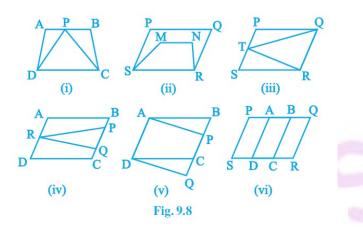


Exercise 9.1

Page: 155

1. Which of the following figures lie on the same base and in-between the same parallels. In such a case, write the common base and the two parallels.



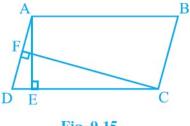
Solution:

- (i) Trapezium ABCD and \triangle PDC lie on the same DC and in-between the same parallel lines AB and DC.
- (ii) Parallelogram PQRS and trapezium SMNR lie on the same base SR but not in-between the same parallel lines.
- (iii) Parallelogram PQRS and Δ RTQ lie on the same base QR and in-between the same parallel lines QR and PS.
- (iv) Parallelogram ABCD and \triangle PQR do not lie on the same base but in-between the same parallel lines BC and AD.
- (v) Quadrilateral ABQD and trapezium APCD lie on the same base AD and in-between the same parallel lines AD and BQ.
- (vi) Parallelogram PQRS and parallelogram ABCD do not lie on the same base SR but in-between the same parallel lines SR and PQ.

Exercise 9.2

Page: 159

1. In Fig. 9.15, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.



Solution:

Given,

AB = CD = 16 cm (Opposite sides of a parallelogram) CF = 10 cm and AE = 8 cmNow, Area of parallelogram = Base × Altitude

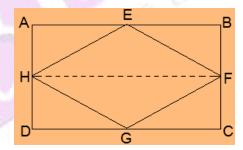
$$= CD \times AE = AD \times CF$$

$$\Rightarrow 16 \times 8 = AD \times 10$$

$$\Rightarrow AD = \frac{128}{10} cm$$

$$\Rightarrow AD = 12.8 cm$$

 If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that ar (EFGH) = 1/2 ar(ABCD). Solution:



Given,

E, F, G and H are the mid-points of the sides of a parallelogram ABCD, respectively. To Prove,

ar (EFGH) = $\frac{1}{2}$ ar(ABCD)

Construction,

H and F are joined.

Proof,

AD || BC and AD = BC (Opposite sides of a parallelogram) $\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$ Also, AH || BF and and DH || CF $\Rightarrow AH = BF$ and DH = CF (H and F are mid points)

Exercise 9.2

∴, ABFH and HFCD are parallelograms.

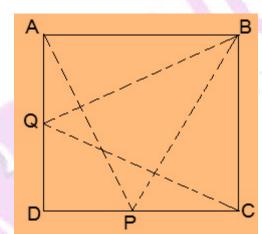
Now,

We know that , ΔEFH and parallelogram ABFH, both lie on the same FH the common base and in-between the same parallel lines AB and HF.

 $\therefore \text{ area of EFH} = \frac{1}{2} \text{ area of ABFH} --- (i)$ And, area of GHF = $\frac{1}{2}$ area of HFCD --- (ii) Adding (i) and (ii), area of \triangle EFH + area of \triangle GHF = $\frac{1}{2}$ area of ABFH + $\frac{1}{2}$ area of HFCD \Rightarrow area of EFGH = area of ABFH \Rightarrow ar (EFGH) = $\frac{1}{2}$ ar(ABCD)

3. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar(APB) = ar(BQC).

Solution:



 Δ APB and parallelogram ABCD lie on the same base AB and in-between same parallel AB and DC. \therefore ,

 $ar(\Delta APB) = \frac{1}{2}ar(parallelogram ABCD) --- (i)$

Similarly, ar(Δ BQC) = $\frac{1}{2}$ ar(parallelogram ABCD) --- (ii)

From (i) and (ii),

we have $ar(\Delta APB) = ar(\Delta BQC)$

4. In Fig. 9.16, P is a point in the interior of a parallelogram ABCD. Show that

(i)
$$ar(APB) + ar(PCD) = \frac{1}{2}ar(ABCD)$$

(ii) (ii) ar(APD) + ar(PBC) = ar(APB) + ar(PCD) [Hint : Through P, draw a line parallel to AB.]

Exercise 9.2

Page: 159

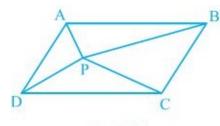
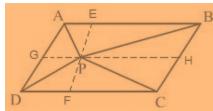


Fig. 9.16

Solution:



(i) A line GH is drawn parallel to AB passing through P. In a parallelogram,

AB || GH (by construction) --- (i)

:,

```
AD \parallel BC \Rightarrow AG \parallel BH --- (ii)
```

From equations (i) and (ii),

ABHG is a parallelogram.

Now,

 Δ APB and parallelogram ABHG are lying on the same base AB and in-between the same parallel lines AB and GH.

$$\therefore \operatorname{ar}(\Delta APB) = \frac{1}{2} \operatorname{ar}(ABHG) --- (iii)$$

also,

 Δ PCD and parallelogram CDGH are lying on the same base CD and in-between the same parallel lines CD and GH.

$$\therefore$$
 ar($\triangle PCD$) = $\frac{1}{2}$ ar(CDGH) --- (iv)

Adding equations (iii) and (iv),

ar(
$$\triangle APB$$
) + ar($\triangle PCD$) = $\frac{1}{2}$ {ar(ABHG) + ar(CDGH)}
 \Rightarrow ar(APB) + ar(PCD) = $\frac{1}{2}$ ar(ABCD)

(ii) A line EF is drawn parallel to AD passing through P.

