

NCERT Solutions For Class 10 Maths Chapter 10 - Circles

Exercise: 10.1

(Page No: 209)

1. How many tangents can a circle have?

Answer:

There can be **infinite** tangents to a circle. A circle is made up of infinite points which are in a equal distance from a point. Since there are infinite points on the circumference of a circle, infinite tangents can be drawn from them.

2. Fill in the blanks:

- (i) A tangent to a circle intersects it in point(s).
- (ii) A line intersecting a circle in two points is called a
- (iii) A circle can have parallel tangents at the most.
- (iv) The common point of a tangent to a circle and the circle is called

Answer:

- (i) A tangent to a circle intersects it in **one** point(s).
- (ii) A line intersecting a circle in two points is called a secant.
- (iii) A circle can have two parallel tangents at the most.
- (iv) The common point of a tangent to a circle and the circle is called the point of contact.

3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is :

- (A) 12 cm
- (B) 13 cm
- (C) 8.5 cm
- (D) √119 cm

Answer:

In the above figure, the line that is drawn from the centre of the given circle to the tangent PQ is perpendicular to PQ. And so, $OP \perp PQ$ Using Pythagorean theorem in triangle $\triangle OPQ$ we get, $OQ^2 = OP^2 + PQ^2$ $\Rightarrow (12)^2 = 5^2 + PQ^2$ $\Rightarrow PQ^2 = 144 - 25$ $\Rightarrow PQ^2 = 119$ $\Rightarrow PQ = \sqrt{119}$ cm So, **option D** i.e. $\sqrt{119}$ cm is the length of PQ.

4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

In the above figure, XY and AB are two the parallel lines. The line segment AB is the tangent at point C while the line segment XY is the secant.