ਵਿਗਿਆਨ

(ਦਸਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ)

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ

© ਪੰਜਾਬ ਸਰਕਾਰ

ਪਹਿਲਾ ਐਡੀਸ਼ਨ : 2016 2,97,000 ਕਾਪੀਆਂ

[This book has been adopted with the kind permission of the National Council of Educational Research and Training, New Delhi]

> All rights, including those of translation, reproduction and annotation etc., are reserved by the Punjab Government

> > ਸੰਯੋਜਕ: ਉਪਨੀਤ ਕੌਰ ਗਰੇਵਾਲ (ਵਿਸ਼ਾ ਮਾਹਿਰ) ਰਵਿੰਦਰ ਕੋਰ ਬਨਵੈਤ (ਵਿਸ਼ਾ ਮਾਹਿਰ) ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਚਿੱਤਰਕਾਰ : ਮਨਜੀਤ ਸਿੰਘ ਢਿੱਲੋਂ

ਚੇਤਾਵਨੀ

- ਕੋਈ ਵੀ ਏਜੰਸੀ-ਹੋਲਡਰ ਵਾਧੂ ਪੈਸੇ ਵਸੂਲਣ ਦੇ ਮੰਤਵ ਨਾਲ ਪਾਠ-ਪੁਸਤਕਾਂ 'ਤੇ ਜਿਲਦ-ਸਾਜੀ ਨਹੀਂ ਕਰ ਸਕਦਾ।(ਏਜੰਸੀ-ਹੋਲਡਰਾਂ ਨਾਲ ਹੋਏ ਸਮਝੌਤੇ ਦੀ ਧਾਰਾ ਨੂੰ, 7 ਅਨੁਸਾਰ)
- ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੁਆਰਾ ਛਪਵਾਈਆਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ਿਤ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੇ ਜਾਅਲੀ ਨਕਲੀ ਪ੍ਰਕਾਸ਼ਨਾਂ (ਪਾਠ-ਪੁਸਤਕਾਂ) ਦੀ ਛਪਾਈ, ਪ੍ਰਕਾਸ਼ਨ, ਸਟਾਕ ਕਰਨਾ, ਜਮ੍ਹਾਂ– ਬੋਰੀ ਜਾਂ ਵਿਕਰੀ ਆਦਿ ਕਰਨਾ ਭਾਰਤੀ ਦੰਡ ਪ੍ਰਣਾਲੀ ਦੇ ਅੰਤਰਗਤ ਫ਼ੌਜਦਾਰੀ ਜੁਰਮ ਹੈ। (ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਬੋਰਡ ਦੇ 'ਵਾਟਰ ਮਾਰਕ' ਵਾਲੇ ਕਾਗਜ਼ ਉੱਪਰ ਹੀ ਛਪਵਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ।)

ਮੁੱਲ: 182/- ਰੁਪਏ

FRIT

2400 Sav.

ਸਕੱਤਰ, ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ, ਵਿੱਦਿਆ ਭਵਨ, ਫੇਜ਼-8 ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ-160062 ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ਿਤ ਅਤੇ ਮੈਸ. ਚੋਆਇਸ ਬੁੱਕਸ ਐਂਡ ਪ੍ਰਿੰਟਰਜ਼ ਪ੍ਰਾ. ਲਿਮਿਟਿਡ, ਜਲੰਧਰ ਰਾਹੀਂ ਛਾਪੀ ਗਈ।

ਦੋ ਸ਼ਬਦ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਨੂੰ ਸੋਧਣ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੇ ਕੰਮ ਵਿੱਚ ਜੁਣਿਆ ਹੋਇਆ ਹੈ। ਅੱਜ ਜਿਸ ਦੌਰ ਵਿੱਚੋਂ ਅਸੀਂ ਲੰਘ ਰਹੇ ਹਾਂ ਉਸ ਵਿੱਚ ਬੱਚਿਆਂ ਨੂੰ ਸਹੀ ਵਿੱਦਿਆ ਦੇਣਾ ਮਾਪਿਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੀ ਸਾਂਝੀ ਜੁੰਮੇਵਾਰੀ ਬਣਦੀ ਹੈ। ਇਸੇ ਜੁੰਮੇਵਾਰੀ ਅਤੇ ਵਿੱਦਿਅਕ ਜ਼ਰੂਰਤ ਨੂੰ ਸਮਝਦਿਆਂ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੇ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਵਿੱਚ ਨੈਸ਼ਨਲ ਕਰੀਕੁਲਮ ਫਰੇਮਵਰਕ-੨੦੦੫ ਅਨੁਸਾਰ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਵਰਤਨ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।

ਸਕੂਲ ਕਰੀਕੁਲਮ ਵਿੱਚ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦਾ ਯੋਗਦਾਨ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੈ ਅਤੇ ਇਸਦੇ ਲੋੜੀਂ ਦੇ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਚੰਗੀ ਪਾਠ-ਪੁਸਤਕ ਦਾ ਹੋਣਾ ਪਹਿਲੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਲਈ ਇਸ ਪਾਠ-ਪੁਸਤਕ ਵਿੱਚ ਵਿਸ਼ਾ ਸਮੱਗਰੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ ਜਿਸ ਨਾਲ਼ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਤਰਕ ਸ਼ਕਤੀ ਤਾਂ ਪ੍ਰਫ਼ੁਲਿਤ ਹੋਵੇਗੀ ਹੀ ਸਗੋਂ ਵਿਸ਼ੇ ਨੂੰ ਸਮਝਣ ਦੀ ਯੋਗਤਾ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੋਵੇਗਾ। ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਮਾਨਸਿਕ ਪੱਧਰ ਦੇ ਅਨੁਸਾਰ ਤਿਆਰ ਕੀਤੇ ਗਏ ਹਨ। ਇਹ ਪੁਸਤਕ ਰਾਸ਼ਟਰੀ ਵਿਦਿਆ ਖੋਜ ਅਤੇ ਸਿਖਲਾਈ ਸੰਸਥਾ (ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ.) ਵੱਲੋਂ ਦਸਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ ਤਿਆਰ ਕੀਤੀ ਗਈ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀ ਖੁਸਤਕ ਦੀ ਅਨੁਸਾਰਤਾ ਕਰਦੀ ਹੈ। ਇਹ ਮਹੱਤਵਪੂਰਨ ਕਦਮ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਵਿੱਚ ਇਕਸਾਰਤਾ ਲਿਆਉਣ ਲਈ ਚੁੱਕਿਆ ਗਿਆ ਹੈ ਤਾਂ ਜੋ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਰਾਸ਼ਟਰੀ ਪੱਧਰ ਦੇ ਇਮਤਿਹਾਨਾਂ ਵਿੱਚ ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ ਦੀ ਔਕੜ ਨਾ ਆਵੇ।

ਇਸ ਪਾਠ-ਪੁਸਤਕ ਨੂੰ ਵਿਦਿਆਰਥੀਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੇ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਉਪਯੋਗੀ ਬਣਾਉਣ ਦਾ ਭਰਪੂਰ ਯਤਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਪੁਸਤਕ ਨੂੰ ਹੋਰ ਚੰਗੇਗਾ ਬਣਾਉਣ ਲਈ ਖੇਤਰ ਵਿੱਚੋਂ ਆਏ ਸੁਝਾਵਾਂ ਦਾ ਸਤਿਕਾਰ ਕੀਤਾ ਜਾਵੇਗਾ।

ਚੇਅਰਪਰਸਨ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

THE PROPERTY OF THE PARTY.

Nec Trester no

NCERT ਦੀ ਪਾਠ-ਪੁਸਤਕ ਤਿਆਰ ਕਰਨ ਵਾਲੀ ਕਮੇਟੀ

ਪ੍ਰਧਾਨ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੀ ਸਲਾਹਕਾਰ ਕਮੇਟੀ

ਜੇ. ਵੀ ਨਾਰਲੀਕਾਰ, ਇਮੇਰਿਟਸ ਪ੍ਰੋਫੈਸਰ, ਅੰਤਰ ਯੂਨੀਵਰਸਿਟੀ ਕੇਂਦਰ ਖਗੋਲ ਵਿਗਿਆਨ ਅਤੇ ਖਗੋਲ ਭੌਤਿਕੀ, (IUCCA), ਗਣੇਸ਼ ਖੰਡ, ਪੂਨਾ ਯੂਨੀਵਰਸਿਟੀ, ਪੂਨੇ।

ਮੁੱਖ ਸਲਾਹਕਾਰ

ਰੂਪਮੰਜਰੀ ਘੋਸ਼, ਪ੍ਰੋਫੈਸਰ, ਸਕੂਲ ਆਫ਼ ਫਿਜ਼ਿਕਲ ਸਾਇੰਸਜ਼, ਜਵਾਹਰਲਾਲ ਨਹਿਰੂ ਯੂਨੀਵਰਸਿਟੀ, ਨਵੀਂ ਦਿੱਲੀ।

ਮੈਂਬਰ

- ਅੰਜਨੀ ਕੌਲ, ਪ੍ਰੋਫੈਸਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ (ਡੀ. ਈ. ਐਸ. ਐਮ), ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ, ਨਵੀਂ ਦਿੱਲੀ।
- ਅਨਿਮੇਸ਼ ਮਹਾਪਾਤਰਾ, ਰੀਡਰ ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾਨ, ਅਜਮੇਰ, ਰਾਜਸਥਾਨ।
- ਅਲਕਾ ਮੇਹਰੋਤਰਾ, ਰੀਡਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ (ਡੀ. ਈ. ਐਸ. ਐਮ),
 ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ, ਨਵੀ. ਦਿੱਲੀ।
- ਆਰ. ਪੀ. ਸਿੰਘ, ਪ੍ਰਵਕਤਾ, ਰਾਸ਼ਟਰੀ ਪ੍ਰਤਿਭਾ ਵਿਕਾਸ ਵਿਦਿਆਲਾ, ਕਿਸ਼ਨਗੰਜ, ਦਿੱਲੀ।
- ਇਸ਼ਵੰਤ ਕੌਰ, ਪੀ. ਜੀ.ਟੀ. ਡੀ. ਐਮ. ਸਕੂਲ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾਨ, ਭੌਪਾਲ, ਮੱਧ ਪ੍ਦੇਸ਼।
- ਉਮਾ ਸੁਧੀਰ, ਇਕਲਵਯ, ਇੰਦੌਰ, ਮੱਧ ਪ੍ਦੇਸ਼।
- ਐਚ. ਐਲ. ਸਤੀਸ਼, ਟੀ. ਜੀ. ਟੀ., ਡੀ. ਐਮ ਸਕੂਲ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾਨ, ਮੈਸੂਰ, ਕਰਨਾਟਕ।
- ਐਸ ਕੇ ਦਾਸ਼, ਰੀਡਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ ਡੀ. ਈ. ਐਸ. ਐਮ, ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ, ਨਵੀ. ਦਿੱਲੀ।
- ਗਗਨ ਗੁਪਤਾ, ਰੀਡਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ (ਡੀ. ਈ. ਐਸ. ਐਮ), ਐਨ. ਸੀ. ਈ. ਆਰੁੁਟੀ, ਨਵੀਂ. ਦਿੱਲੀ।
- ਚਾਰੂ ਮੇਨੀ, ਪੀ. ਜੀ. ਟੀ., ਸਲਵਾਨ ਪਬਲਿਕ ਸਕੂਲ, ਗੁੜਗਾਉ, ਹਰਿਆਣਾ।
- ਜੇ. ਡੀ. ਅਰੋੜਾ, ਰੀਡਰ, ਹਿੰਦੂ ਕਾਲਜ, ਮੁਰਾਦਾਬਾਦ, ਉੱਤਰ ਪ੍ਦੇਸ਼।
- ਦਿਨੇਸ਼ ਕੁਮਾਰ, ਰੀਡਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ (ਡੀ. ਈ. ਐਸ. ਐਮ),
 ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ, ਨਵੀ. ਦਿੱਲੀ।
- ਪੂਰਨ ਚੰਦ ਸੰਯੁਕਤ ਡਾਇਰੈਕਟਰ (ਰਿਟਾ:), ਸੀ. ਆਈ. ਈ. ਟੀ, ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ. ਨਵੀਂ ਦਿੱਲੀ।

- ਬੀ. ਕੇ ਤ੍ਰਿਪਾਠੀ, ਗੈਂਡਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ (ਡੀ. ਈ. ਐਸ. ਐਮ.), ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ. ਨਵੀਂ ਦਿੱਲੀ।
- ਬੀ. ਬੀ. ਸਵਾਈ, ਪ੍ਰੋਫੈਸਰ (ਰਿਟਾ:), ਭੌਤਿਕੀ ਵਿਭਾਗ, ਉੱਤਕਲ ਯੂਨੀਵਰਸਿਟੀ, ਭੁਵਨੇਸ਼ਵਰ, ਓਡੀਸਾ।
- ਬ੍ਰਹਮ ਪ੍ਕਾਸ਼, ਪ੍ਰਫੈਸਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ (ਡੀ. ਈ. ਐਸ. ਐਮ), ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ. ਨਵੀਂ ਦਿੱਲੀ।
- ਮੀਨਾ ਔਬਿਕਾ ਮੇਨਨ, ਟੀ. ਜੀ. ਟੀ., ਕੈਮਬਰਿਜ ਸਕੂਲ, ਨੋਇਡਾ, ਉੱਤਰ ਪ੍ਦੇਸ਼।
- ਰੀਤਾ ਸ਼ਰਮਾ, ਰੀਡਰ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾ, ਭੋਪਾਲ, ਮੱਧ ਪ੍ਦੇਸ਼।
- ਵੰਦਨਾ ਸਕਸੇਨਾ, ਟੀ. ਜੀ. ਟੀ., ਕੇਂਦਰੀ ਸਕੂਲ−4, ਕੰਧਾਰ ਲਾਇੰਜ਼, ਦਿੱਲੀ ਕੈਂਟ, ਨਵੀਂ ਦਿੱਲੀ।
- ਵਿਨੌਦ ਕੁਮਾਰ, ਰੀਡਰ, ਹੈਸਰਾਜ ਕਾਲਜ, ਦਿੱਲੀ ਯੂਨੀਵਰਸਿਟੀ, ਦਿੱਲੀ।
- ਸੱਤਜੀਤ ਰੱਥ, ਵਿਗਿਆਨਿਕ, ਨੈਸ਼ਨਲ ਇੰਨਸਟੀਟਿਊਟ ਆਫ਼ ਇਮੀਊਨੋਲੋਜੀ ਜੇ. ਐਨ. ਯੂ. ਕੈਂਪਸ, ਨਵੀਂ ਦਿੱਲੀ।
- ਸੁਨੀਤਾ ਰਾਮ ਖਿਯਾਨੀ, ਪੀ. ਜੀ. ਟੀ., ਅਲਹਕਾਨ ਪਬਲਿਕ ਸਕੂਲ, ਦਿੱਲੀ।
- ਹਿੰਦੀ ਅਨਵਾਦ
- ਆਰ. ਜੀ. ਸ਼ਰਮਾ, ਸੀਨੀ. ਵਿਗਿਆਨ ਕਾਉਂਸਲਰ
- ਸਾਇੰਸ ਸੈਂਟਰ ਨੰ- 2, ਵਸੰਤ ਵਿਹਾਰ, ਨਵੀਂ ਦਿੱਲੀ। ਸ਼ਾਂਸ਼ਤਤ
- ਕਨ੍ਹਈਆਂ ਲਾਲ, ਪ੍ਰਚਾਰਿਆਂ (ਰਿਟਾ:), 121
- ਅਫ਼ਗਾਨਨ, ਦਿੱਲੀ ਗੇਟ, ਗਾਜ਼ੀਆਬਾਦ, ਉੱਤਰ ਪ੍ਦੇਸ਼। ਾਲਤਾ
- ਗਰੀਮਾ ਵਰਗਾ ਸਪੈਕਟਰਮ ਕਮੀਉਨੀਕੇਸ਼ਨ, ਸ਼ਹੀਦ ਭਗਤ ਸਿੰਘ ਮਾਰਕੀਟ, ਨਵੀਂ ਦਿੱਲੀ।
- ਜੇ. ਪੀ. ਅਗਰਵਾਲ, ਪ੍ਰਚਾਰਿਆ (ਰਿਟਾ:) 3, ਸ਼ਕਤੀ ਅਪਾਰਟਮੈਂਟ, ਅਸ਼ੋਕ ਵਿਹਾਰ, ਫੇਜ਼ III ਕਾਕਾ ਜੀ ਲੇਨ, ਦਿੱਲੀ।
- ਪ੍ਰਵੀਨ ਕੁਮਾਰ ਸਿੰਘ, ਸਪੈਕਟਰਮ ਕਮੀਊਨੇਕੇਸ਼ਨਜ਼, ਸ਼ਹੀਦ ਭਗਤ ਸਿੰਘ ਮਾਰਕੀਟ, ਨਵੀਂ ਦਿੱਲੀ।
- ਵਿਜੇ ਕੁਮਾਰ, ਉਪ ਪ੍ਰਿੰਸੀਪਲ, ਸਰਵੇਂਦਯ ਉਚਤਰ ਮਾਧਿਮਿਕ ਸਕੂਲ ਆਨੰਦ ਵਿਹਾਰ, ਦਿੱਲੀ।
- ਮੈਂਬਰ ਸਮਨਵਯਕ
- ਬੀ. ਕੇ. ਸ਼ਰਮਾ, ਪ੍ਰੋਫੈਸਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ (ਡੀ. ਈ. ਐਸ. ਐਮ), ਐਨ. ਸੀ. ਈ. ਆਰ. ਟੀ, ਨਵੀ. ਦਿੱਲੀ।

