अध्याय 7

कणों के निकाय तथा घूणीं गति

8227 72	
7.1	भामका

- 7.2 द्रव्यमान केन्द्र
- 7.3 द्रव्यमान केन्द्र की गति
- 7.4 कणों के निकाय का रेखीय संवेग
- 7.5 दो सदिशों का सदिश गुणनफल
- 7.6 कोणीय वेग और इसका रेखीय वेग से संबंध
- 7.7 बल आघूर्ण एवं कोणीय संवेग
- 7.8 दृढ पिंडों का संतुलन
- 7.9 जड्त्व आघूर्ण
- 7.10 लम्बवत एवं समानान्तर अक्षों के प्रमेय
- 7.11 अचल अक्ष के परित: शुद्ध घूणीं गतिकी
- 7.12 अचल अक्ष के परित: घुणीं गतिकी
- 7.13 अचल अक्ष के परित: घूर्णी गति का कोणीय संवेग
- 7.14 लोटनिक गति

सारांश विचारणीय विषय अभ्यास

7.1 भूमिका

पिछले अध्यायों में हमने मुख्य रूप से आदर्श बिन्दु कण (एक कण जिसे द्रव्यमान युक्त बिन्दु के रूप में व्यक्त किया जाए तथा इसका कोई आकार नहीं हो) की गित का अध्ययन किया था। फिर, यह मानते हुए कि पिरिमित आकार के पिण्डों को गित को बिन्दु कण की गित के पदों में व्यक्त किया जा सकता है, हमने उस अध्ययन के पिरणामों को पिरिमित आकार के पिण्डों पर भी लागू कर दिया था।

दैनिक जीवन में जितने पिण्ड हमारे संपर्क में आते हैं वे सभी परिमित आकार के होते हैं। एक विस्तृत पिण्ड (परिमित आकार के पिण्ड) की गति को पूरे तौर पर समझने के लिए आमतौर पर उसका बिन्दुवत् आदर्श अपर्याप्त रहता है। इस अध्याय में हम इस प्रतिबंध के परे जाने की चेष्टा करेंगे और विस्तृत, पर परिमित पिण्डों की गति को समझने का प्रयास करेंगे। एक विस्तृत पिण्ड प्रथमतया कणों का एक निकाय है। अत: हम अपना विवेचन एक निकाय की गति से ही शुरू करना चाहेंगे। यहाँ कणों के निकाय का द्रत्यमान केन्द्र एक मुख्य अवधारणा होगी। हम कणों के निकाय के द्रव्यमान केन्द्र की गति का वर्णन करेंगे और फिर, परिमित आकार के पिण्डों की गति को समझने में इस अवधारणा की उपयोगिता बतायेंगे।

बड़े पिण्डों से जुड़ी बहुत सी समस्याएं उनको दृढ़ पिण्ड मानकर हल की जा सकती हैं। आदर्श दृढ़ पिण्ड एक ऐसा पिण्ड है जिसकी एक सुनिश्चित और अपरिवर्तनीय आकृति होती है। इस प्रकार के ठोस के सभी कण युग्मों के बीच की दूरियाँ परिवर्तित नहीं होती। दृढ़ पिण्ड की इस परिभाषा से यह स्पष्ट है कि कोई भी वास्तविक पिण्ड पूरी तरह दृढ़ नहीं होता, क्योंकि सभी व्यावहारिक पिण्ड बलों के प्रभाव से विकृत हो जाते हैं। परन्तु ऐसी बहुत सी स्थितियाँ होती हैं। जनमें विकृतियाँ नगण्य होती हैं। अत: कई प्रकार की स्थितियों में यथा पहिये, लट्टू, स्टील के शहतीर और यहाँ तक िक अणु, ग्रह जैसे पिण्डों की गित का अध्ययन करते समय, हम ध्यान न देंगे कि उनमें विकृति आती है, वे मुड़ते हैं या कम्पन करते हैं। हम उन्हें दृढ पिण्ड मान कर उनकी गित का अध्ययन करेंगे।

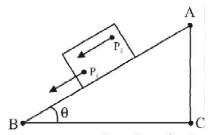
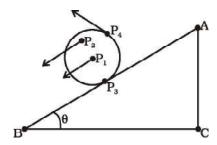


Fig 7.1 नत-तल पर एक ब्लॉक की अधोमुखी स्थानांतरण (फिसलन) गति (ब्लॉक का प्रत्येक बिंदु यथा P₃, P₂.... किसी भी क्षण समान गति में हैं)

7.1.1 एक दृढ़ पिण्ड में किस प्रकार की गतियाँ हो सकती हैं?

आइये, दृढ़ पिण्डों की गित के कुछ उदाहरणों से इस प्रश्न का उत्तर ढूंढ़ने की कोशिश करें। प्रथम एक आयताकार ब्लॉक पर विचार करें जो एक नत तल पर सीधा (बिना इधर-उधर हटे) नीचे की ओर फिसल रहा है। ब्लॉक एक दृढ़ पिण्ड लिया है। नत तल पर नीचे की ओर इसकी गित ऐसी है कि इसके सभी कण साथ-साथ चल रहे हैं, अर्थात् किसी क्षण सभी कण समान वेग से चलते हैं (चित्र 7.1)। यहाँ यह दृढ़ पिंड शुद्ध स्थानांतरण गित में है।

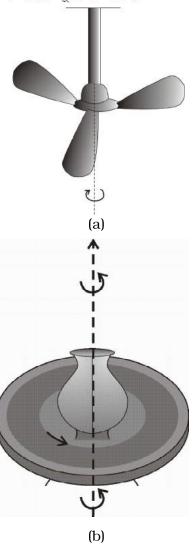
शुद्ध स्थानांतरण गति में किसी क्षण विशेष पर पिण्ड का प्रत्येक कण समान वेग से चलता है।



चित्र 7.2 नत तल पर नीचे की ओर लुढ़कता सिलिंडर (बेलन)। यह शुद्ध स्थानांतरण गित नहीं है। किसी क्षण पर बिन्दु P, P,, P, एवं P, के अलग-अलग नेग हैं (जैसा कि तीर दर्शाते हैं)। वास्तव में सम्पर्क बिन्दु P, का वेग किसी भी क्षण शून्य है यदि बेलन बिना फिसले हुए लुढ़कता है।

आइये, अब उसी नत तल पर नीचे की ओर लुढ़कते हुए एक धातु या लकड़ी के बेलन की गति पर विचार करते हैं (चित्र 7.2)। यह दृढ़ पिण्ड (बेलन) नत तल के शीर्ष से उसकी तली तक स्थानांतरित होता है, अत: इसमें स्थानांतरण गित प्रतीत होती है। लेकिन चित्र 7.2 यह भी दर्शाता है कि इसके सभी कण क्षण विशेष पर एक ही वेग से नहीं चल रहे हैं। अत: पिण्ड शुद्ध स्थानांतरण गित में नहीं है। अत: इसकी गित स्थानांतरीय होने के साथ-साथ 'कुछ और अलग' भी है।