In the parallelogram,

```
AD \parallel EF (by construction) --- (i)
```

..,

```
AB \parallel CD \Rightarrow AE \parallel DF --- (ii)
From equations (i) and (ii),
AEDF is a parallelogram.
Now,
```


Exercise 9.2

Page: 159

 ΔAPD and parallelogram AEFD are lying on the same base AD and in-between the same parallel lines AD and EF.

$$\therefore \operatorname{ar}(\Delta APD) = \frac{1}{2}\operatorname{ar}(AEFD) \dots (iii)$$

also,

 ΔPBC and parallelogram BCFE are lying on the same base BC and in-between the same parallel lines BC and EF.

$$\therefore \operatorname{ar}(\Delta PBC) = \frac{1}{2} \operatorname{ar}(BCFE) \dots (iv)$$

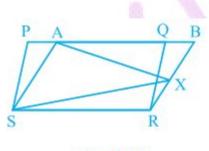
Adding equations (iii) and (iv),

$$ar(\Delta APD) + ar(\Delta PBC) = \frac{1}{2} \{ar(AEFD) + ar(BCFE)\}$$

$$\Rightarrow ar(APD) + ar(PBC) = ar(APB) + ar(PCD)$$

5. In Fig. 9.17, PQRS and ABRS are parallelograms and X is any point on side BR. Show that ar (PQRS) = ar (ABRS)

 $ar (AXS) = \frac{1}{2} ar (PQRS)$



Solution:

- (i) Parallelogram PQRS and ABRS lie on the same base SR and in-between the same parallel lines SR and PB.
 ∴ ar(PQRS) = ar(ABRS) --- (i)
- (ii) $\triangle AXS$ and parallelogram ABRS are lying on the same base AS and in-between the same parallel lines AS and BR.

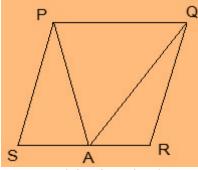
 $\therefore \operatorname{ar}(\Delta AXS) = \frac{1}{2} \operatorname{ar}(ABRS) \dots (ii)$ From (i) and (ii), we find that, $\operatorname{ar}(\Delta AXS) = \frac{1}{2} \operatorname{ar}(PQRS)$

6. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?

Solution:

Exercise 9.2

Page: 160



The field is divided into three parts each in triangular shape. Let, Δ PSA, Δ PAQ and Δ QAR be the triangles.

Area of $\Delta PSA + \Delta PAQ + \Delta QAR =$ Area of PQRS --- (i)

Area of $\triangle PAQ = \frac{1}{2}$ area of PQRS --- (ii)

Here, the triangle and parallelogram are on the same base and in-between the same parallel lines. From (i) and (ii),

Area of $\triangle PSA$ + Area of $\triangle QAR = \frac{1}{2}$ area of PQRS ---- (iii)

From (ii) and (iii), we can conclude that,

The farmer must sow wheat or pulses in ΔPAQ or either in both ΔPSA and ΔQAR .

Exercise 9.3

Page: 162

1. In Fig.9.23, E is any point on median AD of a \triangle ABC. Show that ar (ABE) = ar(ACE).

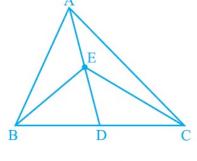


Fig. 9.23

Solution:

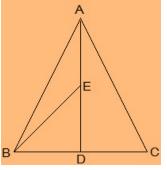
Given,

AD is median of $\triangle ABC$. \therefore , it will divide $\triangle ABC$ into two triangles of equal area. \therefore ar(ABD) = ar(ACD) --- (i)

also,

ED is the median of $\triangle ABC$. \therefore ar(EBD) = ar(ECD) --- (ii) Subtracting (ii) from (i), ar(ABD) - ar(EBD) = ar(ACD) - ar(ECD) \Rightarrow ar(ABE) = ar(ACE)

2. In a triangle ABC, E is the mid-point of median AD. Show that ar(BED) = 1/4 ar(ABC). Solution:



 $ar(BED) = (\frac{1}{2}) \times BD \times DE$

Since, E is the mid-point of AD, AE = DESince, AD is the median on side BC of triangle ABC, BD = DC \therefore , $DE = (\frac{1}{2})AD --- (i)$ $BD = (\frac{1}{2})BC --- (ii)$

Exercise 9.3

Page: 162

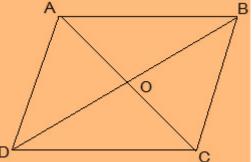
From (i) and (ii), we get,

$$ar(BED) = (\frac{1}{2}) \times (\frac{1}{2}) BC \times (1/2)AD$$

$$\Rightarrow ar(BED) = (\frac{1}{2}) \times (\frac{1}{2}) ar(ABC)$$

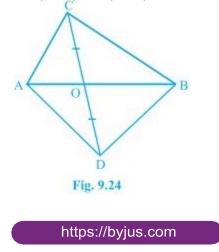
$$\Rightarrow ar(BED) = \frac{1}{4} ar(ABC)$$

3. Show that the diagonals of a parallelogram divide it into four triangles of equal area. Solution:



O is the mid point of AC and BD. (diagonals of bisect each other)
In ΔABC, BO is the median.
∴ ar(AOB) = ar(BOC) --- (i)
also,
In ΔBCD, CO is the median.
∴ ar(BOC) = ar(COD) --- (ii)
In ΔACD, OD is the median.
∴ ar(AOD) = ar(COD) --- (iii)
In ΔABD, AO is the median.
∴ ar(AOD) = ar(AOB) --- (iv)
From equations (i), (ii), (iii) and (iv), we get, ar(BOC) = ar(COD) = ar(AOD) = ar(AOB)
Hence, we get, the diagonals of a parallelogram divide it into four triangles of equal area.

4. In Fig. 9.24, ABC and ABD are two triangles on the same base AB. If line- segment CD is bisected by AB at O, show that: ar(ABC) = ar(ABD).



Exercise 9.3

Page: 162

Solution:

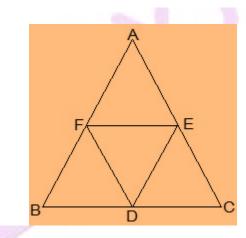
In $\triangle ABC$, AO is the median. (CD is bisected by AB at O) \therefore ar(AOC) = ar(AOD) --- (i) also, $\triangle BCD, BO$ is the median. (CD is bisected by AB at O) \therefore ar(BOC) = ar(BOD) --- (ii) Adding (i) and (ii), We get, ar(AOC) + ar(BOC) = ar(AOD) + ar(BOD) \Rightarrow ar(ABC) = ar(ABD)

- 5. D, E and F are respectively the mid-points of the sides BC, CA and AB of a ΔABC. Show that
 - (i) **BDEF** is a parallelogram.

(ii)
$$\operatorname{ar}(\operatorname{DEF}) = \frac{1}{4} \operatorname{ar}(\operatorname{ABC})$$

(iii) $\operatorname{ar}(\operatorname{BDEF}) = \frac{1}{2} \operatorname{ar}(\operatorname{ABC})$

Solution:



(i) In $\triangle ABC$,

EF || BC and EF = $\frac{1}{2}$ BC (by mid point theorem)

also,

$$BD = \frac{1}{2}BC (D \text{ is the mid point})$$

So, BD = EF

also,

BF and DE are parallel and equal to each other.

