

Exercise 6.4

Page: 143

1. Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

Solution: Given, $\triangle ABC \sim \triangle DEF$, Area of $\triangle ABC = 64 \text{ cm}^2$ Area of $\Delta DEF = 121 \text{ cm}^2$ EF = 15.4 cm

 $\therefore \frac{Area \ of \ \Delta ABC}{Area \ of \ \Delta DEF} = \frac{AB^2}{DE^2}$

As we know, if two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides,

 $= AC^2/DF^2 = BC^2/EF^2$

 $\therefore 64/121 = BC^2/EF^2$ $\Rightarrow (8/11)^2 = (BC/15.4)^2$ $\Rightarrow 8/11 = BC/15.4$ \Rightarrow BC = 8×15.4/11 \Rightarrow BC = 8 × 1.4 \Rightarrow BC = 11.2 cm

2. Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.

Solution: Given, ABCD is a trapezium with AB || DC. Diagonals AC and BD intersect each other at point O.

In $\triangle AOB$ and $\triangle COD$, we have

 $\angle 1 = \angle 2$ (Alternate angles)

 $\angle 3 = \angle 4$ (Alternate angles)

 $\angle 5 = \angle 6$ (Vertically opposite angle)

 $\therefore \Delta AOB \sim \Delta COD [AAA similarity criterion]$

As we know, If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides. Therefore,

Area of $(\Delta AOB)/Area of (\Delta COD) = AB^2/CD^2$ = $(2CD)^2/CD^2$ [$\therefore AB = CD$] $\therefore Area of (\Delta AOB)/Area of (\Delta COD)$ = $4CD^2/CD = 4/1$ Hence, the required ratio of the area of ΔAOB and $\Delta COD = 4:1$

3. In the figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that area (ΔABC)/area (ΔDBC) = AO/DO.

Solution: Given, ABC and DBC are two triangles on the same base BC. ADintersects BC at O.

We have to prove: Area (ΔABC)/Area (ΔDBC) = AO/DO

Let us draw two perpendiculars AP and DM on line BC.

We know that area of a triangle = $1/2 \times Base \times Height$

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DEF)} = \frac{\frac{1}{2}BC \times AP}{\frac{1}{2}BC \times DM} = \frac{AP}{DM}$$

In $\triangle APO$ and $\triangle DMO$, $\angle APO = \angle DMO$ (Each 90°) $\angle AOP = \angle DOM$ (Vertically opposite angles) $\therefore \triangle APO \sim \triangle DMO$ (AA similarity criterion)

NCERT Solutions Class 10 Maths Chapter 6 Triangles

 $\therefore AP/DM = AO/DO$ $\Rightarrow Area (\Delta ABC)/Area (\Delta DBC) = AO/DO.$

4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution: Say \triangle ABC and \triangle PQR are two similar triangles and equal in area

Now let us prove $\triangle ABC \cong \triangle PQR$.

Since, $\triangle ABC \sim \triangle PQR$ \therefore Area of $(\triangle ABC)/A$ rea of $(\triangle PQR) = BC^2/QR^2$ $\Rightarrow BC^2/QR^2 = 1$ [Since, Area $(\triangle ABC) = (\triangle PQR)$ $\Rightarrow BC^2/QR^2$ $\Rightarrow BC = QR$ Similarly, we can prove that AB = PQ and AC = PRThus, $\triangle ABC \cong \triangle PQR$ [SSS criterion of congruence]

5. D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the area of \triangle DEF and \triangle ABC.

Solution: Given, D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC.

In $\triangle ABC$,

F is the mid point of AB (Already given) E is the mid-point of AC (Already given) So, by the mid-point theorem, we have,

FE || BC and FE = 1/2BC \Rightarrow FE || BC and FE || BD [BD = 1/2BC] Since, opposite sides of parallelogram are equal and parallel \therefore BDEF is parallelogram.

Similarly in Δ FBD and Δ DEF, we have FB = DE (Opposite sides of parallelogram BDEF) FD = FD (Common sides) BD = FE (Opposite sides of parallelogram BDEF) $\therefore \Delta$ FBD $\cong \Delta$ DEF

Similarly, we can prove that $\triangle AFE \cong \triangle DEF$ $\triangle EDC \cong \triangle DEF$

As we know, if triangles are congruent, then they are equal in area. So, Area(Δ FBD) = Area(Δ DEF)(i) Area(Δ AFE) = Area(Δ DEF)(ii) and, Area(Δ EDC) = Area(Δ DEF)(iii) Now, Area(Δ ABC) = Area(Δ FBD) + Area(Δ DEF) + Area(Δ AFE) + Area(Δ EDC)(iv) Area(Δ ABC) = Area(Δ DEF) + Area(Δ DEF) + Area(Δ DEF) + Area(Δ DEF) From equation (i), (ii) and (iii), \Rightarrow Area(Δ DEF) = ½ Area(Δ ABC) \Rightarrow Area(Δ DEF) = ½ Area(Δ ABC) = 1/4

Hence, Area(ΔDEF):Area(ΔABC) = 1:4

6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Solution: Given: AM and DN are the medians of triangles ABC and DEF respectively and $\triangle ABC \sim \triangle DEF$.

We have to prove: Area(ΔABC)/Area(ΔDEF) = AM²/DN²

Since, $\triangle ABC \sim \triangle DEF$ (Given) $\therefore \text{Area}(\Delta ABC)/\text{Area}(\Delta DEF) = (AB^2/DE^2) \dots (i)$ and, AB/DE = BC/EF = CA/FD(ii) $\frac{AB}{DE} = \frac{\frac{1}{2}BC}{\frac{1}{2}EF} =$ FD In $\triangle ABM$ and $\triangle DEN$, Since $\triangle ABC \sim \triangle DEF$ $\therefore \angle B = \angle E$ AB/DE = BM/EN [Already Proved in equation (i)] $\therefore \Delta ABC \sim \Delta DEF$ [SAS similarity criterion] \Rightarrow AB/DE = AM/DN(iii) $\therefore \Delta ABM \sim \Delta DEN$ As the areas of two similar triangles are proportional to the squares of the corresponding sides. \therefore area($\triangle ABC$)/area($\triangle DEF$) = $AB^2/DE^2 = AM^2/DN^2$ Hence, proved.

7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution: Given, ABCD is a square whose one diagonal is AC. \triangle APC and \triangle BQC are two equilateral

triangles described on the diagonals AC and side BC of the square ABCD.

Area(Δ BQC) = $\frac{1}{2}$ Area(Δ APC)

Since, $\triangle APC$ and $\triangle BQC$ are both equilateral triangles, as per given, $\therefore \triangle APC \sim \triangle BQC$ [AAA similarity criterion] $\therefore \operatorname{area}(\triangle APC)/\operatorname{area}(\triangle BQC) = (AC^2/BC^2) = AC^2/BC^2$ Since, Diagonal = $\sqrt{2}$ Side = $\sqrt{2}$ BC

$$(\frac{\sqrt{2}BC}{BC})^2 = 2$$

 $\Rightarrow \operatorname{area}(\Delta APC) = 2 \times \operatorname{area}(\Delta BQC)$ $\Rightarrow \operatorname{area}(\Delta BQC) = 1/2\operatorname{area}(\Delta APC)$ Hence, proved.

Tick the correct answer and justify:

8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is

(A) 2 : 1 (B) 1 : 2

(C) **4 : 1**

(D) 1:4

Solution: Given, $\triangle ABC$ and $\triangle BDE$ are two equilateral triangle. D is the midpoint of BC.

∴ BD = DC = 1/2BC Let each side of triangle is 2*a*. As, \triangle ABC ~ \triangle BDE ∴ Area(\triangle ABC)/Area(\triangle BDE) = AB²/BD² = (2*a*)²/(*a*)² = 4*a*²/*a*² = 4/1 = 4:1 Hence, the correct answer is (C).

9. Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio (A) 2 : 3
(B) 4 : 9

(C) 81 : 16 (D) 16 : 81

Solution: Given, Sides of two similar triangles are in the ratio 4 : 9.

Let ABC and DEF are two similar triangles, such that,

 $\Delta ABC \sim \Delta DEF$

And AB/DE = AC/DF = BC/EF = 4/9

As, the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,

 $\therefore \text{Area}(\Delta \text{ABC})/\text{Area}(\Delta \text{DEF}) = \text{AB}^2/\text{DE}^2$

: Area(ΔABC)/Area(ΔDEF) = (4/9)² = 16/81 = 16:81

Hence, the correct answer is (D).