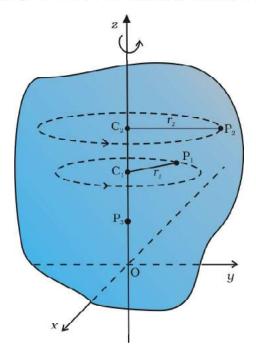
यह 'कुछ और अलग' भी क्या है? यह समझने के लिए, आइये, हम एक ऐसा दृढ़ पिंड लें जिसको इस प्रकार व्यवरुद्ध कर दिया गया है कि यह स्थानांतरण गित न कर सके। किसी दृढ़ पिंड को स्थानांतरण गित न कर सके। किसी दृढ़ पिंड को स्थानांतरण गित को निरुद्ध करने की सर्व सामान्य विधि यह है कि उसे एक सरल रेखा के अनुदिश स्थिर कर दिया जाए। तब इस दृढ़ पिंण्ड की एकमात्र संभावित गित घूणीं गिति होगी। वह सरल रेखा जिसके अनुदिश इस दृढ़ पिंण्ड को स्थिर बनाया गया है इसकी घूणीन-अक्ष कहलाती है। यदि आप अपने चारों ओर देखें तो आपको छत का पंखा, कुम्हार का चाक (चित्र 7.3(a) एवं (b)), विशाल चक्री-झूला (जॉयन्ट व्हील), मेरी-गो-राउण्ड जैसे अनेक ऐसे उदाहरण मिल जायेंगे जहाँ किसी अक्ष के परित: घूणीन हो रहा हो।



चित्र 7.3 एक स्थिर अक्ष के परित: घूर्णन (a) छत का पंखा

(b) कुम्हार का चाक

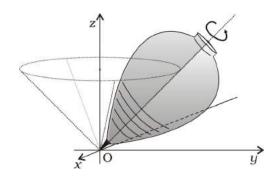
आइये, अब हम यह समझने की चेष्टा करें कि घूर्णन क्या है, और इसके क्या अभिलक्षण हैं? आप देख सकते हैं कि एक दृढ़ पिण्ड के एक स्थिर अक्ष के परित: घूर्णन में, पिण्ड का हर कण एक वृत्त में घूमता है। यह वृत्त अक्ष के लम्बवत् तल में है और इनका केन्द्र अक्ष पर अवस्थित है। चित्र 7.4 में एक



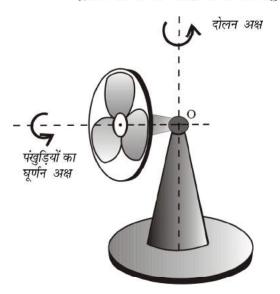
चित्र 7.4 z-अक्ष के परित: एक दृढ़ पिण्ड का घूर्णन। पिण्ड का प्रत्येक बिन्दु P, या P, एक वृत्त पर घूमता है जिसका केन्द्र (C, या C,) अक्ष पर स्थित है। वृत्त की क्रिन्या (r, या r,) अक्ष से बिन्दु (P, या P,) की लम्बवत् दूरी है। अक्ष पर स्थित P, जैसा बिन्दु स्थिर रहता है।

स्थिर अक्ष (निर्देश फ्रेम की z-अक्ष) के परितः किसी दृढ़ पिण्ड की घूर्णन गित दर्शायी है। हम अक्ष से r_1 दूरी पर स्थित दृढ़ पिण्ड का कोई स्वेच्छ कण P_1 लें। यह कण अक्ष के परितः r_1 किन्या के वृत्त पर घूमता है जिसका केन्द्र C_1 अक्ष पर स्थित है। यह वृत्त अक्ष के लम्बवत् तल में अवस्थित है। चित्र में एक दूसरा कण P_2 भी दर्शाया गया है जो स्थिर अक्ष से r_2 दूरी पर है। कण P_2 , r_2 किन्या के वृत्ताकार पथ पर चलता है जिसका केन्द्र अक्ष पर C_2 है। यह वृत्त भी अक्ष के लम्बवत् तल में है। ध्यान दें कि P_1 एवं P_2 द्वारा बनाये गए वृत्त अलग-अलग तलों में हैं पर ये दोनों तल स्थिर अक्ष के लम्बवत् हैं। अक्ष पर स्थित किसी बिन्दु, जैसे P_3 के लिए, r=0। ये कण, पिण्ड के घूमते समय भी स्थित रहते हैं। यह अपेक्षित भी है क्योंकि घूर्णन अक्ष स्थिर है।

तथापि, घूर्णन के कुछ उदाहरणों में, अक्ष स्थिर नहीं भी रहती। इस प्रकार के घूर्णन के मुख्य उदाहरणों में एक है, एक ही स्थान पर घूमता लट्टू (चित्र 7.5(a))। (लट्टू की गति के संबंध में हमने यह मान लिया है कि यह एक स्थान से दूसरे स्थान पर स्थानांतरित नहीं होता और इसलिए इसमें स्थानांतरण गित नहीं है।) अपने अनुभव के आधार पर हम यह जानते हैं कि इस प्रकार घूमते लट्टू की अक्ष, भूमि पर इसके सम्पर्क-बिन्दु से गुजरते अभिलम्ब के परित: एक शंकु बनाती है जैसा कि चित्र 7.5(a) में दर्शाया गया है। (ऊर्ध्वाधर के परित: लट्टू की अक्ष का इस प्रकार घूमना पुरस्सरण कहलाता है)। ध्यान दें कि लट्टू का वह बिन्दु जहाँ यह धरातल को छूता है, स्थिर है। किसी भी क्षण, लट्टू की घूर्णन-अक्ष, इसके सम्पर्क बिन्दु से गुजरती है। इस प्रकार की घूर्णन गित का दूसरा सरल उदाहरण घूमने वाला मेज का पंखा या पीठिका-पंखा है। आपने देखा होगा कि इस प्रकार के पंखे की अक्ष, क्षैतिज तल में, दोलन गित (इधर से उधर घूमने की) करती है और यह गित ऊर्ध्वाधर रेखा के परित: होती है जो उस बिन्दु से गुजरती है जिस पर अक्ष की धुरी टिकी होती है (चित्र 7.5(b) में बिन्दु O)।



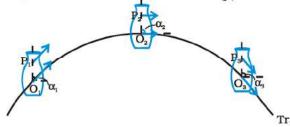
चित्र 7.5 (a) घूमता हुआ लट्टू (इसकी टिप O का धरातल पर सम्पर्क बिन्दु स्थिर है)



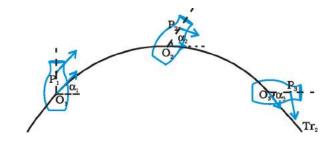
चित्र 7.5 (b) दोलन करता हुआ मेज का पंखा जिसकी पंखुड़ियाँ घूर्णन गति में हैं। (पंखे की धुरी, बिन्दु O, स्थिर है)

