

Page: 36

# Exercise 2.3

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i) 
$$p(x) = x^3 - 3x^2 + 5x - 3$$
,  $g(x) = x^2 - 2$ 

Solution: Given,

Dividend =  $p(x) = x^3 - 3x^2 + 5x - 3$ 

Divisor =  $g(x) = x^2 - 2$ 

| х -                       | 3           |         |
|---------------------------|-------------|---------|
| $x^2 - 2\overline{) x^3}$ | $-3x^{2}$ + | -5x - 3 |
| <i>x</i> <sup>3</sup>     | -           | -2x     |
| -                         |             | +       |
|                           |             |         |
|                           | $-3x^{2} +$ | -7x - 3 |
|                           | $-3x^{2}$   | - 3     |
|                           | +           | -       |
|                           |             |         |
|                           |             | 7x - 9  |
|                           |             |         |

Therefore, upon division we get, Quotient = x - 3Remainder = 7x - 9

(ii) 
$$p(x) = x^4 - 3x^2 + 4x + 5$$
,  $g(x) = x^2 + 1 - x$ 

Solution: Given,

Dividend =  $p(x) = x^4 - 3x^2 + 4x + 5$ 

 $Divisor = g(x) = x^2 + 1 - x$ 

$$\frac{x^{2} + x - 3}{x^{2} + 1 - x)x^{4} - 3x^{2} + 4x + 5} \\
 x^{4} - x^{3} + x^{2} \\
 - + - \\
 \frac{x^{3} - 4x^{2} + 4x + 5}{x^{3} - x^{2} + x} \\
 - + - \\
 - + - \\
 \end{array}$$



$$-3x^{2} + 3x + 5$$

$$-3x^{2} + 3x - 5$$

$$+ - +$$
8

Therefore, upon division we get, Quotient =  $x^2 + x - 3$ Remainder = 8

(iii)  $p(x) = x^4 - 5x + 6$ ,  $g(x) = 2 - x^2$ 

Solution: Given,

Dividend =  $p(x) = x^4 - 5x + 6 = x^4 + 0x^2 - 5x + 6$ 

Divisor =  $g(x) = 2 - x^2 = -x^2 + 2$ 

$$-x^{2} + \frac{x - 3}{2)x^{4} + 0x^{2} - 5x + 6}$$

$$x^{4} - 2x^{2}$$

$$- +$$

$$2x^{2} - 5x + 6$$

$$2x^{2} - 4$$

$$- +$$

$$-5x + 10$$

Therefore, upon division we get, Quotient = x - 3Remainder = -5x + 10

**2.** Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i) 
$$t^2 - 3$$
,  $2t^4 + 3t^3 - 2t^2 - 9t - 12$ 

Solutions: Given,

First polynomial =  $t^2 - 3$ 

Second polynomial =  $2t^4 + 3t^3 - 2t^2 - 9t - 12$ 



$$\frac{2t^{2} + 3t + 4}{t^{2} - 3) 2t^{4} + 3t^{3} - 2t^{2} - 9t - 12} \\
2t^{4} + 0t^{3} - 6t^{2} \\
- - + \\
- \\
2t^{3} + 4t^{2} - 9t - 12 \\
3t^{3} + 0t^{2} - 9t \\
- - + \\
- \\
4t^{2} - 0t - 12 \\
4t^{2} - 0t - 12 \\
- + + \\
0$$

As we can see, the remainder is left as 0. Therefore, we say that,  $t^2 - 3$  is a factor of  $2t^2 + 3t + 4$ .

(ii)  $x^2 + 3x + 1$ ,  $3x^4 + 5x^3 - 7x^2 + 2x + 2$ 

Solutions: Given,

First polynomial =  $x^2 + 3x + 1$ 

Second polynomial =  $3x^4 + 5x^3 - 7x^2 + 2x + 2$ 

As we can see, the remainder is left as 0. Therefore, we say that,  $x^2 + 3x + 1$  is a factor of  $3x^4 + 5x^3 - 7x^2 + 2x + 2$ .