NCERT ਦੀ ਪਾਠ-ਪੁਸਤਕ ਤਿਆਰ ਕਰਨ ਵਾਲੀ PSEB ਦੀ ਕਮੇਟੀ

- ਸ਼੍ਰੀ ਸੰਜੀਵਨ ਸਿੰਘ ਡਡਵਾਲ, (ਹੈੱਡ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਹਾਈ ਸਕੂਲ, ਪਤਾਰਾ, (ਜਲੰਧਰ)
- ਸ਼੍ਰੀ ਜਗਤਿੰਦਰ ਸਿੰਘ ਸੋਹਲ, (ਲੈਕਚਰਾਰ ਕੈਮਿਸਟਰੀ), ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਤਿਉਲੀ ਕਲਾਂ (ਜਲੰਧਰ)
- ਸ਼੍ਰੀ ਸੁਮੀਤ ਗੁਪਤਾ, (ਸਾਇੰਸ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਕੰਨਿਆਂ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਆਦਰਸ਼ ਨਗਰ (ਜਲੰਧਰ)
- 4. ਸ਼੍ਰੀ ਰਾਕੇਸ਼ ਮਹਿਤਾ, (ਸਾਇੰਸ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਇਨ ਸਰਵਿਸ, ਟਰੇਨਿੰਗ ਸੈਂਟਰ, (ਜਲੰਧਰ)
- 5. ਸ਼੍ਰੀ ਸੁਖਜਿੰਦਰ ਸਿੰਘ (ਸਾਇੰਸ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਹਾਈ ਸਕੂਲ, ਮਸਾਨੀਆਂ, ਨੇੜੇ ਆਦਮਪੁਰ, (ਜਲੰਧਰ)
- 6. ਸ਼੍ਰੀ ਸਿਧਾਰਥ ਚੰਦਰ, (ਸਾਇੰਸ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਮਾਧੋਪੁਰ ਕੈੱਟ, (ਪਠਾਨਕੋਟ)
- ਸ਼੍ਰੀਮਤੀ ਟੀਨਾ ਦੇਵੀ, (ਸਾਇੰਸ ਮਿਸਟ੍ਰੈਸ), ਸਰਕਾਰੀ ਹਾਈ ਸਕੂਲ ਪਤਾਰਾ, (ਜਲੰਧਰ)
- 8. ਸ਼੍ਰੀ ਸ਼ਮਿੰਦਰ ਬੱਤਰਾ, (ਲੈਕਚਰਾਰ), ਸਰਕਾਰੀ ਕੰਨਿਆਂ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਸ਼੍ਰੀ ਮੁਕਤਸਰ ਸਾਹਿਬ:
- ਸ਼੍ਰੀ ਰਾਕੇਸ਼ ਕੁਮਾਰ ਗੌਤਮ, (ਸਾਇੰਸ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਮਿਡਲ ਸਕੂਲ, ਕਬੀਰ ਨਗਰ ਕੰਪਲੈਕਸ, ਗਾਂਧੀ ਕੈਂਪ, (ਜਲੰਧਰ)
- 10. ਸ਼੍ਰੀਮਤੀ ਨੀਰੂ, (ਸਾਇੰਸ ਮਿਸਟ੍ਰੈਸ), ਸਰਕਾਰੀ ਹਾਈ ਸਕੂਲ, ਕਾਲਾ ਬਾਹੀਆ, ਜਲੰਧਰ;
- ਸ਼੍ਰੀ ਰਜਿੰਦਰ ਸਿੰਘ ਰਾਣਾ, (ਸਾਇੰਸ ਮਾਸਟਰ), ਸਰਕਾਰੀ ਹਾਈ ਸਕੂਲ, ਪਟਿਆਲ ਮਰਕੋਵਾਲ,
 ਤਹਿ-ਮੁਕੇਰੀਆਂ, (ਹੁਸ਼ਿਆਰਪੁਰ)
- 12. ਸ਼੍ਰੀਮਤੀ ਕਮਲਜੀਤ ਕੌਰ, (ਲੈਂਕਚਰਾਰ), ਖਾਲਸਾ ਕਾਲਜ, ਲੁਧਿਆਣਾ।

ਵਿਸ਼ਾ-ਸੂਚੀ

1.	ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਅਤੇ ਸਮੀਕਰਣਾਂ			ď
2.	ਤੇਜ਼ਾਬ ਖਾਰ ਅਤੇ ਲੂਣ			19
3.	ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ			41
4.	ਕਾਰਬਨ ਅਤੇ ਉਸਦੇ ਯੋਗਿਕ			64
5.	ਤੱਤਾਂ ਦਾ ਆਵਰਤੀ ਵਰਗੀਕਰਨ			88
6.	ਜੈਵਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ	8 Kg/10		103
7.	ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ	(KS)		126
8.	ਜੀਵ ਪ੍ਰਜਣਨ ਕਿਵੇਂ ਕਰਦੇ ਹਨ	रहिगा		140
9.	ਅਨੁਵੰਸ਼ਿਕਤਾ ਅਤੇ ਜੀਵ ਵਿਕਾਸ			156
10.	ਪ੍ਰਕਾਸ਼-ਪਰਾਵਰਤਨ ਅਤੇ ਅਪਵਰਤਨ	ां हिस्से ।		176
11.	ਮਨੁੱਖੀ ਅੱਖ ਅਤੇ ਰੰਗ ਬਰੰਗਾ ਸੰਸਾਰ	(राम्		207
12.	ਬਿਜਲੀ			221
13.	ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਚੁੰਬਕੀ ਪ੍ਰਭਾਵ	-4E/E	7/24	249
	ਉਰਜਾ ਦੇ ਸੋਮੇ		(45)	271
	ਸਾਡਾ ਵਾਤਾਵਰਨ		(F)(V)	
	ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦਾ ਪ੍ਰਬੰਧ		mit de	288
	ਪ੍ਰਸ਼ਨ ਉੱਤਰ		314	

ti men

ক্রা ক্র

old is vote

(Chemical Reactions and Equations)

ਪਣੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਨਾਲ ਸੰਬੰਧਿਤ ਹਾਲਤਾਂ ਵੱਲ ਧਿਆਨ ਦਿਓ ਅਤੇ ਸੋਚੋਂ ਕਿ ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ :

- 🔳 ਗਰਮੀਆਂ ਵਿੱਚ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਦੁੱਧ ਨੂੰ ਖੁੱਲ੍ਹਾ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।
- 🏮 ਲੋਹੇ ਦਾ ਤਵਾ/ਤਸਲੇ/ ਮੇਖ ਨੂੰ ਸਿੱਲ੍ਹੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਖੁੱਲ੍ਹਾ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।
- 🏿 ਅੰਗੂਰਾਂ ਦਾ ਖਮੀਰਨ ਹੋ ਜਾਂਦਾ ਹੈ।
- 🏿 ਭੋਜਨ ਪਕਾਇਆ ਜਾਂਦਾ ਹੈ।
- 🏿 ਸਾਡਾ ਸਰੀਰ ਭੋਜਨ ਪਚਾ ਲੈਂਦਾ ਹੈ।
- 🏿 ਅਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹਾਂ।

ਇਹਨਾਂ ਸਾਰੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਆਰੰਭਕ ਵਸਤੂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਪਛਾਣ ਵਿੱਚ ਕੁੱਝ ਨਾ ਕੁੱਝ ਅੰਤਰ ਆ ਜਾਂਦਾ ਹੈ। ਵਸਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨਾਂ ਬਾਰੇ ਤੁਸੀਂ ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ।ਜਦੋਂ ਕੋਈ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਹੋਈ ਹੈ।

ਤੁਸੀਂ ਸ਼ਾਇਦ ਸੋਚ ਰਹੇ ਹੋਵੋਗੇ ਕਿ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦਾ ਅਸਲ ਭਾਵ ਕੀ ਹੈ। ਅਸੀਂ ਕਿਵੇਂ ਜਾਣ ਸਕਦੇ ਹਾਂ ਕਿ ਕੋਈ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਾਪਰੀ ਹੈ? ਇਹਨਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਆਓ ਅਸੀਂ ਕੁੱਝ ਕਿਰਿਆਵਾਂ ਕਰੀਏ।

ਕਿਰਿਆ 1.1

ਸਾਵਧਾਨੀ : (i) ਇਹ ਕਿਰਿਆ ਕਰਨ ਲਈ ਅਧਿਆਪਕ ਦੀ ਸਹਾਇਤਾ ਦੀ ਲੌੜ ਹੈ। (ii) ਚੰਗਾ ਹੋਵੇਗਾ ਜੇਕਰ ਵਿਦਿਆਰਥੀ ਤੇਜ਼ ਰੌਸ਼ਨੀ ਦੇ ਬਚਾਓ ਵਾਲੀਆਂ ਐਨਕਾਂ ਪਹਿਨ ਲੈਣ।

- ਲਗਭਗ 2 ਸੈਂਟੀਮੀਟਰ ਲੰਬੇ ਮੈਗਨੀਸ਼ੀਅਮ ਰਿੱਬਨ ਨੂੰ ਰੇਗਮਾਰ ਨਾਲ ਰਗੜ ਕੇ ਸਾਫ ਕਰੋ।
- ਇਸਨੂੰ ਚਿਮਟੀ ਨਾਲ ਪਕੜੋ। ਇਸ ਨੂੰ ਸਪਿਰਟ ਲੈਂਪ ਜਾਂ ਬਰਨਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਜਲਾਓ ਅਤੇ ਉਪਜੀ ਰਾਖ ਨੂੰ ਇੱਕ ਵਾਚ ਗਲਾਸ ਵਿੱਚ ਇਕੱਠੀ ਕਰੋ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 1.1 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਮੈਗਨੀਸ਼ੀਅਮ ਰਿੱਬਨ ਨੂੰ, ਜਲਾਉਣ ਸਮੇਂ ਜਿੰਨੀ ਦੂਰ ਸੰਭਵ ਹੋਵੇ, ਆਪਣੀਆਂ ਅੱਖਾਂ ਤੋਂ ਪਰੇ ਰੱਖੋ।

ਚਿੱਤਰ 1.1 ਮੈਗਨੀਸ਼ੀਅਮ ਰਿਬਨ ਨੂੰ ਜਲਾਉਣ ਤੇ ਪੈਦਾ ਰਾਖ (ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ) ਨੂੰ ਵਾਚ ਗਲਾਸ ਵਿੱਚ ਇਕੱਠਾ ਕਰਨਾ।

ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ?

1 Tofelly

LEDKO BU

ਐਸਿਡ

ਤੁਸੀਂ ਜ਼ਰੂਰ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਮੈਗਨੀਸ਼ੀਅਮ ਰਿਬਨ ਅੱਖਾਂ ਨੂੰ ਚੁੰਧਿਆਉਣ ਵਾਲੀ ਤੇਜ਼ ਚਿੱਟੀ ਰੌਸ਼ਨੀ ਦਿੰਦਾ ਹੋਇਆ ਜਲਦਾ ਹੈ ਅਤੇ ਚਿੱਟੇ ਪਾਉਡਰ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਚਿੱਟਾ ਪਾਉਡਰ ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ ਹੈ, ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਹਵਾ ਵਿਚਲੀ ਆਕਸੀਜਨ ਦੀ ਆਪਸੀ ਕਿਰਿਆ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਇਹ ਪੈਦਾ ਹੋਇਆ ਹੈ।

ਕਿਰਿਆ 1.2

- ਇੱਕ ਕੱਚ ਦੀ ਪਰਖਨਲੀ ਵਿੱਚ ਲੈੱਡ ਨਾਈਟਰੇਟ ਘੋਲ ਘਾਓ।
- ਇਸ ਵਿੱਚ ਪੌਟਾਸ਼ੀਅਮ ਆਇਓਡੀਨ ਦਾ ਘੋਲ਼ ਪਾਓ।
- ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੈ?

ਕੱਚ ਨਲੀ ਕੋਨੀਕਲ ਪਤਲਾ ਹਾਈਡਰੋਕਲੋਰਿਕ ਦਾਣੇਦਾਰ ਜ਼ਿੰਕ

ਚਿੱਤਰ 1.2 ਦਾਣੇਦਾਰ ਜ਼ਿੰਕ ਉੱਤੇ ਪਤਲੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਐਸਿਡ ਦੀ ਪਤਿਕਿਰਿਆ ਦੁਆਰਾ ਹਾਈਡਰੋਜ਼ਨ ਗੈਸ ਦੀ ਉਤਪਤੀ

ਕਿਰਿਆ 1.3

- ਇੱਕ ਕੋਨੀਕਲ ਫਲਾਸਕ ਜਾਂ ਵੱਡੀ ਪਰਖਨਲੀ ਵਿੱਚ ਕੁੱਝ ਦਾਣੇਦਾਰ ਜ਼ਿੰਕ ਲਓ।
- 🎍 ਇਸ ਵਿੱਚ ਪਤਲਾ ਹਾਈਡਰੋਕਲੋਰਿਕ ਐਸਿਡ ਜਾਂ ਸਲਵਿਊਰਿਕ ਐਸਿਡ ਪਾਓ (ਚਿੱਤਰ 1.2) ਜਾਵਧਾਨੀ : ਐਸਿਡ ਦੀ ਵਰਤੋਂ ਧਿਆਨ ਪੂਰਵਕ ਕਰੋ।
- 🌉 ਕੀ ਤੁਹਾਨੂੰ ਜ਼ਿੰਕ ਦੇ ਟੁਕੜਿਆਂ ਦੇ ਆਲੇ- ਦੁਆਲੇ ਕੁਝ ਵਾਪਰਦਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ?
 - ਕੋਨੀਕਲ ਫਲਾਸਕ ਜਾਂ ਪਰਖਨਲੀ ਨੂੰ ਛੂਹੋ। ਕੀ ਇਸ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਆਇਆ ਹੈ।

ਉੱਪਰ ਦਿੱਤੀਆਂ ਤਿੰਨੋਂ ਕਿਰਿਆਵਾਂ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਹੇਠ ਲਿਖੇ ਕਿਸੇ ਵੀ ਪੇਖਣ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਸੀਂ ਨਿਰਧਾਰਤ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਹੋਈ ਹੈ।

- ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ
- ਰੰਗ ਵਿੱਚ ਪਰਿਵਰਤਨ
- ਗੈਸ ਦੀ ਉੱਤਪਤੀ ਜਾਂ ਨਿਕਲਣਾ
 - ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ

ਜੇਕਰ ਅਸੀਂ ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਹੁੰਦੇ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਵੇਖੀਏ ਤਾਂ ਪਤਾ ਲੱਗੇਗਾ ਕਿ ਸਾਡੇ ਸਾਰੇ ਪਾਸੇ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀਆਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਹੋ ਰਹੀਆਂ ਹਨ।ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀਆਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਸੰਕੇਤਾਂ ਦੁਆਰਾ ਦਰਸਾਉਣ ਬਾਰੇ ਅਧਿਐਨ ਕਰਾਂਗੇ।

1.1 ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ (Chemical Equations)

ਕਿਰਿਆ 1.1 ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਵਰਣਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਆਕਸੀਜਨ ਦੀ ਹੋਂਦ ਵਿੱਚ ਮੈਗਨੀਸ਼ੀਅਮ ਨੂੰ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਵਾਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਸੇ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦਾ ਇਹ ਵਰਨਣ ਕਾਫੀ ਲੰਬਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਸੰਖੇਪ ਰੂਪ ਵਿੱਚ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਸ਼ਬਦ-ਸਮੀਕਰਣ (Word Equations) ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਣਾ ਅਸਾਨ ਵਿਧੀ ਹੈ।

ਉਪਰੋਕਤ ਦਿੱਤੀ ਕਿਰਿਆ ਦੀ ਸ਼ਬਦ-ਸਮੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗੀ :

ਮੈਗਨੀਸ਼ੀਅਮ + ਆਕਸੀਜਨ
$$\rightarrow$$
 ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ (1.1)
(ਅਭਿਕਾਰਕ) (ਉਤਪਾਦ)

ਕਿਰਿਆ (1.1) ਵਿੱਚ ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਆਕਸੀਜਨ ਅਜਿਹੇ ਪਦਾਰਥ ਹਨ ਜਿਨਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ, ਇਹਨਾਂ ਨੂੰ ਅਭਿਕਾਰਕ ਆਖਦੇ ਹਨ। ਇਸ ਕਿਰਿਆ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਇੱਕ ਨਵਾਂ ਪਦਾਰਥ ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ ਬਣਦਾ ਹੈ, ਇਸ ਨੂੰ ਉਤਪਾਦ (Product) ਕਹਿੰਦੇ ਹਨ।