जब पंखा घूमता है और इसकी अक्ष इधर से उधर दोलन करती है तब भी यह बिन्दु स्थिर रहता है। घूर्णन गित के अधिक सार्विक मामलों में, जैसे कि लट्टू या पीठिका-पंखे के घूमने में, दृढ़ पिण्ड का एक बिन्दु स्थिर रहता है, न कि एक रेखा। इस मामले में अक्ष तो स्थिर नहीं है पर यह हमेशा एक स्थिर बिन्दु से गुजरती है। तथापि, अपने अध्ययन में, अधिकांशत:, हम ऐसी सरल एवं विशिष्ट घूर्णन गितयों तक सीमित रहेंगे जिनमें एक रेखा (यानि अक्ष) स्थिर रहती है। अत: जब तक अन्यथा न कहा जाय, हमारे लिए घूर्णी गित एक स्थिर अक्ष के परित: ही होगी।

एक नत तल पर नीचे की ओर बेलन का लुढ़कना दो तरह



चित्र 7.6(a) एक दृढ़ पिण्ड की गति जो शुद्ध स्थानांतरीय है



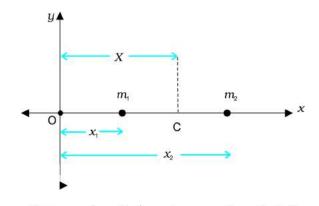
चित्र 7.6(b) दृढ़ पिण्ड की ऐसी गति जो स्थानांतरीय और घूर्णी गतियों का संयोजन है

की गितयों का संयोजन है— स्थानांतरण गित और एक स्थिर अक्ष के पित: घूर्णी गित। अत:, लुढ़कन गित के संदर्भ में जिस 'कुछ और अलग' का जिक्र पहले हमने किया था वह घूर्णी गित है। इस दृष्टिकोण से चित्र 7.6(a) एवं (b) को आप पर्याप्त शिक्षाप्रद पायेंगे। इन दोनों चित्रों में एक ही पिण्ड की गित, समान स्थानांतरीय गमन-पथ के अनुदिश दर्शाई गई है। चित्र 7.6(a) में दर्शाई गई गित स्थानांतरण एवं घूर्णी दोनों प्रकार की गितयों का संयोजन है। (आप स्वयं भारी पुस्तक जैसा एक दृढ़ पिण्ड फेंक कर दर्शाई गई दोनों प्रकार की गितयाँ उत्पन्न करने की कोशिश कर सकते हैं।)

आइये अब हम प्रस्तुत खण्ड में वर्णित महत्वपूर्ण तथ्यों का सार फिर से आपको बतायें। एक ऐसा दृढ़ पिण्ड जो न तो किसी चूल पर टिका हो और न ही किसी रूप में स्थिर हो, दो प्रकार की गित कर सकता है – या तो शुद्ध स्थानांतरण या स्थानांतरण एवं घूर्णन गित का संयोजन। एक ऐसे दृढ़ पिण्ड की गित जो या तो चूल पर टिका हो या किसी न किसी रूप में स्थिर हो, घूर्णी गित होती है। घूर्णन किसी ऐसी अक्ष के पिरत: हो सकता है जो स्थिर हो (जैसे छत के पंखे में) या फिर एक ऐसी अक्ष के परित: जो स्वयं घूमती हो (जैसे इधर से उधर घूमते मेज के पंखे में)। इस अध्याय में हम एक स्थिर अक्ष के परित: होने वाली घूर्णी गित का ही अध्ययन करेंगे।

7.2 द्रव्यमान केन्द्र

पहले हम यह देखेंगे कि द्रव्यमान केन्द्र क्या है और फिर इसके महत्व पर प्रकाश डालेंगे। सरलता की दृष्टि से हम दो कणों के निकाय से शुरुआत करेंगे। दोनों कणों की स्थितियों को मिलाने वाली रेखा को हम x- अक्ष मानेंगे। (चित्र 7.7)



चित्र 7.7 दो कणों और उनके द्रव्यमान केन्द्र की स्थिति

माना कि दो कणों की, किसी मूल बिन्दु O से दूरियाँ क्रमश: x_1 एवं x_2 हैं। इन कणों के द्रव्यमान क्रमश: m_1 एवं m_2 हैं। इन दो कणों के निकाय का द्रव्यमान केन्द्र C एक ऐसा बिन्दु होगा जिसकी O से दूरी, X का मान हो

$$X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \tag{7.1}$$

समीकरण (7.1) में X को हम x_1 एवं x_2 का द्रव्यमान भारित माध्य मान सकते हैं। यदि दोनों कणों का द्रव्यमान बराबर हो तो $m_1=m_2=m$, तब

$$X = \frac{mx_1 + mx_2}{2m} = \frac{x_1 + x_2}{2}$$

इस प्रकार समान द्रव्यमान के दो कणों का द्रव्यमान केन्द्र ठीक उनके बीचोंबीच है।

अगर हमारे पास n कण हों, जिनके द्रव्यमान क्रमश: m_1 , m_2 , ... m_n हों और सबको x- अक्ष के अनुदिश रखा गया हो, तो परिभाषा के अनुसार इन सब कणों का द्रव्यमान केन्द्र होगा

$$X = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^{n} m_i x}{\sum_{i=1}^{n} m_i} = \frac{\sum m_i x_i}{\sum m_i}$$
(7.2)

जहाँ $x_1, x_2, ... x_n$ कणों की क्रमश: मूलिबन्दु से दूरियाँ हैं; X भी उसी मूलिबन्दु से मापा गया है। संकेत \sum (यूनानी भाषा का अक्षर सिग्मा) संकलन को व्यक्त करता है जो इस मामले में n कणों के लिए किया गया है। संकलन फल

$$\sum m_i = M$$

निकाय का कुल द्रव्यमान है।

माना हमारे पास तीन कण हैं जो एक सरल रेखा में तो नहीं, पर एक समतल में रखे गए हैं। तब हम उस तल में जिसमें ये तीन कण रखे गए हैं x- एवं y-अक्ष निर्धारित कर सकते हैं, और इन तीन कणों की स्थितियों को क्रमशः निर्देशांकों (x_1,y_1) , (x_2,y_2) एवं (x_3,y_3) द्वारा व्यक्त कर सकते हैं। मान लीजिए कि इन तीन कणों के द्रव्यमान क्रमशः m_1 , m_2 एवं m_3 हैं। इन तीन कणों के निकाय का द्रव्यमान केन्द्र C निर्देशांकों (X,Y) द्वारा व्यक्त किया जायेगा जिनके मान हैं-

$$X = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$$
 (7.3a)

$$Y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3}$$
 (7.3b)