∴, the pair opposite sides are equal in length and parallel to each other. ∴ BDEF is a parallelogram.

Exercise 9.3

Page: 163

- (ii) Proceeding from the result of (i), BDEF, DCEF, AFDE are parallelograms. Diagonal of a parallelogram divides it into two triangles of equal area. \therefore ar(Δ BFD) = ar(Δ DEF) (For parallelogram BDEF) --- (i) also, ar(Δ AFE) = ar(Δ DEF) (For parallelogram DCEF) --- (ii) ar(Δ CDE) = ar(Δ DEF) (For parallelogram AFDE) --- (iii) From (i), (ii) and (iii) ar(Δ BFD) = ar(Δ AFE) = ar(Δ CDE) = ar(Δ DEF) \Rightarrow ar(Δ BFD) + ar(Δ AFE) + ar(Δ CDE) + ar(Δ DEF) = arar(Δ ABC) \Rightarrow 4 ar(Δ DEF) = ar(Δ ABC) \Rightarrow ar(DEF) = $\frac{1}{4}$ ar(ABC)
- (iii) Area (parallelogram BDEF) = $ar(\Delta DEF) + ar(\Delta BDE)$ $\Rightarrow ar(parallelogram BDEF) = ar(\Delta DEF) + ar(\Delta DEF)$ $\Rightarrow ar(parallelogram BDEF) = 2 \times ar(\Delta DEF)$ $\Rightarrow ar(parallelogram BDEF) = 2 \times \frac{1}{4} ar(\Delta ABC)$ $\Rightarrow ar(parallelogram BDEF) = \frac{1}{2} ar(\Delta ABC)$
- 6. In Fig. 9.25, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:
 - (i) ar(DOC) = ar(AOB)
 - (ii) ar (DCB) = ar (ACB)
 - (iii) DA || CB or ABCD is a parallelogram. [Hint : From D and B, draw perpendiculars to AC.]

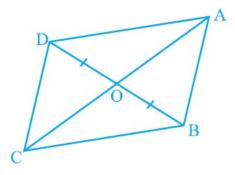
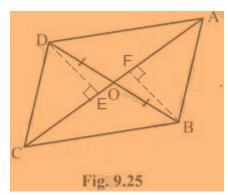


Fig. 9.25

Solution:

Exercise 9.3

Page: 163



Given,

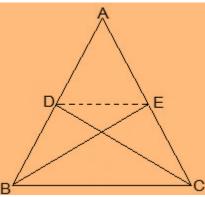
OB = OD and AB = CDConstruction, $DE \perp AC$ and $BF \perp AC$ are drawn. Proof: i. In $\triangle DOE$ and $\triangle BOF$, $\angle DEO = \angle BFO$ (Perpendiculars) $\angle DOE = \angle BOF$ (Vertically opposite angles) OD = OB (Given) \therefore , $\triangle DOE \cong \triangle BOF$ by AAS congruence condition. \therefore , DE = BF (By CPCT) --- (i) also, $ar(\Delta DOE) = ar(\Delta BOF)$ (Congruent triangles) --- (ii) Now, In $\triangle DEC$ and $\triangle BFA$, $\angle DEC = \angle BFA$ (Perpendiculars) CD = AB (Given) DE = BF (From i) \therefore , $\triangle DEC \cong \triangle BFA$ by RHS congruence condition. \therefore , ar(ΔDEC) = ar(ΔBFA) (Congruent triangles) --- (iii) Adding (ii) and (iii), $ar(\Delta DOE) + ar(\Delta DEC) = ar(\Delta BOF) + ar(\Delta BFA)$ \Rightarrow ar (DOC) = ar (AOB) ii. $ar(\Delta DOC) = ar(\Delta AOB)$ Adding $ar(\Delta OCB)$ in LHS and RHS, we get, \Rightarrow ar(Δ DOC)+ar(Δ OCB)=ar(Δ AOB)+ar(Δ OCB) $\Rightarrow ar(\Delta DCB) = ar(\Delta ACB)$ iii. When two triangles have same base and equal areas, the triangles will be in between the same parallel lines $ar(\Delta DCB) = ar(\Delta ACB)$ DA || BC --- (iv) For quadrilateral ABCD, one pair of opposite sides are equal (AB = CD) and other pair of opposite sides are parallel. \therefore , ABCD is parallelogram.

Exercise 9.3

Page: 163

 D and E are points on sides AB and AC respectively of ΔABC such that ar(DBC) = ar(EBC). Prove that DE || BC.

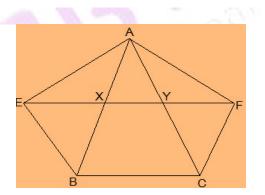
Solution:



ΔDBC and ΔEBC are on the same base BC and also having equal areas.
∴, they will lie between the same parallel lines.
∴, DE || BC.

 XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that ar(ΔABE) = ar(ΔAC)

Solution:



Given,

 $XY \parallel BC, BE \parallel AC and CF \parallel AB$

To show,

 $ar(\Delta ABE) = ar(\Delta AC)$

Proof:

BCYE is a $\|$ gm as ΔABE and $\|gm$ BCYE are on the same base BE and between the same parallel lines BE and AC.

$$\therefore, \operatorname{ar}(ABE) = \frac{1}{2}\operatorname{ar}(BCYE) \dots (1)$$

Now,

 $CF \parallel AB \text{ and } XY \parallel BC$ $\Rightarrow CF \parallel AB \text{ and } XF \parallel BC$ $\Rightarrow BCFX \text{ is a } \parallel gm$

As $\triangle ACF$ and \parallel gm BCFX are on the same base CF and in-between the same parallel AB and FC .

Exercise 9.3

$$\therefore, \operatorname{ar} (\Delta \operatorname{ACF}) = \frac{1}{2} \operatorname{ar} (\operatorname{BCFX}) \dots (2)$$

But,

||gm BCFX and || gm BCYE are on the same base BC and between the same parallels BC and EF. ∴, ar (BCFX) = ar(BCYE) ... (3)

From (1), (2) and (3), we get

 $ar (\Delta ABE) = ar (\Delta ACF)$

 \Rightarrow ar(BEYC) = ar(BXFC)

As the parallelograms are on the same base BC and in-between the same parallels EF and BC--(iii) Also,

 $\triangle AEB$ and ||gm BEYC are on the same base BE and in-between the same parallels BE and AC.

$$\Rightarrow \operatorname{ar}(\triangle AEB) = \frac{1}{2}\operatorname{ar}(BEYC) --- (iv)$$

Similarly,

 \triangle ACF and || gm BXFC on the same base CF and between the same parallels CF and AB.