ਸ਼ਬਦ-ਸਮੀਕਰਣ ਵਿੱਚ ਅਭਿਕਾਰਕ (Reactant) ਦੇ ਉਤਪਾਦਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ

ਉਹਨਾਂ ਵਿਚਕਾਰ ਇੱਕ ਤੀਰ ਦਾ ਨਿਸ਼ਾਨ ਲਗਾ ਕੇ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਭਿਕਾਰਕਾਂ ਵਿਚਕਾਰ ਜੋੜ (+) ਦਾ ਚਿੰਨ੍ਹ ਲਗਾ ਕੇ ਉਹਨਾਂ ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਉਤਪਾਦਾਂ ਵਿਚਕਾਰ ਵੀ ਜੋੜ (+) ਦਾ ਚਿੰਨ੍ਹ ਲਗਾ ਕੇ ਉਹਨਾਂ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਤੀਰ ਦਾ ਸਿਰ ਉਤਪਾਦਾਂ ਵੱਲ ਹੁੰਦਾ ਹੈ ਜੋ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਹੋਣ ਦੀ ਦਿਸ਼ਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।

1.1.1 ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਲਿਖਣਾ

ਕੀ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਦੀ ਇਸ ਤੋਂ ਵੀ ਵੱਧ ਸੰਖੇਪ ਵਿਧੀ ਹੈ? ਸ਼ਬਦਾਂ ਦੀ ਥਾਂ ਰਸਾਇਣਿਕ ਸੂਤਰਾਂ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਵਧੇਰੇ ਸੰਖਿਪਤ ਅਤੇ ਉਪਯੋਗੀ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਕਿਸੇ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਮੈਗਨੀਸ਼ੀਅਮ, ਆਕਸੀਜਨ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ ਦੇ ਸੂਤਰ ਯਾਦ ਕਰੋ ਤਾਂ ਉਪਰੋਕਤ ਸ਼ਬਦ-ਸਮੀਕਰਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ:

$$Mg + O_2 \rightarrow MgO$$
 (1.2)

ਤੀਰ ਦੇ ਨਿਸ਼ਾਨ ਦੇ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਦੇ ਹਰ ਤਰ੍ਹਾਂ ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਗਿਣਤੀ ਕਰਕੇ ਤੁਲਨਾ ਕਰੋ। ਕੀ ਦੋਵੇਂ ਪਾਸੇ ਹਰ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ? ਜੇਕਰ ਨਹੀਂ ਤਾਂ ਸਮੀਕਰਣ ਅਸੰਤੁਲਿਤ ਹੈ ਕਿਉਂਕਿ ਸਮੀਕਰਣ ਦੇ ਦੋਵੇਂ ਪਾਸਿਆਂ ਦਾ ਪੁੰਜ ਬਰਾਬਰ ਨਹੀਂ ਹੈ। ਕਿਸੇ ਕਿਰਿਆ ਦਾ ਅਜਿਹਾ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਕਰੰਗ ਜਾਂ ਪਿੰਜਰ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ (Skeletal Chemical Reaction) ਕਹਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਮੀਕਰਣ (1.2) ਮੈਗਨੀਸ਼ੀਅਮ ਦੀ ਹਵਾ ਵਿੱਚ ਜਲਣ ਦੀ ਕਰੰਗ ਸਮੀਕਰਣ ਹੈ।

1.1.2 ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦੀ ਮਹੱਤਤਾ

ਪੁੰਜ ਦੇ ਸੁਰੱਖਿਆ ਨਿਯਮ ਨੂੰ ਮੁੜ ਯਾਦ ਕਰੋ ਜਿਸ ਬਾਰੇ ਤੁਸੀਂ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਪੜ੍ਹ ਆਏ ਹੈ। ਇਸ ਨਿਯਮ ਅਨੁਸਾਰ ਕਿਸੇ ਵੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਿੱਚ ਨਾ ਤਾਂ ਪੁੰਜ ਨਿਰਮਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਨਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਹੈ ਕਿ ਕਿਸੇ ਵੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਿੱਚ ਉਪਜੇ ਉਤਪਾਦਾਂ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤ ਦਾ ਕੁੱਲ ਪੁੰਜ ਅਭਿਕਾਰਕਾਂ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਕੁੱਲ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੇ ਪਹਿਲਾਂ ਅਤੇ ਅੰਤ ਵਿੱਚ ਹਰ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਲਈ ਕਰੰਗ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ। ਕੀ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ (1.2) ਸੰਤੁਲਿਤ ਹੈ? ਆਓ, ਅਸੀਂ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਚਰਨਬੱਧ ਤਰੀਕੇ ਨਾਲ ਸੰਤੁਲਿਤ ਕਰਨਾ ਸਿੱਖੀਏ।

ਕਿਰਿਆ 1.3 ਦੀ ਸ਼ਬਦ-ਸਮੀਕਰਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਉਪਰੋਕਤ ਸ਼ਬਦ ਸਮੀਕਰਣ ਨੂੰ ਨਿਮਨਲਿਖਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਗਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$
 (1.3)

ਆਓ, ਸਮੀਕਰਣ (1.3) ਵਿੱਚ ਤੀਰ ਦੇ ਨਿਸ਼ਾਨ ਦੇ ਦੋਵੇਂ ਪਾਸਿਆਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਦੇ ਪ੍ਮਾਣੂਆਂ ਦੀ ਗਿਣਤੀ ਦੀ ਤੁਲਨਾ ਕਰੀਏ :

वंच	ਅਭਿਕਾਰਕਾਂ ਦੇ ਕੰਬਾਂ ਦੇ ਪ੍ਰਸਟ੍ਰਿਆਂ ਦੀ ਗਿਣ ਹੀ (ਸੰਬੇ ਪਾਸ਼)	ਉਤਵਾਦਾਂ ਦੇ ਤੱਕਾਂ ਦੇ ਪ੍ਰਮਾਣੂਆਂ ਦੀ ਗਿਣ ਹੀ (ਸੱਚੇ ਪਾਸ)
Zn	1	i
Н	2	2
s	1	1
0	4	4
	The second second	

ਸਮੀਕਰਣ (1.3) ਵਿੱਚ ਤੀਰ ਦੇ ਨਿਸ਼ਾਨ ਦੇ ਦੋਵੇਂ ਪਾਸਿਆਂ ਦੇ ਹਰ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ, ਇਸ ਲਈ ਇਹ ਇੱਕ ਸੰਤੂਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਹੈ।

ਆਓ, ਹੁਣ ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਸਮੀਕਰਣ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੀਏ :

$$Fe + H_0O \rightarrow Fe_3O_4 + H_0$$
 (1.4)

ਪੜਾਅ 1: ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨ ਲਈ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਹਰ ਇੱਕ ਸੂਤਰ ਦੇ ਆਲ੍ਹੇ ਦੁਆਲ੍ਹੇ ਇਕ ਬਾਕਸ ਬਣਾਓ। ਸਮੀਕਰਣ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਦੇ ਸਮੇਂ ਬਾਕਸ ਦੇ ਅੰਦਰ ਕੋਈ ਵੀ ਪਰਿਵਰਤਨ ਨਾ ਕਰੋ।

$$Fe + H_2O \rightarrow Fe_3O_4 + H_2$$
 (1.5)

ਪੜਾਅ 2: ਅਸੰਤੁਲਿਤ ਸਮੀਕਰਣ (1.5) ਵਿੱਚ ਮੌਜ਼ੂਦ ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਸੂਚੀ ਬਣਾਓ।

糖	ਅਕਿਕਾਰਕਾਂ ਦੇ ਤੱਤਾਂ ਦੇ ਪ੍ਰਮਾਵ੍ਹਾਆਂ ਦੀ ਗਿਣਤੀ (ਬੱਬੇ ਪਾਸੇ) (LHS)	ਉਕਮਾਦਾਂ ਦੇ ਕੰਗਾਂ ਦੇ ਮਹਮਾਣੂਆਂ ਦੀ ਗਿਣਕੀ (ਸੱਚੇ ਪਾਸੇ) (RHS)	
Fe	1	3	
н	2	2	
0	1	3 4	

ਪੜਾਅ 3: ਆਮ ਕਰਕੇ ਸੌਖ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਪਰਮਾਣੂਆਂ ਵਾਲ਼ੇ ਯੋਗਿਕ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸੰਤੁਲਿਤ ਕਰੋ ਭਾਵੇਂ ਕਿ ਉਹ ਅਭਿਕਾਰਕ ਹੋਵੇ ਜਾਂ ਉਤਪਾਦ। ਇਸ ਯੋਗਿਕ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਪਰਮਾਣੂਆਂ ਵਾਲੇ ਤੱਤ ਨੂੰ ਚੁਣੋ। ਇਸ ਆਧਾਰ ਤੇ ਅਸੀਂ Fe₃O₄ ਅਤੇ ਉਸਦੇ ਤੱਤ ਆਕਸੀਜਨ ਨੂੰ ਚੁਣਦੇ ਹਾਂ। ਸੱਜੇ ਪਾਸੇ ਆਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸੰਤੁਲਿਤ ਕਰਨ ਲਈ :

ਆਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂ	ਅਵਿਕਾਰਕਾਂ ਵਿੱਚ	ਉਤਪਾਦਾਂ ਵਿੱਚ
(i) ਆਰੰਭ ਵਿੱਚ	1 (H ₂ O ਵਿੱਚ)	4 (Fe₃O₄ਵਿੱਚ)
(ii) ਸੰਤੁਲਿਤ ਕਰਨ ਲਈ	1×4	

ਇਹ ਯਾਦ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਪਰਮਾਣੂ ਦੀ ਸੰਖਿਆ ਪੂਰੀ ਕਰਨ ਲਈ ਅਸੀਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਿੱਚ ਸ਼ਾਮਲ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਦੇ ਸੂਤਰਾਂ ਨੂੰ ਨਹੀਂ ਬਦਲ ਸਕਦੇ। ਉਦਾਹਰਣ ਵਜੋਂ, ਆਕਸਜੀਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਪੂਰੀ ਕਰਨ ਲਈ ਅਸੀਂ 4 ਗੁਣਾਂਕ ਲਗਾ ਕੇ $4~{
m H_2O}$ ਲਿਖ

ਸਕਦੇ ਹਾਂ ਪਰ H_2O_4 ਜਾਂ $(H_2O)_4$ ਨਹੀਂ। ਅੰਸ਼ਿਕ ਤੌਰ ਤੇ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਹੁਣ ਇਸ ਪ੍ਰਕਾਰ ਹੋਵੇਗੀ :

(ਅੰਸ਼ਿਕ ਰੂਪ ਵਿਚ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ)

ਪੜਾਅ 4: Fe ਅਤੇ H ਪਰਮਾਣੂ ਅਜੇ ਵੀ ਅੰਸ਼ਿਕ ਤੌਰ ਤੇ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਸੰਤੁਲਿਤ ਨਹੀਂ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਸੀ ਇੱਕ ਤੱਤ ਨੂੰ ਚੁਣ ਕੇ ਅੱਗੇ ਵਧਦੇ ਹਾਂ। ਹੁਣ ਅਸੀਂ ਅੰਸ਼ਿਕ ਤੌਰ ਤੇ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਦੇ ਹਾਂ :

ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਬਰਾਬਰ ਕਰਨ ਲਈ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਹਾਈਡਰੋਜਨ ਅਣੂ ਦੀ ਸੰਖਿਆ ਨੂੰ '4' ਕਰ ਦਿੰਦੇ ਹਾਂ :

ਹਾਈਡਰੋਜਨ ਦੇ ਪਰਮਾਣੂ	ਅਭਿਕਾਰਕਾਂ ਵਿੱਚ	ਉਤਪਾਦਾਂ ਵਿੱਚ	
(i) ਆਰੰਭ ਵਿੱਚ	8 (4H ₂ O ਵਿੱਚ)	2 (H ₂ ਵਿੱਚ)	
(ii) ਸੰਤੁਲਿਤ ਕਰਨ ਲਈ	8	2×4	

ਸਮੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗੀ :

(1.7) (ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ)

$$Fe + 4 H_2O \rightarrow Fe_3O_4 + 4H_2$$

ਪੜਾਅ 5: ਉੱਪਰ ਲਿਖੀ ਸਮੀਕਰਣ ਦੀ ਜਾਂਚ ਕਰੋਂ ਅਤੇ ਤੀਜਾ ਤੱਤ ਚੁਣ ਲਵੇਂ ਜੋ ਅਜੇ ਤੀਕ ਅਸੰਤੁਲਿਤ ਹੈ। ਤੁਹਾਨੂੰ ਪਤਾ ਲੱਗੇਗਾ ਕਿ ਇੱਕ ਤੱਤ ਕੇਵਲ ਲੋਹਾ (Fe) ਹੀ ਹੈ ਜਿਸ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨਾ ਬਾਕੀ ਹੈ।

ਲੋਹਾ (ਆਇਰਨ) ਦੇ ਪਰਮਾਣੂ	ਅਭਿਕਾਰਕਾਂ ਵਿੱਚ	ਉਤਪਾਦਾਂ ਵਿੱਚ
(i) ਆਰੰਭ ਵਿੱਚ	1 (Fe ਵਿੱਚ)	3 (Fe ₃ O ₃ ਵਿੱਚ)
(ii) ਸੰਤੁਲਨ ਵਾਸਤੇ	1×x3	3

Fe ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨ ਲਈ ਅਸੀਂ ਖੱਬੇ ਪਾਸੇ Fe ਦੇ ਤਿੰਨ ਪਰਮਾਣੂ ਲੈਂਦੇ ਹਾਂ।

$$3 \text{ Fe} + 4 \text{ H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4 \text{ H}_2 \tag{1.8}$$

ਪੜਾਅ 6: ਅੰਤ ਵਿੱਚ ਇਸ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਬਾਕਸ ਹਟਾ ਦਿੰਦੇ ਹਾਂ ਅਤੇ ਸੰਤੁਲਤਾ ਦੀ ਜਾਂਚ ਕਰਨ ਲਈ ਸਮੀਕਰਣ ਦੇ ਦੋਵੇਂ ਪਾਸੇ ਦੇ ਹਰ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਿਣਤੀ ਕਰਦੇ ਹਾਂ :

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 \operatorname{O} \rightarrow \operatorname{Fe_3O_4} + 4 \operatorname{H}_2$$
 (ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ)

ਸਮੀਕਰਣ (1.9) ਵਿੱਚ ਦੋਵੇਂ ਪਾਸਿਆਂ ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ। ਇਸ ਲਈ ਇਹ ਸਮੀਕਰਣ ਸੰਤੁਲਿਤ ਹੈ। ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਸੰਤੁਲਿਤ ਕਰਨ ਦੀ ਇਸ ਵਿਧੀ ਨੂੰ ਹਿੱਟ ਐਂਡ ਟ੍ਰਾਇਲ (Hit and trial) ਵਿਧੀ ਆਖਦੇ ਹਨ ਕਿਉਂਕਿ ਇਸ ਵਿਧੀ ਵਿੱਚ ਸਭ ਤੋਂ ਛੋਟੀ ਪੂਰਨ ਸੰਖਿਆ ਦੇ ਗੁਣਾਂਕ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਸਮੀਕਰਣਾਂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨ ਦਾ ਯਤਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪੜਾਅ 7: ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ ਦੇ ਸੰਕੇਤ ਲਿਖਣਾ: ਉਪਰੋਕਤ ਲਿਖੀ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ (1.9) ਦੀ ਧਿਆਨ ਪੂਰਵਕ ਜਾਂਚ ਕਰੋ। ਕੀ ਇਸ ਸਮੀਕਰਣ ਤੋਂ ਸਾਨੂੰ ਹਰ ਅਭਿਕਾਰਕ ਅਤੇ ਉਤਪਾਦ ਦੀ ਭੌਤਿਕ ਅਵਸਥਾ ਬਾਰੇ ਪਤਾ ਲਗਦਾ ਹੈ? ਇਸ ਸਮੀਕਰਣ ਤੋਂ ਉਹਨਾਂ ਦੀ ਭੌਤਿਕ ਅਵਸਥਾ ਬਾਰੇ ਹੁੰਦੀ।

ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਵਧੇਰੇ ਸੂਚਨਾਦਾਇਕ ਬਣਾਉਣ ਹਿੱਤ ਅਭਿਕਾਰਕਾਂ ਅਤੇ ਉਤਪਾਦਾਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਦੇ ਨਾਲ ਉਹਨਾਂ ਦੀ ਭੌਤਿਕ ਅਵਸਥਾ ਨੂੰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਭਿਕਾਰਕਾਂ ਅਤੇ ਉਤਪਾਦਾਂ ਦੀ ਗੈਸ, ਦ੍ਵ, ਜਲੀ ਅਤੇ ਠੋਸ ਅਵਸਥਾਵਾਂ ਨੂੰ ਲੜੀਵਾਰ (g), (l), (aq) ਅਤੇ (s) ਦੇ ਸੰਕੇਤਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਭਿਕਾਰਕ ਜਾਂ ਉਤਪਾਦ ਜਦੋਂ ਪਾਣੀ ਦੇ ਘੋਲ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਤਦ ਅਸੀਂ (aq) ਲਿਖਦੇ ਹਾਂ।

$$3\text{Fe(s)} + 4\text{H}_2\text{O(g)} \rightarrow \text{Fe}_3\text{O}_4(\text{s)} + 4\text{H}_2(\text{g})$$
 (1.10)

ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਹੈ ਕਿ ਸੈਕੇਤ (g) ਦੀ ਵਰਤੋਂ H₂O ਨਾਲ ਕੀਤੀ ਗਈ ਜੋ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇਸ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਿੱਚ ਪਾਣੀ ਭਾਫ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਗਿਆ ਹੈ।

ਆਮ ਕਰਕੇ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ ਨੂੰ ਹਰ ਇੱਕ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਵਿੱਚ ਸ਼ਾਮਲ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਜਦੋਂ ਤੱਕ ਇਹ ਕਰਨਾ ਜ਼ਰੂਰੀ ਨਾ ਹੋਵੇ।

ਕਦੇ-ਕਦੇ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੀਆਂ ਹਾਲਤਾਂ ਜਿਵੇਂ ਕਿ ਤਾਪ, ਦਬਾਓ, ਉੱਤਪ੍ਰੇਰਕ ਆਦਿ ਨੂੰ ਸਮੀਕਰਣ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਤੀਰ ਦੇ ਨਿਸ਼ਾਨ ਦੇ ਉੱਪਰ ਜਾਂ ਹੇਠਾਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ :

$$CO(g) + 2H_2(g) \xrightarrow{340 \text{ atm}} CH_3OH(l)$$
 (1.11)

$$6CO_2(aq) + 12H_2O(l)$$
 ਸੂਰਜੀ ਪ੍ਕਾਸ਼ $C_6H_{12}O_6(aq) + 6O_2(aq) + 6H_1C$ (1.12)

ਉਪਰੋਕਤ ਪੜਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੀ ਤੁਸੀਂ ਅਧਿਆਇ ਵਿੱਚ ਪਹਿਲਾਂ ਦਿੱਤੀ ਸਮੀਕਰਣ (1.2) ਨੂੰ ਸੰਤੁਲਿਤ ਕਰ ਸਕਦੇ ਹੋ?

