GSEB Class 9 Maths Sample Paper -Set 2 Answers

Section - A

$$1. 4x^{2} + 14 + 8x - 16 + 7x^{2} - 2x$$
$$= 11x^{2} + 6x - 2$$

$$2. 4x^{2} - 9x + 12 at x = -1$$

$$= 4(-1)^{2} - 9(-1) + 12$$

$$= 4 + 9 + 12 = 25.$$

3. Given
$$\angle X = 45^{\circ}, \angle Y = 75^{\circ}$$
.
 $\angle X + \angle Y + \angle Z = 180^{\circ}$
 $45^{\circ} + 75^{\circ} + \angle Z = 180^{\circ}$
 $120^{\circ} + \angle Z = 180^{\circ}$
 $\angle Z = 180^{\circ} - 120^{\circ}$
 $\angle Z = 60^{\circ}$

OR

Area of an equilateral triangle = $\frac{\sqrt{3}}{4} S^2$ Side of the triangle = 15 cmArea of the triangle = $\frac{\sqrt{3}}{4}$ $(15)^2$ $=\frac{\sqrt{3}}{4}$ (225) Area of the equilateral triangle = $97.4 cm^2$

Area of the equilateral triangle =
$$97.4 cm^2$$

$$4.\frac{3x}{4} + \frac{x}{2} = \frac{5}{8}$$
$$\frac{3x + 2x}{4} = \frac{5}{8}$$

$$\frac{5x}{4} = \frac{5}{8}$$

$$8(5x) = 20$$

$$x = \frac{1}{2}$$

5. Range = max value - min value

Range =
$$786 - 45 = 741$$

Data: 23,76,85,49,33

Arrange them in ascending order

23,33,49,76,85

Median = 49.

6. Area of a triangle = $\frac{1}{2} \times base \times height$

$$21 = \frac{1}{2} \times b \times 7$$

$$42 = 7h$$

$$B = \frac{42}{7} = 6 cm.$$

Section -B

7. If
$$\frac{x}{4} - \frac{x-3}{6} = 2$$

$$\frac{3x - 2x + 6}{12} = 2$$

$$x + 6 = 24$$

$$x = 18$$

OR

$$\frac{a}{3} = \frac{b}{4} = \frac{c}{5} = x$$

Then
$$a = 3x, b = 4x, c = 5x$$

$$\frac{a+b+c}{a} = \frac{3x+4x+5x}{3x} = \frac{12x}{3x} = 4$$

8.
$$95x^2y - 19x^2y^2 = 19x^2y(5 - y)$$

9. The points lie in

a)
$$(-5, -6) = III Quadrant$$

b)
$$(7,9) = I Quadrant$$

c)
$$(-3,6) = II Quadrant$$

d)
$$(4,9) = I Quadrant$$

10. $\triangle OPS$ and $\triangle OQR$, we have $PS \mid \mid QR$ intersecting at O

And QS intersects them.

Hence by alternate angles, $\triangle OSP = \triangle OQR$

Similarly, $\triangle OPS = \triangle ORQ$

11. Area of a parallelogram = base \times height

$$20 = 5 \times h$$

Height = 4cm.

OR

Let the common ration between the angles be x.

Sum of angles of a quadrilateral be 360° .

$$5x + 4x + 2x + 1x = 360^{\circ}$$
.

$$12x = 360^{\circ}$$
.

$$X = 30^{\circ}$$
.

The angles are 150° , 120° , 60° , 30°

12. Area of the trapezium

$$=\frac{1}{2}\times$$
 (sum of parallel sides) \times (distance between them)

$$= \left\{ \frac{1}{2} \times (30 + x) \times 20 \right\} cm^2$$

$$= \left\{\frac{1}{2} \times (600 + 20 x)\right\} cm^2$$

$$840 = 300 + 10x$$

$$10x = 840 - 300$$

$$10x = 540$$

$$x = 54.$$

Section - C

$$13. \frac{(512)^{\frac{2}{3}} \times (1296)^{\frac{3}{4}}}{(32)^{\frac{3}{5}} \times (25)^{\frac{3}{2}} \times (225)^{\frac{1}{2}}}$$

$$=\frac{(8)^{(3)\frac{2}{3}}\times(6)^{(4)\frac{3}{4}}}{(2)^{(5)\frac{3}{5}}\times(5)^{(2)\frac{3}{2}}\times(5)^{(2)\frac{1}{2}}}$$

$$=\frac{(8)^{(2)}\times(6)^{(3)}}{(2)^{(3)}\times(5)^{(3)}\times5}$$

$$= \frac{64 \times 216}{8 \times 125 \times 5}$$

$$=\frac{1728}{625}$$

14. By using factor theorem, (x-2) is a factor only when p(2) = 0

$$p(2) = 2^{4} - 2(2)^{2} - 5(2) + 2$$
$$= 16 - 8 - 10 + 2$$
$$= 0.$$

15. In parallelogram ABCD, AD is produced to E and BE is joined such that BE intersects CD at F.

Now, in ΔABE and ΔCFB

 $\angle BAE = \angle FCB$ because opposite angles of a parallelogram are always equal

