(b)

Exercise 3.2 Page: 44

1. Find x in the following figures.

Solution:

a)

$$125^{\circ} + m = 180^{\circ} \Rightarrow m = 180^{\circ} - 125^{\circ} = 55^{\circ}$$
 (Linear pair) $125^{\circ} + n = 180^{\circ} \Rightarrow n = 180^{\circ} - 125^{\circ} = 55^{\circ}$ (Linear pair)

$$125^{\circ} + n = 180^{\circ} \Rightarrow n = 180^{\circ} - 125^{\circ} = 55^{\circ}$$
 (Linear pair)

x = m + n (exterior angle of a triangle is equal to the sum of 2 opposite interior 2 angles)

$$\Rightarrow$$
 x = 55° + 55° = 110°

b)

Two interior angles are right angles = 90°

$$70^{\circ} + m = 180^{\circ} \Rightarrow m = 180^{\circ} - 70^{\circ} = 110^{\circ}$$
 (Linear pair)

$$60^{\circ} + m = 180^{\circ} \Rightarrow m = 180^{\circ} - 60^{\circ} = 120^{\circ}$$
 (Linear pair)

The figure is having five sides and is a pentagon.

Thus, sum of the angles of pentagon = 540°

$$90^{\circ} + 90^{\circ} + 110^{\circ} + 120^{\circ} + y = 540^{\circ}$$

$$\Rightarrow 410^{\circ} + y = 540^{\circ} \Rightarrow y = 540^{\circ} - 410^{\circ} = 130^{\circ}$$

$$x + y = 180^{\circ}$$
 (Linear pair)

NCERT Solution For Class 8 Maths Chapter 3- Understanding Quadrilaterals

$$\Rightarrow x + 130^{\circ} = 180^{\circ}$$
$$\Rightarrow x = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

2. Find the measure of each exterior angle of a regular polygon of

(i) 9 sides (ii) 15 sides

Solution:

Sum of angles a regular polygon having side $n = (n-2) \times 180^{\circ}$

(i) Sum of angles a regular polygon having side
$$9 = (9-2) \times 180^{\circ}$$

$$= 7 \times 180^{\circ} = 1260^{\circ}$$

Each interior angle =
$$\frac{1260}{9}$$
 = 140°

Each exterior angle =
$$180^{\circ}$$
 - 140° = 40°

Or,

Each exterior angle =
$$\frac{\text{Sum of exterior angles}}{\text{Number of sides}} = \frac{360}{9} = 40^{\circ}$$

(ii) Sum of angles a regular polygon having side
$$15 = (15-2) \times 180^{\circ}$$

$$= 13 \times 180^{\circ} = 2340^{\circ}$$

Each interior angle =
$$\frac{2340}{15}$$
 = 156°
Each exterior angle = 180° - 156° = 24°

Each exterior angle =
$$180^{\circ}$$
 - 156° = 24°

Each exterior angle =
$$\frac{\text{Sum of exterior angles}}{\text{Number of sides}} = \frac{360}{15} = 24^{\circ}$$

3. How many sides does a regular polygon have if the measure of an exterior angle is 24°? Solution:

Each exterior angle
$$\frac{\text{Sum of exterior angles}}{\text{Number of sides}}$$

$$24^{\circ} = \frac{360}{\text{Number of sides}}$$

$$\Rightarrow \text{Number of sides} = \frac{360}{24} = 15$$

$$\Rightarrow \text{Number of sides} = \frac{360}{} = 15$$

Thus, the regular polygon have 15 sides.

4. How many sides does a regular polygon have if each of its interior angles is 165°? Solution:

Interior angle =
$$165^{\circ}$$

Exterior angle =
$$180^{\circ} - 165^{\circ} = 15^{\circ}$$

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{exterior angles}}$$

$$\Rightarrow \text{Number of sides} = \frac{360}{15} = 24$$

Thus, the regular polygon have 24 sides.

NCERT Solution For Class 8 Maths Chapter 3- Understanding Quadrilaterals

5.

- a) Is it possible to have a regular polygon with measure of each exterior angle as 22°?
- b) Can it be an interior angle of a regular polygon? Why?

Solution:

a) Exterior angle = 22°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{exterior angles}}$$

$$\Rightarrow \text{Number of sides} = \frac{\frac{360}{22}}{16.36} = 16.36$$

No, we can't have a regular polygon with each exterior angle as 22° as it is not divisor of 360.

b) Interior angle = 22°

Exterior angle = 180° - 22° = 158°

No, we can't have a regular polygon with each exterior angle as 158° as it is not divisor of 360.

6.

- a) What is the minimum interior angle possible for a regular polygon? Why?
- b) What is the maximum exterior angle possible for a regular polygon? Solution:
 - a) Equilateral triangle is regular polygon with 3 sides has the least possible minimum interior angle because the regular with minimum sides can be constructed with 3 sides at least.. Since, sum of interior angles of a triangle = 180°

Each interior angle =
$$\frac{180}{3}$$
 = 60°

b) Equilateral triangle is regular polygon with 3 sides has the maximum exterior angle because the regular polygon with least number of sides have the maximum exterior angle possible. Maximum exterior possible = $180 - 60^{\circ} = 120^{\circ}$