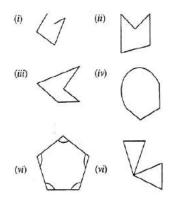


CHAPTER 16 - UNDERSTANDING SHAPES

Question 1.

State which of the following are polygons:



If the given figure is a polygon, name it as convex or concave.

Solution:

In given Fig. (ii), (iii) and (v) are polygons.

Fig. (ii) and (iii) are concave polygons while

Fig. (v) is convex.

Question 2.

Calculate the sum of angles of a polygon with:

(i) 10 sides

Solution:

No. of sides n=10

Sum of angles of polygon $= (n-2) \times 180^{\circ}$

$$= (10 - 2) \times 180^{\circ} = 1440^{\circ}$$

(ii) 12 sides

Solution:

No. of sides n=12

Sum of angles $= (n-2) \times 180^{\circ}$

$$= (12 - 2) \times 180^{\circ} = 10 \times 180^{\circ} = 1800^{\circ}$$

(iii) 20 sides

Solution:

Sum of angles of Polygon = $(n-2) \times 180^{\circ}$

$$= (20 - 2) \times 180^{\circ} = 3240^{\circ}$$

(iv)25 sides

Solution:

(iv)
$$n = 25$$

Sum of angles of polygon = $(n-2) \times 180^{\circ}$

$$= (25 - 2) \times 180^{\circ} = 4140^{\circ}$$

Question 3.

Find the number of sides in a polygon if the sum of its interior angles is:

(i) 900°

Solution:

Let no. of sides = n

Sum of angles of polygon $= 900^{\circ}$

$$(n-2) \times 180^{\circ} = 900$$

$$n - 2 = \frac{900}{180}$$

$$n - 2 = 5$$

$$n = 5 + 2$$

$$n = 7$$

(ii) 1620°

Solution:

Let no. of sides = n

Sum of angles of polygon = 1620°

$$(n-2) \times 180^{\circ} = 1620^{\circ}$$

$$n - 2 = \frac{1620}{180}$$

$$n - 2 = 9$$

$$n = 9 + 2$$

$$n = 11$$

(iii) 16 right-angles

Solution:

Let no. of sides =n

Sum of angles of polygon = $16 \text{ right angles} = 16 \times 90 = 1440^{\circ}$

$$(n-2) \times 180^{\circ} = 1440^{\circ}$$

$$n - 2 = \frac{1440}{180}$$

$$n - 2 = 8$$

$$n = 8 + 2$$

$$n = 10$$

(iv) 32 right-angles.

Solution:

Let no. of sides =n

Sum of angles of polygon =32 right angles = $32 \times 90 = 2880^{\circ}$

$$(n-2) \times 180^{\circ} = 2880$$

$$n - 2 = \frac{2880}{180}$$

$$n - 2 = 16$$

$$n = 16 + 2$$

n = 18

Question 4.

Is it possible to have a polygon; whose sum of interior angles is?

(i) 870°

Solution:

(i) Let no. of sides = n

Sum of angles = 870°

$$(n-2) \times 180^{\circ} = 870^{\circ}$$

$$n - 2 = \frac{870}{180}$$

$$n-2=\frac{20}{6}$$

$$n = \frac{29}{6} + 2$$

$$n = \frac{41}{6}$$

which is not a whole number.

Hence it is not possible to have a polygon, the sum of whose interior angles is 870°

(ii) 2340°

Solution:

Let no. of sides =n

Sum of angles $= 2340^{\circ}$

$$(n-2) \times 180^{\circ} = 2340^{\circ}$$

$$n - 2 = \frac{2340}{180}$$

$$n - 2 = 13$$

$$n = 13 + 2 = 15$$

which is a whole number.

Hence it is possible to have a polygon, the sum of whose interior angles is 2340°.

(iii) 7 right-angles

Solution:

Let no. of sides =n

Sum of angles =7 right angles = $7 \times 90 = 630^{\circ}$

$$(n-2) \times 180^{\circ} = 630^{\circ}$$

$$n - 2 = \frac{630}{180}$$

$$n-2=\frac{7}{2}$$

$$n = \frac{7}{2} + 2$$

$$n=\frac{11}{2}$$

which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is 7 right-angles.

