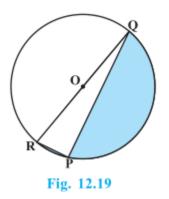


### Exercise: 12.3

(Page No: 234)

1. Find the area of the shaded region in Fig. 12.19, if PQ = 24 cm, PR = 7 cm and O is the centre of the circle.



### Solution:

Here, ∠P is in the semi-circle and so,

∠P = 90°

So, it can be concluded that QR is hypotenuse of the circle and is equal to the diameter of the circle.

 $\therefore$  QR = D

Using Pythagorean theorem,

 $QR^2 = PR^2 + PQ^2$ 

Or,  $QR^2 = 7^2 + 24^2$ 

=> QR = 25 cm = Diameter

Hence, the radius of the circle = 25/2 cm

Now, the area of the semicircle =  $(\pi R^2)/2$ 

 $= (22/7 \times 25/2 \times 25/2)/2 \text{ cm}^2$ 

= 13750/56 cm<sup>2</sup> = 245.54 cm<sup>2</sup>



Also, area of the  $\triangle PQR = \frac{1}{2} \times PR \times PQ$ 

 $= \frac{1}{2} \times 7 \times 24 \text{ cm}^2$ 

 $= 84 \text{ cm}^2$ 

Hence, the area of the shaded region =  $245.54 \text{ cm}^2 - 84 \text{ cm}^2$ 

 $= 161.54 \text{ cm}^2$ 

2. Find the area of the shaded region in Fig. 12.20, if radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and  $\angle AOC = 40^{\circ}$ .

Solution:

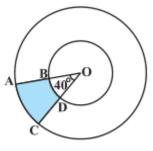


Fig. 12.20

Given,

Angle made by sector =  $40^\circ$ ,

Radius the inner circle = r = 7 cm, and

Radius of the outer circle = R = 14 cm

We know,

Area of the sector =  $(\theta/360^\circ) \times \pi r^2$ 

So, Area of OAC =  $(40^{\circ}/360^{\circ}) \times \pi r^2 cm^2$ 

 $= 68.44 \text{ cm}^2$ 



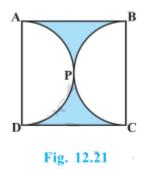
Area of the sector OBD =  $(40^{\circ}/360^{\circ}) \times \pi r^2 cm^2$ 

 $= 1/9 \times 22/7 \times 7^2 = 17.11 \text{ cm}^2$ 

Now, area of the shaded region ABDC = Area of OAC - Area of the OBD

 $= 68.44 \text{ cm}^2 - 17.11 \text{ cm}^2 = 51.33 \text{ cm}^2$ 

**3.** Find the area of the shaded region in Fig. 12.21, if ABCD is a square of side 14 cm and APD and BPC are semicircles.



#### Solution:

Side of the square ABCD (as given) = 14 cm

So, Area of ABCD =  $a^2$ 

 $= 14 \times 14 \text{ cm}^2 = 196 \text{ cm}^2$ 

We know that the side of the square = diameter of the circle = 14 cm

So, side of the square = diameter of the semicircle = 14 cm

 $\therefore$  Radius of the semicircle = 7 cm

Now, area of the semicircle =  $(\pi R^2)/2$ 

 $= (22/7 \times 7 \times 7)/2 \text{ cm}^2 =$ 



= 77 cm<sup>2</sup>

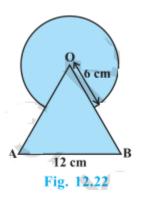
: Area of two semicircles =  $2 \times 77 \text{ cm}^2 = 154 \text{ cm}^2$ 

Hence, area of the shaded region = Area of the Square - Area of two semicircle

 $= 196 \text{ cm}^2 - 154 \text{ cm}^2$ 

 $= 42 \text{ cm}^2$ 

4. Find the area of the shaded region in Fig. 12.22, where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as centre.



#### Solution:

It is given that OAB is an equilateral triangle having each angle as 60°

Area of the sector is common in both.

Radius of the circle = 6 cm.

Side of the triangle = 12 cm.

Area of the equilateral triangle =  $\sqrt{3}/4 \times (OA)^2 = \sqrt{3}/4 \times 12^2 = 36\sqrt{3} \text{ cm}^2$ 

Area of the circle =  $\pi R^2 = 22/7 \times 6^2 = 792/7 \text{ cm}^2$ 

Area of the sector making angle  $60^\circ = (60^\circ/360^\circ) \times \pi r^2 cm^2$ 

 $= 1/6 \times 22/7 \times 6^2 \text{ cm}^2 = 132/7 \text{ cm}^2$ 



Area of the shaded region = Area of the equilateral triangle + Area of the circle - Area of the sector

= 36V3 cm<sup>2</sup> + 792/7 cm<sup>2</sup> - 132/7 cm<sup>2</sup>

 $= (36\sqrt{3} + 660/7) \text{ cm}^2$ 

5. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in Fig. 12.23. Find the area of the remaining portion of the square.

