

Exercise 1.3

Page: 14

1. Prove that $\sqrt{5}$ is irrational.

Solutions: Let us assume, that $\sqrt{5}$ is rational number. i.e. $\sqrt{5} = \frac{x}{y}$ (where, x and y are co-primes) $y\sqrt{5} = x$

Squaring both the sides, we get, $(y\sqrt{5})^2 = x^2$ $\Rightarrow 5y^2 = x^2$(1)

Thus, x^2 is divisible by 5, so x is also divisible by 5.

Let us say, x = 5k, for some value of k and substituting the value of x in equation (1), we get, $5y^2 = (5k)^2$ $\Rightarrow y^2 = 5k^2$

 y^2 is divisible by 5 it means y is divisible by 5.

Therefore, x and y are co-primes. Since, our assumption about $\sqrt{5}$ is rational is incorrect.

Hence, $\sqrt{5}$ is irrational number.

2. Prove that $3 + 2\sqrt{5} + is$ irrational.

Solutions: Let us assume $3 + 2\sqrt{5}$ is rational. Then we can find co-prime x and y (y \neq 0) such that $3 + 2\sqrt{5} = \frac{x}{y}$. Rearranging, we get,

$$2\sqrt{5} = \frac{x}{y} - 3$$
$$\sqrt{5} = \frac{1}{2}(\frac{x}{y} - 3)$$

Since, x and y are integers, thus, $\frac{1}{2}(\frac{x}{y}-3)$ is a rational number. Therefore, $\sqrt{5}$ is also a rational number. But this contradicts the fact that $\sqrt{5}$ is irrational.

So, we conclude that $3 + 2\sqrt{5}$ is irrational.

3. Prove that the following are irrationals:

(i) $1/\sqrt{2}$ (ii) $7\sqrt{5}$ (iii) $6 + \sqrt{2}$

https://byjus.com

Solutions: (i) $1/\sqrt{2}$

Let us assume $1/\sqrt{2}$ is rational. Then we can find co-prime x and y (y \neq 0) such that $1/\sqrt{2} = \frac{x}{y}$. Rearranging, we get, $\sqrt{2} = \frac{y}{x}$

Since, x and y are integers, thus, $\sqrt{2}$ is a rational number, which contradicts the fact that $\sqrt{2}$ is irrational.

Hence, we can conclude that $1/\sqrt{2}$ is irrational.

(ii) $7\sqrt{5}$

Let us assume $7\sqrt{5}$ is a rational number. Then we can find co-prime a and b (b \neq 0) such that $7\sqrt{5} = \frac{x}{y}$. Rearranging, we get,

$$\sqrt{5} = \frac{x}{7y}$$

Since, x and y are integers, thus, $\sqrt{5}$ is a rational number, which contradicts the fact that $\sqrt{5}$ is irrational. Hence, we can conclude that $7\sqrt{5}$ is irrational.

(iii) $6 + \sqrt{2}$

Let us assume $6 + \sqrt{2}$ is a rational number. Then we can find co-primes x and y (y \neq 0) such that $6 + \sqrt{2} = \frac{x}{y}$. Rearranging, we get,

$$\sqrt{2} = \frac{x}{y} - 6$$

Since, x and y are integers, thus, $\frac{x}{y}$ – 6 is a rational number and therefore, $\sqrt{2}$ is rational. This contradicts the fact that $\sqrt{2}$ is a irrational number.

Hence, we can conclude that $6 + \sqrt{2}$ is irrational.

https://byjus.com