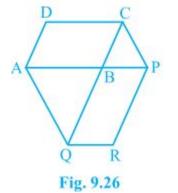
$$\Rightarrow \operatorname{ar}(\triangle \operatorname{ACF}) = \frac{1}{2}\operatorname{ar}(\operatorname{BXFC}) \dots (v)$$

From (iii), (iv) and (v),

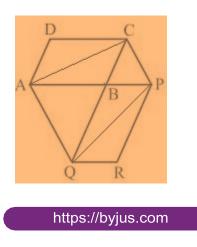
- $ar(\triangle AEB) = ar(\triangle ACF)$
- 9. The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see Fig. 9.26). Show that

$$ar(ABCD) = ar(PBQR)$$

[Hint : Join AC and PQ. Now compare ar(ACQ) and ar(APQ).]



Solution:



Page: 163

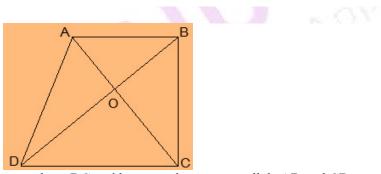
Page: 163

Exercise 9.3

AC and PQ are joined. ar($\triangle ACQ$) = ar($\triangle APQ$) (On the same base AQ and between the same parallel lines AQ and CP) \Rightarrow ar($\triangle ACQ$) - ar($\triangle ABQ$) = ar($\triangle APQ$) - ar($\triangle ABQ$) \Rightarrow ar($\triangle ABC$) = ar($\triangle QBP$) --- (i) AC and QP are diagonals ABCD and PBQR. \therefore ,ar(ABC) = $\frac{1}{2}$ ar(ABCD) --- (ii) ar(QBP) = $\frac{1}{2}$ ar(PBQR) --- (iii) From (ii) and (ii), $\frac{1}{2}$ ar(ABCD) = $\frac{1}{2}$ ar(PBQR) \Rightarrow ar(ABCD) = ar(PBQR)

10. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Prove that ar (AOD) = ar (BOC).

Solution:



 $\Delta DAC \text{ and } \Delta DBC \text{ lie on the same base } DC \text{ and between the same parallels } AB \text{ and } CD.$ $ar(\Delta DAC) = ar(\Delta DBC)$ $\Rightarrow ar(\Delta DAC) - ar(\Delta DOC) = ar(\Delta DBC) - ar(\Delta DOC)$ $\Rightarrow ar(\Delta AOD) = ar(\Delta BOC)$

- 11. In Fig. 9.27, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that
 - (i) $ar(\triangle ACB) = ar(\triangle ACF)$ (ii) $ar(\triangle FDE) = ar(\triangle PCDE)$
 - (ii) ar(AEDF) = ar(ABCDE)

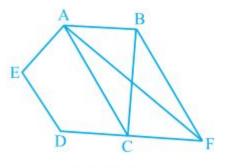


Fig. 9.27

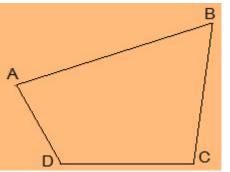
Solution:

Exercise 9.3

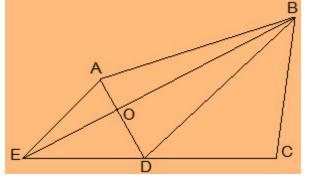
Page: 163

- (i) $\triangle ACB$ and $\triangle ACF$ lie on the same base AC and between the same parallels AC and BF. $\therefore ar(\triangle ACB) = ar(\triangle ACF)$
- (ii) $ar(\triangle ACB) = ar(\triangle ACF)$ $\Rightarrow ar(\triangle ACB) + ar(\triangle ACDE) = ar(\triangle ACF) + ar(\triangle ACDE)$ $\Rightarrow ar(ABCDE) = ar(\triangle AEDF)$
- 12. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Solution:



Let ABCD be the plot of the land of the shape of a quadrilateral.



To Construct,

Join the diagonal BD.
Draw AE parallel to BD.
Join BE, that intersected AD at O.
We get,
△BCE is the shape of the original field
△AOB is the area for constructing health centre.
△DEO is the land joined to the plot.

To prove:

Page: 164

Exercise 9.3

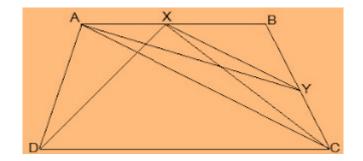
 $ar(\triangle DEO) = ar(\triangle AOB)$

Proof:

 $\begin{array}{l} \triangle \text{DEB} \text{ and } \triangle \text{DAB} \text{ lie on the same base BD, in-between the same parallels BD and AE.} \\ & ar(\triangle \text{DEB}) = ar(\triangle \text{DAB}) \\ \Rightarrow & ar(\triangle \text{DEB}) - ar\triangle \text{DOB}) = ar(\triangle \text{DAB}) - ar(\triangle \text{DOB}) \\ \Rightarrow & ar(\triangle \text{DEO}) = ar(\triangle \text{AOB}) \end{array}$

13. ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (△ADX) = ar (△ACY).
[Hint : Join CX.]

Solution:



Given,

```
ABCD is a trapezium with AB || DC.

XY || AC

Construction,

Join CX

To Prove,

ar(ADX) = ar(ACY)

Proof:

ar(\triangle ADX) = ar(\triangle AXC) --- (i) (Since they are on the same base AX and in-between the

same parallels AB and CD)

also,

ar(\triangle AXC)=ar(\triangle ACY) --- (ii) (Since they are on the same base AC and in-between the

same parallels XY and AC.)

(i) and (ii),

ar(\triangle ADX)=ar(\triangle ACY)
```

14. In Fig.9.28, AP \parallel BQ \parallel CR. Prove that ar(\triangle AQC) = ar(\triangle PBR).

Exercise 9.3

Page: 164

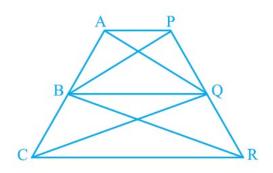


Fig. 9.28

Solution:

Given,

AP || BQ || CR

To Prove,

ar(AQC) = ar(PBR)

Proof:

 $ar(\triangle AQB) = ar(\triangle PBQ) --- (i)$ (Since they are on the same base BQ and between the same parallels AP and BQ.)

also,

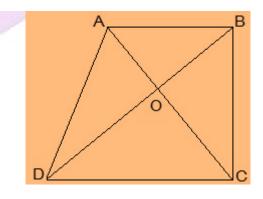
 $ar(\triangle BQC) = ar(\triangle BQR) --- (ii)$ (Since they are on the same base BQ and between the same parallels BQ and CR.)

