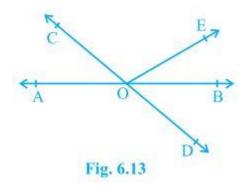
Exercise: 6.1 (Page No: 96)

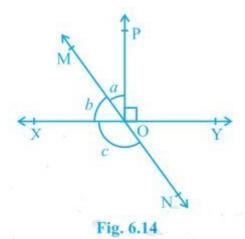
1. In Fig. 6.13, lines AB and CD intersect at O. If \angle AOC+ \triangle BOE = 70° and \triangle BOD = 40°, find \triangle BOE and reflex \angle COE.



Solution:

From the diagram, \angle AOC+ \angle BOE+ \angle COE and \angle COE+ \angle BOD+ \angle BOE forms a straight line. So, \angle AOC+ \angle BOE+ \angle COE= \angle COE+ \angle BOD+ \angle BOE= 180° Now, by putting the values of \angle AOC+ \angle BOE= 70° and \angle BOD= 40° we get \angle COE= 110° and \angle BOE= 30°

2. In Fig. 6.14, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 : 3, find c.



Solution:

We know that the sum of linear pair are always equal to 180°

So,

$$\angle POY + a + b = 180^{\circ}$$

Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we get,

$$a + b = 90^{\circ}$$

Now, it is given that a:b=2:3 so,

Let a be 2x and b be 3x

$$\therefore 2x + 3x = 90^{\circ}$$

Solving this we get

$$5x = 90^{\circ}$$

So,
$$x = 18^{\circ}$$

$$\therefore a = 2 \times 18^{\circ} = 36^{\circ}$$

Similarly b can be calculated and the value will be

$$b = 3 \times 18^{\circ} = 54^{\circ}$$

From the diagram, b + c also forms a straight angle so,

$$b + c = 180^{\circ}$$

$$=> c + 54^{\circ} = 180^{\circ}$$

$$\therefore$$
 c = 126°

3. In Fig. 6.15, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

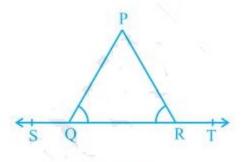


Fig. 6.15

Solution:

Since ST is a straight line so,

$$\angle PRT + \angle PRQ = 180^{\circ}$$
 (linear pair)

Now,
$$\angle PQS + \angle PAR = \angle PRT + \angle PRQ = 180^{\circ}$$

$$\angle PQS = \angle PRT$$
. (Hence proved).

4. In Fig. 6.16, if x + y = w + z, then prove that AOB is a line.

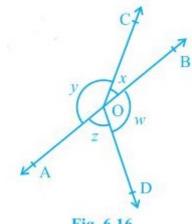


Fig. 6.16

Solution:

For proving AOB is a straight line, we will have to prove x + y is a linear pair

i.e.
$$x + y = 180^{\circ}$$

We know that the angles around a point are 360° so,

$$x + y + w + z = 360^{\circ}$$

In the question, it is given that,

$$x + y = w + z$$

So,
$$(x + y) + (x + y) = 360^{\circ}$$

$$=> 2(x + y) = 360^{\circ}$$

$$\therefore$$
 (x + y) = 180° (Hence proved).

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = 1/2(\triangle QOS \angle POS)$.

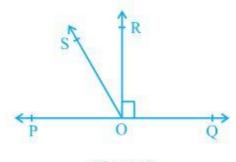


Fig. 6.17

Solution:

In the question, it is given that (OR \perp PQ) and \angle POQ = 180° So, $\angle POS + \angle ROS + \angle ROQ = 180^{\circ}$

Now, ∠POS+ ÆOS=

180° - 90° (Since $\angle POR = \angle ROQ = 90^\circ$)

∴ ∠POS+∠ROS=90°

Now, ∠QOS = AROQ + AROS

It is given that $\angle ROQ = 90^{\circ}$,

∴ **_**QOS=90° + **_**ROS

Or, \angle QOS+ \angle ROS= 90°

As $\angle POS + \angle ROS = 90^{\circ}$ and $\angle QOS + \angle ROS = 90^{\circ}$, we get

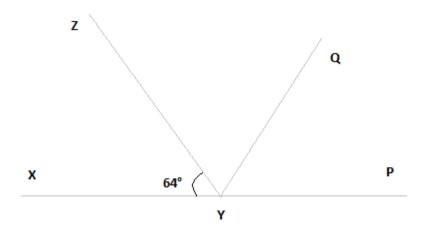
∠POS+ ÆOS= ÆOS+ ÆOS

=>2 ∠ROS+ ÆOS= ÆQOS

Or, $\angle ROS = \frac{1}{2}$ ($\angle QOS \angle POS$) (Hence proved).

6. It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\triangle QYP$.

Solution:



Here, XP is a straight line

So,
$$\angle XYZ + \angle ZYP = 180^{\circ}$$

Putting the valve of $\angle XYZ = 64^{\circ}$ we get,

$$64^{\circ} + \angle ZYP = 180^{\circ}$$

From the diagram, we also know that $\angle ZYP = \angle ZYQ + \angle QYP$

Now, as YQ bisects $\angle ZYP$,

$$\angle ZYQ = \angle QYP$$

Or.
$$\angle ZYP = 2 \angle ZYQ$$

$$\therefore$$
 $\angle ZYQ = \angle QYP = 58^{\circ}$

Again, $\angle XYQ = \angle XYZ + \angle ZYQ$

By putting the value of $\angle XYZ = 64^{\circ}$ and $\angle ZYQ = 58^{\circ}$ we get.

∠XYQ =64° + 58°

Or, $\angle XYQ = 122^{\circ}$

Now, reflex \angle QYP = 180° + \angle XYQ

We computed that the value of $\angle XYQ = 122^{\circ}$. So,

 $\angle QYP = 180^{\circ} + 122^{\circ}$

 \therefore \triangle QYP=302°