ਪ੍ਰਸ਼ਨ

- ਹਵਾ ਵਿੱਚ ਜਲਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਮੈਗਨੀਸ਼ੀਅਮ ਰਿੱਬਨ ਨੂੰ ਸਾਫ਼ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- ਹੇਠ ਲਿਖੀਆਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਸੈਤੁਲਿਤ ਸਮੀਕਣਾਂ ਲਿਖੋ :
 - (i) ਹਾਈਡਰੋਜਨ + ਕਲੋਰੀਨ → ਹਾਈਡਰੋਜਨ ਕਲੋਰਾਈਡ
 - (ii) ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ→ਐਲੂਮੀਨਿਅਮ ਸਲਫੇਟ→ ਬੇਰੀਅਮ ਸਲਫੇਟ-ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ
 - (ii) ਸੋਡੀਅਮ + ਪਾਣੀ → ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ + ਹਾਈਡਰੋਜਨ
- ਨਿਮਨਲਿਖਿਤ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਲਈ ਸੈਕੇਤਾਂ ਸਹਿਤ ਸੈਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਲਿਖੋ:
 - ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਸੋਡੀਅਮ ਸਲਫੇਟ ਦੇ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਆਪਸ ਵਿੱਚ ਕਿਰਿਆ ਕਰਕੇ ਅਘੁਲ ਬੇਰੀਅਮ ਸਲਫੇਟ ਅਤੇ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡਾਂ ਦਾ ਘੋਲ਼ ਪੈਦਾ ਕਰਦੇ ਹਨ।
 - (ii) ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਦਾ ਪਾਣੀ ਵਿੱਚ ਘੋਲ਼ ਹਾਈਡਰੋਕਲੌਰਿਕ ਐਸਿਡ ਦੇ ਪਾਣੀ ਘੋਲ਼ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਪਾਣੀ ਵਿੱਚ ਘੋਲ਼ ਅਤੇ ਪਾਣੀ ਬਣਾਉਂਦੇ ਹਨ।

1.2 ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਕਿਸਮਾਂ (Types of Chemical Reactions)

ਅਸੀਂ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੌਰਾਨ ਕਿਸੇ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦੂਜੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਨਹੀਂ ਬਦਲਦੇ। ਨਾ ਹੀ, ਕੋਈ ਪਰਮਾਣੂ ਮਿਸ਼ਰਣ ਤੋਂ ਅਲੋਪ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਬਾਹਰੋਂ ਮਿਸ਼ਰਣ ਵਿੱਚ ਆਉਂਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਕਿਸੇ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੌਰਾਨ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਬੰਧਨਾਂ ਦੇ ਟੁੱਟਣ ਅਤੇ ਪੈਦਾ ਹੋਣ ਕਰਕੇ ਨਵੇਂ ਉਤਪਾਦ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਪੈਦਾ ਹੁੰਦੇ ਬੰਧਨਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਬਾਰੇ ਤੁਸੀਂ ਅਧਿਆਇ 3 ਅਤੇ 4 ਵਿੱਚ ਪੜ੍ਹੋਗੇ।

1.2.1 ਸੰਯੋਜਨ ਕਿਰਿਆ (Combination Reaction)

ਕਿਰਿਆ 1.4

- ਇੱਕ ਬੀਕਰ ਵਿੱਚ ਬੋੜ੍ਹਾ ਜਿਹਾ ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ ਜਾਂ ਅਣਬੁਝਿਆ ਚੂਨਾ ਲਓ।
- 🍍 ਇਸ ਵਿੱਚ ਹੌਲ਼ੀ-ਹੌਲ਼ੀ ਪਾਣੀ ਪਾਓ।
- 🌞 ਚਿੱਤਰ 1.3 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਬੀਕਰ ਨੂੰ ਛੂਹੋ।
- ਕੀ ਇਸ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਕੋਈ ਤਬਦੀਲੀ ਅਨੁਭਵ ਕਰਦੇ ਹੋ?

(1.13)

ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ ਪਾਣੀ ਨਾਲ ਤੇਜ਼ੀ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਬੁਝੇ ਚੂਨੇ (ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ) ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ ਅਤੇ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਪੈਦਾ ਕਰਦਾ ਹੈ।

$$CaO(s)$$
 + $H_2O(l) \rightarrow Ca(OH)_2(aq)$ (ਅਣ-ਬੁਝਿਆ ਚੂਨਾ) (ਬੁਝਿਆ ਚੂਨਾ)

ਚਿੱਤਰ 1.3 ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ ਦਾ ਪਾਣੀ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਬੁਝੇ ਚੂਨੇ ਦਾ ਉਤਪਾਦਨ

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਮਿਲ ਕੇ ਇਕੱਲਾ ਉਤਪਾਦ, ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਅਜਿਹੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਅਭਿਕਾਰਕ ਆਪਸ ਵਿੱਚ ਮਿਲ ਕੇ ਇਕੱਲਾ ਉਤਪਾਦ ਨਿਰਮਿਤ ਕਰਦੇ ਹਨ ਉਸ ਨੂੰ ਸੰਯੋਜਨ ਕਿਰਿਆ ਆਖਦੇ ਹਨ।

1919191919191919191919191919

ਉਪਰੋਕਤ ਦਿੱਤੀ 1.13 ਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਹੋਈ ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਦੇ ਪਾਣੀ ਵਿੱਚ ਮਿਸ਼ਰਣ ਨੂੰ ਦੀਵਾਰਾਂ ਨੂੰ ਸਫੈਦੀ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਨਾਲ ਧੀਮੀ ਗਤੀ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਦੀਵਾਰਾਂ ਉੱਪਰ ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ $CaCO_3$ ਦੀ ਪਤਲੀ ਪਰਤ ਬਣਾ ਦਿੰਦਾ ਹੈ। ਸਫੈਦੀ ਕਰਨ ਤੋਂ ਦੋ-ਤਿੰਨ ਦਿਨ ਪਿੱਛੋਂ ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਨਾਲ ਦੀਵਾਰਾਂ ਉੱਤੇ ਚਮਕ ਆ ਜਾਂਦੀ ਹੈ। ਇਹ ਜਾਨਣਾ ਰੋਚਕ ਹੈ ਕਿ ਸੰਗਮਰਮਰ ਦਾ ਰਸਾਇਣਿਕ ਸੂਤਰ ਵੀ $CaCO_3$ ਹੈ। $Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$ (1.14)

(ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ) (ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ)

ਆਓ, ਸੰਯੋਜਨ ਕਿਰਿਆ ਦੀਆਂ ਕੁੱਝ ਹੋਰ ਉਦਾਹਰਣ ਬਾਰੇ ਚਰਚਾ ਕਰੀਏ।

(i) ਕੋਲੇ ਦਾ ਜਲਣਾ

47

P.

 $C(s) + O_{o}(g) \rightarrow CO_{o}(g)$

(1.15)

(1.16)

ਸਰਲ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਜਦੋਂ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਵਸਤਾਂ (ਤੱਤ ਜਾਂ ਯੋਗਿਕ) ਆਪਸ ਵਿੱਚ ਮਿਲ ਕੇ ਇਕੱਲਾ ਉਤਪਾਦ ਪੈਦਾ ਕਰਦੇ ਹਨ ਤਾਂ ਅਜਿਹੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਨੂੰ ਸੰਯੋਜਨ ਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ।

ਕਿਰਿਆ 1.4 ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੀ ਅਨੁਭਵ ਕੀਤਾ ਕਿ ਵੱਧ ਮਾਤਰਾ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਪੈਂਦਾ ਹੋਈ ਸੀ। ਇਸ ਨਾਲ ਕਿਰਿਆ ਮਿਸ਼ਰਣ ਗਰਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿਸ ਰਸਾਇਣਕ ਕਿਰਿਆ ਵਿੱਚ ਉਤਪਾਦਾਂ ਦੇ ਉਤਪਤੀ ਦੇ ਨਾਲ ਨਾਲ ਤਾਪ ਊਰਜਾ ਵੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਉਸ ਨੂੰ ਤਾਪ ਨਿਕਾਸੀ ਰਸਾਇਣਕ ਕਿਰਿਆ (Exothermic chemical Reaction) ਆਖਦੇ ਹਨ। ਤਾਪ ਨਿਕਾਸੀ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਹੋਰ ਉਦਾਹਰਣਾਂ

(i) ਕੁਦਰਤੀ ਗੈਸ ਦਾ ਜਲਣਾ

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) + 3TV$$
 (1.17)

(ii) ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਸਾਹ ਕਿਰਿਆ ਤਾਪ ਨਿਕਾਸੀ ਕਿਰਿਆ ਹੈ।

ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜੀਵਤ ਰਹਿਣ ਲਈ ਸਾਨੂੰ ਊਰਜਾ ਦੀ ਲੋੜ ਹੈ। ਇਹ ਊਰਜਾ ਸਾਨੂੰ ਖਾਧੇ ਭੋਜਨ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਪਾਚਣ ਕਿਰਿਆ ਦੌਰਾਨ ਭੋਜਨ ਪੋਸ਼ਕ ਤੱਤਾਂ ਵਿੱਚ ਟੁੱਟ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਚਾਵਲ, ਆਲੂ ਅਤੇ ਬ੍ਰੈਂਡ ਵਿੱਚ ਕਾਰਬੋਹਾਈਡ੍ਰੇਟ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਾਰਬੋਹਾਈਡ੍ਰੇਟ ਟੁੱਟ ਕੇ ਗੁਲੂਕੋਜ਼ ਬਣਾਉਂਦੇ ਹਨ। ਸਾਡੇ ਸਰੀਰ ਦੇ ਸੈਲਾਂ ਵਿਚਲੀ ਆਕਸੀਜਨ ਇਸ ਗੁਲੂਕੋਜ਼ ਨਾਲ ਮਿਲਦੀ ਹੈ ਅਤੇ ਊਰਜਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਕਿਰਿਆ ਦਾ ਵਿਸ਼ੇਸ਼ ਨਾਂ ਸਾਹ ਕਿਰਿਆ ਹੈ। ਇਸ ਵਿਧੀ ਬਾਰੇ ਤੁਸੀਂ ਛੇਵੇਂ ਅਧਿਆਇ ਵਿੱਚ ਪੜ੍ਹੋਗੇ।

$C_6H_{12}O_6(aq) + 6O_2(aq) \rightarrow 8CO_2(g) + 6H_2O(l) + \frac{Q}{2}oH^2$ (1.18)

(iii) ਬਨਸਪਤੀ ਪਦਾਰਥਾਂ ਦੀ ਅਪਘਟਨ ਕਿਰਿਆ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕੰਪੋਸਟ (Compost) ਦਾ ਬਣਨਾਂ ਵੀ ਤਾਪ ਨਿਕਾਸੀ ਕਿਰਿਆ ਦੀ ਹੀ ਉਦਾਹਰਣ ਹੈ।

ਕਿਰਿਆ 1.1 ਵਿੱਚ ਹੁੰਦੀ ਕਿਰਿਆ ਦੀ ਕਿਸਮ ਦੀ ਪਛਾਣ ਕਰੋ ਜਿਸ ਵਿੱਚ ਇੱਕ ਉਤਪਾਦ ਪੈਦਾ ਹੋਣ ਦੇ ਨਾਲ ਨਾਲ ਤਾਪ ਉਰਜਾ ਵੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।

1.2.2 ਅਪਘਟਨ ਕਿਰਿਆ (Decomposition Reaction)

- ਇੱਕ ਸੁੱਕੀ ਸਖ਼ਤ ਉਬਾਲ਼ ਪਰਖਨਲੀ ਵਿੱਚ ਲਗਭਗ 2 ਗਰਾਮ
- 🍍 ਫੈਰਸ ਸਲਫੇਟ ਦੇ ਕਰਿਸਟਲ ਲਓ।
- 🍙 ਫੈਰਸ ਸਲਫੇਟ ਦੇ ਕਰਿਸਟਲਾਂ ਦਾ ਰੰਗ ਨੌਟ ਕਰੋ।
- ਪਰਖ ਨਲੀ ਨੂੰ ਬਰਨਰ ਜਾਂ ਸਪਿਰਟ ਲੈਂਪ ਉੱਤੇ ਗਰਮ ਕਰੋ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 1. 4 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।
- 🍙 ਗਰਮ ਕਰਨ ਉਪਰੰਤ ਕਰਿਸਟਲਾਂ ਦਾ ਰੰਗ ਵੇਖੋ।

ਫੈਰਸ ਸਲਫੇਟ ਦੇ ਕਰਿਸਟਲ ਰੱਖਣ ਵਾਲੀ ਪਰਖ ਨਲੀ ਸਹੀ ਢੰਗ ਨਾਲ ਗਰਮ ਕਰਨਾ ਅਤੇ ਪੈਦਾ ਹੋਈ ਗੈਸ ਦੀ ਗੰਧ ਲੈਣਾ।

ਕੀ ਤੁਸੀਂ ਨੋਟ ਕੀਤਾ ਹੈ ਕਿ ਫੈਰਸ ਸਲਫੋਟ ਕਰਿਸਟਲਾਂ ਦਾ ਹਰਾ ਰੰਗ ਬਦਲ ਗਿਆ ਹੈ। ਸਲਫਰ ਜਲਾ ਕੇ ਪੈਦਾ ਹੋਣ ਵਾਲੀ ਗੈਸ ਵਰਗੀ ਵਿਸ਼ੇਸ਼ ਗੈਂਧ ਵੀ ਤੁਸੀਂ ਮਹਿਸੂਸ ਕਰ ਸਕਦੇ ਹੈ।

$$2 \text{FeSO}_4(s) \xrightarrow{\text{gigh adar}} \text{Fe}_2 \text{O}_3(s) + \text{SO}_2(g) + \text{SO}_3(g)$$
 (1.19)
(ਫੈਰਿਕ ਆਕਸਾਈਡ)

ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਇਕੱਲਾ ਅਭਿਕਾਰਕ ਵਿਘਟਤ ਹੋ ਕੇ ਸਾਧਾਰਨ ਉਤਪਾਦ ਬਣਾਉਂਦਾ ਹੈ।ਇਹ ਇੱਕ <mark>ਅਪਘਟਨ</mark> ਕਿਰਿਆ ਹੈ। ਜਦੋਂ ਫੈਰਸ ਸਲਫੇਟ ਦੇ ਕਰਿਸਟਲਾਂ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਪਾਣੀ ਗੁਆ ਦਿੰਦੇ ਹਨ ਅਤੇ ਕਰਿਸਟਲਾਂ ਦਾ ਰੈਗ ਬਦਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਹੋਰ ਗਰਮ ਕਰਨ ਨਾਲ ਇਹ ਟੁੱਟ ਕੇ ਫੈਰਿਕ ਆਕਸਾਈਡ $(\mathrm{Fe}_2\mathrm{O}_3)$, ਸਲਫਰ ਡਾਈਆਕਸਾਈਡ (SO_2) ਅਤੇ ਸਲਫਰ ਟਰਾਈਆਕਸਾਈਡ (SO ੂ) ਪੈਦਾ ਕਰਦੇ ਹਨ। ਫੈਰਿਕ ਆਕਸਾਈਡ ਇੱਕ ਠੋਸ ਹੈ ਜਦੋਂ ਕਿ ਸਲਫਰ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਸਲਫਰ ਟ੍ਰਾਈਆਕਸਾਈਡ ਗੈਸਾਂ ਹਨ।

ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਗਰਮ ਹੋਣ ਤੇ ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਵਿੱਚ ਟੁੱਟਣਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਅਪਘਟਨ ਕਿਰਿਆ ਹੈ ਜਿਸ ਦੀ ਵਰਤੋਂ ਬਹੁਤ ਸਾਰੇ ਉਦਯੋਗਾਂ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ ਨੂੰ ਚੂਨਾ ਜਾਂ ਅਣ-ਬੁਝਿਆ ਚੂਨਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਬਹੁਤ ਸਾਰੇ ਉਪਯੋਗ ਹਨ, ਉਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ ਕਿ ਇਸ ਨੂੰ ਸੀਮਿੰਟ ਬਣਾਉਣ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਅਪਘਟਨ ਕਿਰਿਆ ਗਰਮ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਉਸ ਨੂੰ ਤਾਪ-ਅਪਘਟਨ ਕਿਰਿਆ ਆਖਦੇ ਹਨ। (1.20)

ਕਿਰਿਆ 1.6

ਤਾਪ-ਅਪਘਟਨ ਕਿਰਿਆ ਦੀ ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਕਿਰਿਆ 1.6 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

- 🏮 ਇੱਕ ਉਬਲਣ ਨਲੀ ਵਿੱਚ ਲਗਭਗ 2 ਗਰਾਮ ਲੈੱਡ ਨਾਈਟਰੇਟ ਪਾਉਤਰ ਲਓ।
- ਉਬਲਣ ਨਲੀ ਨੂੰ ਪਰਖ ਨਲੀ ਹੋਲਡਰ ਜਾਂ ਚਿਮਟੀ ਨਾਲ ਪਕੜੋ ਅਤੇ ਇਸ ਨੂੰ ਲਾਟ ਉੱਤੇ ਗਰਮ ਕਰੋ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 1.5 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।
- ਤੁਸੀਂ ਕੀ ਵੇਖਦੋ ਹੋ? ਜੇਕਰ ਕੋਈ ਤਬਦੀਲੀ ਵਾਪਰੀ ਹੋਵੇ ਤਾਂ ਉਸ ਨੂੰ ਨੋਟ ਤੁਸੀਂ ਭੂਰੇ ਰੈਗ ਦਾ ਧੂੰਆਂ ਪਰਖਨਲੀ ਦੇ ਮੂੰਹ ਤੋਂ ਬਾਹਰ ਨਿਕਲਦਾ ਵੇਖੋਗੇ। ਇਹ ਧੂੰਆਂ ਨਾਈਟਰੋਜਨ ਡਾਈਆਕਸਾਈਡ (NO₂) ਦਾ ਹੈ। ਵਾਪਰਦੀ ਕਿਰਿਆ ਇਸ ਤਰ੍ਹਾਂ ਹੈ :

2Pb(NO₂)₂(s) <u>атан ачалт</u>, 2PbO(s) + 4NO₂(g) + O₂(g) (1.21) (ਲੈੱਡਆਕਸਾਈਡ) (ਨਾਈਟਰੋਜਨ ਡਾਈਆਕਸਾਈਡ) (ਆਕਸੀਜਨ) ਆਓ, ਕਿਰਿਆ 1.7 ਅਤੇ 1.8 ਵਿੱਚ ਦਿੱਤੀਆਂ ਕੁੱਝ ਹੋਰ ਅਪਘਟਨ ਕਿਰਿਆਵਾਂ ਕਰੀਏ।

■ ਇੱਕ ਪਲਾਸਟਿਕ ਦਾ ਮੱਗ ਲਓ।ਇਸ ਦੇ ਬੱਲੇ ਵਿੱਚ ਦੋ ਛੇਕ ਕਰੋ ਅਤੇ ਇਹਨਾਂ ਵਿੱਚ ਦੋ ਰਬੜ ਦੇ

ਚਿੱਤਰ 1.5 ਲੈੱਡ ਨਾਈਟਰੇਟ ਨੂੰ ਗਰਮ ਕਰਨਾ ਅਤੇ ਨਾਈਟਰੋਜਨ ਡਾਈਆਕਸਾਈਡ ਦਾ ਬਾਹਰ ਨਿਕਲਨਾ।

ਕਿਰਿਆ 1.7

ਡਾਟ ਲਗਾਓ। ਇਹਨਾਂ ਰਬੜ ਦੇ ਡਾਟਾਂ ਵਿੱਚ ਕਾਰਬਨ (ਗ੍ਰੇਫਾਈਟ) ਦੇ ਇਲੈੱਕਟਰੋਡ ਫਿੱਟ ਕਰੋ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 1.6 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

- ਇਹਨਾਂ ਇਲੈੱਕਟਰੋਡਾਂ ਨੂੰ 6 ਵੋਲਟ ਦੀ ਬੈਟਰੀ ਨਾਲ ਜੋੜੋਂ।
- ਮੱਗ ਵਿੱਚ ਪਾਣੀ ਪਾਓ ਤਾਂ ਜੋ ਇਲੈੱਕਟਰੋਡ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬ ਜਾਣ। ਪਾਣੀ ਵਿੱਚ ਕੁੱਝ ਤੁਪਕੇ ਪਤਲੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੇ ਪਾਓ।
- ਪਾਣੀ ਨਾਲ ਭਗੇਆਂ ਦੋ ਪਰਖ ਨਲੀਆਂ ਲਓ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਦੋਵਾਂ ਕਾਰਬਨ(ਗ੍ਰੇਛਾਈਟ) ਇਲੈੱਕਟਰੋਡਾਂ ਉੱਤੇ ਉਲਟਾ ਖੜਾ ਕਰੋ।
- ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਚਲਾ ਦਿਓ ਅਤੇ ਉਪਕਰਣ ਨੂੰ ਬਿਨਾਂ ਛੇੜੇ ਕੁੱਝ ਸਮੇਂ ਲਈ ਪਿਆ ਰਹਿਣ ਦਿਓ।
- ਤੁਸੀਂ ਦੋਵੇਂ ਇਲੈੱਕਟਰੋਡਾਂ ਉੱਤੇ ਬੁਲਬੁਲੇ ਬਣਦੇ ਵੇਖੋਗੇ।ਇਹ ਥੁਲਬੁਲੇ ਪਰਖ ਨਲੀਆਂ ਵਿਚਲੇ ਪਾਣੀ ਨੂੰ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੰਦੇ ਹਨ।
- ਕੀ ਦੋਵੇਂ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ ਇਕੱਠੀ ਹੋਈ ਗੈਸ ਦੀ ਮਾਤਰਾ (ਆਇਤਨ) ਸਮਾਨ ਹੈ।
- ਜਦੋਂ ਪਰਖ ਨਲੀ ਵਿੱਚ ਸੰਬੰਧਿਤ ਗੈਸ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ਭਰ ਜਾਵੇ ਤਾਂ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਬੰਦ ਕਰਕੇ ਪਰਖ ਨਲੀਆਂ ਨੂੰ ਸਾਵਧਾਨੀ
- ਜਲ਼ਦੀ ਹੋਈ ਮੌਮਬੱਤੀ ਵਾਰੋ ਵਾਰੀ ਪਰਖ ਨਲੀਆਂ ਦੇ ਮੂੰਹ ਕੋਲ ਲੈ ਜਾ ਕੇ ਗੈਸਾਂ ਦੀ ਪਰਖ ਕਰੋ। ਸਾਵਧਾਨੀ : ਇਸ ਕਿਰਿਆ ਨੂੰ ਅਧਿਆਪਕ ਦੁਆਰਾ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ।
- ਹਰ ਸਥਿਤੀ ਵਿੱਚ ਕੀ ਹੁੰਦਾ ਹੈ?
- ਹਰ ਪਰਖਨਲੀ ਵਿੱਚ ਕਿਹੜੀ ਗੈਸ ਹੈ?

ਕਿਰਿਆ 1.8

- ਇੱਕ ਚੀਨੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ ਲਗਭਗ 2 ਗਰਾਮ ਸਿਲਵਰ ਕਲੋਰਾਈਡ ਲਓ।
- ਇਸ ਦਾ ਕੀ ਰੰਗ ਹੈ?
- ਇਸ ਚੀਨੀ ਦੀ ਪਿਆਲੀ ਨੂੰ ਕੁੱਝ ਸਮੇਂ ਲਈ ਸੂਰਜੀ ਪ੍ਕਾਸ਼ ਵਿੱਚ ਰੱਖੋ। (ਚਿੱਤਰ 1.7)
- ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਸਿਲਵਰ ਕਲੌਰਾਈਡ ਦਾ ਰੰਗ ਵੇਖੋ।

ਆਕਸੀਜਨ

ਪਰਖਨਲੀ

ਗੇਫਾਈਟ

ਇਲੈਕਟਰਡ

ਐਨੋਡ

ਸਵਿੱਚ

ਚਿੱਤਰ 1.6 ਪਾਣੀ ਦਾ ਬਿਜਲਈ ਅਪਘਟਨ

ਚਿੱਤਰ 1.7

ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਸਿਲਵਰ ਨਾਈਟਰੇਟ ਸਿਲਵਰ ਧਾਤ ਪੈਦਾ ਕਰਦੀ ਹੈ ਅਤੇ ਰੰਗ ਧੁੰਏ ਰੰਗਾ ਹੋ ਜਾਂਦਾ ਹੈ।

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਚਿੱਟਾ ਸਿਲਵਰ ਕਲੋਰਾਈਡ ਸਲੇਟੀ ਰੰਗਾ (ਗਰੇ) ਹੋ ਗਿਆ ਹੈ। ਅਜਿਹਾ ਸਿਲਵਰ ਕਲੋਰਾਈਡ ਦੇ ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਸਿਲਵਰ (ਚਾਂਦੀ) ਅਤੇ ਕਲੋਰੀਨ ਵਿੱਚ ਅਪਘਟਨ ਕਰਕੇ ਹੋਇਆ ਹੈ।

ਸਿਲਵਰ ਬਰੋਮਾਈਡ ਵੀ ਇਸੇ ਤਰ੍ਹਾਂ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। 2AgBr(s)-ਸੂਰਜ ਦਾ ਪ੍ਰਕਾਸ਼

(1.22)

ਪਲਾਸਟਿਕ ਮੱਗ

ਹਾਈਡਰੋਜਨ

ਪਾਣੀ

ਪਾਣੀ

वैषेड

ਰਬੜ ਡਾਟ

ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਅਪਘਟਨ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਅਭਿਕਾਰਕਾਂ ਨੂੰ ਤੋੜਨ ਲਈ ਤਾਪ, ਪ੍ਰਕਾਸ਼ ਜਾਂ ਬਿਜਲਈ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਉਹ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਸੋਖ਼ਿਤ ਹੁੰਦੀ ਹੈ ਉਹਨਾਂ ਨੂੰ ਤਾਪ ਸੋਖੀ (Endthermic Reaction) ਕਿਰਿਆਵਾਂ ਕਹਿੰਦੇ ਹਨ।

ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੋ।

ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਲਗਭਗ 2 ਗਰਾਮ ਬੇਰੀਅਮ ਕਲੌਰਾਈਡ $(\mathrm{BaCl}_{\mathfrak{p}})$ ਲਓ। ਇਸ ਵਿੱਚ ਇੱਕ ਗਰਾਮ ਅਮੋਨੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ $\mathrm{NH}_{\mathfrak{p}}\mathrm{OH}$ ਪਾਓ ਅਤੇ ਕੱਚ ਦੀ ਛੜ ਨਾਲ ਇਹਨਾਂ ਨੂੰ ਮਿਲਾਓ। ਪਰਖ ਨਲੀ ਦੇ ਆਧਾਰ ਨੂੰ ਆਪਣੀ ਹਥੇਲੀ ਨਾਲ ਛੂਹੋ। ਤੁਸੀਂ ਕੀ ਅਨੁਭਵ ਕਰਦੇ ਹੋ? ਕੀ ਇਹ ਕਿਰਿਆ ਤਾਪ-ਨਿਕਾਸੀ ਹੈ ਜਾਂ ਤਾਪ-ਸੋਖੀ?

प्रप्तित

- ਕਿਸੇ ਵਸਤੂ 'X' ਦਾ ਘੋਲ ਸਫੈਦੀ ਕਰਨ ਲਈ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
 - (i) ਵਸਤੂ 'X' ਦਾ ਨਾਂ ਅਤੇ ਉਸ ਦਾ ਸੂਤਰ ਲਿਖੋ।
 - (ii) ਉਪਰੋਕਤ (i) ਵਿੱਚ ਲਿਖੀ ਵਸਤੂ 'X' ਦੀ ਪਾਣੀ ਨਾਲ ਹੁੰਦੀ ਕਿਰਿਆ ਲਿਖੋ।
- ਕਿਰਿਆ 1.7 ਵਿੱਚ ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਇਕੱਠੀ ਹੋਈ ਗੈਸ ਦੀ ਮਾਤਰਾ ਦੂਜੀ ਨਾਲੋਂ ਦੁੱਗਣੀ ਕਿਉਂ ਹੁੰਦੀ ਹੈ? ਉਸ ਗੈਸ ਦਾ ਨਾਂ ਦੱਸੋ।

1.2.3 ਵਿਸਥਾਪਨ ਕਿਰਿਆ (Displacement Reaction)

ਕਿਰਿਆ 1.9

- ਲੋਹੇ ਦੀਆਂ ਤਿੰਨ ਮੇਖਾਂ (ਕਿੱਲਾਂ) ਲਓ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਰੇਗਮਾਰ ਨਾਲ ਰਗੜ ਕੇ ਸਾਫ ਕਰੋ।
- ਦੋ ਪਰਖ ਨਲੀਆਂ ਲਓ ਅਤੇ ਉਹਨਾਂ ਉੱਤੇ (A) ਅਤੇ (B)
 ਦੇ ਚਿੰਨ੍ਹ ਲਗਾਓ। ਹਰ ਪਰਖ ਨਲੀ ਵਿੱਚ 10 ਮਿਲੀਲਿਟਰ ਕਾਪਰ ਸਲਫੇਟ ਦਾ ਘੋਲ ਪਾਓ।
- ਦੇ ਮੇਖਾਂ ਨੂੰ ਧਾਗੇ ਬੈਨੋ ਅਤੇ ਧਿਆਨ ਪੂਰਵਕ ਉਹਨਾਂ ਨੂੰ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਾਲੀ ਪਰਖ ਨਲੀ B ਵਿੱਚ ਲਗਭਗ 20 ਮਿੰਟ ਲਈ ਡੁਬੋ ਦਿਓ (ਚਿੱਤਰ 1.8 a) ਇੱਕ ਮੇਖ ਨੂੰ ਤੁਲਨਾ ਕਰਨ ਲਈ ਵੱਖ ਰੱਖੋ।
- 20 ਮਿੰਟ ਪਿੱਛੋਂ ਮੇਖਾਂ ਨੂੰ ਕਾਪਰ ਸਲਫੇਟ ਵਿੱਚੋਂ ਬਾਹਰ ਕੱਢ ਲਓ।
- ਪਰਖ ਨਲੀ (A) ਅਤੇ (B) ਵਿੱਚ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਨੀਲੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਦੀ ਤੁਲਨਾ ਕਰੋ (ਚਿੱਤਰ 1.8 b)।
- ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਡੁਬੋ ਕੇ ਰੱਖੀਆਂ ਮੇਖਾਂ ਦੇ ਰੰਗ ਦੀ ਤੁਲਨਾ ਬਾਹਰ ਰੱਖੀ ਮੇਖ ਨਾਲ ਕਰੋ (ਚਿੱਤਰ 1.8 b)।

ਚਿੱਤਰ 1.8 (a) ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਡੁੱਬੀਆਂ ਲੌਹੇ ਦੀਆਂ ਮੇਖਾਂ

ਚਿੱਤਰ 1.8 (b) ਲੋਹੇ ਦੀਆਂ ਮੇਖਾਂ ਅਤੇ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ਼ ਦੀ ਪ੍ਯੋਗ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਪ੍ਯੋਗ ਤੋਂ ਬਾਅਦ ਦੀ ਤੁਲਨਾ। ਮੇਖਾਂ ਦਾ ਰੰਗ ਭੂਰਾ ਕਿਉਂ ਹੋ ਗਿਆ ਅਤੇ ਕਾਪਰ ਸਲਫੇਟ ਘੋਲ ਦਾ ਰੰਗ ਕਿਉਂ ਮੱਧਮ ਪੈ ਗਿਆ?