Adding (i) and (ii),

 $ar(\triangle AQB) + ar(\triangle BQC) = ar(\triangle PBQ) + ar(\triangle BQR)$ $\Rightarrow ar(\triangle AQC) = ar(\triangle PBR)$

15. Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that $ar(\Delta AOD) = ar(\Delta BOC)$. Prove that ABCD is a trapezium.

Solution:



Given,

 $ar(\triangle AOD) = ar(\triangle BOC)$ To Prove, ABCD is a trapezium.

Page: 164

Exercise 9.3

Proof:

- $\begin{array}{l} \operatorname{ar}(\triangle \operatorname{AOD}) = \operatorname{ar}(\triangle \operatorname{BOC}) \\ \Rightarrow & \operatorname{ar}(\triangle \operatorname{AOD}) + \operatorname{ar}(\triangle \operatorname{AOB}) = \operatorname{ar}(\triangle \operatorname{BOC}) + \operatorname{ar}(\triangle \operatorname{AOB}) \\ \Rightarrow & \operatorname{ar}(\triangle \operatorname{ADB}) = \operatorname{ar}(\triangle \operatorname{ACB}) \\ \operatorname{Areas} \text{ of } \triangle \operatorname{ADB} \text{ and } \triangle \operatorname{ACB} \text{ are equal. } \therefore, \text{ they must lying between the same parallel lines.} \\ & \therefore, \operatorname{AB} \parallel \operatorname{CD} \\ & \therefore, \operatorname{ABCD} \text{ is a trapezium.} \end{array}$
- 16. In Fig.9.29, ar(DRC) = ar(DPC) and ar(BDP) = ar(ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums.

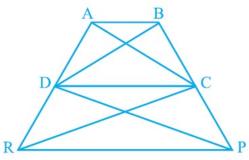


Fig. 9.29

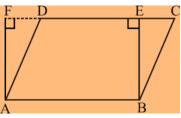
Solution:

```
Given,
          ar(\triangle DRC) = ar(\triangle DPC)
          ar(\triangle BDP) = ar(\triangle ARC)
To Prove,
          ABCD and DCPR are trapeziums.
Proof:
                     ar(\triangle BDP) = ar(\triangle ARC)
          \Rightarrow ar(\triangleBDP) - ar(\triangleDPC) = ar(\triangleDRC)
                            ar(\triangle BDC) = ar(\triangle ADC)
          ⇒
                           ar(\triangle BDC) = ar(\triangle ADC).
          \therefore, ar(\triangleBDC) and ar(\triangleADC) are lying in-between the same parallel lines.
                     ∴, AB ∥ CD
                      ABCD is a trapezium.
          Similarly,
                     ar(\triangle DRC) = ar(\triangle DPC).
          \therefore, ar(\triangleDRC) and ar(\triangleDPC) are lying in-between the same parallel lines.
                     ∴, DC ∥ PR
                     \therefore, DCPR is a trapezium.
```


Exercise 9.4(Optional)*

Page: 164

1. Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle. Solution:



Given,

 \parallel gm ABCD and a rectangle ABEF have the same base AB and equal areas. To prove,

Perimeter of || gm ABCD is greater than the perimeter of rectangle ABEF.

Proof,

We know that, the opposite sides of all gm and rectangle are equal.

 $\therefore, AB = DC \quad [As ABCD is a \parallel gm]$ and, $AB = EF \quad [As ABEF is a rectangle]$ $\therefore, DC = EF \qquad \dots (i)$ Adding AB on both sides, we get, $\Rightarrow AB + DC = AB + EF \qquad \dots (ii)$ pow that the perpendicular segment is the shortest of

We know that, the perpendicular segment is the shortest of all the segments that can be drawn to a given line from a point not lying on it.

∴, BE < BC and AF < AD
⇒ BC > BE and AD > AF
⇒ BC + AD > BE + AF ... (iii)
Adding (ii) and (iii), we get
AB + DC + BC + AD > AB + EF + BE + AF
⇒ AB + BC + CD + DA > AB + BE + EF + FA
⇒ perimeter of || gm ABCD > perimeter of rectangle ABEF.
∴, the perimeter of the parallelogram is greater than that of the rectangle.

Hence Proved.

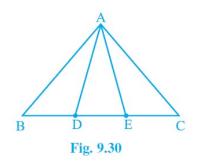
2. In Fig. 9.30, D and E are two points on BC such that BD = DE = EC.

Show that ar (ABD) = ar (ADE) = ar (AEC). Can you now answer the question that you have left in the 'Introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

[<u>Remark:</u> Note that by taking BD = DE = EC, the triangle ABC is divided into three triangles ABD, ADE and AEC of equal areas. In the same way, by dividing BC into *n* equal parts and joining the points of division so obtained to the opposite vertex of BC, you can divide DABC into *n* triangles of equal areas.]


```
Exercise 9.4(Optional)*
```

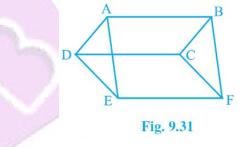
Page: 164



Solution:

```
Given,
         BD = DE = EC
To prove,
         ar (\triangle ABD) = ar (\triangle ADE) = ar (\triangle AEC)
Proof,
         In (\triangle ABE), AD is median
                                             [since, BD = DE, given]
         We know that, the median of a triangle divides it into two parts of equal areas
         \therefore, ar(\triangle ABD) = ar(\triangle AED)
                                             ---(i)
         Similarly,
         In (\triangleADC), AE is median
                                             [since, DE= EC, given]
                ar(ADE) = ar(AEC)
                                             ---(ii)
         ..,
         From the equation (i) and (ii), we get
                  ar(ABD) = ar(ADE) = ar(AEC)
```

3. In Fig. 9.31, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).



Solution:

