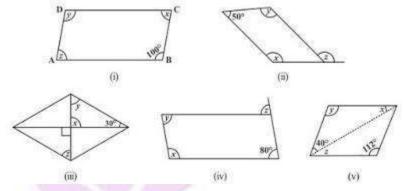
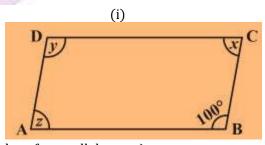


Exercise 3.3


Page: 50

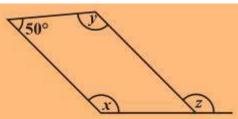

- (i) AD =
- (ii) $\angle DCB =$
- (iii) 0C =
- (iv) $m \angle DAB + m \angle CDA =$

Solution:

- (i) AD = BC (Opposite sides of a parallelogram are equal)
- (ii) $\angle DCB = \angle DAB$ (Opposite angles of a parallelogram are equal)
- (iii) OC = OA (Diagonals of a parallelogram are equal)
- (iv) m \angle DAB + m \angle CDA = 180°
- Consider the following parallelograms. Find the values of the unknowns x, y, z.

Solution:

 $y = 100^{\circ}$ (opposite angles of a parallelogram)

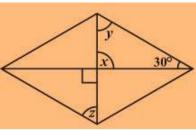

 $x + 100^{\circ} = 180^{\circ}$ (Adjacent angles of a parallelogram)

 \Rightarrow x = 180° - 100° = 80°

 $x = z = 80^{\circ}$ (opposite angles of a parallelogram)

 \therefore , $x = 80^{\circ}$, $y = 100^{\circ}$ and $z = 80^{\circ}$

(ii)



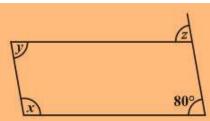
 $50^{\circ} + x = 180^{\circ} \Rightarrow x = 180^{\circ} - 50^{\circ} = 130^{\circ}$ (Adjacent angles of a parallelogram)

 $x = y = 130^{\circ}$ (opposite angles of a parallelogram)

 $x = z = 130^{\circ}$ (corresponding angle)

(iii)

 $x = 90^{\circ}$ (vertical opposite angles)

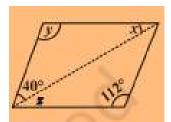

 $x + y + 30^{\circ} = 180^{\circ}$ (angle sum property of a triangle)

 \Rightarrow 90° + y + 30° = 180°

 \Rightarrow y = 180° - 120° = 60°

also, $y = z = 60^{\circ}$ (alternate angles)

(iv)


 $z = 80^{\circ}$ (corresponding angle)

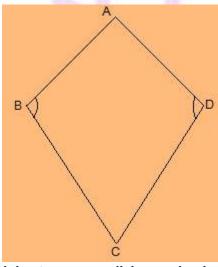
 $z = y = 80^{\circ}$ (alternate angles)

 $x + y = 180^{\circ}$ (adjacent angles)

 \Rightarrow x + 80° = 180° \Rightarrow x = 180° - 80° = 100°

(v)

 $x = 28^{\circ}$


$$y = 112^{\circ}$$

 $z = 28^{\circ}$

- 3. Can a quadrilateral ABCD be a parallelogram if
 - (i) $\angle D + \angle B = 180^{\circ}$?
 - (ii) AB = DC = 8 cm, AD = 4 cm and BC = 4.4 cm?
 - (iii) $\angle A = 70^{\circ} \text{ and } \angle C = 65^{\circ}$?

Solution:

- (i) Yes, a quadrilateral ABCD be a parallelogram if $\angle D + \angle B = 180^{\circ}$ but it should also fulfilled some conditions which are:
 - The sum of the adjacent angles should be 180°.
 - Opposite angles must be equal.
- (ii) No, opposite sides should be of same length. Here, AD \neq BC
- (iii) No, opposite angles should be of same measures. $\angle A \neq \angle C$
- 4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Solution:

ABCD is a figure of quadrilateral that is not a parallelogram but has exactly two opposite angles that is $\angle B = \angle D$ of equal measure. It is not a parallelogram because $\angle A \neq \angle C$.

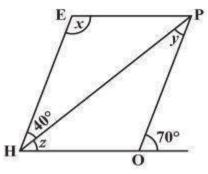
5. The measures of two adjacent angles of a parallelogram are in the ratio 3 : 2. Find the measure of each of the angles of the parallelogram.

Solution:

Let the measures of two adjacent angles $\angle A$ and $\angle B$ be 3x and 2x respectively in parallelogram ABCD.

$$\angle A + \angle B = 180^{\circ}$$

$$\Rightarrow$$
 3x + 2x = 180°


⇒
$$5x = 180^{\circ}$$

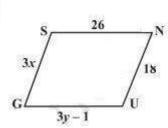
⇒ $x = 36^{\circ}$
We know that opposite sides of a parallelogram are equal.
 $\angle A = \angle C = 3x = 3 \times 36^{\circ} = 108^{\circ}$
 $\angle B = \angle D = 2x = 2 \times 36^{\circ} = 72^{\circ}$

6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Solution:

Let ABCD be a parallelogram. Sum of adjacent angles of a parallelogram =
$$180^{\circ}$$
 $\angle A + \angle B = 180^{\circ}$ $\Rightarrow 2\angle A = 180^{\circ}$ $\Rightarrow \angle A = 90^{\circ}$ also, $90^{\circ} + \angle B = 180^{\circ}$ $\Rightarrow \angle B = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $\angle A = \angle C = 90^{\circ}$ $\angle B = \angle D = 90^{\circ}$

7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.