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਹੋਈ :

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਆਇਰਨ (ਲੋਹੇ) ਨੇ ਇੱਕ ਹੋਰ ਤੱਤ ਕਾਪਰ ਨੂੰ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਤੋਂ ਹਟਾ ਦਿੱਤਾ ਜਾਂ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੱਤਾ। ਇਸ ਕਿਰਿਆ ਨੂੰ **ਵਿਸਥਾਪਨ ਕਿਰਿਆ** ਕਹਿੰਦੇ ਹਨ।

ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਦੇ ਕੁੱਝ ਹੋਰ ਉਦਾਹਰਣ ਹਨ :

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$
 (1.25)

ਕਾਪਰ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਜਿੰਕ ਅਤੇ ਲੈੱਡ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਤੱਤ ਹਨ। ਇਹ ਕਾਪਰ ਨੂੰ ਉਸ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚੋਂ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 1.9 ਬੇਰੀਅਮ ਸਲਫੇਟ ਅਤੇ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੀ ਉਤਪਤੀ

1.2.4 ਦੂਹਰਾ ਵਿਸਥਾਪਨ ਪ੍ਰਤਿਕਿਰਿਆ (Double Displacement Reaction)

ਕਿਰਿਆ 1.10

- ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਲਗਭਗ 3 ਮਿਲੀਲਿਟਰ ਸੋਡੀਅਮ ਸਲਫੇਟ ਦਾ ਘੋਲ ਲਓ।
- ਇੱਕ ਹੋਰ ਪਰਖ ਨਲੀ ਵਿੱਚ ਲਗਭਗ 3 ਮਿਲੀਲਿਟਰ ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਘੋਲ਼ ਲਓ।
- ਦੋਵੇਂ ਘੋਲ਼ਾਂ ਨੂੰ ਮਿਲਾ ਦਿਓ (ਚਿੱਤਰ 1.9)।
- ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ?

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਚਿੱਟੇ ਰੰਗ ਦਾ ਇੱਕ ਪਦਾਰਥ ਪੈਦਾ ਹੋ ਗਿਆ ਹੈ ਜੋ ਪਾਣੀ ਵਿੱਚ ਅਘੁਲ ਹੈ। ਇਸ ਉਪਜੀ ਅਤੇ ਅਘੁਲ ਪਦਾਰਥ ਨੂੰ ਅਵਖੇਪ (Precipitate) ਆਖਦੇ ਹਨ। ਉਹ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਅਵਖੇਪ ਪੈਦਾ ਹੁੰਦਾ ਹੈ ਉਸ ਨੂੰ **ਅਵਖੇਪਨ ਕਿਰਿਆ** ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਬੇਰੀਅਮ ਸਲਫੇਟ ਦਾ ਚਿੱਟਾ ਅਵਖੇਪ Ba²⁺ ਅਤੇ SO₄² ਦੀ ਆਪਸੀ ਕਿਰਿਆ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਹੋਰ ਉਤਪਾਦ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਵੀ ਬਣਦਾ ਜਿਹੜਾ ਕਿ ਘੋਲ਼ ਵਿੱਚ ਹੀ ਰਹਿੰਦਾ ਹੈ। ਉਹ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਅਭਿਕਾਰਕਾਂ ਦੇ ਆਇਨਾਂ (ions) ਦੀ ਅਦਲਾ ਬਦਲੀ ਹੁੰਦੀ ਹੈ। ਉਸ ਨੂੰ ਦੂਹਰਾ ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਕਿਰਿਆ 1.2 ਨੂੰ ਮੁੜ ਯਾਦ ਕਰੋ ਜਿਸ ਵਿੱਚ ਤੁਸੀਂ ਲੈੱਡ ਨਾਈਟਰੇਟ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਆਇਓਡਾਈਡ ਦੇ ਘੋਲਾਂ ਨੂੰ ਮਿਲਾਇਆ ਸੀ।

- (i) ਅਵਖੇਪ ਕਿਸ ਰੰਗ ਦਾ ਸੀ? ਕੀ ਤੁਸੀਂ ਅਵਖੇਪਿਤ ਯੋਗਿਕ ਦਾ ਨਾਂ ਦੱਸ ਸਕਦੇ ਹੈ?
- (ii) ਇਸ ਕਿਰਿਆ ਲਈ ਸੈਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਨ ਲਿਖੋ।
- (iii) ਕੀ ਇਹ ਵੀ ਦੂਹਰਾ ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਹੈ?

1.2.5 ਆਕਸੀਕਰਨ ਅਤੇ ਲਘੂਕਰਨ (Oxidation & Reduction)

ਕਿਰਿਆ 1.11

- ਇੱਕ ਚਾਇਨਾ ਡਿਸ਼ ਵਿੱਚ ਲਗਭਗ । ਗਰਾਮ ਕਾਪਰ ਦਾ ਪਾਉਡਰ ਲੈ ਕੇ ਗਰਮ ਕਰੋ (ਚਿੱਤਰ 1.10)।
- ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੈ?

ਕਾਪਰ ਪਾਊਡਰ ਦੀ ਪਰਤ ਕਾਲੇ ਰੰਗੇ ਕਾਪਰ ਆਕਸਾਈਡ ਨਾਲ ਢਕੀ ਗਈ ਹੈ। ਇਹ ਕਾਲਾ ਪਦਾਰਥ ਕਿਉਂ ਬਣਿਆ।

ਇਹ ਕਾਪਰ ਨਾਲ ਆਕਸੀਜਨ ਦੇ ਮਿਲਣ ਨਾਲ ਕਾਪਰ ਆਕਸਾਈਡ ਬਣਨ ਕਰਕੇ ਬਣੀ ਹੈ।

$$2Cu + O_2 \xrightarrow{grq} 2CuO$$
 (1.28)

ਜੇਕਰ ਇਸ ਗਰਮ ਵਸਤੂ (CuO) ਉੱਤੋਂ ਹਾਈਡਰੋਜਨ ਗੈਸ ਲੰਘਾਈ ਜਾਂਦੀ ਹੈ ਤਾਂ ਉਪਰਲੀ ਕਾਲੀ ਪਰਤ ਭੂਰੇ ਰੰਗ ਦੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਕਿਉਂਕਿ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵਿਪਰੀਤ ਕਿਰਿਆ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਕਾਪਰ ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦਾ ਹੈ।

$$CuO + H_2 \xrightarrow{grU} Cu + H_2O$$
 (1.29)

ਜੇਕਰ ਕਿਰਿਆ ਦੌਰਾਨ ਕੋਈ ਵਸਤੂ ਆਕਸੀਜਨ ਪ੍ਰਾਪਤ ਕਰਦੀ ਹੈ ਤਾਂ ਇਹ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਉਸ ਦਾ ਆਕਸੀਕਰਨ ਹੋਇਆ ਹੈ। ਜੇਕਰ ਕੋਈ ਵਸਤੂ ਕਿਰਿਆ ਦੌਰਾਨ ਆਕਸੀਜਨ ਗੁਆ ਦਿੰਦੀ ਹੈ ਤਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਵਸਤੂ ਦਾ **ਲਘੂਕਰਨ** ਹੋਇਆ ਹੈ।

ਚਿੱਤਰ 1.10 ਕਾਪਰ ਦਾ ਕਾਪਰ ਆਕਸਾਈਡ ਵਿੱਚ ਆਕਸੀਕਰਨ

ਕਿਰਿਆ (1.29) ਵਿੱਚ ਕਾਪਰ (II) ਆਕਸਾਈਡ ਵਿੱਚੋਂ ਆਕਸੀਜਨ ਦੀ ਕਮੀ ਹੋਈ ਹੈ ਇਸ ਲਈ ਇਸ ਦਾ ਲਘੂਕਰਨ ਹੋਇਆ ਹੈ। ਹਾਈਡਰੋਜਨ ਨੇ ਆਕਸੀਜਨ ਪ੍ਰਾਪਤ ਕੀਤੀ ਹੈ ਇਸ ਲਈ ਇਹ ਆਕਸੀਕ੍ਰਿਤ ਹੋਈ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕਿਸੇ ਕਿਰਿਆ ਵਿੱਚ ਜਦੋਂ ਇੱਕ ਵਸਤੂ ਆਕਸੀਕਰਿਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਦੂਜੀ ਵਸਤੂ ਲਘੂਕਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਅਜਿਹੀਆਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਆਕਸੀਕਰਨ- ਲਘੂਕਰਨ ਕਿਰਿਆਵਾਂ ਜਾਂ ਰਿਡੌਕਸ-ਕਿਰਿਆਵਾਂ (Redox Reaction) ਆਖਦੇ ਹਨ।

ਰਿਡੌਕਸ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਕੁੱਝ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹਨ :

$$ZnO + C \rightarrow Zn + CO$$
 (1.31)

$$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$$
 (1.32)

ਕਿਰਿਆਵਾਂ (1.31) ਵਿੱਚ ਕਾਰਬਨ ਆਕਸੀਕਰਿਤ (Oxidised) ਹੋ ਕੇ CO ਵਿੱਚ ਅਤੇ ZnO ਲਘੂਕਰਿਤ (Reduced) ਹੋ ਕੇ Zn ਵਿੱਚ ਪਰਵਰਤਿਤ ਹੋ ਗਈ ਹੈ।

ਕਿਰਿਆ (1.32) ਵਿੱਚ HCl, ਆਕਸੀਕਰਿਤ ਹੋ ਕੇ $\rm H_2O$ ਅਤੇ $\rm Cl_2$, ਜਦੋਂ ਕਿ $\rm MnO_2$. ਲਘੂਕਰਿਤ ਹੋ ਕੇ $\rm MnCl_2$ ਬਣ ਗਿਆ ਹੈ।

ਉਪਰੋਕਤ ਉਦਾਹਰਣਾਂ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਜਦੋਂ ਕਿਸੇ ਕਿਰਿਆ ਵਿੱਚ ਕੋਈ ਵਸਤੂ ਆਕਸੀਜਨ ਪ੍ਰਾਪਤ ਕਰਦੀ ਹੈ ਜਾਂ ਹਾਈਡਰੋਜਨ ਗੁਆ ਦਿੰਦੀ ਹੈ ਤਾਂ ਉਹ ਆਕਸੀਕਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਜੇਕਰ ਕਿਸੇ ਕਿਰਿਆ ਵਿੱਚ ਕੋਈ ਵਸਤੂ ਆਕਸੀਜਨ ਗੁਆ ਦਿੰਦੀ ਹੈ ਜਾਂ ਹਾਈਡਰੋਜਨ ਗ੍ਰਹਿਣ ਕਰਦੀ ਹੈ ਤਾਂ ਉਹ ਲਘੂਕਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਕਿਰਿਆ1.1 ਨੂੰ ਮੁੜ ਚੇਤੇ ਕਰੋ ਜਿਸ ਵਿੱਚ ਮੈਗਨੀਸ਼ੀਅਮ ਦਾ ਰਿੱਬਨ ਤੇਜ਼ ਰੋਸ਼ਨੀ ਨਾਲ ਹਵਾ (ਆਕਸੀਜਨ) ਵਿੱਚ ਜਲਦਾ ਹੈ ਅਤੇ ਚਿੱਟੇ ਰੰਗ ਦੀ ਵਸਤੂ, ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ ਵਿੱਚ ਬਦਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਕੀ ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸੀਕਰਿਤ ਹੁੰਦਾ ਹੈ ਜਾਂ ਲਘੂਕਰਿਤ ਹੁੰਦਾ ਹੈ?

1.3 ਕੀ ਤੁਸੀਂ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਆਕਸੀਕਰਨ ਕਿਰਿਆਵਾਂ ਦਾ ਪ੍ਰਭਾਵ ਅਨੁਭਵ ਕੀਤਾ ਹੈ?

1.3.1 ਖੋਰਨ (Corrosion)

ਤੁਸੀਂ ਜ਼ਰੂਰ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਲੋਹੇ ਦੀਆਂ ਨਵੀਆਂ ਵਸਤਾਂ ਚਮਕੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਪਰ ਕੁੱਝ ਦਿਨਾਂ ਪਿੱਛੋਂ ਉਹਨਾਂ ਉੱਪਰ ਲਾਲ ਭੂਰੇ ਪਾਊਡਰ ਦੀ ਪਰਤ ਚੜ੍ਹ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਆਮ ਕਰਕੇ ਲੋਹੇ ਨੂੰ ਜੰਗ ਲੱਗਣਾ (Rusting) ਕਹਿੰਦੇ ਹਨ। ਕੁੱਝ ਹੋਰ ਧਾਤਾਂ ਵੀ ਇਸੇ ਤਰ੍ਹਾਂ ਆਪਣੀ ਚਮਕ ਗੁਆ ਲੈਂਦੀਆਂ ਹਨ। ਕੀ ਤੁਸੀਂ ਕਾਪਰ (ਤਾਂਬੇ) ਅਤੇ ਸਿਲਵਰ (ਚਾਂਦੀ) ਉੱਪਰ ਚੜ੍ਹੀ ਪਰਤ ਦੇ ਰੰਗ ਵੱਲ ਧਿਆਨ ਦਿੱਤਾ ਹੈ? ਜਦੋਂ ਕਿਸੇ ਧਾਤ ਉੱਤੇ ਆਲੇ-ਦੁਆਲੇ ਦੀਆਂ ਵਸਤਾਂ ਜਿਵੇਂ ਸਿੱਲ, ਤੇਜ਼ਾਬ, ਆਦਿ ਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ ਤਾਂ ਅਸੀਂ ਕਹਿੰਦੇ ਹਨ ਕਿ ਉਹ ਖੋਰਿਤ ਹੋ ਗਈ ਹੈ ਅਤੇ ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਖੋਰਨ ਆਖਦੇ ਹਨ। ਚਾਂਦੀ ਉੱਤੇ ਕਾਲੀ ਪਰਤ ਅਤੇ ਕਾਪਰ ਉੱਤੇ ਹਰੀ ਪਰਤ ਖੋਰਨ ਦੀਆਂ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹਨ।

ਖੋਰਨ ਦੇ ਕਾਰਨ ਕਾਰਾਂ ਦੇ ਢਾਂਚਿਆਂ, ਪੁਲ਼ਾਂ, ਲੋਹੇ ਦੀ ਰੇਲਿੰਗ, ਜਹਾਜਾਂ ਅਤੇ ਧਾਤਾਂ ਤੋਂ ਬਣੀਆਂ ਸਾਰੀਆਂ ਵਸਤਾਂ ਖਾਸ ਕਰਕੇ ਲੋਹੇ ਤੋਂ ਬਣੀਆਂ ਵਸਤਾਂ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਦੀ ਹੈ। ਲੋਹੇ ਦਾ ਖੋਰਨ ਇੱਕ ਗੰਭੀਰ ਸਮੱਸਿਆ ਹੈ। ਖੋਰਨ ਕਾਰਨ ਖਰਾਬ ਹੋਈਆਂ ਲੋਹੇ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਬਦਲਣ ਵਾਸਤੇ ਹਰ ਸਾਲ ਬਹੁਤ ਸਾਰਾ ਧਨ ਖਰਚਣਾ ਪੈਂਦਾ ਹੈ। ਅਧਿਆਇ 3 ਵਿੱਚ ਤੁਸੀਂ ਖੋਰਨ ਬਾਰੇ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋਗੇ।

1.3.2 ਦੂਰਗੰਧਤਾ (Rancidity)

ਕੀ ਤੁਸੀਂ ਕਦੇ ਚਰਬੀ/ਤੇਲ ਯੁਕਤ ਖਾਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਨੂੰ, ਜੋ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਰੱਖੇ ਗਏ ਹੋਣ ਨੂੰ ਚੱਖਿਆ ਜਾ ਸੁੰਘਿਆ ਹੈ?