Given,

ABCD, DCFE and ABFE are parallelograms

To prove,

```
ar (\triangle ADE) = ar (\triangle BCF)
```

Proof,

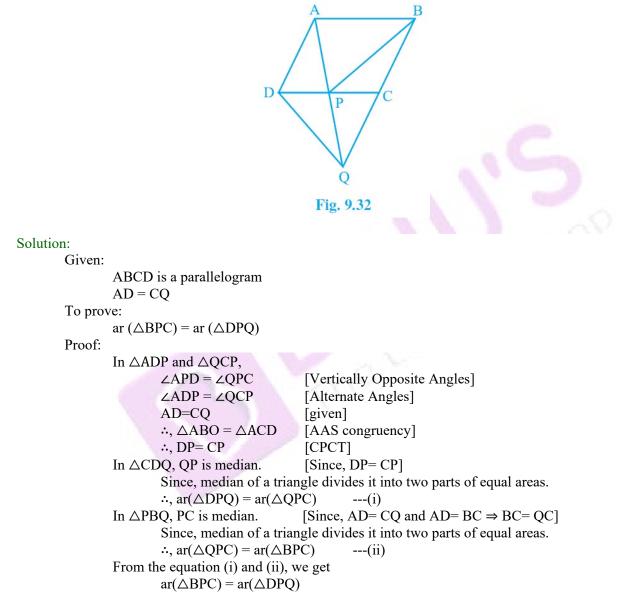
In \triangle ADE and \triangle BCF,

```
AD=BC[Since, they are the opposite sides of the parallelogram ABCD]DE= CF[Since, they are the opposite sides of the parallelogram DCFE]AE= BF[Since, they are the opposite sides of the parallelogram ABFE]\therefore, \triangle ADE = \triangle BCF[Using SSS Congruence theorem]\therefore, ar(\triangle ADE) = ar(\triangle BCF)[By CPCT]
```


Exercise 9.4(Optional)*

Page: 165

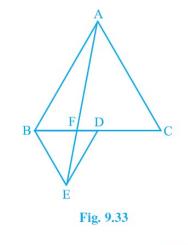
4. In Fig. 9.32, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that ar (BPC) = ar (DPQ). [Hint : Join AC.]



5. In Fig.9.33, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that:

Exercise 9.4(Optional)*

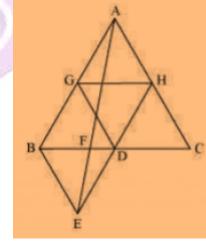
Page: 165



(i) ar (BDE) =
$$\frac{1}{4}$$
 ar (ABC)
(ii) ar (BDE) = $\frac{1}{2}$ ar (BAE)
(iii) ar (ABC) = 2 ar (BEC)
(iv) ar (BFE) = 2 ar (AFD)
(v) ar (BFE) = 2 ar (FED)
(vi) ar (FED) = $\frac{1}{8}$ ar (AFC)

Solution:

 (i) Assume that G and H are the mid-points of the sides AB and AC respectively. Join the mid-points with line-segment GH. Here, GH is parallel to third side.
 ∴, BC will be half of the length of BC by mid-point theorem.



 $\therefore GH = \frac{1}{2} BC \text{ and } GH \parallel BD$ $\therefore GH = BD = DC \text{ and } GH \parallel BD \text{ (Since, D is the mid-point of BC)}$ Similarly, GD = HC = HAHD = AG = BG

Exercise 9.4(Optional)*

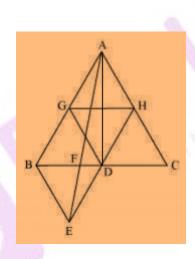
Page: 165

 \therefore , $\triangle ABC$ is divided into 4 equal equilateral triangles $\triangle BGD$, $\triangle AGH$, $\triangle DHC$ and $\triangle GHD$ We can say that,

 $\Delta BGD = \frac{1}{4} \Delta ABC$ Considering, \triangle BDG and \triangle BDE BD = BD (Common base) Since both triangles are equilateral triangle, we can say that, BG = BEDG = DE \therefore , \triangle BDG $\cong \triangle$ BDE [By SSS congruency] \therefore , area (\triangle BDG) = area (\triangle BDE) ar (Δ BDE) = $\frac{1}{4}$ ar (Δ ABC)

Hence proved

(ii)



```
ar(\Delta BDE) = ar(\Delta AED) (Common base DE and DE||AB)
ar(\Delta BDE) - ar(\Delta FED) = ar(\Delta AED) - ar(\Delta FED)
ar(\Delta BEF) = ar(\Delta AFD) ...(i)
Now,
ar(\Delta ABD) = ar(\Delta ABF) + ar(\Delta AFD)
ar(\Delta ABD) = ar(\Delta ABF) + ar(\Delta BEF)
                                                    [From equation (i)]
ar(\Delta ABD) = ar(\Delta ABE) \dots (ii)
          AD is the median of \triangle ABC.
ar(\Delta ABD) = \frac{1}{2} ar (\Delta ABC)
                 4
              =\frac{1}{2} ar (\DeltaBDE)
              = 2 \text{ ar} (\Delta BDE) \dots (iii)
From (ii) and (iii), we obtain
             2 ar (\DeltaBDE) = ar (\DeltaABE)
                  ar (BDE) = \frac{1}{2} ar (BAE)
          Hence proved
```


Exercise 9.4(Optional)*

Page: 165

(iii) $ar(\Delta ABE) = ar(\Delta BEC)$ [Common base BE and BE||AC] $ar(\Delta ABF) + ar(\Delta BEF) = ar(\Delta BEC)$ From eqⁿ (i), we get, $ar(\Delta ABF) + ar(\Delta AFD) = ar(\Delta BEC)$ $ar(\Delta ABD) = ar(\Delta BEC)$ $\frac{1}{2}ar(\Delta ABC) = ar(\Delta BEC)$ $ar(\Delta ABC) = 2 ar(\Delta BEC)$ Hence proved

(iv) ΔBDE and ΔAED lie on the same base (DE) and are in-between the parallel lines DE and AB.
∴ ar (ΔBDE) = ar (ΔAED)
Subtracting ar(ΔFED) from L.H.S and R.H.S,
We get,
i ar (ΔBDE) = ar (ΔEED) = ar (ΔAED) = ar (ΔEED)