समान द्रव्यमान वाले कणों के लिए $m = m_1 = m_2 = m_3$,

$$X = \frac{m(x_1 + x_2 + x_3)}{3m} = \frac{x_1 + x_2 + x_3}{3}$$

$$Y = \frac{m(y_1 + y_2 + y_3)}{3m} = \frac{y_1 + y_2 + y_3}{3}$$

अर्थात् समान द्रव्यमान वाले कणों के लिए तीन कणों का द्रव्यमान केन्द्र उनकी स्थिति बिन्दुओं को मिलाने से बने त्रिभुज के केन्द्रक पर होगा।

समीकरण (7.3a,b) के परिणामों को, सरलतापूर्वक, ऐसे n कणों के एक निकाय के लिए सार्विक किया जा सकता है जो एक समतल में न होकर, अंतरिक्ष में फैले हों। इस तरह के निकाय का द्रव्यमान केन्द्र (X, Y, Z) है, जहाँ

$$X = \frac{\sum m_i x_i}{M} \tag{7.4a}$$

$$Y = \frac{\sum m_i y_i}{M} \tag{7.4b}$$

और
$$Z = \frac{\sum m_i z_i}{M}$$
 (7.4c)

यहाँ $M = \sum m_i$ निकाय का कुल द्रव्यमान है। सूचक i का मान 1 से n तक बदलता है, m_i i वें कण का द्रव्यमान है, और i वें कण की स्थिति (x_i, y_i, z_i) से व्यक्त की गई है। यदि हम स्थिति–सदिश की अवधारणा का उपयोग करें तो समीकरण (7.4a, b, c) को संयोजित करके एकल समीकरण के रूप में लिखा जा सकता है। यदि \mathbf{r}_i , i वें कण का स्थिति–वेक्टर है और \mathbf{R} द्रव्यमान केन्द्र का स्थिति–सदिश है:

$$\mathbf{r}_i = x_i \mathbf{i} + y_i \mathbf{j} + z_i \mathbf{k}$$

एवं $\mathbf{R} = X \mathbf{i} + Y \mathbf{j} + Z \mathbf{k}$

লৰ
$$\mathbf{R} = \frac{\sum m_i \mathbf{r}_i}{M}$$
 (7.4d)

समीकरण के दाहिनी ओर लिखा गया योग सिंदश-योग है। सिंदशों के इस्तेमाल से समीकरणों की संक्षिप्तता पर ध्यान दीजिए। यदि संदर्भ-फ्रेम (निर्देशांक निकाय) के मूल बिन्दु को, दिए गए कण-निकाय के द्रव्यमान केन्द्र में लिया जाए तो $\sum m_i \mathbf{r}_i = 0$ ।

एक दृढ़ पिण्ड, जैसे कि मीटर-छड़ या फ्लाइ व्हील, बहुत पास-पास रखे गए कणों का निकाय है; अत: समीकरण (7.4a, b, c, d) दृढ़ पिण्ड के लिए भी लागू होते हैं। इस प्रकार के पिण्डों में कणों (परमाणुओं या अणुओं) की संख्या इतनी अधिक होती है, कि इन समीकरणों में, सभी पृथक-पृथक कणों को लेकर संयुक्त प्रभाव ज्ञात करना असंभव कार्य है। पर, क्योंकि कणों के बीच की दूरी बहुत कम है, हम पिण्ड में द्रव्यमान का सतत वितरण मान सकते हैं। यदि पिण्ड को n छोटे द्रव्यमान खण्डों में विभाजित करें जिनके द्रव्यमान $\Delta m_1, \Delta m_2, \ldots$ Δm_2 हैं तथा i-वाँ खण्ड Δm_2 बिन्दु $\{x_2, y_3, z_4\}$ पर अवस्थित है

 Δm_n हैं तथा i-वाँ खण्ड Δm_i बिन्दु (x_i, y_i, z_i) पर अवस्थित है ऐसा सोचें तो द्रव्यमान केन्द्र के निर्देशांकों के लगभग मान इस प्रकार व्यक्त करेंगे –

$$X = \frac{\sum (\Delta m_i) x_i}{\sum \Delta m_i}, Y = \frac{\sum (\Delta m_i) y_i}{\sum \Delta m_i}, Z = \frac{\sum (\Delta m_i) z_i}{\sum \Delta m_i}$$

यदि हम n को वृहत्तर करें अर्थात् Δm , को और छोटा करें तो ये समीकरण काफी यथार्थ मान बताने लगेंगे। उस स्थिति में i-कणों के योग को हम समाकल से व्यक्त करेंगे।

$$\sum \Delta m_i \to \int \mathrm{d}m = M,$$

$$\sum (\Delta m_i) x_i \to \int x \, \mathrm{d}m,$$

$$\sum (\Delta m_i) y_i \to \int y \, \mathrm{d}m,$$

और
$$\sum (\Delta m_i) z_i \rightarrow \int z \, \mathrm{d} m$$

यहाँ M पिण्ड का कुल द्रव्यमान है। द्रव्यमान केन्द्र के निर्देशांकों को अब हम इस प्रकार लिख सकते हैं

$$X = \frac{1}{M} \int x \, dm, \ Y = \frac{1}{M} \int y \, dm \quad \text{sh} \ Z = \frac{1}{M} \int z \, dm$$
(7.5a)

इन तीन अदिश व्यंजकों के तुल्य सदिश व्यंजक इस प्रकार लिख सकते हैं-

$$\mathbf{R} = \frac{1}{M} \int \mathbf{r} \, \mathrm{d}m \tag{7.5b}$$

यदि हम द्रव्यमान केन्द्र को अपने निर्देशांक निकाय का मूल-बिन्दु चुनें तो

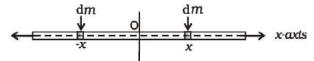
R
$$(x, y, z) = 0$$

अर्थात्,
$$\int \mathbf{r} \, \mathrm{d}m = 0$$

या
$$\int x dm = \int y dm = \int z dm = 0$$
 (7.6)

प्राय: हमें नियमित आकार के समांग पिण्डों; जैसे — वलयों, गोल-चकतियों, गोलों, छड़ों इत्यादि के द्रव्यमान केन्द्रों की गणना करनी पड़ती है। (समांग पिण्ड से हमारा तात्पर्य एक ऐसी वस्तु से हैं जिसमें द्रव्यमान का समान रूप से वितरण हो)। सममिति का विचार करके हम सरलता से यह दर्शा सकते हैं कि इन पिण्डों के द्रव्यमान केन्द्र उनके ज्यामितीय केन्द्र ही होते हैं। आइये, एक पतली छड़ पर विचार करें, जिसकी चौड़ाई और मोटाई (यदि इसकी अनुप्रस्थ काट आयताकार है) अथवा त्रिज्या (यदि छड़ बेलनाकार है), इसकी लम्बाई की तुलना में बहुत छोटी है। छड़ की लम्बाई x-अक्ष के अनुदिश रखें और मूल बिन्दु इसके ज्यामितीय केन्द्र पर ले लें तो परावर्तन सममिति की दृष्टि से हम कह सकते हैं कि प्रत्येक x पर स्थित प्रत्येक dm घटक के समान dm का घटक -x पर भी स्थित होगा (चित्र 7.8)।

149

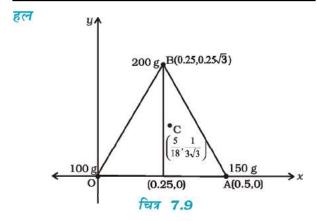


चित्र 7.8 एक पतली छड़ का द्रव्यमान केन्द्र ज्ञात करना

समाकल में हर जोड़े का योगदान शून्य है और इस कारण स्वयं $\int x \, dm$ का मान शून्य हो जाता है। समीकरण (7.6) बताती है कि जिस बिन्दु के लिए समाकल शून्य हो वह पिण्ड का द्रव्यमान केन्द्र है। अत: समांग छड़ का ज्यामितीय केन्द्र इसका द्रव्यमान केन्द्र है। इसे परावर्तन समिमित के प्रयोग से समझ सकते हैं।

सममिति का यही तर्क, समांग वलयों, चकितयों, गोलों और यहाँ तक कि वृत्ताकार या आयताकार अनुप्रस्थ काट वाली मोटी छड़ों के लिए भी लागू होगा। ऐसे सभी पिण्डों के लिए आप पायेंगे कि बिन्दु (x,y,z) पर स्थित हर द्रव्यमान घटक के लिए बिन्दु (-x,-y,-z) पर भी उसी द्रव्यमान का घटक लिया जा सकता है। (दूसरे शब्दों में कहें तो इन सभी पिण्डों के लिए मूल बिन्दु परावर्तन-समिनित का बिन्दु है)। परिणामत:, समीकरण (7.5 a) में दिए गए सभी समाकल शून्य हो जाते हैं। इसका अर्थ यह हुआ कि उपरोक्त सभी पिण्डों का द्रव्यमान केन्द्र उनके ज्यामितीय केन्द्र पर ही पडता है।

उदाहरण 7.1 एक समबाहु त्रिभुज के शीर्षों पर रखे गए तीन कणों का द्रव्यमान केन्द्र ज्ञात कीजिए। कणों के द्रव्यमान क्रमश: 100g, 150g, एवं 200g हैं। त्रिभुज की प्रत्येक भुजा की लम्बाई 0.5 m है।



x एवं y- अक्ष चित्र 7.9 में दर्शाये अनुसार चुनें तो समबाहु त्रिभुज के शीर्ष बिन्दुओं O, A एवं B के निर्देशांक क्रमश: (0,0), (0.5,0) एवं $(0.25,0.25\sqrt{3})$ होंगे। माना कि 100g, 150g एवं 200g के द्रव्यमान क्रमश: O, A एवं B पर अवस्थित हैं। तब

$$X = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$$

$$= \frac{\left[100(0) + 150(0.5) + 200(0.25)\right] g \text{ m}}{(100 + 150 + 200) g}$$

$$= \frac{75 + 50}{450} \text{m} = \frac{125}{450} \text{m} = \frac{5}{18} \text{m}$$

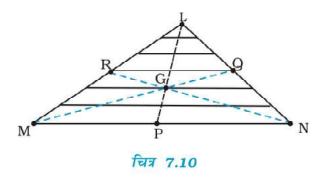
$$Y = \frac{\left[100(0) + 150(0) + 200(0.25\sqrt{3})\right] g \text{ m}}{450 \text{ g}}$$

$$=\frac{50\sqrt{3}}{450} \text{ m} = \frac{\sqrt{3}}{9} \text{ m} = \frac{1}{3\sqrt{3}} \text{ m}$$

द्रव्यमान केन्द्र C चित्र में दर्शाया गया है। ध्यान दें कि यह त्रिभुज OAB का ज्यामितीय केन्द्र नहीं है। क्या आप बता सकते हैं कि ऐसा क्यों नहीं है?

 उदाहरण 7.2: एक त्रिभुजाकार फलक का द्रव्यमान केन्द्र ज्ञात कीजिए।

हल फलक (ΔLMN) को आधार (MN) के समान्तर पतली पट्टियों में बांटा जा सकता है जैसा चित्र 7.10 में दर्शाया गया है।



समिति के आधार पर हम कह सकते हैं कि हर पट्टी का द्रव्यमान केन्द्र उसका मध्य बिन्दु है। अगर हम सभी पट्टियों के मध्य बिन्दुओं को मिलाते हैं तो हमें माध्यिका LP प्राप्त होती है। इसलिए, पूरे त्रिभुज का द्रव्यमान केन्द्र इस माध्यिका LP पर कहीं अवस्थित होगा। इसी प्रकार हम तर्क कर सकते हैं कि यह माध्यिका MQ और NR पर भी अवस्थित होगा। अत: यह द्रव्यमान केन्द्र तीनों माध्यिकाओं का संगामी बिन्दु गित त्रिभुज का केन्द्रक G है।

उदाहरण 7.3: एक दिए गए L-आकृति के फलक (एक पतली चपटी प्लेट) का द्रव्यमान केन्द्र ज्ञात कीजिए, जिसका विभिन्न भुजाओं को चित्र 7.11 में दर्शाया है। फलक का द्रव्यमान 3 kg है।

हल चित्र 7.11 के अनुसार X एवं Y अक्षों को चुनें तो L-आकृति फलक के विभिन्न शीर्षों के निर्देशांक वही प्राप्त होते हैं जो चित्र में अंकित किए गए हैं। हम L-आकृति को तीन वर्गों से मिलकर बना हुआ मान सकते हैं जिनमें से प्रत्येक वर्ग की भुजा 1m है। प्रत्येक वर्ग का द्रव्यमान 1kg है, क्योंकि फलक समांग हैं। इन तीन वर्गों के द्रव्यमान केन्द्र C_1 , C_2 और C_3 हैं, जो सममिति के विचार से उनके ज्यामितीय केन्द्र हैं और इनके निर्देशांक क्रमश: (1/2,1/2), (3/2,1/2), (1/2,3/2) हैं। हम कह सकते हैं कि L-आकृति का द्रव्यमान केन्द्र (X,Y) इन द्रव्यमान बिन्दुओं का द्रव्यमान केन्द्र हैं।



चित्र 7.11

अत:

$$X = \frac{\left[1(1/2) + 1(3/2) + 1(1/2)\right] \log m}{(1+1+1) \log} = \frac{5}{6} m$$

$$Y = \frac{\left[\left[1(1/2) + 1(1/2) + 1(3/2) \right] \right] \log m}{(1+1+1) \log} = \frac{5}{6} m$$

L-आकृति का द्रव्यमान केन्द्र रेखा OD पर पड़ता है। इस बात का अंदाजा हम बिना किसी गणना के लगा सकते थे। क्या आप बता सकते हैं, कैसे? यदि यह मानें कि चित्र 7.11 में दर्शाये गए L आकृति फलक के तीन वर्गों के द्रव्यमान

अलग-अलग होते तब आप इस फलक का द्रव्यमान केन्द्र कैसे ज्ञात करेंगे?

7.3 द्रव्यमान केन्द्र की गति

द्रव्यमान केन्द्र की परिभाषा जानने के बाद, अब हम इस स्थिति में हैं कि n कणों के एक निकाय के लिए इसके भौतिक महत्व की विवेचना कर सकें। समीकरण (7.4d) को हम फिर से इस प्रकार लिख सकते हैं-

 $M\mathbf{R} = \sum m_i \mathbf{r}_i = m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + ... + m_n \mathbf{r}_n$ (7.7) समीकरण के दोनों पक्षों को समय के सापेक्ष अवकलित करने पर-

$$M\frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} = m_1 \frac{\mathrm{d}\mathbf{r}_1}{\mathrm{d}t} + m_2 \frac{\mathrm{d}\mathbf{r}_2}{\mathrm{d}t} + \dots + m_n \frac{\mathrm{d}\mathbf{r}_n}{\mathrm{d}t}$$

या

$$M \mathbf{V} = m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 + \dots + m_n \mathbf{v}_n \tag{7.8}$$

जहाँ, $\mathbf{v}_1 \left(= \mathrm{d}\mathbf{r}_1 / \mathrm{d}t\right)$ प्रथम कण का वेग है, $\mathbf{v}_2 \left(= \mathrm{d}\mathbf{r}_2 / \mathrm{d}t\right)$ दूसरे कण का वेग है, इत्यादि और $\mathbf{V} = \mathrm{d}\mathbf{R} / \mathrm{d}t$ कणों के निकाय के द्रव्यमान केन्द्र का वेग है। ध्यान दें, कि हमने यह मान लिया है कि m_1, m_2, \ldots आदि के मान समय के साथ बदलते नहीं हैं। इसलिए, समय के सापेक्ष समीकरणों को अवकलित करते समय हमने उनके साथ अचरांकों जैसा व्यवहार किया है।

समीकरण (7.8) को समय के सापेक्ष अवकलित करने पर-

$$M\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = m_1 \frac{\mathrm{d}\mathbf{v}_1}{\mathrm{d}t} + m_2 \frac{\mathrm{d}\mathbf{v}_2}{\mathrm{d}t} + \dots + m_n \frac{\mathrm{d}\mathbf{v}_n}{\mathrm{d}t}$$

$$MA = m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2 + \dots + m_n \mathbf{a}_n \tag{7.9}$$

जहाँ $\mathbf{a}_1 (= \mathrm{d}\mathbf{v}_1 / \mathrm{d}t)$ प्रथम कण का त्वरण है, $\mathbf{a}_2 (= \mathrm{d}\mathbf{v}_2 / \mathrm{d}t)$ दूसरे कण का त्वरण है, इत्यादि और $\mathbf{A} (= \mathrm{d}\mathbf{V} / \mathrm{d}t)$ कणों के निकाय के द्रव्यमान केन्द्र का त्वरण है।

अब, न्यूटन के द्वितीय नियमानुसार, पहले कण पर लगने वाला बल है $\mathbf{F}_1 = m_1 \mathbf{a}_1$, दूसरे कण पर लगने वाला बल है $\mathbf{F}_2 = m_2 \mathbf{a}_2$, आदि। तब समीकरण (7.9) को हम इस प्रकार भी लिख सकते हैं–

$$\mathbf{MA} = \mathbf{F}_1 + \mathbf{F}_2 + \dots + \mathbf{F}_n \tag{7.10}$$

अत: कणों के निकाय के कुल द्रव्यमान को द्रव्यमान केन्द्र के त्वरण से गुणा करने पर हमें उस कण-निकाय पर लगने वाले सभी बलों का सर्दिश योग प्राप्त होता है। ध्यान दें कि जब हम पहले कण पर लगने वाले बल \mathbf{F}_1 की बात करते हैं, तो यह कोई एकल बल नहीं है, बिल्क, इस कण पर लगने वाले सभी बलों का सिदश योग है। यही बात हम अन्य कणों के विषय में भी कह सकते हैं। प्रत्येक कण पर लगने वाले उन बलों में कुछ बाह्य बल होंगे जो निकाय से बाहर के पिण्डों द्वारा आरोपित होंगे और कुछ आंतरिक बल होंगे जो निकाय के अंदर के कण एक दूसरे पर आरोपित करते हैं। न्यूटन के तृतीय नियम से हम जानते हैं कि ये आंतरिक बल सदैव बराबर परिमाण के और विपरीत दिशा में काम करने वाले जोड़ों के रूप में पाए जाते हैं और इसिलए समीकरण (7.10) में बलों को जोड़ने में इनका योग शून्य हो जाता है। समीकरण में केवल बाह्य बलों का योगदान रह जाता है। समीकरण (7.10) को फिर इस प्रकार लिख सकते हैं

$$M\mathbf{A} = \mathbf{F}_{ext} \tag{7.11}$$

जहाँ \mathbf{F}_{ext} निकाय के कणों पर प्रभावी सभी बाह्य बलों का सिंदश योग है।

समीकरण (7.11) बताती है कि कणों के किसी निकाय का द्रव्यमान केन्द्र इस प्रकार गति करता है मानो निकाय का संपूर्ण द्रव्यमान उसमें संकेन्द्रित हो और सभी बाह्य बल उसी पर आरोपित हों।

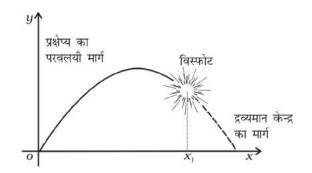
ध्यान दें कि द्रव्यमान केन्द्र की गति के विषय में जानने के लिए, कणों के निकाय के आंतरिक बलों के विषय में कोई जानकारी नहीं चाहिए, इस उद्देश्य के लिए हमें केवल बाह्य बलों को ही जानने की आवश्यकता है।

समीकरण (7.11) व्युत्पन्न करने के लिए हमें कणों के निकाय की प्रकृति सुनिश्चित नहीं करनी पड़ी। निकाय कणों का ऐसा संग्रह भी हो सकता है जिसमें तरह-तरह की आंतरिक गतियाँ हों, और शुद्ध स्थानांतरण गित करता हुआ, अथवा, स्थानांतरण एवं घूणीं गित के संयोजन युक्त एक दृढ़ पिण्ड भी हो सकता है। निकाय कैसा भी हो और इसके अवयवी कणों में किसी भी प्रकार की गितयाँ हों, इसका द्रव्यमान केन्द्र समीकरण (7.11) के अनुसार ही गित करेगा।

परिमित आकार के पिण्डों को एकल कणों की तरह व्यवहार में लाने के बजाय अब हम उनको कणों के निकाय की तरह व्यवहार में ला सकते हैं। हम उनकी गित का शुद्ध स्थानांतरीय अवयव यानि निकाय के द्रव्यमान केन्द्र की गित ज्ञात कर सकते हैं। इसके लिए, बस, पूरे निकाय का कुल द्रव्यमान और निकाय पर लगे सभी बाह्य बलों को निकाय के द्रव्यमान केन्द्र पर प्रभावी मानना होगा।

यही कार्यविधि हमने पिण्डों पर लगे बलों के विश्लेषण और उनसे जुड़ी समस्या के हल के लिए अपनाई थी। हालांकि, इसके लिए कोई स्पष्ट कारण नहीं बताया गया था। अब हम यह समझ सकते हैं, कि पूर्व के अध्ययनों में, हमने बिन कहे ही

यह मान लिया था कि निकाय में घूणीं गित, एवं कणों में आंतरिक गित या तो थी ही नहीं और यदि थी तो नगण्य थी। आगे से हमें यह मानने की आवश्यकता नहीं रहेगी। न केवल हमें अपनी पहले अपनाई गई पद्धित का औचित्य समझ में आ गया है, वरन्, हमने वह विधि भी ज्ञात कर ली है जिसके द्वारा (i) ऐसे दृढ़ पिण्ड की जिसमें घूणीं गित भी हो, (ii) एक ऐसे निकाय की जिसके कणों में तरह-तरह की आंतरिक गितयाँ हों, स्थानांतरण गित को अलग करके समझा समझाया जा सकता है।



चित्र 7.12 किसी प्रक्षेप्य के खण्डों का द्रव्यमान केन्द्र विस्फोट के बाद भी उसी परवलयाकार पथ पर चलता हुआ पाया जायेगा जिस पर यह विस्फोट न होने पर चलता।

चित्र 7.12 समीकरण (7.11) को स्पष्ट करने वाला एक अच्छा उदाहरण है। अपने निर्धारित परवलयाकार पथ पर चलता हुआ एक प्रक्षेप्य हवा में फट कर टुकड़ों में बिखर जाता है। विस्फोट कारक बल आंतरिक बल है इसलिए उनका द्रव्यमान केन्द्र की गित पर कोई प्रभाव नहीं होता। प्रक्षेप्य और उसके खण्डों पर लगने वाला कुल बाह्य बल विस्फोट के बाद भी वही है जो विस्फोट से पहले था, यानि पृथ्वी का गुरुत्वाकर्षण बल। अत:, बाह्य बल के अंतर्गत प्रक्षेप्य के द्रव्यमान केन्द्र का परवलयाकार पथ विस्फोट के बाद भी वही बना रहता जो विस्फोट न होने की स्थित में होता।

7.4 कणों के निकाय का रेखीय संवेग

आपको याद होगा कि रेखीय संवेग की परिभाषा करने वाला व्यंजक है

$$\mathbf{p} = m\mathbf{v} \tag{7.12}$$

और, एकल कण के लिए न्यूटन के द्वितीय नियम को हम सांकेतिक भाषा में लिख सकते हैं

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \tag{7.13}$$

जहाँ \mathbf{F} कण पर आरोपित बल है। आइये, अब हम n कणों के

एक निकाय पर विचार करें जिनके द्रव्यमान क्रमश: m_1 , m_2 ,... m_n है और वेग क्रमश: \mathbf{v}_1 , \mathbf{v}_2 ,..... \mathbf{v}_n हैं। कण, परस्पर अन्योन्य क्रियारत हो सकते हैं और उन पर बाह्य बल भी लगे हो सकते हैं। पहले कण का रेखीय संवेग $m_1\mathbf{v}_1$, दूसरे कण का रेखीय संवेग $m_2\mathbf{v}_2$ और इसी प्रकार अन्य कणों के रेखीय संवेग भी हैं।

n कणों के इस निकाय का कुल रेखीय संवेग, एकल कणों के रेखीय संवेगों के सदिश योग के बराबर है।

$$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 + ... + \mathbf{P}_n$$

= $m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 + ... + m_n \mathbf{v}_n$ (7.14)
इस समीकरण की समीकरण (7.8) से तुलना करने पर,

अत: कणों के एक निकाय का कुल रेखीय संवेग, निकाय के कुल द्रव्यमान तथा इसके द्रव्यमान केन्द्र के वेग के गुणनफल के बराबर होता है। समीकरण (7.15) का समय के सापेक्ष अवकलन करने पर.

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = M\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = M\mathbf{A} \tag{7.16}$$

समीकरण (7.16) एवं समीकरण (7.11) की तुलना करने पर

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{F}_{ext} \tag{7.17}$$

यह गित के न्यूटन के द्वितीय नियम का कथन है जो कणों के निकाय के लिए लागू किया गया है।

यदि कणों के किसी निकाय पर लगे बाह्य बलों का योग शून्य हो, तो समीकरण (7.17) के आधार पर,

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = 0$$
 या $\mathbf{P} = 3$ चरांक (7.18a)

अत: जब कणों के किसी निकाय पर लगे बाह्य बलों का योग शून्य होता है तो उस निकाय का कुल रेखीय संवेग अचर रहता है। यह कणों के एक निकाय के लिए लागू होने वाला रेखीय संवेग के संरक्षण का नियम है। समीकरण (7.15) के कारण, इसका अर्थ यह भी होता है कि जब निकाय पर लगने वाला कुल बाह्य बल शून्य होता है तो इसके द्रव्यमान केन्द्र का वेग परिवर्तित नहीं होता। (इस अध्याय में कणों के निकाय का अध्ययन करते समय हम हमेशा यह मान कर चलेंगे कि निकाय का कुल द्रव्यमान अचर रहता है।)

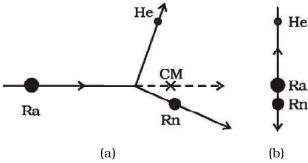
ध्यान दें, कि आंतरिक बलों के कारण, यानि उन बलों के कारण जो कण एक दूसरे पर आरोपित करते हैं, किसी विशिष्ट

कण का गमन-पथ काफी जटिल हो सकता है। फिर भी, यदि निकाय पर लगने वाला कुल बाह्य बल शून्य हो तो द्रव्यमान केन्द्र अचर-वेग से ही चलता है, अर्थात्, मुक्त कण की तरह समगति से सरल रेखीय पथ पर चलता है।

सदिश समीकरण (7.18a) जिन अदिश समीकरणों के तुल्य है, वे हैं-

$$P_x = C_1, P_u = C_2$$
 ਰथा $P_z = C_3$ (7.18 b)

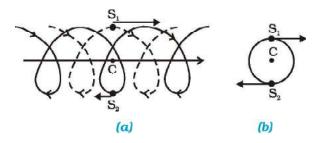
यहाँ P_x , P_y , P_z कुल रेखीय संवेग सदिश ${\bf P}$ के, क्रमश: x,y एवं z दिशा में अवयव हैं और C_1 , C_2 , C_3 अचरांक हैं।



चित्र 7.13 (a) एक भारी नाभिक रेडियम (Ra) एक अपेक्षाकृत हलके नाभिक रेडॉन (Rn) एवं एक अल्फा-कण (हीलियम परमाणु का नाभिक, He) में विखंडित होता है। निकाय का द्रव्यमान केन्द्र समगित में है। (b) द्रव्यमान केन्द्र की स्थिर अवस्था में उसी भारी कण रेडियम (Ra) का विखंडन। दोनों उत्पन्न हुए कण एक दुसरे की विपरीत दिशा में गितमान होते हैं।

एक उदाहरण के रूप में, आइये, रेडियम के नाभिक जैसे किसी गितमान अस्थायी नाभिक के रेडियोएक्टिव क्षय पर विचार करें। रेडियम का नाभिक एक रेडन के नाभिक और एक अल्फा कण में विखंडित होता है। क्षय-कारक बल निकाय के आंतरिक बल हैं और उस पर प्रभावी बाह्य बल नगण्य हैं। अत: निकाय का कुल रेखीय संवेग, क्षय से पहले और क्षय के बाद समान रहता है। विखंडन में उत्पन्न हुए दोनों कण, रेडन का नाभिक एवं अल्फा-कण, विभिन्न दिशाओं में इस प्रकार चलते हैं कि उनके द्रव्यमान केन्द्र का गमन-पथ वही बना रहता है जिस पर क्षयित होने से पहले मूल रेडियम नाभिक गितमान था (चित्र 7.13(a))।

यदि हम एक ऐसे संदर्भ फ्रेम से इस क्षय प्रक्रिया को देखें जिसमें द्रव्यमान केन्द्र स्थिर हो, तो इसमें शामिल कणों की गति विशेषकर सरल दिखाई पड़ती है; उत्पन्न हुए दोनों कण एक दूसरे की विपरीत दिशा में इस प्रकार गतिमान होते हैं कि उनका द्रव्यमान केन्द्र स्थिर रहे, जैसा चित्र 7.13 (b) में दर्शाया गया है।



चित्र 7.14 (a) बायनरी निकाय बनाते दो नक्षत्रों S, एवं S, के गमन पथ, जो क्रमश: बिन्दु रेखा एवं सतत रेखा द्वारा दर्शाये गए हैं। इनका द्रव्यमान केन्द्र C समगति में है।

(b) उसी बायनरी निकाय की गति जब द्रव्यमान केन्द्र C स्थिर है।

कणों की निकाय संबंधी बहुत सी समस्याओं में जैसा ऊपर बताई गई रेडियोएक्टिव क्षय संबंधी समस्या में दर्शाया है, प्रयोगशाला के संदर्भ-फ्रेम की अपेक्षा, द्रव्यमान-केन्द्र के फ्रेम में कार्य करना आसान होता है।

खगोलिकी में युग्मित (बायनरी) नक्षत्रों का पाया जाना एक आम बात है। यदि कोई बाह्य बल न लगा हो तो किसी युग्मित नक्षत्र का द्रव्यमान केन्द्र एक मुक्त-कण की तरह चलता है जैसा चित्र 7.14 (a) में दर्शाया गया है। चित्र में समान द्रव्यमान वाले दोनों नक्षत्रों के गमन पथ भी दर्शाये गए हैं; वे काफी जिटल दिखाई पड़ते हैं। यदि हम द्रव्यमान केन्द्र के फ्रेम से देखें तो हम पाते हैं कि ये दोनों नक्षत्र द्रव्यमान केन्द्र के परित: एक वृत्ताकार पथ पर गितमान हैं जबिक द्रव्यमान केन्द्र स्थिर है। ध्यान दें, कि दोनों नक्षत्रों को वृत्ताकार पथ के व्यास के विपरीत सिरों पर बने रहना है (चित्र 7.14(b))। इस प्रकार इन नक्षत्रों का गमन पथ दो गितयों के संयोजन से निर्मित होता है (i) द्रव्यमान केन्द्र की सरल रेखा में समांग गित (ii) द्रव्यमान केन्द्र के परित: नक्षत्रों की वृत्ताकार कक्षाएँ।

उपरोक्त दो उदाहरणों से दृष्टव्य है, कि निकाय के एकल कणों की गित को द्रव्यमान केन्द्र की गित और द्रव्यमान केन्द्र के परित: गित में अलग करके देखना एक अत्यंत उपयोगी तकनीक है जिससे निकाय की गित को समझने में सहायता मिलती है।

7.5 दो सदिशों का सदिश गुणन

हम सिदशों एवं भौतिकी में उनके उपयोग के विषय में पहले से ही जानते हैं। अध्याय 6 (कार्य, ऊर्जा, शक्ति) में हमने दो

सिंदशों के अदिश गुणन की परिभाषा की थी। एक महत्वपूर्ण भौतिक राशि, कार्य, दो सिंदश राशियों, बल एवं विस्थापन के अदिश गुणनफल द्वारा परिभाषित की जाती है।

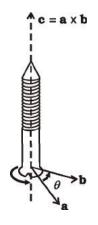
अब हम दो सिंदशों का एक अन्य प्रकार का गुणन परिभाषित करेंगे। यह सिंदश गुणन है। घूर्णी गति से संबंधित दो महत्वपूर्ण राशियाँ, बल आघूर्ण एवं कोणीय संवेग, सिंदश गुणन के रूप में परिभाषित की जाती हैं।

सदिश गुणन की परिभाषा

दो सदिशों a एवं b का सदिश गुणनफल एक ऐसा सदिश c है

- (i) जिसका परिमाण $c = ab \sin \theta$ है, जहाँ a एवं b क्रमश: a एवं b के परिमाण हैं और θ दो सदिशों के बीच का कोण है।
- (ii) c उस तल के अभिलम्बवत् है जिसमें a एवं b अवस्थित हैं।
- (iii) यदि हम एक दक्षिणावर्त्त पेंच लें और इसको इस प्रकार रखें िक इसका शीर्ष a एवं b के तल में हो और लम्बाई इस तल के अभिलम्बवत् हो और फिर शीर्ष को a से b की ओर घुमायें, तो पेंच की नोंक c की दिशा में आगे बढ़ेगा। दक्षिणावर्त पेंच का नियम चित्र 7.15a में दर्शाया गया है।

यदि आप सदिशों a एवं b के तल के अभिलम्बवत् रेखा के परित: अपने दाहिने हाथ की उंगलियों को इस प्रकार मोड़ें कि उनके सिरे a से b की ओर इंगित करें, तब इस हाथ का फैला हुआ अंगूठा c की दिशा बतायेगा जैसा चित्र 7.15b में दर्शीया गया है।



ERROR: undefined

OFFENDING COMMAND: f'~

STACK: