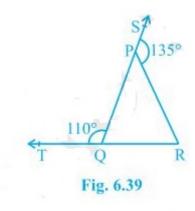
Exercise: 6.3 (Page No: 107)

1. In Fig. 6.39, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \triangle PQ.



Solution:

It is given the TQR is a straight line and so, the linear pairs (i.e. \angle TQP and \triangle QR) will add up to 180°

So, $\angle TQP + \angle PQR = 180^{\circ}$

Now, putting the value of $\angle TQP = 110^{\circ}$ we get,

 $\angle PQR = 70^{\circ}$

Consider the Δ PQR,

Here, the side QP is extended to S and so, \angle SPR forms the exterior angle.

Thus, \angle SPR(\triangle PR = 135°) is equal to the sum of interior opposite angles. (triangle property)

Or, $\angle PQR + \angle PRQ = 135^{\circ}$

Now, putting the value of $\angle PQR = 70^{\circ}$ we get,

 \angle PRQ = 135° 70°

Or, ∠PRQ €5°

2. In Fig. 6.40, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle YZY$ respectively of $\triangle XYZ$, find $\angle YZY$ and $\angle YZY$

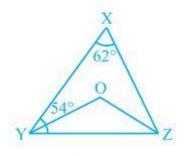


Fig. 6.40

Solution:

We know that the sum of the interior angles of the triangle.

So,
$$\angle X + \angle XYZ + \angle XZY = 180^{\circ}$$

Putting the values as given in the question we get,

$$62^{\circ} + 54^{\circ} + \angle XZY = 180^{\circ}$$

Or,
$$\angle XZY = 64^{\circ}$$

Now, we know that ZO is the bisector so,

$$\angle OZY = \frac{1}{2} \angle XZY$$

$$\therefore \Delta OZY = 32^{\circ}$$

Similarly, YO is a bisector and so,

$$\angle OYZ = \frac{1}{2} \angle XYZ$$

Or,
$$\angle$$
 OYZ = 27° (As \angle XYZ = 54°)

Now, as the sum of the interior angles of the triangle,

$$\angle OZY + \triangle YZ + \triangle O = 180^{\circ}$$

Putting their respective values we get,

$$\angle$$
 O = 180 $^{\circ}$ 32 $^{\circ}$ - 27 $^{\circ}$

Or,
$$\angle$$
0 = 121°

3. In Fig. 6.41, if AB | DE, \angle BAC = 35° and \triangle DE = 53°, find \triangle DE

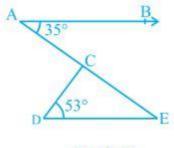


Fig. 6.41

Solution:

We know that AE is a transversal since AB // DE

Here ∠BAC and ∠AED

are alternate interior angles.

Hence, \angle BAC = \angle AED

It is given that \angle BAC = 35°

$$\Rightarrow$$
 \angle AED = 35°

Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180°.

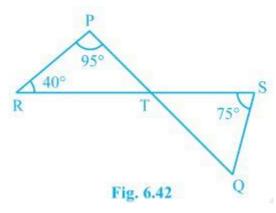
$$\therefore \triangle DCE + \triangle CED + \triangle CDE = 180^{\circ}$$

Putting the values we get

$$\angle DCE + 35^{\circ} + 53^{\circ} = 180^{\circ}$$

Or,
$$\angle$$
 DCE = 92°

4. In Fig. 6.42, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT.



Solution:

Consider triangle PRT.

$$\angle PRT + \angle RPT + \angle PTR = 180^{\circ}$$

So,
$$\angle PTR = 45^{\circ}$$

Now \angle PTR wilbe equal to \angle STQ as they are vertically opposite angles.

So,
$$\angle$$
PTR = \triangle STQ = 45°

Again in triangle STQ,

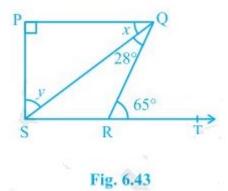
$$\angle$$
TSQ + \angle PTR + \angle SQT = 180°

Solving this we get,

$$\angle SQT = 60^{\circ}$$

5. In Fig. 6.43, if PQ \perp

PS, PQ || SR, \angle SQR = 28° and \triangle QRT = 65° then find the values of x and y.



Solution:

Or, $y = 53^{\circ}$

 $x + \angle SQR = \angle QRT$ (As they are alternate angles since QR is transversal) So, $x + 28^{\circ} = 65^{\circ}$ $\therefore x = 37^{\circ}$ It is also known that alternate interior angles are same and so, $\angle QSR = x = 37^{\circ}$ also, Now, \angle QRS+ \angle QRT = 180° (As they are a Linear pair) Or, \angle QRS+65° = 180° So, \angle QRS= 115° Now, we know that the sum of the angles in a quadrilateral is 360°. So, $\angle P + \triangle P + \triangle R + \triangle S = 360^{\circ}$ Putting their respective values we get, \angle S = 360° - 90° - 65° - 115° Or, \angle QSR + y = 360° $=>y = 360^{\circ} - 90^{\circ} - 65^{\circ} - 115^{\circ} - 37^{\circ}$

6. In Fig. 6.44, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \triangle PRS meet at point T, then prove that \angle QTR = $1/2\triangle$ QPR.

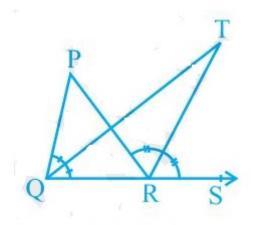


Fig. 6.44

Solution:

Consider the $\triangle PQR$. $\angle PRS$ is the exterior angle and $\angle QPR$ and $\angle PQR$ are interior angles.

So, $\angle PRS = \angle QPR + \angle PQR$ (According to triangle property)

Or, \angle PRS \angle PQR = \angle QPR -----(i)

Now, consider the ΔQRT ,

∠TRS= ZTQR+ ZQTR

Or, ∠QTR = ∠TRS ∠TQR

We know that QT and RT bisect $\angle PQR$ and $\angle PRS$ respectively.

So, $\angle PRS = 2 \angle TRS$ and $\angle PQR = 2 \angle TQR$

Now, ∠QTR=½ ∠PRS½ ∠PQR

Or, $\angle QTR = \frac{1}{2} (\angle PRS \angle PQR)$

From (i) we know that $\angle PRS \angle PQR = \angle QPR$

So, $\angle QTR = \frac{1}{2} \angle QPR$ (hence proved).