 $\therefore \text{ ar } (\Delta \text{BDE}) - \text{ ar } (\Delta \text{FED}) = \text{ ar } (\Delta \text{AED}) - \text{ ar } (\Delta \text{FED})$ $\therefore \text{ ar } (\Delta \text{BFE}) = \text{ ar } (\Delta \text{AFD})$ Hence proved

 (v) Assume that h is the height of vertex E, corresponding to the side BD in ΔBDE. Also assume that H is the height of vertex A, corresponding to the side BC in ΔABC. While solving Question (i), We saw that,

```
ar (\Delta BDE) = \frac{1}{4}ar (\Delta ABC)
While solving Question (iv),
We saw that,
ar (\Delta BFE) = ar (\Delta AFD).
\therefore ar (\Delta BFE) = ar (\Delta AFD)
```

```
= 2 \text{ ar } (\Delta \text{FED})
Hence, ar (\Delta \text{BFE}) = 2 ar (\Delta \text{FED})
Hence proved
```

(vi) ar
$$(\Delta AFC)$$
 = ar (ΔAFD) + ar (ΔADC)
= 2 ar (ΔFED) + $\frac{1}{2}$ ar (ΔABC) [using (v)
= 2 ar (ΔFED) + $\frac{1}{2}$ [4ar (ΔBDE)] [Using result of Question (i)]
= 2 ar (ΔFED) + 2 ar (ΔBDE)
Since, ΔBDE and ΔAED are on the same base and between same parallels
= 2 ar (ΔFED) + 2 ar (ΔAED)
= 2 ar (ΔFED) + 2 [ar (ΔAFD) + ar (ΔFED)]
= 2 ar (ΔFED) + 2 ar (ΔAFD) + ar (ΔFED)]
= 4 ar (ΔFED) + 4 ar (ΔFED)
 \Rightarrow ar (ΔAFC) = 8 ar (ΔFED)
 \Rightarrow ar (ΔFED) = $\frac{1}{8}$ ar (ΔAFC)
Hence proved

Exercise 9.4(Optional)*

Page: 166

6. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC). [Hint : From A and C, draw perpendiculars to BD.]

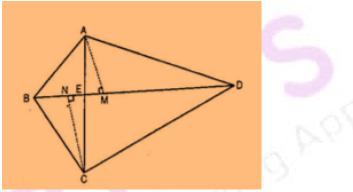
Solution:

Given:

The diagonal AC and BD of the quadrilateral ABCD, intersect each other at point E.

Construction:

From A, draw AM perpendicular to BD From C, draw CN perpendicular to BD



To Prove,

 $ar(\Delta AED) \times ar(\Delta BEC) = ar(\Delta ABE) \times ar(\Delta CDE)$

Proof,

ar($\triangle ABE$) = $\frac{1}{2} \times BE \times AM$ i ar($\triangle AED$) = $\frac{1}{2} \times DE \times AM$ ii Dividing eq. ii by i, we get,

Similarly, $\frac{ar(\Delta CDE)}{ar(\Delta BEC)} = \frac{DE}{BE} \dots iv$ From eq. iii and iv, we get $\frac{ar(\Delta AED)}{ar(\Delta ABE)} = \frac{ar(\Delta CDE)}{ar(\Delta BEC)}$ $\therefore, ar(\Delta AED) \times ar(\Delta BEC) = ar(\Delta ABE) \times ar(\Delta CDE)$ Hence proved.

Exercise 9.4(Optional)*

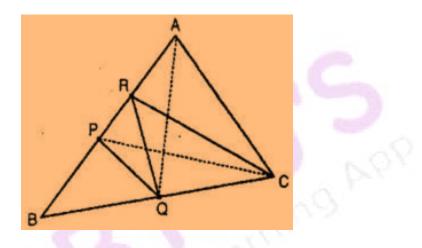
Page: 166

- 7. P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that:
 - (i) ar (PRQ) = $\frac{1}{2}$ ar (ARC) (ii) ar (RQC) = $\frac{3}{8}$ ar (ABC)

 - (iii) ar (PBQ) = ar (ARC)

Solution:

(i)



We know that, median divides the triangle into two triangles of equal area, PC is the median of ABC. ar $(\Delta BPC) = ar (\Delta APC) \dots (i)$ RC is the median of APC. ar $(\Delta ARC) = \frac{1}{2} \operatorname{ar} (\Delta APC) \dots (ii)$ PQ is the median of BPC. ar $(\Delta PQC) = \frac{1}{2} \operatorname{ar} (\Delta BPC) \dots (iii)$ From eq. (i) and (iii), we get, ar $(\Delta PQC) = \frac{1}{2}$ ar (ΔAPC) (iv) From eq. (ii) and (iv), we get, ar $(\Delta PQC) = ar (\Delta ARC) \dots (v)$ P and Q are the mid-points of AB and BC respectively [given] ∴PQ||AC $PA = \frac{1}{2}AC$ and, Since, triangles between same parallel are equal in area, we get, ar $(\Delta APQ) = ar (\Delta PQC) \dots (vi)$ From eq. (v) and (vi), we obtain, ar $(\Delta APQ) = ar (\Delta ARC) \dots (vii)$ R is the mid-point of AP. \therefore , RQ is the median of APQ.

Exercise 9.4(Optional)*

Page: 166

ar $(\Delta PRQ) = \frac{1}{2} \operatorname{ar} (\Delta APQ) \dots (viii)$ From (vii) and (viii), we get, ar $(\Delta PRQ) = \frac{1}{2} \operatorname{ar} (\Delta ARC)$ Hence Proved.

(ii) PQ is the median of BPC ar (ΔPQC) = $\frac{1}{2}$ ar (ΔBPC) Also, ar $(\Delta PRC) = \frac{1}{2}$ ar (ΔAPC) [From (iv)] ar $(\Delta PRC) = \frac{1}{2} \times \frac{1}{2}$ ar (ABC) $=\frac{1}{4}$ ar (ABC)(x) Add eq. (ix) and (x), we get, ar (ΔPQC) + ar $(\Delta PRC) = \frac{1}{4} \times \frac{1}{4}$ ar (ΔABC) ar (quad. PQCR) = $\frac{1}{4}$ ar ($\triangle ABC$)(xi) Subtracting ar (Δ PRQ) from L.H.S and R.H.S. ar (quad. PQCR) – ar (Δ PRQ) = $\frac{1}{2}$ ar (Δ ABC) – ar (Δ PRQ) ar $(\Delta RQC) = \frac{1}{2} \operatorname{ar} (\Delta ABC) - \frac{1}{2} \operatorname{ar} (\Delta ARC)$ [From result (i)] ar $(\Delta ARC) = \frac{1}{2} \operatorname{ar} (\Delta ABC) - \frac{1}{2} \times \frac{1}{2} \operatorname{ar} (\Delta APC)$ ar $(\Delta RQC) = \frac{1}{2} \operatorname{ar} (\Delta ABC) - \frac{1}{4} \operatorname{ar} (\Delta APC)$ ar $(\Delta RQC) = \frac{1}{2} \operatorname{ar} (\Delta ABC) - \frac{1}{4} \times \frac{1}{2} \operatorname{ar} (\Delta ABC) [As, PC is median of \Delta ABC]$ ar $(\Delta RQC) = \frac{1}{2} \operatorname{ar} (\Delta ABC) - \frac{1}{8} \operatorname{ar} (\Delta ABC)$ ar $(\Delta RQC) = (\frac{1}{2} - \frac{1}{8})$ ar (ΔABC) ar (ΔRQC) = $\frac{3}{2}$ ar (ΔABC) (iii) ar $(\Delta PRQ) = \frac{1}{2}$ ar (ΔARC) [From result (i)] $2ar (\Delta PRO) = ar (\Delta ARC)$ (xii)

ar $(\Delta PRQ) = \frac{1}{2} \operatorname{ar} (\Delta APQ)$ [RQ is the median of APQ](xiii) But, we know that, ar $(\Delta APQ) = \operatorname{ar} (\Delta PQC)$ [From the reason mentioned in eq. (vi)](xiv)

Exercise 9.4(Optional)*

Page: 166

From eq. (xiii) and (xiv), we get, ar $(\Delta PRQ) = \frac{1}{2}$ ar (ΔPQC) (xv) At the same time, ar $(\Delta BPQ) =$ ar (ΔPQC) [PQ is the median of BPC](xvi)

From eq. (xv) and (xvi), we get, ar (ΔPRQ) = $\frac{1}{2}$ ar (ΔBPQ)(xvii) From eq. (xii) and (xvii), we get, $2 \times \frac{1}{2}$ ar (ΔBPQ) = ar (ΔARC) \implies ar (ΔBPQ) = ar (ΔARC) Hence Proved.

8. In Fig. 9.34, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ^ DE meets BC at Y. Show that:

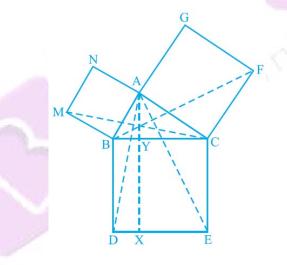


Fig. 9.34

- (i) $\Delta MBC \cong \Delta ABD$
- (ii) ar(BYXD) = 2ar(MBC)
- (iii) ar(BYXD) = ar(ABMN)
- (iv) $\Delta FCB \cong \Delta ACE$
- (v) ar(CYXE) = 2ar(FCB)
- (vi) ar(CYXE) = ar(ACFG)
- (vii) ar(BCED) = ar(ABMN) + ar(ACFG)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

Exercise 9.4(Optional)*

Page: 166

Solution:

(i) We know that each angle of a square is 90°. Hence, $\angle ABM = \angle DBC = 90^{\circ}$ $\therefore \angle ABM + \angle ABC = \angle DBC + \angle ABC$ $\therefore \angle MBC = \angle ABD$

In \triangle MBC and \triangle ABD, \angle MBC = \angle ABD (Proved above) MB = AB (Sides of square ABMN) BC = BD (Sides of square BCED) $\therefore \triangle$ MBC $\cong \triangle$ ABD (SAS congruency)

(ii) We have

 $\Delta MBC \cong \Delta ABD$ \therefore ar (ΔMBC) = ar (ΔABD) ... (i) It is given that AX \perp DE and BD \perp DE (Adjacent sides of square BDEC) \therefore BD || AX (Two lines perpendicular to same line are parallel to each other) ΔABD and parallelogram BYXD are on the same base BD and between the same parallels BD and AX. Area (ΔYXD) = 2 Area (ΔMBC) [From equation (i)] ... (ii)

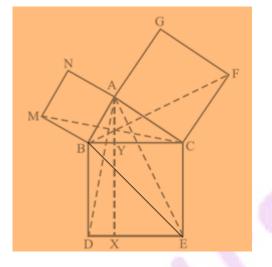
(iii) ΔMBC and parallelogram ABMN are lying on the same base MB and between same parallels MB and NC.
 2 ar (ΔMBC) = ar (ABMN)

ar $(\Delta YXD) = ar (ABMN)$ [From equation (ii)] ... (iii)

- (iv) We know that each angle of a square is 90°. $\therefore \angle FCA = \angle BCE = 90^{\circ}$ $\therefore \angle FCA + \angle ACB = \angle BCE + \angle ACB$ $\therefore \angle FCB = \angle ACE$ In $\triangle FCB$ and $\triangle ACE$, $\angle FCB = \angle ACE$ FC = AC (Sides of square ACFG) CB = CE (Sides of square BCED) $\triangle FCB \cong \triangle ACE$ (SAS congruency)
- (v) AX ⊥ DE and CE ⊥ DE (Adjacent sides of square BDEC) [given] Hence,
 CE || AX (Two lines perpendicular to the same line are parallel to each other)

Exercise 9.4(Optional)*

Page: 166



Consider BACE and parallelogram CYXE BACE and parallelogram CYXE are on the same base CE and between the same parallels CE and AX. \therefore ar (Δ YXE) = 2 ar (Δ ACE) ... (iv) We had proved that $\therefore \Delta$ FCB $\cong \Delta$ ACE ar (Δ FCB) \cong ar (Δ ACE) ... (v) From equations (iv) and (v), we get ar (CYXE) = 2 ar (Δ FCB) ... (vi)

(vi) Consider BFCB and parallelogram ACFG
 BFCB and parallelogram ACFG are lying on the same base CF and between the same parallels CF and BG.

∴ ar (ACFG) = 2 ar (Δ FCB) ∴ ar (ACFG) = ar (CYXE) [From equation (vi)] ... (vii)

(vii) From the figure, we can observe that $ar (\Delta CED) = ar (\Delta YXD) + ar (CYXE)$ $\therefore ar (\Delta CED) = ar (ABMN) + ar (ACFG) [From equations (iii) and (vii)].$