### Solution:

Side of the square = 4 cm

Radius of the circle = 1 cm

Four quadrant of a circle are cut from corner and one circle of radius are cut from middle.

Area of square =  $(side)^2 = 4^2 = 16 \text{ cm}^2$ 

Area of the quadrant =  $(\pi R^2)/4 \text{ cm}^2 = (22/7 \times 1^2)/4 = 11/14 \text{ cm}^2$ 

: Total area of the 4 quadrants =  $4 \times (11/14)$  cm<sup>2</sup> = 22/7 cm<sup>2</sup>

Area of the circle =  $\pi R^2 cm^2 = (22/7 \times 1^2) = 22/7 cm^2$ 

Area of the shaded region = Area of square - (Area of the 4 quadrants + Area of the circle)

= 
$$16 \text{ cm}^2$$
 - (22/7 + 22/7) cm<sup>2</sup>  
=  $68/7 \text{ cm}^2$ 

6. In a circular table cover of radius 32 cm, a design is formed leaving an equilateral triangle ABC in the middle as shown in Fig. 12.24. Find the area of the design.





Solution:

Radius of the circle = 32 cm

Draw a median AD of the triangle passing through the centre of the circle.

⇒BD = AB/2

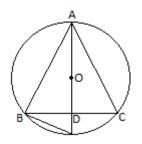
Since, AD is the median of the triangle

 $\therefore$  AO = Radius of the circle = 2/3 AD

⇒2/3 AD = 32 cm

⇒AD = 48 cm

In ∆ADB,



By Pythagoras theorem,

 $AB^2 = AD^2 + BD^2$ 

 $\Rightarrow AB^2 = 48^2 + (AB/2)^2$ 

 $\Rightarrow AB^2 = 2304 + AB^2/4$ 

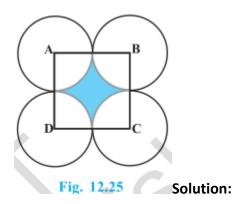


⇒3/4 (AB<sup>2</sup>) = 2304 ⇒AB<sup>2</sup> = 3072 ⇒AB = 32√3 cm Area of △ADB =  $\sqrt{3}/4 \times (32\sqrt{3})^2$  cm<sup>2</sup> = 768√3 cm<sup>2</sup> Area of circle =  $\pi$  R<sup>2</sup> = 22/7 × 32 × 32 = 22528/7 cm<sup>2</sup>

Area of the design = Area of circle - Area of  $\triangle ADB$ 

= (22528/7 - 768v3) cm<sup>2</sup>

7. In Fig. 12.25, ABCD is a square of side 14 cm. With centres A, B, C and D, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.



Side of square = 14 cm

Four quadrants are included in the four sides of the square.

 $\therefore$  Radius of the circles = 14/2 cm = 7 cm

Area of the square ABCD =  $14^2 = 196 \text{ cm}^2$ 

Area of the quadrant =  $(\pi R^2)/4 \text{ cm}^2 = (22/7 \times 7^2)/4 \text{ cm}^2$ 

 $= 77/2 \text{ cm}^2$ 



Total area of the quadrant =  $4 \times 77/2$  cm<sup>2</sup> = 154 cm<sup>2</sup>

Area of the shaded region = Area of the square ABCD - Area of the quadrant

 $= 196 \text{ cm}^2 - 154 \text{ cm}^2$ 

 $= 42 \text{ cm}^2$ 

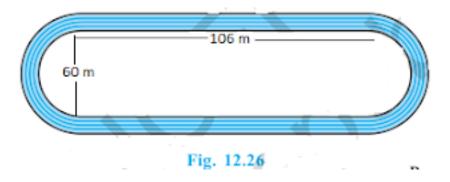
8. Fig. 12.26 depicts a racing track whose left and right ends are semicircular.

The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If

the track is 10 m wide, find :

(i) the distance around the track along its inner edge

(ii) the area of the track.



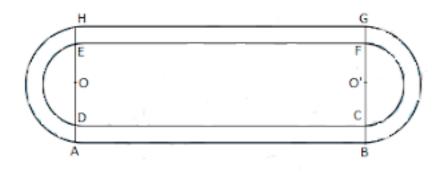
Solution:

Width of the track = 10 m

Distance between two parallel lines = 60 m

Length of parallel tracks = 106 m





DE = CF = 60 m

Radius of inner semicircle, r = OD = O'C

= 60/2 m = 30 m

Radius of outer semicircle, R = OA = O'B

Also, AB = CD = EF = GH = 106 m

Distance around the track along its inner edge =  $CD + EF + 2 \times (Circumference of inner semicircle)$ 

Area of the track = Area of ABCD + Area EFGH + 2 × (area of outer semicircle) - 2 × (area of inner semicircle)

= (AB × CD) + (EF × GH) + 2 × (
$$\pi r^2/2$$
) - 2 × ( $\pi R^2/2$ ) m<sup>2</sup>

=  $(106 \times 10) + (106 \times 10) + 2 \times \pi/2 (r^2 - R^2) m^2$ 

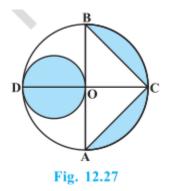
$$= 2120 + 22/7 \times 70 \times 10 \text{ m}^2$$

= 4320 m<sup>2</sup>



9. In Fig. 12.27, AB and CD are two diameters of a circle (with centre O) perpendicular to each other

and OD is the diameter of the smaller circle. If OA = 7 cm, find the area of the shaded region.



### Solution:

Radius of larger circle, R = 7 cm

Radius of smaller circle, r = 7/2 cm

Height of  $\Delta$ BCA = OC = 7 cm

Base of  $\triangle$ BCA = AB = 14 cm

Area of  $\triangle$ BCA = 1/2 × AB × OC = 1/2 × 7 × 14 = 49 cm<sup>2</sup>

Area of larger circle =  $\pi R^2 = 22/7 \times 7^2 = 154 \text{ cm}^2$ 

Area of larger semicircle = 154/2 cm<sup>2</sup> = 77 cm<sup>2</sup>

Area of smaller circle =  $\pi r^2$  = 22/7 × 7/2 × 7/2 = 77/2 cm<sup>2</sup>

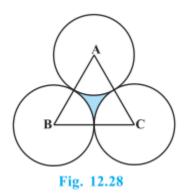
Area of the shaded region = Area of larger circle - Area of triangle - Area of larger semicircle + Area of smaller circle

Area of the shaded region = (154 - 49 - 77 + 77/2) cm<sup>2</sup>

$$= 133/2 \text{ cm}^2 = 66.5 \text{ cm}^2$$



10. The area of an equilateral triangle ABC is 17320.5 cm<sup>2</sup>. With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (see Fig. 12.28). Find the area of the shaded region. (Use  $\pi$  = 3.14 and  $\sqrt{3}$  = 1.73205)



### Solution:

ABC is an equilateral triangle.

 $\therefore \angle A = \angle B = \angle C = 60^{\circ}$ 

There are three sectors each making 60°.

Area of  $\triangle ABC = 17320.5 \text{ cm}^2$ 

⇒(side)<sup>2</sup> = 17320.5 × 4/1.73205

 $\Rightarrow$ (side)<sup>2</sup> = 4 × 10<sup>4</sup>

⇒side = 200 cm

Radius of the circles = 200/2 cm = 100 cm

Area of the sector =  $(60^{\circ}/360^{\circ}) \times \pi r^2 cm^2$ 

$$= 1/6 \times 3.14 \times (100)^2 \text{ cm}^2$$

= 15700/3 cm<sup>2</sup>

Area of 3 sectors =  $3 \times 15700/3 = 15700 \text{ cm}^2 =$ 



Area of the shaded region = Area of equilateral triangle ABC - Area of 3 sectors

=  $17320.5 - 15700 \text{ cm}^2 = 1620.5 \text{ cm}^2$ 

11. On a square handkerchief, nine circular designs each of radius 7 cm are made (see Fig. 12.29). Find the area of the remaining portion of the handkerchief.

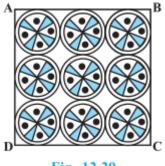


Fig. 12.29

### Solution:

Number of circular design = 9

Radius of the circular design = 7 cm

There are three circles in one side of square handkerchief.

: Side of the square =  $3 \times$  diameter of circle =  $3 \times 14 = 42$  cm

Area of the square =  $42 \times 42$  cm<sup>2</sup> = 1764 cm<sup>2</sup>

Area of the circle =  $\pi$  r<sup>2</sup> = 22/7 × 7 × 7 = 154 cm<sup>2</sup>

Total area of the design =  $9 \times 154 = 1386 \text{ cm}^2$ 

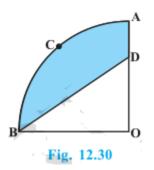
Area of the remaining portion of the handkerchief = Area of the square - Total area of the design



12. In Fig. 12.30, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the

(i) quadrant OACB,

(ii) shaded region.



### Solution:

Radius of the quadrant = 3.5 cm = 7/2 cm

(i) Area of quadrant OACB =  $(\pi R^2)/4$  cm<sup>2</sup>

$$= (22/7 \times 7/2 \times 7/2)/4 \text{ cm}^2$$

 $= 77/8 \text{ cm}^2$ 

(ii) Area of triangle BOD =  $1/2 \times 7/2 \times 2 \text{ cm}^2$ 

$$= 7/2 \text{ cm}^2$$

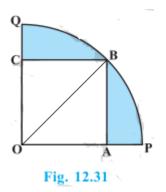
Area of shaded region = Area of quadrant - Area of triangle BOD

$$= (77/8 - 7/2) \text{ cm}^2 = 49/8 \text{ cm}^2$$

$$= 6.125 \text{ cm}^2$$

13. In Fig. 12.31, a square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area of the shaded region. (Use  $\pi$  = 3.14)





### Solution:

Side of square = OA = AB = 20 cm

Radius of the quadrant = OB

OAB is right angled triangle

By Pythagoras theorem in  $\triangle OAB$ ,

 $OB^2 = AB^2 + OA^2$ 

 $\Rightarrow OB^2 = 20^2 + 20^2$ 

⇒OB<sup>2</sup> = 400 + 400

⇒OB<sup>2</sup> = 800

⇒OB = 20√2 cm

Area of the quadrant =  $(\pi R^2)/4$  cm<sup>2</sup> =  $3.14/4 \times (20\sqrt{2})^2$  cm<sup>2</sup> = 628 cm<sup>2</sup>

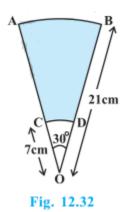
Area of the square =  $20 \times 20 = 400 \text{ cm}^2$ 

Area of the shaded region = Area of the quadrant - Area of the square

$$= 628 - 400 \text{ cm}^2 = 228 \text{ cm}^2$$

14. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O (see Fig. 12.32). If  $\angle AOB = 30^\circ$ , find the area of the shaded region.





Solution:

Radius of the larger circle, R = 21 cm

Radius of the smaller circle, r = 7 cm

Angle made by sectors of both concentric circles = 30°

Area of the larger sector =  $(30^{\circ}/360^{\circ}) \times \pi R^2 cm^2$ 

 $= 1/12 \times 22/7 \times 21^2 \text{ cm}^2$ 

 $= 231/2 \, \text{cm}^2$ 

Area of the smaller circle =  $(30^{\circ}/360^{\circ}) \times \pi r^2 cm^2$ 

$$= 1/12 \times 22/7 \times 7^2 \,\mathrm{cm}^2$$

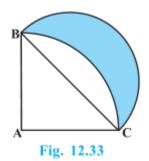
 $= 77/6 \, \text{cm}^2$ 

Area of the shaded region = 231/2 - 77/6 cm<sup>2</sup>

15. In Fig. 12.33, ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC

as diameter. Find the area of the shaded region.





Solution:

Radius of the the quadrant ABC of circle = 14 cm

AB = AC = 14 cm

BC is diameter of semicircle.

ABC is right angled triangle.

By Pythagoras theorem in ∆ABC,

 $\mathsf{B}\mathsf{C}^2 = \mathsf{A}\mathsf{B}^2 + \mathsf{A}\mathsf{C}^2$ 

 $\Rightarrow$ BC<sup>2</sup> = 14<sup>2</sup> + 14<sup>2</sup>

⇒BC = 14√2 cm

Radius of semicircle =  $14\sqrt{2}/2$  cm =  $7\sqrt{2}$  cm

Area of  $\triangle ABC = 1/2 \times 14 \times 14 = 98 \text{ cm}^2$ 

Area of quadrant =  $1/4 \times 22/7 \times 14 \times 14 = 154$  cm<sup>2</sup>

Area of the semicircle =  $1/2 \times 22/7 \times 7\sqrt{2} \times 7\sqrt{2} = 154 \text{ cm}^2$ 

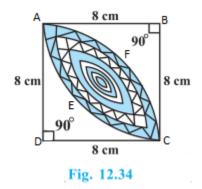
Area of the shaded region = Area of the semicircle + Area of  $\triangle ABC$  - Area of quadrant

$$= 154 + 98 - 154 \text{ cm}^2 = 98 \text{ cm}^2$$



16. Calculate the area of the designed region in Fig. 12.34 common between the two quadrants of circles of radius 8 cm each.

Solution:



AB = BC = CD = AD = 8 cm

Area of  $\triangle ABC$  = Area of  $\triangle ADC$  = 1/2 × 8 × 8 = 32 cm<sup>2</sup>

Area of quadrant AECB = Area of quadrant AFCD =  $1/4 \times 22/7 \times 8^2$ 

= 352/7 cm<sup>2</sup>

Area of shaded region = (Area of quadrant AECB - Area of  $\triangle$ ABC) = (Area of quadrant AFCD - Area of  $\triangle$ ADC)

= (352/7 - 32) + (352/7 - 32) cm<sup>2</sup>

= 2 × (352/7 - 32) cm<sup>2</sup>

 $= 256/7 \text{ cm}^2$