 $\angle AEB = \angle CBF$ because of parallel sides

Now, using AA similarity, we have

 $\triangle ABE \sim \triangle CFB$.

Hence proved.

OR

Given
$$\angle Q < \angle R$$
,
Hence $\angle R > \angle Q$
Therefore $OQ > OP$...(1)
Similarly, $OR > OS$ (2)
From (1) and (2), we have $(OQ + OR) > (OP + OS)$
 $QR > PS \ or \ PS < QR$

16. (i)
$$f(2) = x^3 - 3x^2 + kx - 2$$

 $f(2) = 2^3 - 3(2)^2 + k(2) - 2$
 $0 = 8 - 12 + 2k - 2$
 $0 = 2k - 6$
 $K = 3$
(ii) $f(x) = 2x^3 - kx^2 - 5x + 6$
 $f(2) = 2(2)^3 - k(2)^2 - 5(2) + 6$
 $0 = 16 - 4k - 10 + 6$
 $0 = 12 - 4k$
 $K = 3$

17. PS is the perpendicular bisector of QR, hence QS = SR.

$$\ln \Delta PQS = \Delta PRS$$

$$PS = PS$$

 $\angle PSQ = \angle PSR = 90^{\circ}$ since PS is the perpendicular bisector of QR.

By SAS Criteria, $\Delta PQS = \Delta PRS$. Their corresponding parts are equal.

PQ = PR. Thus ΔPQR is an isosceles triangle.

18. Total no of balls = 16

No of ways of drawing two balls out of $16 = {}^{16}C_2 = \frac{16 \times 15}{2} = 120$.

Let A be the event of drawing two balls of same colour, $n(A) = {}^{8}C_{2} + {}^{8}C_{2} = 2 \times \frac{8 \times 7}{2} = 56$

$$P(E) = \frac{n(E)}{n(S)} = \frac{56}{120} = \frac{7}{15}$$

19. In $\triangle ABC$ and $\triangle QRP$

$$\frac{AB}{QR} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{BC}{RP} = \frac{2.5}{5} = \frac{1}{2}$$

$$\frac{CA}{PQ} = \frac{3}{6} = \frac{1}{2}$$
Hence
$$\frac{AB}{QR} = \frac{BC}{RP} = \frac{CA}{PQ}$$

Using SSS Similarity $\triangle ABC$ is similar to $\triangle QRP$.

OR

 $In \Delta ABC, \angle B = 90^{\circ}.$

M is the midpoint of AC and OM is parallel to BC

According to converse of midpoint theorem, O is the midpoint of AB.

Because the line OM is parallel to BC and M is the midpoint of AC, so O is definitely the midpoint of AB.

20. ABCD is a rhombus, consecutive angles $\angle BCD$ and $\angle ADC$ are supplementary.

So
$$\angle ADC + \angle BCD = 180^{\circ}$$

$$\angle BCD = 124^{\circ}$$

$$\angle ADC + 124^{\circ} = 180^{\circ}$$

$$\angle ADC = 56^{\circ}$$
.

A diagonal of a rhombus bisects the angles at its endpoints.

So
$$\angle ADB = 28^{\circ}$$

21. Let the inner radius be r metres.

$$2\pi r = 660$$
,

$$r = \frac{660}{2\pi} = 105m$$

Radius of outer circle = 105 + 20 = 125 m

Let the base of the parallelogram be a, and height be 2a.

Area of the parallelogram = base \times height = $a \times 2a = 2a^2$

Area of the parallelogram = 50

$$50 = 2a^2$$

$$25 = a^2$$

a = 5, hence base = 5cm, $height = 5 \times 2 = 10 cm$.

22. (i)

(ii) Mean =
$$\frac{65 + 75 + 85 + 80 + 95}{5}$$
 = 80.

OR

(i)

Test marks obtained	No of students (frequency)
03	1
09	1
12	3
13	1
22	3
33	1
36	1
40	2
54	3

66	2
78	1
96	1

ii) Range = 96 - 3 = 93.

