

Exercise 7.1

1. Which of the following numbers are not perfect cubes?

(i) 216

Solution:

By resolving 216 into prime factor,

2	216
2	108
2	54
3	27
3	9
3	3
	1

 $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$ By grouping the factors in triplets of equal factors, $216 = (2 \times 2 \times 2) \times (3 \times 3 \times 3)$ Here, 216 can be grouped into triplets of equal factors, $\therefore 216 = (2 \times 3) = 6$

Hence, 216 is cube of 6.

(ii) 128 Solution:

By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Page: 114

 $\begin{aligned} &128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\ & \text{By grouping the factors in triplets of equal factors,} \\ &128 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2 \\ & \text{Here, } 128 \text{ cannot be grouped into triplets of equal factors, we are left of with one} \\ & \text{factors } 2 \,. \\ & \therefore 128 \text{ is not a perfect cube.} \end{aligned}$

(iii) 1000

Solution:

By resolving 1000 into prime factor,

2	1000	
2	500	
2	250	
5	125	
5	25	
5	5	
	1	

 $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$ By grouping the factors in triplets of equal factors, $1000 = (2 \times 2 \times 2) \times (5 \times 5 \times 5)$ Here, 1000 can be grouped into triplets of equal factors, $\therefore 1000 = (2 \times 5) = 10$ Hence, 1000 is cube of 10.

(iv) 100

Solution:

By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

 $100 = 2 \times 2 \times 5 \times 5$

Here, 100 cannot be grouped into triplets of equal factors.

https://byjus.com

 \therefore 100 is not a perfect cube.

(v) 46656 Solution:

By resolving 46656 into prime factor,

	1
3	3
3	9
3	27
3	81
3	243
3	729
2	1458
2	2916
2	58 <mark>3</mark> 2
2	11664
2	23328
2	46656

- 2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.
 - (i) 243

Solution:

By resolving 243 into prime factor,

3	243
3	81
3	27
3	9
3	3
	1

 $243 = 3 \times 3 \times 3 \times 3$ By grouping the factors in triplets of equal factors, $243 = (3 \times 3 \times 3) \times 3 \times 3$ Here, 3 cannot be grouped into triplets of equal factors. \therefore We will multiply 243 by 3 to get perfect square.

(ii) 256

Solution:

By resolving 256 into prime factor,

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $256 = 2 \times 2$

By grouping the factors in triplets of equal factors, $256 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2 \times 2$ Here, 2 cannot be grouped into triplets of equal factors. \therefore We will multiply 256 by 2 to get perfect square.

(iii) 72

https://byjus.com

Solution:

By resolving 72 into prime factor,

2	72
2	36
2	18
3	9
3	3
	1

 $72 = 2 \times 2 \times 2 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $72 = (2 \times 2 \times 2) \times 3 \times 3$ Here, 3 cannot be grouped into triplets of equal factors. \therefore We will multiply 72 by 3 to get perfect square.

(iv) 675 Solution:

By resolving 675 into prime factor,

3	675	
3	225	
3	75	
5	25	
5	5	
	1	

 $675 = 3 \times 3 \times 3 \times 5 \times 5$ By grouping the factors in triplets of equal factors, $675 = (3 \times 3 \times 3) \times 5 \times 5$ Here, 5 cannot be grouped into triplets of equal factors. \therefore We will multiply 675 by 5 to get perfect square.

(v) 100

Solution:

By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

 $100 = 2 \times 2 \times 5 \times 5$ Here, 2 and 5 cannot be grouped into triplets of equal factors. \therefore We will multiply 100 by (2×5) 10 to get perfect square.

3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81

Solution:

By resolving 81	into prime	factor,
-----------------	------------	---------

3	81	
3	27	
3	9	
3	3	
	1	
1 0	0.0	

 $81 = 3 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $81 = (3 \times 3 \times 3) \times 3$ Here, 3 cannot be grouped into triplets of equal factors. \therefore We will divide 81 by 3 to get perfect square.

(ii) 128

Solution:

By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ By grouping the factors in triplets of equal factors, $128 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2$ Here, 2 cannot be grouped into triplets of equal factors. \therefore We will divide 128 by 2 to get perfect square.

(iii) 135

Solution:

By resolving 135 into prime factor,

3	135	
3	45	
3	15	
5	5	
	1	

 $135 = 3 \times 3 \times 3 \times 5$

By grouping the factors in triplets of equal factors, $135 = (3 \times 3 \times 3) \times 5$ Here, 5 cannot be grouped into triplets of equal factors. \therefore We will divide 135 by 5 to get perfect square.

(iv) 192

Solution:

By resolving 192 into prime factor,

2	192	
2	96	
2	48	
2	24	
2	12	
2	6	
3	3	
	1	

 $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

By grouping the factors in triplets of equal factors, $192 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 3$ Here, 3 cannot be grouped into triplets of equal factors.

∴ We will divide 192 by 3 to get perfect square.

(v) 704

Solution:

1			
2	704		
2	352		
2	176	- S. /	
2	88		
2	44	1	
2	22	-	
11	11	_	
,	1	-	

By resolving 704 into prime factor,

 $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

By grouping the factors in triplets of equal factors, $704 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 11$ Here, 11 cannot be grouped into triplets of equal factors. \therefore We will divide 704 by 11 to get perfect square.

4. Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube? Solution:

> Given, side of cube is 5 cm, 2 cm and 5 cm. \therefore Volume of cube = $5 \times 2 \times 5 = 50$

2	50	
5	25	
5	5	
	1	

 $50 = 2 \times 5 \times 5$

Here, 2, 5 and 5 cannot be grouped into triplets of equal factors. \therefore We will multiply 50 by (2×2×5) 20 to get perfect square. Hence, 20 cuboid is needed.