(iv) 4500°

Solution:

Let no. of sides = n

$$(n-2) \times 180^{\circ} = 4500^{\circ}$$

$$n - 2 = \frac{4500}{180}$$

$$n - 2 = 25$$

$$n = 25 + 2$$

$$n = 27$$

which is a whole number.

Hence it is possible to have a polygon, the sum of whose interior angles is 4500°.

Question 5.

(i) If all the angles of a hexagon are equal; find the measure of each angle.

Solution:

No. of sides of hexagon, n = 6

Let each angle be $= x^{\circ}$

Sum of angles = $6x^{\circ}$

 $(n-2) \times 180^{\circ} = \text{Sum of angles}$

 $(6-2) \times 180^{\circ} = 6x^{\circ}$

 $4 \times 180 = 6x$

 $\chi = \frac{4 \times 180}{6}$

 $x = 120^{\circ}$

 \therefore Each angle of hexagon = 120°

(ii) If all the angles of a 14 -sided figure are equal; find the measure of each angle.

Solution:

No. of sides of polygon, n = 14

Let each angle = x°

Sum of angles = $14x^{\circ}$

 $\therefore (n-2) \times 180^{\circ} = \text{Sum of angles of polygon}$

 $1.0 (14 - 2) \times 180^{\circ} = 14x$

 $12 \times 180^{\circ} = 14x$

 $\chi = \frac{12 \times 180}{14}$

 $x = \frac{1080}{7}$

Ans: $x = \left(154 \frac{2}{7}\right)^{\circ}$

Question 6.

Find the sum of exterior angles obtained on producing, in order, the sides of a polygon with:

(i) 7 sides

- (ii) 10 sides
- (iii) 250 sides.
- (i) Solution:

No. of sides n=7

Sum of interior exterior angles at one vertex =180°

Sum of all interior exterior angles =7 \times 180°

=1260°

Sum of interior angles = $(n-2) \times 180^{\circ}$

$$= (7-2) \times 180^{\circ}$$

=900°

∴Sum of exterior angles =1260°-900°

=360°

(ii)Solution

No. of sides n=10

Sum of interior and exterior angles =10°× 180°

=1800°

But sum of interior angles = $(n-2) \times 180^{\circ}$

$$= (10-2) \times 180^{\circ}$$

=1440°

∴Sum of exterior angles = 1800 - 1440

Sum of exterior angles = 360°

(iii) Solution:

No. of side n=250

Sum of all interior and exterior angles

=250 ×180°

=45000°

But sum of interior angles = $(n-2) \times 180^{\circ}$

 $= (250-2) \times 180^{\circ}$

 $=248 \times 180^{\circ}$

=44640°

∴ Sum of exterior angles =45000-44640

=360°

Question 7.

The sides of a hexagon are produced in order. If the measures of exterior angles so obtained are $(6x-1)^{\circ}$, $(10 x+2)^{\circ}$, $(8 x+2)^{\circ}$ (9 x-3)°, $(5 x+4)^{\circ}$ and $(12 x+6)^{\circ}$; Find each exterior angle.

Solution:

Sum of exterior angles of hexagon formed by producing sides of order =360°

$$\therefore (6x-1)^{\circ} + (10x+2)^{\circ} + (8x+2)^{\circ} + (9x-3)^{\circ} + (5x+4)^{\circ} + (12x+6)^{\circ} = 360^{\circ}$$

 $50x + 10^{\circ} = 360^{\circ}$

 $50x = 360^{\circ} - 10^{\circ}$

 $50x = 350^{\circ}$

 $x = \frac{350}{50}$

x = 7

 \therefore Angles are $(6x-1)^{\circ}:(10x+2)^{\circ}:(8x+2)^{\circ};(9x-3)^{\circ}(5x+4)^{\circ}$ and $(12x+6)^{\circ}$

i.e., (6×7-1)°; (10×7+2)°; (8×7+2)°; (9×7-3)°; (5×7+4)°; (12×7+6)°)

41°; 72°; 58°; 60°; 39° and 90°

Question 8.

The interior angles of a pentagon are in the ratio 4:5:6:7:5. Find each angle of the pentagon.

Solution:

Let the interior angles of the pentagon be 4 x, 5 x, 6 x, 7 x, 5 x

Their sum = 4x + 5x + 6x + 7x + 5x = 27x

Sum of interior angles of polygon = $(n-2) \times 180^{\circ} = (5-2) \times 180^{\circ} = 540^{\circ}$

$$27x = 540 x = \frac{540}{27} = 20^{\circ}$$

∴Angles are $4 \times 20^{\circ} = 80^{\circ}$

$$5 \times 20^{\circ} = 100^{\circ}$$

$$6 \times 20^{\circ} = 120^{\circ}$$

$$7 \times 20^{\circ} = 140^{\circ}$$

$$5 \times 20^{\circ} = 100^{\circ}$$

Question 9

Two angles of a hexagon are 120° and 160°. If the remaining four angles are equal, find each equal angle.

Solution:

Two angles of a hexagon are 120°, 160°

Let remaining four angles be x, x, x and x.

Their sum = $4x + 280^{\circ}$

But sum of all the interior angles of a hexagon = $(6-2) \times 180^{\circ} = 4 \times 180^{\circ} = 720^{\circ}$

$$4x + 280^{\circ} = 720^{\circ}$$

$$\Rightarrow 4x = 720^{\circ} - 280^{\circ} = 440^{\circ} \Rightarrow x = 110^{\circ}$$

∴Equal angles are 110° (each)

Question 10

The figure, given below, shows a pentagon ABCDE with sides AB and ED parallel to each other, and

- (i) Using formula, find the sum of interior angles of the pentagon.
- (ii) Write the value of ∠A+∠E
- (iii) Find angles B, C and D.

Solution:

(i) Sum of interior angles of the pentagon = $(5-2) \times 180^{\circ}$

=3 × 180°=540° (:sum for a polygon of x sides=(x-2)×180°

(ii) Since AB || ED

$$\therefore \angle A + \angle E = 180^{\circ}$$

(iii) Let $\angle B=5 \ x \ \angle C=6 \ x \ \angle D=7x$

$$5x + 6x + 7x + 180^{\circ} = 540^{\circ}$$

$$\angle A + \angle E = 180^{\circ} Proved in (ii)$$

$$18x = 540^{\circ} - 180^{\circ}$$

$$\Rightarrow$$
 18 $x = 360^{\circ} \Rightarrow x = 20^{\circ}$

$$\therefore \angle B = 5 \times 20^{\circ} = 100^{\circ}, \angle C = 6 \times 20 = 120^{\circ}$$

$$\angle D = 7 \times 20 = 140^{\circ}$$

Question 11.

Two angles of a polygon are right angles and the remaining are 120° each. Find the number of sides in it.

Solution:

Let number of sides = n

Sum of interior angles= $(n-2) \times 180^{\circ}$

 $= 180n - 360^{\circ}$

Sum of 2 right angles = $2 \times 90^{\circ}$

 $= 180^{\circ}$

 \therefore Sum of other angles = $180n - 360^{\circ} - 180^{\circ}$

= 180 n - 540

No. of vertices at which these angles are formed

= n - 2

$$\therefore \quad \text{Each interior angle } = \frac{180n - 540}{n - 2}$$

$$\therefore \frac{180n - 540}{n - 2} = 120^{\circ}$$

$$180 n - 540 = 120 n - 240$$

$$180 n - 120 n = -240 + 540$$

$$60 n = 300$$

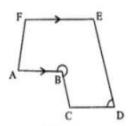
$$n = \frac{300}{60}$$

$$n = 5$$

Question 12.

In a hexagon ABCDEF, side AB is parallel to side FE and $\angle B: \angle C: \angle D: \angle E = 6:4:2:3$. find $\angle B$ and $\angle D$.

