

(Page No: 186)

Exercise: 10.6

1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Solution:

Consider the following diagram

In $\triangle POO'$ and $\triangle QOO'$ OP = OQ (Radius of circle 1) O'P = O'Q (Radius of circle 2) OO' = OO' (Common arm) So, by SSS congruency, $\triangle POO' \cong \triangle QOO'$ Thus, $\angle OPO' = \angle OQO'$ (proved).

2. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6, find the radius of the circle.

Solution:

Here, $OM \perp AB$ and $ON \perp CD$. is drawn and OB and OD are joined. We know that AB bisects BM as the perpendicular from the centre bisects chord. Since AB = 5 so, BM = AB/2Similarly, ND = CD/2 = 11/2

Now, let ON be x. So, OM = 6-x.

Consider $\triangle MOB$, $OB^2 = OM^2 + MB^2$ Or, $OB^2 = 36 + x^2 - 12x + \frac{25}{4}$

Consider ΔNOD , OD² = ON² + ND²

Or,

 $OD^2 = x^2 + \frac{121}{4} \qquad \dots (2)$

We know, OB = OD (radii) From equation 1 and equation 2 we get

https://byjus.com

... (1)

$$36 + x^{2} - 12x + \frac{25}{4} = x^{2} + \frac{121}{4}$$

$$12x = 36 + \frac{25}{4} - \frac{121}{4}$$

$$= \frac{144 + 25 - 121}{4}$$

$$12x = \frac{48}{4} = 12$$

$$x = 1$$
Now, from equation (2) we have,
$$OD^{2} = 1^{1} + (121/4)$$

Or OD = (5/2) × √5
3. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance 4 cm from the centre, what is the distance of the other chord from the centre?

Solution:

Consider the following diagram

Here AB and CD are 2 parallel chords. Now, join OB and OD. Distance of smaller chord AB from the centre of the circle = 4 cm So, OM = 4 cm MB = AB/2 = 3 cm Consider Δ OMB OB² = OM² + MB² Or, OB = 5cm

Now, consider $\triangle OND$, OB = OD = 5 (since they are the radii) => ND = CD/2 = 4 cm Now, OD² = ON² + ND² Or, ON = 3.

4. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

Solution: Consider the diagram

Here AD = CE

We know, any exterior angle of a triangle is equal to the sum of interior opposite angles. So,

 $\angle DAE = \angle ABC + \angle AEC$ (in $\triangle BAE$) ------(i) DE subtends $\angle DOE$ at the centre and $\angle DAE$ in the remaining part of the circle. So, $\angle DAE = (\frac{1}{2}) \angle DOE$ ------(ii) Similarly, $\angle AEC = (\frac{1}{2}) \angle AOC$ ------(ii) Now, from equation (i), (ii), and (iii) we get,

 $\angle DOE = \angle ABC + (\frac{1}{2}) \angle AOC$

Or, $\angle ABC = (\frac{1}{2}) [\angle DOE - \angle AOC]$ (hence proved).

5. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.

Solution:

To prove: A circle drawn with Q as centre, will pass through A, B and O (i.e. QA = QB = QO) Since all sides of a rhombus are equal,

AB = DC

Now, multiply (½) on both sides

(½)AB = (½)DC So, AQ = DP => BQ = DP Since Q is the midpoint of AB, AQ= BQ Similarly, RA = SB Again, as PQ is drawn parallel to AD, RA = QO

Now, as AQ = BQ and RA = QO we get, QA = QB = QO (hence proved).

6. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE, = AD.

Solution:

Here, ABCE is a cyclic quadrilateral. In a cyclic quadrilateral, the sum of the opposite angles is 180°.

So, $\angle AEC + \angle CBA = 180^{\circ}$ As $\angle AEC$ and $\angle AED$ are linear pair, $\angle AEC + \angle AED = 180^{\circ}$ Or, $\angle AED = \angle CBA \dots (1)$

We know in a parallelogram, opposite angles are equal. So, $\angle ADE = \angle CBA \dots (2)$

Now, from equations (1) and (2) we get, $\angle AED = \angle ADE$ Now, AD and AE are angles opposite to equal sides of a triangle, $\therefore AD = AE$ (proved).

7. AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters; (ii) ABCD is a rectangle.

Solution:

Here chords AB and CD intersect each other at O.

Consider $\triangle AOB$ and $\triangle COD$, $\angle AOB = \angle COD$ (They are vertically opposite angles) OB = OD (Given in the question) OA = OC (Given in the question) So, by SAS congruency, $\triangle AOB \cong \triangle COD$

Also, AB = CD (By CPCT) Similarly, $\triangle AOD \cong \triangle COB$ Or, AD = CB (By CPCT)

In quadrilateral ACBD, opposite sides are equal. So, ACBD is a parallelogram.

We know that opposite angles of a parallelogram are equal. So, $\angle A = \angle C$

```
Also, as ABCD is a cyclic quadrilateral,

\angle A + \angle C = 180^{\circ}

\Rightarrow \angle A + \angle A = 180^{\circ}

Or, \angle A = 90^{\circ}
```

As ACBD is a parallelogram and one of its interior angles is 90°, so, it is a rectangle.

 $\angle A$ is the angle subtended by chord BD. And as $\angle A = 90^\circ$, therefore, BD should be the diameter of the circle. Similarly, AC is the diameter of the circle.

8. Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are $90^{\circ} - (\frac{1}{2})A$, $90^{\circ} - (\frac{1}{2})B$ and $90^{\circ} - (\frac{1}{2})C$.

Solution: Consider the following diagram

Here, ABC is inscribed in a circle with center O and the bisectors of $\angle A$, $\angle B$ and $\angle C$ intersect the circumcircle at D, E and F respectively.

Now, join DE, EF and FD As angles in the same segment are equal, so, \angle FDA = \angle FCA ------(i) \angle FDA = \angle EBA ------(i) By adding equations (i) and (ii) we get, \angle FDA + \angle EDA = \angle FCA + \angle EBA Or, \angle FDE = \angle FCA + \angle EBA = ($\frac{1}{2}$) \angle C + ($\frac{1}{2}$) \angle B

We know, $\angle A + \angle B + \angle C = 180^{\circ}$

So, \angle FDE = $(\frac{1}{2})[\angle C + \angle B] = (\frac{1}{2})[180^{\circ} - \angle A]$ => \angle FDE = $[90 - (\angle A/2)]$ In a similar way, \angle FED = $[90 - (\angle B/2)]$ And, \angle EFD = $[90 - (\angle C/2)]$

9. Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ. Solution:

The diagram will be

Here, $\angle APB = \angle AQB$ (as AB is the common chord in both the congruent circles.) Now, consider $\triangle BPQ$,

 $\angle APB = \angle AQB$ So, the angles opposite to equal sides of a triangle. $\therefore BQ = BP$

10. In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.

Solution:

Consider this diagram

Here, join BE and CE. Now, since AE is the bisector of \angle BAC, \angle BAE = \angle CAE Also, \therefore arc BE = arc EC This implies, chord BE = chord EC

Now, consider triangles $\triangle BDE$ and $\triangle CDE$, DE = DE (It is the common side) BD = CD (It is given in the question) BE = CE (Already proved)

So, by SSS congruency, $\triangle BDE \cong \triangle CDE$. Thus, $\therefore \angle BDE = \angle CDE$ We know, $\angle BDE = \angle CDE = 180^{\circ}$ Or, $\angle BDE = \angle CDE = 90^{\circ}$ $\therefore DE \perp BC$ (hence proved).