ਜਦੋਂ ਚਰਬੀ ਅਤੇ ਤੇਲਾਂ ਦਾ ਆਕਸੀਕਰਨ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਦੁਰਗੰਧ ਦੇਣ ਲੱਗ ਪੈਂਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੀ ਗੋਧ ਅਤੇ ਸੁਆਦ ਬਦਲ ਜਾਂਦੇ ਹਨ। ਆਮ ਕਰਕੇ ਚਰਬੀ ਅਤੇ ਤੇਲ ਯੁਕਤ ਖਾਣ ਵਾਲ਼ੇ ਪਦਾਰਥਾਂ ਵਿੱਚ ਉਹ ਪਦਾਰਥ ਜੋ ਆਕਸੀਕਰਨ ਰੋਕਦੇ ਹਨ (ਪ੍ਰਤਿ ਆਕਸੀਕਾਰਕ) ਮਿਲਾ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਹਵਾ ਰੋਧਕ ਬਰਤਨਾਂ ਵਿੱਚ ਭੋਜਨ ਰੱਖਣ ਨਾਲ ਆਕਸੀਕਰਨ ਦੀ ਗਤੀ ਹੌਲ਼ੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਚਿਪਸ ਬਣਾਉਣ ਵਾਲੇ ਚਿਪਸ ਦੇ ਥੈਲੇ (ਲਿਫਾਫੇ) ਵਿੱਚੋਂ ਹਵਾ (ਆਕਸੀਜਨ) ਕੱਢ ਕੇ ਗੈਸ ਜਿਵੇਂ ਕਿ ਨਾਈਟ੍ਰੋਜਨ ਭਰ ਦਿੰਦੇ ਹਨ ਤਾਂ ਕਿ ਚਿਪਸ ਦਾ ਆਕਸੀਕਰਨ ਨਾ ਹੋ ਸਕੇ।

ਪ੍ਰਸ਼ਨ

- ਜਦੋਂ ਲੋਹੇ (IRON) ਆਇਰਨ ਦੀ ਮੇਖ ਨੂੰ ਕਾਪਰ ਸਲਫੋਟ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਡਬੋਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਘੋਲ਼ ਦਾ ਰੰਗ ਕਿਉਂ ਬਦਲ ਜਾਂਦਾ ਹੈ?
- ਕਿਰਿਆ 1.10 ਵਿੱਚ ਦਿੱਤੀ ਉਦਾਹਰਣ ਤੋਂ ਬਿਨਾਂ ਦੂਹਰੇ -ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਦੀ ਹੋਰ ਉਦਹਾਰਣ ਦਿਓ।
- ਹੇਠ ਲਿਖੀਆਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਆਕਸੀਕਰਿਤ ਅਤੇ ਲਘੂਕਰਿਤ ਹੋਈਆਂ ਵਸਤਾਂ ਦੀ ਪਛਾਣ ਕਰੋ :
 - (i) $4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$
 - (ii) $CuO(s) + H_o(g) \rightarrow Cu(s) + H_oO(l)$

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ਹੈ?

- 🔳 ਇੱਕ ਪੂਰਨ ਰਸਾਇਣਿਕ ਸਮੀਕਰਨ ਅਭਿਕਾਰਕਾਂ, ਉਤਪਾਦਾਂ ਉਪਜਾਂ ਅਤੇ ਉਹਨਾਂ ਦੀ ਭੌਤਿਕ ਅਵਸਥਾਂ ਨੂੰ ਸੰਕੇਤਕ ਤੌਰ ਤੇ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।
- ਰਸਾਇਣਿਕ ਅਭਿਕਾਰਕ ਨੂੰ ਸੰਤੁਲਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਦੀ ਸੰਖਿਆ ਸਮੀਕਰਨ ਦੇ ਕਾਰਕ ਅਤੇ ਉਤਪਾਦ ਪਾਸਿਆਂ ਤੇ ਸਮਾਨ ਹੋਵੇ। ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਦਾ ਹੀ ਜ਼ਰੂਰ ਸੰਤੁਲਿਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।
- ਸੰਯੋਜਨ ਕਿਰਿਆ ਵਿੱਚ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਪਦਾਰਥ ਮਿਲ ਕੇ ਨਵਾਂ ਪਦਾਰਥ ਬਣਾਉਂਦੇ ਹਨ।
- ਅਪਘਟਨ ਕਿਰਿਆ ਸੰਯੋਜਨ ਕਿਰਿਆ ਦੇ ਉਲਟ ਹੁੰਦੀ ਹੈ। ਅਪਘਟਨ ਕਿਰਿਆ ਵਿੱਚ ਇਕੱਲਾ ਪਦਾਰਥ ਅਪਘਟਿਤ ਹੋ ਕੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਵਸਤਾਂ ਬਣਾਉਂਦੀ ਹੈ।

- 😦 ਉਹ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਉਪਜਾਂ ਦੇ ਨਾਲ-ਨਾਲ ਤਾਪ ਉਰਜਾ ਵੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਉਸ ਨੂੰ ਤਾਪ ਨਿਕਾਸੀ ਕਿਰਿਆ ਆਖਦੇ ਹਨ।
- 😦 ਉਹ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਜਿਸ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਸੋਖ਼ਤ ਹੁੰਦੀ ਹੈ ਉਸ ਨੂੰ ਤਾਪ ਸੋਖੀ ਕਿਰਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- 😱 ਜਦੋਂ ਇੱਕ ਤੱਤ ਦੂਜੇ ਤੱਤ ਨੂੰ ਉਸ ਦੇ ਯੋਗਿਕ ਵਿੱਚੋਂ ਵਿਸਥਾਪਿਤ ਕਰ ਦੇਵੇ ਤਾਂ ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਵਾਪਰਦੀ ਹੈ।
- ਦੂਹਰੀ ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਵਿੱਚ ਦੋ ਵੱਖ-ਵੱਖ ਪਰਮਾਣੂਆਂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂਹਾਂ (ਆਇਨਾਂ) ਦੀ ਆਪਸ ਵਿੱਚ ਅਦਲਾ-ਬਦਲੀ ਹੁੰਦੀ ਹੈ।
- 👞 ਅਵਖੇਪਨ ਕਿਰਿਆਵਾਂ ਅਘੁਲ ਲੂਣ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ।
- 🔳 ਗੋਂਡਾਕਸ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਪਦਾਰਥ ਆਕਸੀਜਨ ਜਾਂ ਹਾਈਡਰੋਜਨ ਪ੍ਰਾਪਤ ਕਰਦੀਆਂ ਜਾਂ ਗੁਆਦੀਆਂ ਹਨ।
- 😱 ਆਕਸੀਜਨ ਦੀ ਪ੍ਰਾਪਤੀ ਜਾਂ ਹਾਈਡਰੋਜਨ ਦੀ ਹਾਨੀ ਨੂੰ ਆਕਸੀਕਰਨ ਕਹਿੰਦੇ ਹਨ।
- 😦 ਆਕਸੀਜਨ ਦੀ ਹਾਨੀ ਜਾਂ ਹਾਈਡਰੋਜਨ ਦੀ ਪ੍ਰਾਪਤੀ ਨੂੰ ਲਘੂਕਰਨ ਕਹਿੰਦੇ ਹਨ।

ਅਭਿਆਸ

ਹੇਠ ਲਿਖੀ ਗਈ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਕਿਹੜੇ ਕਥਨ ਗਲਤ ਹਨ :

$$2PbO(s) + C(s) \rightarrow 2Pb(s) + CO_2(g)$$

- (a) ਲੈੱਡ ਦਾ ਲਘੁਕਰਨ ਹੋ ਰਿਹਾ ਹੈ।
- (b) ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦਾ ਆਕਸੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ।
- (c) ਕਾਰਬਨ ਦਾ ਆਕਸੀਕਰਨ ਹੋ ਰਿਹਾ ਹੈ।
- (d) ਲੈੱਡ ਆਕਸਾਈਡ ਦਾ ਲਘੂਕਰਨ ਹੋ ਰਿਹਾ ਹੈ।
 - (i) (a) ਅਤੇ (b)
 - (ii) (a) ਅਤੇ (c)
 - (iii) (a), (b) ਅਤੇ (c)
 - (iv) ਸਾਰੇ
- 2. $Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe$

ਉਪਰੋਕਤ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਇੱਕ ਉਦਾਹਰਣ ਹੈ :

- (a) ਸੈਯੋਜਨ ਕਿਰਿਆ
- (b) ਦੂਹਰਾ ਵਿਸਥਾਪਨ ਕਿਰਿਆ
- (c) ਅਪਘਟਨ ਕਿਰਿਆ
- (d) ਵਿਸਥਾਪਨ ਕਿਰਿਆ

- 3. ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਪਤਲਾ ਹਾਈਡਰੋਕਲੋਰਿਕ ਐਸਿਡ ਲੋਹ ਚੂਰਨ ਉੱਤੇ ਪਾਇਆ ਜਾਂਦਾ ਹੈ? ਸਹੀ ਉੱਤਰ ਤੇ ਨਿਸ਼ਾਨ ਲਗਾਓ:
 - ਹਾਈਡਰੋਜਨ ਗੈਂਸ ਅਤੇ ਆਇਰਨ ਕਲੌਰਾਈਡ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। (a)
 - ਕਲੋਰੀਨ ਗੈਸ ਅਤੇ ਆਇਰਨ ਹਾਈਡਰੋਕਸਾਈਡ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। (b)
 - (c) ਕੋਈ ਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ।
 - (d) ਆਇਰਨ ਲੂਣ ਅਤੇ ਪਾਣੀ ਪੈਦਾ ਹੁੰਦੇ ਹਨ।
- 4. ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਕੀ ਹੁੰਦੀ ਹੈ? ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਸੰਤੁਲਿਤ ਕਿਉਂ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ?
- 5. ਹੇਠ ਲਿਖੇ ਕਥਨਾਂ ਨੂੰ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲੋਂ ਅਤੇ ਫਿਰ ਸੰਤੁਲਿਤ ਕਰੋ।
 - ਹਾਈਡਰੋਜਨ ਗੈਂਸ ਨਾਈਟਰੋਜਨ ਗੈਂਸ ਨਾਲ ਜੁੜ ਕੇ ਅਮੋਨੀਆ ਬਣਾਉਂਦੀ ਹੈ।
 - ਹਾਈਡਰੋਜਨ ਸਲਫਾਈਡ ਗੈਸ ਹਵਾ ਵਿੱਚ ਬਲ ਕੇ ਪਾਣੀ ਅਤੇ ਸਲਫਰ ਡਾਈਆਕਸਾਈਡ ਬਣਾਉਂਦੀ ਹੈ।
 - ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਐਲੂਮੀਨਿਅਮ ਸਲਫੋਟ ਦੇ ਘੋਲ਼ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ (b) (c) ਅਤੇ ਬੇਰੀਅਮ ਸਲਫੇਟ ਦਾ ਅਵਖੇਪ ਬਣਾਉਂਦੇ ਹਨ।
 - ਪੋਟਾਸ਼ੀਅਮ ਧਾਤ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਪੋਟਾਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਅਤੇ ਹਾਈਡਰੋਜਨ ਗੈਸ (d) ਪੈਦਾ ਕਰਦੀ ਹੈ।
- ਹੇਠ ਲਿਖੀਆਂ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰੋ :
 - $HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + H_3O$
 - $NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$ (b)
 - NaCl + AgNO₃ → AgCl + NaNO₃ (c)
 - $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + HCl$ (d)
 - 7. ਹੇਠ ਲਿਖੀਆਂ ਕਿਰਿਆਵਾਂ ਲਈ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਲਿਖੇ।
 - ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ + ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ → ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ + ਪਾਣੀ (a)
 - ਜ਼ਿੰਕ + ਸਿਲਵਰ ਨਾਈਟ੍ਰੇਟ → ਜ਼ਿੰਕ ਨਾਈਟ੍ਰੇਟ + ਸਿਲਵਰ (b)
 - ਐਲੂਮੀਨਿਅਮ + ਕਾਪਰ ਕਲੋਰਾਈਡ → ਐਲੂਮੀਨਿਅਮ ਕਲੋਰਾਈਡ + ਕਾਪਰ
 - ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ + ਪੈਟਾਸ਼ੀਅਮ ਸਲਫੋਟ ightarrow ਬੇਰੀਅਮ ਸਲਫੋਟ + ਪੈਟਾਸ਼ੀਅਮ ਕਲੋਰਾਈਡ (c)
 - 8. ਹੇਠ ਲਿਖਿਆਂ ਲਈ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਨਾਂ ਲਿਖੋ ਅਤੇ ਹਰ ਇੱਕ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੀ ਕਿਸਮ ਵੀ ਦੱਸ।
 - ਪੋਟਾਸ਼ੀਅਮ ਬਰੋਮਾਈਡ (aq) + ਬੇਰੀਅਮ ਆਇਓਡਾਈਡ (aq) ightarrow ਪੋਟਾਸ਼ੀਅਮ ਆਇਓਡਾਈਡ (aq) + ਬੇਰੀਅਮ ਬਰੋਮਾਈਡ (s) (a)
 - ਜ਼ਿੰਕ ਕਾਰਬੋਨੇਟ (s) -> ਜ਼ਿੰਕ ਆਕਸਾਈਡ (s) + ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ (g)
 - (b) ਹਾਈਡਰੇਜਨ (g) + ਕਲੋਰੀਨ (g) → ਹਾਈਡਰੇਜਨ ਕਲੋਰਾਈਡ (g)
 - ਮੈਗਨੀਸ਼ੀਅਮ (s) + ਹਾਈਡਰੋਕਲੋਰਿਕ ਐਸਿਡ (aq) → ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੌਰਾਈਡ (aq) + ਹਾਈਡਰੋਜਨ (g) (c)
 - 9. ਤਾਪ ਨਿਕਾਸੀ ਅਤੇ ਤਾਪ ਸੋਖੀ ਕਿਰਿਆ ਤੋਂ ਕੀ ਭਾਵ ਹੈ? ਉਦਾਹਰਣਾਂ ਦਿਓ।
 - 10. ਸਾਹ ਕਿਰਿਆ ਨੂੰ ਤਾਪ ਨਿਕਾਸੀ ਕਿਰਿਆ ਕਿਉਂ ਸਮਝਿਆ ਜਾਂਦਾ ਹੈ। ਵਿਆਖਿਆ ਕਰ।
 - 11. ਅਪਘਟਨ ਕਿਰਿਆਵਾਂ ਨੂੰ ਸੰਯੋਜਨ ਕਿਰਿਆਵਾਂ ਦਾ ਉਲਟ ਕਿਉਂ ਆਖਿਆ ਜਾਂਦਾ ਹੈ? ਇਹਨਾਂ ਕਿਰਿਆਵਾਂ ਲਈ ਸਮੀਕਰਣਾਂ ਲਿਖੋ।

- 12. ਉਹਨਾਂ ਅਪਘਟਨ ਕਿਰਿਆਵਾਂ ਦੀ ਇੱਕ ਇੱਕ ਸਮੀਕਰਨ ਲਿਖੇ ਜਿਨ੍ਹਾਂ ਨੂੰ ਤਾਪ, ਪ੍ਰਕਾਸ਼ ਅਤੇ ਬਿਜਲੀ ਦੇ ਰੂਪ ਵਿੱਚ ਉਰਜਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ।
- 13. ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਅਤੇ ਦੂਹਰਾ ਵਿਸਥਾਪਨ ਕਿਰਿਆ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ? ਇਹਨਾਂ ਪ੍ਤਿਕਿਰਿਆਵਾਂ ਦੀਆਂ
- 14. ਸਿਲਵਰ ਦੇ ਸ਼ੁੱਧੀਕਰਨ ਵਿੱਚ, ਸਿਲਵਰ ਨਾਈਟਰੇਟ ਦੇ ਘੋਲ ਤੋਂ ਸਿਲਵਰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਾਪਰ ਧਾਤ ਦੁਆਰਾ ਵਿਸਥਾਪਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨਾਲ ਸੰਬੰਧਿਤ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਲਿਖੋ।
- 15. ਅਵਖੇਪਨ ਪ੍ਰਤਿਕਿਰਿਆ ਤੋਂ ਤੁਹਾਡਾ ਕੀ ਤਾਵ ਹੈ? ਉਦਾਹਰਣ ਦੇ ਕੇ ਵਿਆਖਿਆ ਕਰੋ।
- 16. ਆਕਸੀਜਨ ਦੀ ਪ੍ਰਾਪਤੀ ਜਾਂ ਹਾਨੀ ਦੇ ਸਬੰਧ ਵਿੱਚ ਹੇਠ ਦਿੱਤੀਆਂ ਦੀ ਵਿਆਖਿਆ ਦੋ-ਦੋ ਉਦਹਾਰਣਾਂ ਦੇ ਕੇ
 - (a) ਆਕਸੀਕਰਨ
- (b) ਲਘੁਕਰਨ
- 17. ਇੱਕ ਭੂਰੇ (Brown) ਰੰਗ ਦਾ ਚਮਕਦਾਰ ਤੱਤ 'X' ਹਵਾ ਦੀ ਹੋਂਦ ਵਿੱਚ ਗਰਮ ਕਰਨ ਨਾਲ ਕਾਲੇ ਰੰਗ ਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਤੱਤ 'X' ਅਤੇ ਕਾਲੇ ਰੰਗ ਦੇ ਪੈਦਾ ਹੋਏ ਯੋਗਿਕ ਦਾ ਨਾਂ ਦੱਸ।
- 18. ਲੌਂਹੇ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਅਸੀਂ ਪੇਂਟ ਕਿਉਂ ਕਰਦੇ ਹਾਂ?
- 19. ਤੇਲ ਅਤੇ ਫੈਟ (Fat) ਰੱਖਣ ਵਾਲੀਆਂ ਭੋਜਨ ਵਸਤਾਂ ਨੂੰ ਨਾਈਟਰੋਜਨ ਨਾਲ ਕਿਉਂ ਪ੍ਰਭਾਵਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- 20. ਹੇਠ ਲਿਖੇ ਪਦਾਂ ਦੀ ਵਿਆਖਿਆ ਉਦਹਾਰਣ ਦੇ ਕੇ ਕਰੋ।
 - (a) ਖੋਰਨ
- (b) ਦੁਰਗੰਧਤਾ

ਸਮੁਹਿਕ ਕਿਰਿਆ

ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੋ :

ਚਾਰ ਬੀਕਰ ਲੈ ਕੇ ਉਹਨਾਂ ਉੱਪਰ A, B, C ਅਤੇ D ਦੇ ਚਿੰਨ੍ਹ ਲਗਾਓ।

And to the transfer of the tra

- 'A', 'B' ਅਤੇ 'C' ਬੀਕਰਾਂ ਵਿੱਚ 25 ਮਿਲੀਲਿਟਰ ਪਾਣੀ ਲਓ ਅਤੇ 'D' ਬੀਕਰ ਵਿੱਚ ਕਾਪਰ ਸਲਫੇਟ
- ਹਰ ਬੀਕਰ ਵਿਚਲੇ ਤਰਲ ਦਾ ਤਾਪਮਾਨ ਮਾਪ ਕੇ ਨੋਟ ਕਰੋ।

- ਬੀਕਰ 'A', 'B', 'C' ਅਤੇ 'D' ਵਿੱਚ ਦੇ ਚਪਟੇ ਚਮਚ (spatulas) ਕ੍ਰਮਵਾਰ ਪੋਟਾਸ਼ੀਅਮ ਸਲਫੇਟ, ਅਮੋਨੀਅਮ ਨਾਈਟਰੇਟ, ਅਜਲੀ ਕਾਪਰ ਸਲਫੇਟ ਅਤੇ ਲੋਹੇ ਦੀਆਂ ਕਾਤਰਾਂ ਪਾਓ ਅਤੇ ਹਿਲਾਓ।
- ਅੰਤ ਵਿੱਚ ਹਰ ਇੱਕ ਮਿਸ਼ਰਣ ਦਾ ਤਾਪਮਾਨ ਮਾਪੋ ਅਤੇ ਨੋਟ ਕਰੋ। ਪਤਾ ਕਰੋ ਕਿ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜੀਆਂ ਕਿਰਿਆਵਾਂ ਤਾਪ ਨਿਕਾਸੀ ਹਨ ਅਤੇ ਕਿਹੜੀਆਂ ਤਾਪਸੋਖੀ ਹਨ?

ਅਧਿਆਇ2

ਤੇਜ਼ਾਬ, ਖ਼ਾਰ ਅਤੇ ਲੂਣ

[Acids, Bases and Salts]

ਸੀਂ ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਸਿੱਖਿਆ ਹੈ ਕਿ ਭੋਜਨ ਦਾ ਖੱਟਾ ਜਾਂ ਕੌੜਾ ਸੁਆਦ ਭੌਜਨ ਵਿੱਚ ਲੜੀਵਾਰ ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਆਪਣੇ ਪਰਿਵਾਰ ਵਿੱਚ ਕੋਈ ਵਿਅਕਤੀ ਵਧੇਰੇ ਭੋਜਨ ਖਾਣ ਕਾਰਣ ਤੇਜ਼ਾਬਪੁਣੇ ਨਾਲ ਪੀੜਤ ਹੈ ਤਾਂ ਤੁਸੀਂ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸ ਨੂੰ ਇਲਾਜ ਵਜੋਂ ਸੁਝਾਓਗੇ– ਨਿੰਬੂ ਰਸ, ਸਿਰਕਾ ਜਾਂ ਮਿੱਠੇ ਸੋਡੇ ਦਾ ਘੋਲ?

ਇਲਾਜ ਦਸਦੇ ਸਮੇਂ ਤੁਸੀਂ ਕਿਸ ਗੁਣ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਿਆ? ਨਿਸਚੇ ਹੀ ਤੁਸੀਂ ਇਸ ਗਿਆਨ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਹੈ ਕਿ ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਇੱਕ ਦੂਜੇ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦੇ ਹਨ।

 ਯਾਦ ਕਰੋ ਕਿ ਅਸੀਂ ਕਿਵੇਂ ਸੁਆਦ ਲਏ ਬਿਨਾਂ ਹੀ ਖੱਟੀਆਂ ਅਤੇ ਕੌੜੀਆਂ ਵਸਤਾ ਦੀ ਪਰਖ ਕੀਤੀ ਬੀ।

ਤੁਸੀਂ ਪਹਿਲਾਂ ਹੀ ਜਾਣਦੇ ਹੋ ਕਿ ਤੇਜ਼ਾਬਾਂ ਦਾ ਸੁਆਦ ਖੱਟਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹ ਨੀਲੇ ਲਿਟਮਸ ਨੂੰ ਲਾਲ ਕਰ ਦਿੰਦੇ ਹਨ। ਜਦੋਂ ਕਿ ਖਾਰਾਂ ਦਾ ਸੁਆਦ ਕੌੜਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹ ਲਾਲ ਲਿਟਮਸ ਦਾ ਰੰਗ ਨੀਲਾ ਕਰ ਦਿੰਦੇ ਹਨ। ਲਿਟਮਸ ਇੱਕ ਕੁਦਰਤੀ ਸੂਚਕ (Indicator) ਹੈ ਅਤੇ ਹਲਦੀ ਇੱਕ ਹੋਰ ਨੀਲਾ ਕਰ ਦਿੰਦੇ ਹਨ। ਲਿਟਮਸ ਇੱਕ ਕੁਦਰਤੀ ਸੂਚਕ (Indicator) ਹੈ ਅਤੇ ਹਲਦੀ ਇੱਕ ਹੋਰ ਅਜਿਹਾ ਸੂਚਕ ਹੈ। ਕੀ ਤੁਸੀਂ ਕਦੇ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਕਿ ਸਫੈਦ ਕੱਪੜੇ ਤੇ ਲੱਗਿਆ ਕੜ੍ਹੀ ਦਾ ਅਜਿਹਾ ਸੂਚਕ ਹੈ। ਕੀ ਤੁਸੀਂ ਕਦੇ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਕਿ ਸਫੈਦ ਕੱਪੜੇ ਤੇ ਲੱਗਿਆ ਕੜ੍ਹੀ ਦਾ ਦਾਗ਼ ਲਾਲ-ਭੂਰਾ ਹੋ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਅਸੀਂ ਕੱਪੜੇ ਨੂੰ ਸਾਬਣ (ਜਿਸ ਦਾ ਸੁਭਾਅ ਖਾਰੀ ਹੁੰਦਾ ਹੈ) ਨਾਲ ਧੋਂਦੇ ਹਾਂ। ਪਰ ਕੱਪੜੇ ਨੂੰ ਵਧੇਰੇ ਪਾਣੀ ਨਾਲ ਧੋਣ ਨਾਲ ਉਹ ਫਿਰ ਪੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੀ ਪਰਖ ਕਰਨ ਲਈ ਸੰਸਲਿਸ਼ਟ ਸੂਚਕਾਂ ਜਿਵੇਂ ਕਿ ਮੀਬਾਇਲ ਆਰਿੰਜ ਅਤੇ ਫੀਨੋਲਫੈਬੈਲੀਨ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਬਾਰੇ, ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਕਿਵੇਂ ਇੱਕ ਦੂਜੇ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਸਮਾਪਤ ਕਰਦੇ ਹਨ ਅਤੇ ਬਹੁਤ ਸਾਰੀਆਂ ਰੌਚਕ ਵਸਤਾਂ ਜੋ ਅਸੀਂ ਆਪਣੇ ਹਰ ਰੋਜ਼ ਦੇ ਜੀਵਨ ਵਿੱਚ ਵਰਤਦੇ ਅਤੇ ਵੇਖਦੇ ਹਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ।

ਲਿਟਮਸ ਦਾ ਘੌਲ ਬੈਂਗਣੀ (Purple) ਰੇਗ ਦਾ ਹੁੰਦਾ ਹੈ। ਜਿਹੜਾ ਬੈਲੋਫਾਇਟਾ ਸਮੂਹ ਨਾਲ ਸੰਬੰਧਿਤ ਲਾਇਕਨ (lichen) ਪੈਂਦਿਆਂ ਤੋਂ ਕੇਂਢਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਜਿਸ ਦਾ ਉਪਯੋਗ ਸੂਚਕ ਵਜੋਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਲਿਟਮਸ ਦਾ ਘੌਲ ਜਦੋਂ ਨਾ ਤਾਂ ਤੇਜ਼ਾਬੀ ਅਤੇ ਨਾ ਹੀ ਖਾਰੀ ਹੋਵੇ ਤਾਂ ਇਹ ਬੈਂਗਣੀ ਰੇਗ ਦਾ ਹੁੰਦਾ ਹੈ। ਬਹੁਤ ਸਾਰੀਆਂ ਕੁਦਰਤੀ ਵਸਤੂਆਂ ਜਿਵੇਂ ਲਾਲ ਪੱਤਾ –ਗੋਭੀ, ਅਤੇ ਨਾ ਹੀ ਖਾਰੀ ਹੋਵੇ ਤਾਂ ਇਹ ਬੈਂਗਣੀ ਰੇਗ ਦਾ ਹੁੰਦਾ ਹੈ। ਬਹੁਤ ਸਾਰੀਆਂ ਕੁਦਰਤੀ ਵਸਤੂਆਂ ਜਿਵੇਂ ਲਾਲ ਪੱਤਾ –ਗੋਭੀ, ਹਲਦੀ, ਕੁੱਝ ਫੁੱਲਾਂ ਜਿਵੇਂ ਕਿ ਹਾਈਡਰੇਂਜੀਆ, ਪੇਟੂਨੀਆ ਅਤੇ ਜੇਰਾਨੀਅਮ ਦੀਆਂ ਰੇਗਦਾਰ ਪੱਤੀਆਂ ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਦੀ ਹੋਂਦ ਹਲਦੀ, ਕੁੱਝ ਫੁੱਲਾਂ ਜਿਵੇਂ ਕਿ ਹਾਈਡਰੇਂਜੀਆ, ਪੇਟੂਨੀਆ ਕਤੇ ਕਈ ਵਾਰੀ ਕੇਵਲ ਸੂਚਕ ਹੀ ਕਹਿੰਦੇ ਹਨ। ਬਾਰੇ ਸੂਚਤ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਤੇਜ਼ਾਬ-ਖਾਰ ਸੂਚਕ ਅਤੇ ਕਈ ਵਾਰੀ ਕੇਵਲ ਸੂਚਕ ਹੀ ਕਹਿੰਦੇ ਹਨ।

ਪਸ਼ਨ

ਤੁਹਾਨੂੰ ਤਿੰਨ ਪਰਖਨਲੀਆਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਵਿੱਚ ਕਸ਼ੀਦਣ ਪਾਣੀ ਅਤੇ 1. ਦੂਜੀਆਂ ਦੋ ਵਿੱਚੋਂ ਇੱਕ ਵਿੱਚ ਤੇਜ਼ਾਬੀ ਘੋਲ ਅਤੇ ਦੂਸਰੀ ਵਿੱਚ ਖ਼ਾਰੀ ਘੋਲ਼ ਹੈ। ਜੇਕਰ ਤੁਹਾਨੂੰ ਕੇਵਲ ਲਾਲ ਲਿਟਮਸ ਪੇਪਰ ਦਿੱਤਾ ਹੋਵੇ ਤਾਂ ਤੁਸੀਂ ਪਰਖ ਨਾਲੀਆਂ ਵਿੱਚਲੇ ਪਦਾਰਥਾਂ ਦੀ ਪਛਾਣ ਕਿਵੇਂ ਕਰੋਗੇ।

ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਖ਼ਾਰਾਂ ਦੀਆਂ ਰਸਾਇਣਿਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਸਮਝਣਾ 2.1 (Understanding the Chemical Properties of Acids and Bases) 2.1.1 ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ (Acids and Bases in the Laboratory)

ਕਿਰਿਆ 2.1

- ਵਿਗਿਆਨ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਤੋਂ ਹੇਠ ਲਿਖੇ ਨਮੂਨੇ ਇਕੱਠੇ ਕਰੋ : ਹਾਈਡਰੋਕਲੋਰਿਕ ਐਸਿਡ (HCI), ਸਲਵਿਊਰਿਕ ਐਸਿਡ (H₂SO₄), ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ (HNO₄), ਐਸੀਟਿਕ ਐਸਿਡ (СН СООН), ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ (NaOH), ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਂਡ (|Ca(OH)ू]) ਪੋਟਾਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ (КОН) ਮੈਗਨੀਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ([Mg(OH) ੂ)) ਅਤੇ ਅਮੋਨੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ (NH OH)।
- ਉਪਰੋਕਤ ਹਰ ਇੱਕ ਨਮੂਨੇ ਘੋਲ ਦੀ ਵਾਰੋ ਵਾਰੀ ਇੱਕ-ਇੱਕ ਬੂੰਦ ਵਾਚ ਗਲਾਸ ਤੇ ਪਾਓ ਅਤੇ ਸਾਰਨੀ 2.1 ਦੇ ਅਨੁਸਾਰ ਦਿੱਤੇ ਸੂਚਕਾਂ ਨਾਲ ਇਹਨਾਂ ਦੀ ਪਰਖ ਕਰੋ।
- ਲਾਲ ਲਿਟਮਸ, ਨੀਲੇ ਲਿਟਮਸ, ਫੀਨੋਲਫੈਥੈਲੀਨ ਅਤੇ ਮੀਥਾਇਲ ਔਰੇਂਜ ਦੇ ਘੋਲ੍ਹਾਂ ਨਾਲ ਲਏ ਗਏ ਹਰ ਨਮੂਨੇ ਦੇ ਘੌਲ਼ ਦੇ ਰੰਗ ਵਿੱਚ ਕੀ ਤਬਦੀਲੀ ਆਈ?
- ਆਪਣੇ ਪ੍ਰੇਖਣ ਸਾਰਨੀ 2.1 ਵਿੱਚ ਸਾਰਨੀ ਬੱਧ ਕਰੋ:

ਸਾਰਨੀ 2.1

ਰੰਗ ਵਿੱਚ ਹੋਏ ਪਰਿਵਰਤਨ ਦੁਆਰਾ ਇਹ ਸੂਚਕ ਦੱਸਦੇ ਹਨ ਕਿ ਕੋਈ ਵਸਤੂ ਤੇਜ਼ਾਬੀ ਹੈ ਜਾਂ ਖ਼ਾਰੀ। ਕੁੱਝ ਅਜਿਹੀਆਂ ਵਸਤਾਂ ਵੀ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਗੰਧ ਤੇਜ਼ਾਬੀ ਜਾਂ ਖ਼ਾਰੀ ਮਾਧਿਅਮ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀ ਹੈ। ਇਹਨਾਂ ਨੂੰ ਆਲਫੈਕਟਰੀ (Olfactory) ਜਾਂ ਸੁੰਘਣ ਸੂਚਕ ਆਖਦੇ ਹਨ। ਆਓ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਦੀ ਜਾਂਚ ਕਰੀਏ।

ਕਿਰਿਆ 2.2

- ਬਰੀਕ ਕੱਟੇ ਹੋਏ ਪਿਆਜ਼ ਅਤੇ ਸਾਫ਼ ਕਪੜੇ ਦੀਆਂ ਕੁੱਝ ਕਤਰਾਂ ਇੱਕ ਪਲਾਸਟਕ ਦੇ ਥੈਲੇ ਵਿੱਚ ਲਓ। ਥੈਲੇ ਦੇ ਮੂੰਹ ਨੂੰ ਕੱਸ ਕੇ ਬੰਨ ਦਿਓ ਅਤੇ ਪੂਰੀ ਰਾਤ ਫ਼ਿੱਜ ਵਿੱਚ ਰਹਿਣ ਦਿਓ। ਹੁਣ ਕਪੜੇ ਦੀਆਂ ਕੰਤਰਾਂ ਦਾ ਉਪਯੋਗ ਤੇਜ਼ਾਬ ਅਤੇ ਖਾਰ ਦੀ ਪਰਖ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਇਹਨਾਂ ਵਿੱਚੋਂ ਦੋ ਕਤਰਾਂ ਲਓ ਅਤੇ ਉਹਨਾਂ ਦੀ ਗੰਧ ਦੀ ਜਾਂਚ ਕਰੋ।
- ਇਹਨਾਂ ਨੂੰ ਸਾਫ਼ ਤਲ ਉੱਤੇ ਰੱਖ ਕੇ ਇੱਕ ਉੱਤੇ ਪਤਲੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਐਸਿਡ HCI ਦੇ ਘੋਲ਼ ਦੀਆਂ ਕੁੱਝ ਬੂੰਦਾ ਪਾਓ ਅਤੇ ਦੂਜੇ ਉੱਤੇ ਪਤਲੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ NaOH ਦੇ ਘੋਲ ਦੀਆਂ ਕੁੱਝ ਬੁੰਦਾਂ ਪਾਓ।
- ਦੋਹਾਂ ਕਤਰਾਂ ਨੂੰ ਪਾਣੀ ਨਾਲ ਧੌਣ ