

Exercise 12.1

Page No: 197

1. Evaluate:

(i)
$$3^{-2}$$
 (*ii*) $(-4)^{-2}$ (*iii*) $\left(\frac{1}{2}\right)^{-5}$

Solution:

(i) $3^{-2} = \left(\frac{1}{3}\right)^2$ $\left[\because a^{-m} = \frac{1}{a^m}\right]$

= 1/9

(ii)
$$(-4)^{-2} = \left(\frac{1}{-4}\right)^2$$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$
$$= 1/16$$

(iii)
$$\left(\frac{1}{2}\right)^{-5} = \left(\frac{2}{1}\right)^{5}$$

$$\left[\because a^{-m} = \frac{1}{a^{m}}\right]$$
$$= 2^{5}$$

= 32

2. Simplify and express the result in power notation with positive exponent:

- (i) $(-4)^5 \div (-4)^8$
- (ii) $\left(\frac{1}{2^3}\right)^2$

(iii)
$$-(3)^4 \times \left(\frac{5}{3}\right)^4$$

 $(iv) \ (3^{-7} \div 3^{-10}) \times 3^{-5}$

(v)
$$2^{-3} \times (-7)^{-3}$$

Solution:

(i) $(-4)^{5} \div (-4)^{8}$ = $(-4)^{5} / (-4)^{8}$ [$\because a^{m} \pm a^{n} = a^{m-n}$] = $(-4)^{5-8}$ = $1/(-4)^{3}$ (ii) $\left(\frac{1}{2^{3}}\right)^{2}$ = $1^{2} / (2^{3})^{2}$ [$\because \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{a^{n}}$] = $1/2^{n}(3x2) = 1/2^{6}$ [$\because (a^{m})^{n} = a^{m\times n}$]

(iii)

$$\left(-3\right)^{4} \times \left(\frac{5}{3}\right)^{4} = \left(-3\right)^{4} \times \frac{5^{4}}{3^{4}} \left[\because \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{a^{n}} \right]$$

 $= (-1)^{4} x 3^{4} x (5^{4} / 3^{4})$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$\begin{bmatrix} \because a^m \times a^n = a^{m+n} \end{bmatrix}$$
$$= 3^{-2}$$
$$= 1/3^2$$

$$= 3^3 \times 3^{-5}$$

= 3^(3 + (-5))

$$\int d^m \div a^n =$$

$$\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$$

$$-2\Lambda(7+10) = 2\Lambda(5)$$

$$= 3^{(-7+10)} \times 3^{(-5)}$$

$$-20(7+10) = 20(5)$$

$$-3\wedge(-7\pm10) \times 3\wedge(-5)$$

$$-2\Lambda(7+10) = 2\Lambda(5)$$

$$-3^{(-7+10)} \times 3^{(-5)}$$

$$= 3^{-7} + 10^{-7}$$

$$\begin{bmatrix} \because & a^m \div a^n = a^{m-n} \end{bmatrix}$$

$$= (3^{-7}) \times 3^{-5}$$

$$= (3^{-7}/3^{-10}) \times 3^{-5}$$

iv)
$$(3^{-7} \div 3^{-10}) \times 3^{-5}$$

$$\begin{bmatrix} \because a^0 = 1 \end{bmatrix}$$

 $\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$

 $= 3^{0} \times 5^{4} = 5^{4}$

$$= 3^{(4-4)} \times 5^{4}$$

$$\begin{bmatrix} \because & (ab)^m = a^m b^m \end{bmatrix}$$

v)
$$2^{-3} \times (-7)^{-3}$$

 $= (2 \times -7)^{-3}$

(Because $a^m x b^m = (ab)^m$)

 $= 1 / (2 \times -7)^3$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$= 1/(-14)^3$$

3. Find the value of :

(i)
$$(3^0 + 4^{-1}) \times 2^2$$

(ii) $(2^{-1} \times 4^{-1}) \div 2^{-2}$

(iii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$$

(iv) $(3^{-1} + 4^{-1} + 5^{-1})^{0}$
(v) $\left\{\left(-\frac{2}{3}\right)^{-2}\right\}^{2}$

Solution:

(i)
$$(3^{0} + 4^{-1}) \times 2^{2} = (1 + 1/4) \times 2^{2}$$

$$\left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

$$= ((4 + 1)/4) \times 2^{2}$$

 $= 5 \times 2^{(2-2)}$

$$\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$$

$$= 5 \times 1 = 5$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

(ii) $(2^{-1} \times 4^{-1}) \div 2^{-2}$ = $[(1/2) \times (1/4)] \div (1/4)$ $\left[\because a^{-m} = \frac{1}{a^m}\right]$ = $(1/2 \times 1/2^2) \div 1/4$ = $1/2 \wedge 3 \div 1/4$ = $(1/8) \times (4)$ = 1/2(iii) $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$ = $(2^{-1})^{-2} + (3^{-1})^{-2} + (4^{-1})^{-2}$ $\left[\because a^{-m} = \frac{1}{a^m}\right]$ = $2^{-1}(-1 \times -2) + 3^{-1}(-1 \times -2) + 4^{-1}(-1 \times -2)$ $\left[\because (a^m)^n = a^{m \times n}\right]$

$$\begin{bmatrix} \because & (a^m)^n = a \\ = 2^2 + 3^2 + 4^2 \\ = 4 + 9 + 16 \end{bmatrix}$$

= 29

(iv)
$$(3^{-1} + 4^{-1} + 5^{-1})^0$$

= 1
 $[\because a^0 = 1]$
(v) $\{(-\frac{2}{3})^{-2}\}^2 = (-\frac{2}{3})^{-2 \times 2}$
 $[\because (a^m)^n = a^{m \times n}]$
 $= (-\frac{2}{3})^{-4}$
 $= (-\frac{3}{2})^4$
 $[\because a^{-m} = \frac{1}{a^m}]$
= 81/16
4. Evaluate
(i) $\frac{8^{-1} \times 5^3}{2^{-4}}$
(ii) $(5^{-1} \times 2^{-1}) \times 6^{-1}$

Solution:

(i)
$$\frac{8^{-1} \times 5^3}{2^{-4}}$$

$$\frac{8^{-1} \times 5^3}{2^{-4}} = \frac{\left(2^3\right)^{-1} \times 5^3}{2^{-4}} = \frac{2^{-3} \times 5^3}{2^{-4}} \qquad \left[\because \quad \left(a^m\right)^n = a^{m \times n}\right]$$

$$= 2^{-3-(-4)} \times 5^3 = 2^{-3+4} \times 5^3 \qquad \left[\because a^m \div a^n = a^{m-n} \right]$$

$$= 2 \times 125 = 250$$

(ii) $(5^{-1} \times 2^{-1}) \times 6^{-1}$

$$(5^{-1} \times 2^{-1}) \times 6^{-1} = \left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6} \quad \left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

= (1/10) x 1/6

5. Find the value of *m* for which $5^m \div 5^{-3} = 5^5$

Solution:

$$5^m \div 5^{-3} = 5^5$$

 $5^{(m-(-3))} = 5^5$

$$\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$$

$$5^{m+3} = 5^5$$

Comparing exponents both sides, we get

m + 3 = 5

m = 5 - 3m = 2

6. Evaluate

(i)
$$\left\{ \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1}$$

(ii)

Solution:

(i)

$$\left\{ \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\} = \left\{ \left(\frac{3}{1}\right)^{1} - \left(\frac{4}{1}\right)^{1} \right\} \quad \left[\because \quad a^{-m} = \frac{1}{a^{m}} \right]$$
$$= 3 - 4$$

= -1

(ii)

$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-4}}{5^{-4}} \left[\because \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \right]$$
$$= 5^{-7-(-4)} \times 8^{-4-(-7)} \left[\because a^m \div a^n = a^{m-n} \right]$$

$$= 5^{-7+4} \times 8^{-4+7}$$

$$=5^{-3} \times 8^{3} = \frac{8^{3}}{5^{3}} \left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

= 512/125

(i)

$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} \quad (t \neq 0)$$

(ii)

 $\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$

Solution:

(i)
$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}}$$

$$=\frac{5^2\times t^{-4}}{5^{-3}\times 5\times 2\times t^{-8}}$$

$$=\frac{5^{2-(-3)-1}\times t^{-4-(-8)}}{2}$$

$$\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$$

$$=\frac{5^{2+3-1}\times t^{-4+8}}{2}=\frac{5^4\times t^4}{2}=\frac{625}{2}t^4$$

(ii)
$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

https://byjus.com

$$=\frac{3^{-5} \times (2 \times 5)^{-5} \times 5^{3}}{5^{-7} \times (2 \times 3)^{-5}}$$

$$=\frac{3^{-5}\times2^{-5}\times5^{-5}\times5^{3}}{5^{-7}\times2^{-5}\times3^{-5}}$$

 $\begin{bmatrix} \because & (ab)^m = a^m b^m \end{bmatrix}$

⇒

= 3125

$$\frac{3^{-5} \times 2^{-5} \times 5^{-5+3}}{5^{-7} \times 2^{-5} \times 3^{-5}} = \frac{3^{-5} \times 2^{-5} \times 5^{-2}}{5^{-7} \times 2^{-5} \times 3^{-5}}$$

$$\begin{bmatrix} \because a^m \times a^n = a^{m+n} \end{bmatrix}$$

$$= 3^{-5-(-5)} \times 2^{-5-(-5)} \times 5^{-2-(-7)} \quad \begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$$

$$= 3^{-5+5} \times 2^{-5+5} \times 5^{-2+7} = 3^0 \times 2^0 \times 5^5$$

$$= 1 \times 1 \times 3125 \quad \begin{bmatrix} \because a^0 = 1 \end{bmatrix}$$