SECTION - D

23. The value of
$$\frac{1}{3} + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{12} + \frac{1}{24}$$

$$\rightarrow \frac{1}{3} + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{12} + \frac{1}{24}$$

$$=\frac{8+12+6+4+2+1}{24}$$

$$=\frac{33}{24}$$

$$=\frac{11}{8}.$$

24. Postulate 1: A straight line can be drawn from any point to another point Postulate 2: A terminated line can be further produced indefinitely.

$$25. (x + y)^2 = x^2 + y^2 + 2xy$$

$$(x + y)^2 = 117 + 2(54)$$

 $(x + y)^2 = 225$

$$(x + y)^2 = 225$$

$$x + y = 15 \rightarrow (1)$$

$$(x - y)^2 = x^2 + y^2 - 2xy$$

 $(x - y)^2 = 117 - 2(54)$
 $(x - y)^2 = 9$

$$(x - y)^2 = 117 - 2(54)$$

$$(x - y)^2 = 9$$

$$x - + y = 3 \rightarrow (2)$$

$$\frac{x-y}{x+y} = \frac{3}{15} = \frac{1}{5}$$

OR

$$\frac{3}{4}\left(1+\frac{1}{3}\right)\left(1+\frac{2}{3}\right)\left(1-\frac{2}{5}\right)\left(1+\frac{6}{7}\right)\left(1-\frac{12}{13}\right)$$

$$=\frac{3}{4}\times\frac{4}{3}\times\frac{5}{3}\times\frac{3}{5}\times\frac{13}{7}\times\frac{1}{13}$$

$$=\frac{1}{7}$$

26. We know that sum of exterior angles of a polygon = 360°

$$125^{\circ} + 125^{\circ} + x^{\circ} = 360^{\circ}$$

$$\Rightarrow 250^{\circ} + x^{\circ} = 360^{\circ}$$

$$\Rightarrow x^{\circ} = 360^{\circ} - 250^{\circ}$$

$$\Rightarrow x^{\circ} = 110^{\circ}$$

27. Surface area of cube = $6 \times 52 = 150 \, sq. ft$

Quantity of paint required $=\frac{150}{10} = 15Kg$.

Cost of 15 Kg of paint = $15 \times 50 = Rs.750$

OR

Volume of the cylindrical tank = $\pi \times r^2 \times h$

$$2512 = \pi \times r^2 \times 8$$

$$r^2 = \frac{2512}{25.12}$$

$$r^2 = 100, r = 10m.$$

Diameter of the tank = $10 \times 2 = 20m$.

28. We have $AD = 3.9 \, cm$, $DB = 3 \, cm$, $AE = 3.6 \, cm$, $EC = 2.4 \, cm$.

For DE || to BC,

$$\frac{AD}{DB} = \frac{3.9}{3} = 1.3 \ cm$$

$$\frac{AE}{EC} = \frac{3.6}{2.4} = \frac{3}{2} cm$$

$$\frac{AD}{DB} \neq \frac{AE}{EC}.$$

Hence DE is not || to BC.

$$\left(\frac{20}{2}\right)^2 = r^2 + \left(\frac{10}{2}\right)^2 r^2 = \left(\frac{20}{2}\right)^2 - \left(\frac{10}{2}\right)^2$$

$$r^2 = (10)^2 - (5)^2$$

$$r^2 = 75 = 8.66 \, cm$$

OR

Circumference of a circle $2\pi r$

Radius of the circle = r

Given $2\pi r - r = 42cm$

$$r(2\pi - 1) = 42$$

$$r = \frac{42}{5.28}$$

$$r = 8$$
.

Area of the circle = $\pi r^2 = \pi \times 8 \times 8 = 201 \ cm^2$

30. Substitute x = 1,

$$3(1) + y = 2$$

$$y = 2 - 3$$

$$y = -1$$

Substitute x = 2,

$$3(2) + y = 2$$

$$y = 2 - 6$$
,

$$y = -4$$

Substitute x = 3,

$$3(3) + y = 2$$

$$y = 2 - 9,$$

$$y = -7$$

Substitute x = 4,

$$3(4) + y = 2$$

$$y = 2 - 12,$$

$$y = -10$$

The three solutions of the given equation are

1.
$$at x = 1, y = -1 (i.e.) A(1, -1)$$

$$2. at x = 2, y = -4 (i.e.) B(2, -4)$$

3. at
$$x = 3$$
, $y = -7$ (i.e.) $C(3, -7)$

4. at
$$x = 4$$
, $y = -10$ (i. e.) $D(4, -10)$

