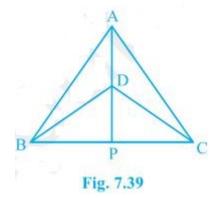


Exercise: 7.3

(Page No: 128)

1. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that (i) \triangle ABD $\cong \triangle$ ACD

- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects $\angle A$ as well as $\triangle D$.
- (iv) AP is the perpendicular bisector of BC.



Solution:

In the above question, it is given that $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles.

(i) $\triangle ABD$ and $\triangle ACD$ are similar by SSS congruency because:

AD = AD (It is the common arm)

- AB = AC (Since \triangle ABC is isosceles)
- BD = CD (Since \triangle DBC is isosceles)
- ∴ ∆ABD ≅ ∆ACD.

(ii) $\triangle ABP$ and $\triangle ACP$ are similar as:

AP = AP (It is the common side)

 $\angle PAB = \angle PAC$ (by CPCT since $\triangle ABD \cong \triangle ACD$)

AB = AC (Since \triangle ABC is isosceles)

So, $\triangle ABP \cong \triangle ACP$ by SAS congruency condition.

(iii) $\angle PAB = \angle PAC$ by CPCT as $\triangle ABD \cong \triangle ACD$.

https://byjus.com

AP bisects $\angle A_{--}$ (i) Also, $\triangle BPD$ and $\triangle CPD$ are similar by SSS congruency as PD = PD (It is the common side) BD = CD (Since $\triangle DBC$ is isosceles.) BP = CP (by CPCT as $\triangle ABP \cong \triangle ACP$) So, $\triangle BPD \cong \triangle CPD$. Thus, $\angle BDP = \triangle CPP$ by CPCT--- (ii) Now by comparing (i) and (ii) it can be said that AP bisects $\angle A$ as well as $\triangle D$.

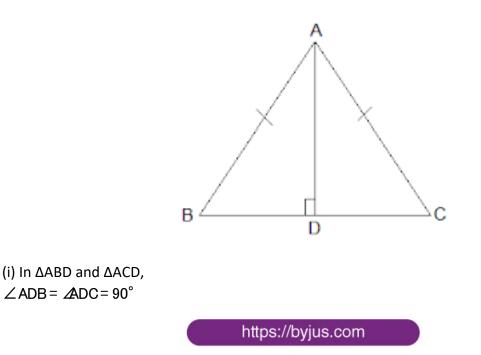
```
(iv) \angle BPD = \angle CPD (by CPCT as \angle BPD \cong \angle CPD)
and BP = CP --- (i)
also,
\angle BPD + \angle CPD = 180^{\circ} (Since BC is a straight line.)
\Rightarrow 2 \angle BPD = 180^{\circ}
\Rightarrow \angle BPD = 90^{\circ}---(ii)
Now, from equations (i) and (ii), it can be said that
AP is the perpendicular bisector of BC.
```

2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects $\angle A$.

Solution:

It is given that AD is an altitude and AB = AC. The diagram is as follows:



AB = AC (It is given in the question)
AD = AD (Common arm)
∴ △ABD ≅ △ACD by RHS congruence condition.
Now, by the rule of CPCT,
BD = CD.
So, AD bisects BC

(ii) Again by the rule of CPCT, $\angle BAD = \angle CAD$ Hence, AD bisects $\angle A$.

3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see Fig. 7.40). Show that:

(i) $\triangle ABM \cong \triangle PQN$ (ii) $\triangle ABC \cong \triangle PQR$

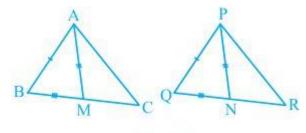


Fig. 7.40

Solution:

Given parameters are: AB = PQ, BC = QR and AM = PN

(i) 1/2 BC = BM and 1/2QR = QN (Since AM and PN are medians) Also, BC = QR So, 1/2 BC = 1/2QR $\Rightarrow BM = QN$ In $\triangle ABM$ and $\triangle PQN$, AM = PN and AB = PQ (As given in the question) BM = QN (Already proved) $\therefore \triangle ABM \cong \triangle PQN$ by SSS congruency.

(ii) In $\triangle ABC$ and $\triangle PQR$,

AB = PQ and BC = QR (As given in the question)

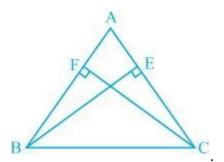
https://byjus.com

NCERT Solutions For Class 9 Maths Chapter 7- Triangles

 $\angle ABC = \angle PQR(by CPCT)$

So, $\triangle ABC \cong \triangle PQR$ by SAS congruency.

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.



Solution:

It is known that BE and CF are two equal altitudes.

Now, in \triangle BEC and \triangle CFB,

 \angle BEC = \angle CFB = 90° (Same Altitudes)

BC = CB (Common side)

BE = CF (Common side)

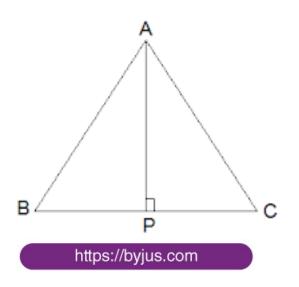
So, $\triangle BEC \cong \triangle CFB$ by RHS congruence criterion.

Also, $\angle C = \angle B$ (by CPCT)

Therefore, AB = AC as sides opposite to the equal angles is always equal.

5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \triangle = \triangle .

Solution:



In the question, it is given that AB = AC Now, \triangle ABP and \triangle ACP are similar by RHS congruency as \angle APB = \angle APC = 90° (AP isaltitude) AB = AC (Given in the question) AP = AP (Common side) So, \triangle ABP $\cong \triangle$ ACP. $\therefore \triangle$ B = \triangle C (by CPCT)