(iii)  $x^3 - 3x + 1$ ,  $x^5 - 4x^3 + x^2 + 3x + 1$ 

Solutions: Given,

First polynomial =  $x^3 - 3x + 1$ 



Second polynomial =  $x^5 - 4x^3 + x^2 + 3x + 1$ 

$$x^{3} - 3x + \frac{x^{2} - 1}{1 x^{5} - 4x^{3} + x^{2} + 3x + 1} - (x^{5} - 3x^{3} + x^{2}) - \frac{x^{3} + 3x + 1}{-(x^{3} + 3x - 1)} - \frac{x^{3} + 3x + 1}{2} - \frac{x^{3} + 3x - 1}{2} - \frac$$

As we can see, the remainder is not equal to 0. Therefore, we say that,  $x^3 - 3x + 1$  is not a factor of  $x^5 - 4x^3 + x^2 + 3x + 1$ .

3. Obtain all other zeroes of  $3x^4 + 6x^3 - 2x^2 - 10x - 5$ , if two of its zeroes are  $\sqrt{\frac{5}{3}}$  and  $-\sqrt{\frac{5}{3}}$ .

Solutions: Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

$$\sqrt{\frac{5}{3}} and - \sqrt{\frac{5}{3}} \text{ are zeroes of polynomial } f(x).$$
  
$$\therefore \left(X - \sqrt{\frac{5}{3}}\right) \left(X + \sqrt{\frac{5}{3}}\right) = x^2 - \frac{5}{3} = 0$$

 $(3x^2-5)=0$ , is a factor of given polynomial f(x).

Now, when we will divide f(x) by  $(3x^2-5)$  the quotient obtained will also be a factor of f(x) and the remainder

| 3x <sup>2</sup> -5 | 3x4+                                          | 5x <sup>3</sup> - 2x | <sup>2</sup> - 10 | x-5 |  |
|--------------------|-----------------------------------------------|----------------------|-------------------|-----|--|
|                    | 3x4                                           | - 5x                 | 2                 |     |  |
|                    | (-)                                           | (+)                  |                   |     |  |
|                    | + 6x <sup>3</sup> + 3x <sup>2</sup> - 10x - 5 |                      |                   |     |  |
|                    | - 6                                           | x <sup>3</sup>       | - 10              | x   |  |
|                    | (+)                                           |                      | (-)               |     |  |
|                    |                                               | 3x <sup>2</sup>      |                   | -5  |  |
|                    |                                               | 3x <sup>2</sup>      |                   | - 5 |  |
|                    |                                               | (-)                  |                   | (+) |  |
|                    |                                               |                      | 0                 |     |  |

will be 0.

Therefore,  $3x^4 + 6x^3 - 2x^2 - 10x - 5 = (3x^2 - 5)(x^2 + 2x + 1)$ 



Now, on further factorizing  $(x^2 + 2x + 1)$  we get,

$$x^2 + 2x + 1 = x^2 + x + x + 1 = 0$$

$$x(x + 1) + 1(x+1) = 0$$

$$(x+1)(x+1) = 0$$

So, its zeroes are given by: x = -1 and x = -1.

Therefore, all four zeroes of given polynomial equation are:

$$\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, -1$$
 and -1.

Hence, is the answer.

4. On dividing  $x^3 - 3x^2 + x + 2$  by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

**Solutions:** Given, Dividend,  $p(x) = x^3 - 3x^2 + x + 2$ Quotient = x-2 Remainder = -2x + 4We have to find the value of Divisor, g(x) =?

As we know, Dividend = Divisor × Quotient + Remainder

 $\therefore x^3 - 3x^2 + x + 2 = g(x) \times (x-2) + (-2x+4)$  $x^3 - 3x^2 + x + 2 - (-2x+4) = g(x) \times (x-2)$  $Therefore, g(x) \times (x-2) = x^3 - 3x^2 + 3x - 2$ 

Now, for finding g(x) we will divide  $x^3 - 3x^2 + 3x - 2$  with (x-2)



 $x^2 - x + 1$  $x^3 - 3x^2 + 3x - 2$ x - 2  $x^3 - 2x^2$ (-) (+)  $-x^{2}+3x-2$  $-x^{2} + 2x$ (+) (-) x - 2 x - 2 (+) (-) 0

Therefore,  $g(x) = (x^2 - x + 1)$ 

5. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and (i) deg p(x) = deg q(x)
(ii) deg q(x) = deg r(x)
(iii) deg r(x) = 0

**Solutions:** According to the division algorithm, dividend p(x) and divisor g(x) are two polynomials, where  $g(x)\neq 0$ . Then we can find the value of quotient q(x) and remainder r(x), with the help of below given formula;

Dividend = Divisor × Quotient + Remainder  $\therefore p(x) = g(x) × q(x) + r(x)$ Where r(x) = 0 or degree of r(x) < degree of g(x). Now let us proof the three given cases as per division algorithm by taking examples for each.

### (i): deg p(x) = deg q(x)

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term. Let us take an example,  $3x^2 + 3x + 3$  is a polynomial to be divided by 3. So,  $3x^2 + 3x + 3 \div 3 = x^2 + x + 1 = q(x)$ Thus, you can see, the degree of quotient is equal to the degree of dividend. Hence, division algorithm is satisfied here.

(ii): deg q(x) = deg r(x)Let us take an example,  $p(x) = x^2 + x$  is a polynomial to be divided by g(x) = x. So,  $x^2 + x \div x = x = q(x)$ Also, remainder, r(x) = xThus, you can see, the degree of quotient is equal to the degree of remainder.

Hence, division algorithm is satisfied here.

### (iii): deg r(x) = 0

The degree of remainder is 0 only when the remainder left after division algorithm is constant.



Let us take an example,  $p(x)=x^2 + 1$  is a polynomial to be divided by g(x)=x. So,  $x^2 + 1 \div x = x = q(x)$ And r(x)=1Clearly, the degree of remainder here is 0.

Hence, division algorithm is satisfied here.





## Exercise 2.4

# Page: 36

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)  $2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$ 

Solutions: Given,  $p(x) = 2x^3 + x^2 - 5x + 2$ And zeroes for p(x) are  $= \frac{1}{2}$ , 1, -2  $\therefore p(1/2) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2 - 5(1/2) + 2 = \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2 = 0$ 

 $p(1)=2.1^3+1^2-5.1+2=0$ 

 $p(-2)=2(-2)^3+(-2)^2-5(-2)+2=0$ 

Hence, proved  $\frac{1}{2}$ , 1, -2 are the zeroes of  $2x^3 + x^2 - 5x + 2$ .

Now, comparing the given polynomial with general expression, we get;

 $\therefore ax^{3} + bx^{2} + cx + d = 2x^{3} + x^{2} - 5x + 2$ a=3, b=1, c= -5 and d = 2

As we know, if  $\alpha$ ,  $\beta$ ,  $\gamma$  are the zeroes of the cubic polynomial  $ax^3 + bx^2 + cx + d$ , then;

$$\alpha + \beta + \gamma = -b/a$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = c/a$ 

$$\alpha \beta \gamma = -d/a.$$

Therefore, putting the values of zeroes of the polynomial,

 $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = -\frac{b}{a}$ 

 $\alpha\beta + \beta\gamma + \gamma\alpha = (1/2 \times 1) + (1 \times -2) + (-2 \times 1/2) = -5/2 = c/a$ 

$$\alpha \beta \gamma = \frac{1}{2} \times 1 \times (-2) = -\frac{2}{2} = -\frac{d}{a}$$

Hence, the relationship between the zeroes and the coefficients are satisfied.

(ii)  $x^3 - 4x^2 + 5x + 2$ ; 2, 1, 1

**Solutions:** Given,  $p(x) = x^3 - 4x^2 + 5x + 2$ And zeroes for p(x) are 2, 1, 1.



 $\therefore$  p(2) = 2<sup>3</sup> - 4.2<sup>2</sup> + 5.2 + 2 = 0

 $p(1) = 1^3 - 4 \cdot 1^2 + 5 \cdot 1 + 2 = 0$ 

Hence proved, 2, 1, 1 are the zeroes of  $x^3 - 4x^2 + 5x + 2$ .

Now, comparing the given polynomial with general expression, we get;

 $\therefore ax^3 + bx^2 + cx + d = x^3 - 4x^2 + 5x + 2$ 

a=1, b = -4, c = 5 and d = 2

As we know, if  $\alpha$ ,  $\beta$ ,  $\gamma$  are the zeroes of the cubic polynomial  $ax^3 + bx^2 + cx + d$ , then;

$$\label{eq:alpha} \begin{split} &\alpha+\beta+\gamma=-b/a\\ &\alpha\beta+\beta\gamma+\gamma\alpha=c/a\\ &\alpha\;\beta\;\gamma=-d/a. \end{split}$$

Therefore, putting the values of zeroes of the polynomial,

$$\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -(-4)/1 = -b/a$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 2.1 + 1.1 + 1.2 = 5 = 5/1 = c/a$$

$$\alpha \beta \gamma = 2 \times 1 \times 1 = 2 = -(-2)/1 = -d/a$$

Hence, the relationship between the zeroes and the coefficients are satisfied.

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

**Solutions:** Let us consider the cubic polynomial is  $ax^3 + bx^2 + cx + d$  and the values of the zeroes of the polynomials be  $\alpha$ ,  $\beta$ ,  $\gamma$ .

As per the given question,

 $\alpha + \beta + \gamma = -b/a = 2/1$ 

 $\alpha\beta + \beta\gamma + \gamma\alpha = c/a = -7/1$ 

 $\alpha \beta \gamma = -d/a = -14/1$ 

Thus, from above three expressions we get the values of coefficient of polynomial. a = 1, b = -2, c = -7, d = 14

Hence, the cubic polynomial is  $x^3 - 2x^2 - 7x + 14$ .



### 3. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a – b, a, a + b, find a and b.

**Solutions:** We are given with the polynomial here,  $p(x) = x^3 - 3x^2 + x + 1$ 

And zeroes are given as a - b, a, a + b

Now, comparing the given polynomial with general expression, we get;

 $\therefore px^3 + qx^2 + rx + s = x^3 - 3x^2 + x + 1$ 

p = 1, q = -3, r = 1 and s = 1

Sum of zeroes = a - b + a + a + b

-q/p = 3a

Putting the values q and p.

$$-(-3)/1 = 3a$$

a=1

Thus, the zeroes are 1-b, 1, 1+b.

```
Now, product of zeroes = 1(1-b)(1+b)
```

 $-s/p=1-b^2$ 

- $-1/1 = 1 b^2$
- $b^2 = 1 + 1 = 2$

 $b=\sqrt{2}$ 

Hence,  $1 - \sqrt{2}$ , 1,  $1 + \sqrt{2}$  are the zeroes of  $x^3 - 3x^2 + x + 1$ .

4. If two zeroes of the polynomial  $x^4 - 6x^3 - 26x^2 + 138x - 35$  are  $2 \pm \sqrt{3}$ , find other zeroes. Solutions: Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

Let  $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ 

Since  $2 + \sqrt{3}$  and  $2 - \sqrt{3}$  are zeroes of given polynomial f(x).

 $\therefore [x-(2+\sqrt{3})] [x-2-\sqrt{3}] = 0$ 



## $(x-2-\sqrt{3})(x-2+\sqrt{3}) = 0$

On multiplying the above equation we get,

 $x^2 - 4x + 1$ , this is a factor of a given polynomial f(x).

Now, if we will divide f(x) by g(x), the quotient will also be a factor of f(x) and the remainder will be 0.

$$x^{2}-2x-35$$

$$x^{2}-4x+1$$

$$x^{4}-6x^{3}-26x^{2}+138x-35$$

$$x^{4}-4x^{3} + x^{2}$$
(·) (·) (·)
$$-2x^{3}-27x^{2}+138x-35$$

$$-2x^{3} + 8x^{2}-2x$$
(+) (·) (+)
$$-35x^{2}+140x-35$$

$$-35x^{2}+140x-35$$

$$(+) (·) (+)$$

$$0$$



So,  $x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$ 

Now, on further factorizing  $(x^2 - 2x - 35)$  we get,  $x^2 - (7-5)x - 35 = x^2 - 7x + 5x + 35 = 0$  x(x - 7) + 5 (x - 7) = 0 (x+5) (x-7) = 0So, its zeroes are given by: x = -5 and x = 7.

Therefore, all four zeroes of given polynomial equation are:  $2 + \sqrt{3}$ ,  $2 - \sqrt{3}$ , -5 and 7.