Solution:



Given: Hexagon ABCDEF in which AB II EF

and $\angle B:\angle C:\angle D:\angle E=6:4:2:3$

To find: $\angle B$ and $\angle D$

Proof: No of sides n = 6

 \therefore Sum of interior angles = $(n-2) \times 180^{\circ}$

$$= (6-2) \times 180^{\circ} = 720^{\circ}$$

∵ AB||EF(Given)

$$\therefore A + \angle F = 180^{\circ}$$

But $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 720^{\circ}$

(proved)

$$\angle B + \angle C + \angle D + \angle E + \angle 180^{\circ} = 720^{\circ}$$

$$\therefore \ \angle B + \angle C + \angle D + \angle E = 720^{\circ} - 180^{\circ} = 540^{\circ}$$

Ratio = 6:4:2:3

Sum of parts = 6 + 4 + 2 + 3 = 15

$$\therefore \ \angle B = \frac{6}{15} \times 540 = 216^{\circ}$$

$$\angle D = \frac{2}{15} \times 540^{\circ} = 72^{\circ}$$

Hence $\angle B = 216^{\circ}$: $\angle D = 72^{\circ}$

Question 13.

the angles of a hexagon are x+10°,2x+20°,2x-20°,3x-50°,x+40° and x+20°. Find x.

Solution: Angles of a hexagon are $x + 10^{\circ}$, $2x + 20^{\circ}$,

$$2x - 20^{\circ}$$
, $3x - 50^{\circ}$, $x + 40^{\circ}$ and $x + 20^{\circ}$

 \therefore But sum of angles of a hexagon = $(x-2) \times 180^{\circ}$

$$= (6-2) \times 180^{\circ} = 4 \times 180^{\circ} = 720^{\circ}$$

But sum =
$$x + 10 + 2x + 20^{\circ} + 2x - 20^{\circ} + 3x - 50^{\circ} + x + 40 + x + 20^{\circ}$$

$$= 10x + 90 - 70 = 10x + 20$$

$$\therefore 10x + 20 = 720^{\circ} \Rightarrow 10x = 720 - 20 = 700$$

$$\Rightarrow x = \frac{700^{\circ}}{10} = 70^{\circ}$$

$$\therefore x = 70^{\circ}$$

Question 14.

In a pentagon, two angles are 40° and 60° and the rest are in the ratio 1:3:7. Find the biggest angle of the pentagon.

Solution:

In a pentagon, two angles are 40° and 60° Sum of remaining 3 angles $= 3 \times 180^\circ$

$$= 540^{\circ} - 40^{\circ} - 60^{\circ} = 540^{\circ} - 100^{\circ} = 440^{\circ}$$

Ratio in these 3 angles = 1:3:7

Sum of ratios =
$$1 + 3 + 7 = 11$$

Biggest angle
$$=\frac{440\times7}{11}=280^{\circ}$$

Question 15

Fill in the blanks:

In case of regular polygon, with:

No. of sides	Each exterior angle	Each interior angle
(i)8		
(ii)12		
(iii)	72°	
(iv)	45°	
(v)		150°
(vi)		140°

Solution:

No. Of sides	Each exterior angle	Each interior angle
(i)8	45°	135°
(ii)12	30°	150°
(iii)5	72°	108°
(iv)8	45°	135°
(v)12	30°	150°
(vi)9	40°	140°

Explanation:

(i) Each exterior angle=
$$\frac{360^{\circ}}{8}$$
 = 45°

Each interior angle= $180^{\circ} - 45^{\circ} - 135^{\circ}$

(ii) Each exterior angle=
$$\frac{360^{\circ}}{12} = 30^{\circ}$$

Each interior angle =
$$180^{\circ} - 30^{\circ} = 150^{\circ}$$

(iii) Since each exterior =
$$72^{\circ}$$

∴ Number of sides
$$=\frac{360^{\circ}}{72^{\circ}}=5$$

Also interior angle
$$= 180^{\circ} - 72^{\circ} = 108^{\circ}$$

(iv) Since each exterior angle
$$=45^{\circ}$$

$$\therefore$$
 Number of sides = $\frac{360^{\circ}}{45^{\circ}} = 8$

Interior angle =
$$180^{\circ} - 45^{\circ} = 135^{\circ}$$

(v) Since interior angle
$$=150^{\circ}$$

$$\therefore$$
 Exterior angle = $180^{\circ} - 150^{\circ} = 30^{\circ}$

∴ Number of sides
$$=\frac{360^{\circ}}{30^{\circ}} = 12$$

(vi) Since interior angle
$$=140^{\circ}$$

$$\therefore$$
 Exterior angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

$$\therefore$$
 Number of sides $=\frac{360^{\circ}}{40^{\circ}}=9$

