Solution:

Total numbers of students = 30

Number of students having blood group AB = 3

 \therefore , the probability that a student of this class, selected at random, has blood group AB = $\frac{3}{30} = \frac{1}{10}$