Solution:

$$y = 40^{\circ}$$
 (alternate interior angle)
 $\angle P = 70^{\circ}$ (alternate interior angle)
 $\angle P = \angle H = 70^{\circ}$ (opposite angles of a parallelogram)
 $z = \angle H - 40^{\circ} = 70^{\circ} - 40^{\circ} = 30^{\circ}$
 $\angle H + x = 180^{\circ}$
 $\Rightarrow 70^{\circ} + x = 180^{\circ}$
 $\Rightarrow x = 180^{\circ} - 70^{\circ} = 110^{\circ}$

8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm)

(i)

(ii) S 20 x³ N

Solution:

i)
$$SG = NU$$
 and $SN = GU$ (opposite sides of a parallelogram are equal) $3x = 18$

$$\Rightarrow x = \frac{18}{3} = 6$$

$$3y - 1 = 26 \text{ and},$$

$$\Rightarrow 3y = 26 + 1$$

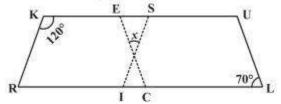
$$\Rightarrow y = \frac{27}{3} = 9$$

$$x = 6 \text{ and } y = 9$$

ii)
$$20 = y + 7 \text{ and } 16 = x + y \text{ (diagonals of a parallelogram bisect each other)}$$

$$y + 7 = 20$$

$$\Rightarrow y = 20 - 7 = 13 \text{ and,}$$

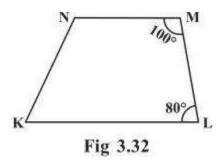

$$x + y = 16$$

$$\Rightarrow x + 13 = 16$$

$$\Rightarrow x = 16 - 13 = 3$$

$$x = 3 \text{ and } y = 13$$

9. In the above figure both RISK and CLUE are parallelograms. Find the value of x.

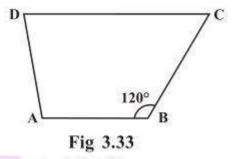


Solution:

$$\angle K + \angle R = 180^\circ$$
 (adjacent angles of a parallelogram are supplementary)
 $\Rightarrow 120^\circ + \angle R = 180^\circ$
 $\Rightarrow \angle R = 180^\circ - 120^\circ = 60^\circ$
also, $\angle R = \angle SIL$ (corresponding angles)
 $\Rightarrow \angle SIL = 60^\circ$
also, $\angle ECR = \angle L = 70^\circ$ (corresponding angles)
 $x + 60^\circ + 70^\circ = 180^\circ$ (angle sum of a triangle)
 $\Rightarrow x + 130^\circ = 180^\circ$
 $\Rightarrow x = 180^\circ - 130^\circ = 50^\circ$

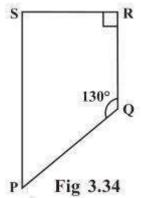
10. Explain how this figure is a trapezium. Which of its two sides are parallel? (Fig 3.32)

Solution:


When a transversal line intersects two lines in such a way that the sum of the adjacent angles on the same side of transversal is 180° then the lines are parallel to each other.

Here,
$$\angle M + \angle L = 100^{\circ} + 80^{\circ} = 180^{\circ}$$

Thus, MN || LK


As the quadrilateral KLMN has one pair of parallel line therefore it is a trapezium. MN and LK are parallel lines.

11. Find m∠C in Fig 3.33 if AB || DC?

Solution:

12. Find the measure of $\angle P$ and $\angle S$ if $SP \mid\mid RQ$? in Fig 3.34. (If you find $m \angle R$, is there more than one method to find $m \angle P$?)

Solution:


```
\angle P + \angle Q = 180^\circ (angles on the same side of transversal)

\Rightarrow \angle P + 130^\circ = 180^\circ

\Rightarrow \angle P = 180^\circ - 130^\circ = 50^\circ

also, \angle R + \angle S = 180^\circ (angles on the same side of transversal)

\Rightarrow 90^\circ + \angle S = 180^\circ

\Rightarrow \angle S = 180^\circ - 90^\circ = 90^\circ

Thus, \angle P = 50^\circ and \angle S = 90^\circ
```

Yes, there are more than one method to find m \angle P. PQRS is a quadrilateral. Sum of measures of all angles is 360°. Since, we know the measurement of \angle Q, \angle R and \angle S. \angle Q = 130°, \angle R = 90° and \angle S = 90° \angle P + 130° + 90° + 90° = 360° \Rightarrow \angle P + 310° = 360° \Rightarrow \angle P = 360° - 310° = 50°