

Exercise 11.1

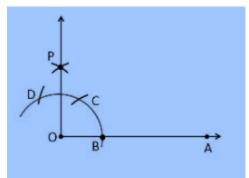
Page: 191

1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Construction Procedure:

To construct an angle 90°, follow the given steps:

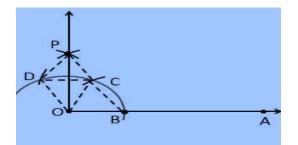
- 1. Draw a ray OA
- 2. Take O as a centre with any radius, draw an arc DCB is that cuts OA at B.
- 3. With B as a centre with the same radius, mark a point C on the arc DCB.
- 4. With C as a centre and the same radius, mark a point D on the arc DCB.
- 5. Take C and D as centre, draw two arcs which intersect each other with the same radius at P.
- 6. Finally, the ray OP is joined which makes an angle 90° with OP is formed.



Justification

To prove $\angle POA = 90^{\circ}$

In order to prove this draw a dotted line from the point O to C and O to D and the angles formed are:



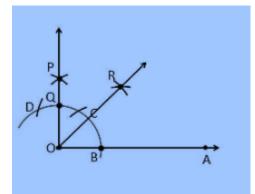
From the construction, it is observed that OB=BC = OCTherefore OBC is an equilateral triangle So that, $\angle BOC = 60^{\circ}$. Similarly, OD=DC = OCTherefore DOC is an equilateral triangle So that, $\angle DOC = 60^{\circ}$. From SSS triangle congruence rule $\triangle OBC \cong 0CD$ $\angle BOC = \angle DOC$ Therefore, $\angle COP = \frac{1}{2} \angle DOC = \frac{1}{2} (60^{\circ})$. $\angle COP = 30^{\circ}$

To find the $\angle POA = 90^{\circ}$: $\angle POA = \angle BOC + \angle COP$ $\angle POA = 60^{\circ} + 30^{\circ}$ $\angle POA = 90^{\circ}$ Hence, justified.

2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Construction Procedure:

- 1. Draw a ray OA
- 2. Take O as a centre with any radius, draw an arc DCB is that cuts OA at B.
- 3. With B as a centre with the same radius, mark a point C on the arc DCB.
- 4. With C as a centre and the same radius, mark a point D on the arc DCB.
- 5. Take C and D as centre, draw two arcs which intersect each other with the same radius at P.
- 6. Finally, the ray OP is joined which makes an angle 90° with OP is formed.
- 7. Take B and Q as centre draw the perpendicular bisector which intersects at the point R
- 8. Draw a line that joins the point O and R
- 9. So, the angle formed $\angle ROA = 45^{\circ}$



Justification

From the construction, $\angle POA = 90^{\circ}$ From the perpendicular bisector from the point B and Q, which divides the $\angle POA$ into two halves. So it becomes $\angle ROA = 1/2 \angle POA$ $\angle ROA = 1/2 \angle POA$ Hence, justified

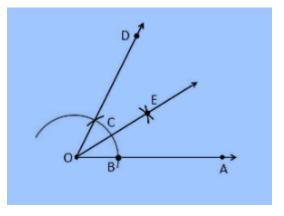
3. Construct the angles of the following measurements:

(i)
$$30^{\circ}$$
 (ii) $22\frac{1}{2}$ (iii) 15°

Solution: (i) 30°

Construction Procedure:

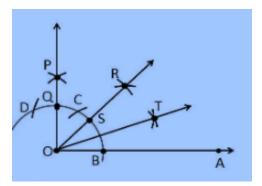
- 1. Draw a ray OA
- 2. Take O as a centre with any radius, draw an arc BC which cuts OA at B.
- 3. With B and C as centres, draw two arcs which intersect each other at the point E and the perpendicular bisector is drawn.
- 4. Thus, $\angle EOA$ is the required angle making 30° with OA.



(ii) $22\frac{1^{\circ}}{2}$

Construction Procedure:

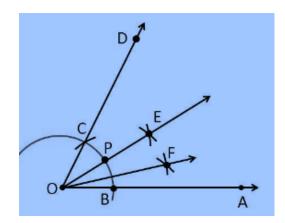
- 1. Draw an angle $\angle POA = 90^{\circ}$
- 2. Take O as a centre with any radius, draw an arc BC which cuts OA at B and OP at Q
- 3. Now, draw the bisector from the point B and Q where it intersect at the point R such that it makes an angle $\angle ROA = 45^{\circ}$.
- 4. Again, ∠ROA is bisected such that ∠TOA is formed which makes an angle of 22.5° with OA



(iii) 15°

Construction Procedure:

- 1. An angle $\angle DOA = 60^{\circ}$ is drawn.
- 2. Take O as centre with any radius, draw an arc BC which cuts OA at B and OD at C
- 3. Now, draw the bisector from the point B and C where it intersect at the point E such that it makes an angle $\angle EOA = 30^{\circ}$.
- 4. Again, $\angle EOA$ is bisected such that $\angle FOA$ is formed which makes an angle of 15° with OA.
- 5. Thus, \angle FOA is the required angle making 15° with OA.

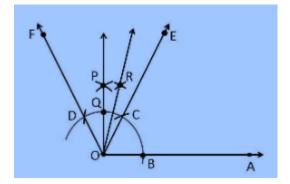


4. Construct the following angles and verify by measuring them by a protractor: (i) 75° (ii) 105° (iii) 135°

Solution: (i) 75°

Construction Procedure:

- 1. A ray OA is drawn.
- 2. With O as centre draw an arc of any radius and intersect at the point B on the ray OA.
- 3. With B as centre draw an arc C and C as centre draw an arc D.
- 4. With D and C as centre draw an arc, that intersect at the point P.
- 5. Join the points O and P
- 6. The point that arc intersect the ray OP is taken as Q.
- 7. With Q and C as centre draw an arc, that intersect at the point R.
- 8. Join the points O and R
- 9. Thus, $\angle AOE$ is the required angle making 75° with OA.

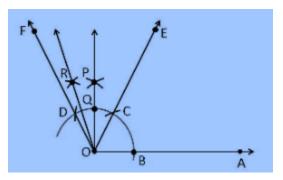


(ii) 105°

Construction Procedure:

- 1. A ray OA is drawn.
- 2. With O as centre draw an arc of any radius and intersect at the point B on the ray OA.
- 3. With B as centre draw an arc C and C as centre draw an arc D.

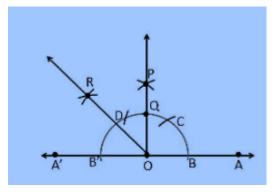
- 4. With D and C as centre draw an arc, that intersect at the point P.
- 5. Join the points O and P
- 6. The point that arc intersect the ray OP is taken as Q.
- 7. With Q and Q as centre draw an arc, that intersect at the point R.
- 8. Join the points O and R
- 9. Thus, $\angle AOR$ is the required angle making 105° with OA.



(iii) 135°

Construction Procedure:

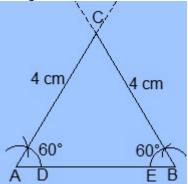
- 1. Draw a line AOA'
- 2. Draw an arc of any radius that cuts the line AOA' at the point B and B'
- 3. With B as centre, draw an arc of same radius at the point C.
- 4. With C as centre, draw an arc of same radius at the point D
- 5. With D and C as centre, draw an arc that intersect at the point O
- 6. Join OP
- 7. The point that arc intersect the ray OP is taken as Q and it forms an angle 90°
- 8. With B' and Q as centre, draw an arc that intersects at the point R
- 9. Thus, $\angle AOR$ is the required angle making 135° with OA.



5. Construct an equilateral triangle, given its side and justify the construction.

Construction Procedure:

- 1. Let draw a line segment AB=4 cm.
- 2. With A and B as centres, draw two arcs on the line segment AB and note the point as D and E.
- 3. With D and E as centres, draw the arcs that cuts the previous arc respectively that forms an angle of 60° each.
- 4. Now, draw the lines from A and B that are extended to meet each other at the point C.
- 5. Therefore, ABC is the required triangle.



Justification: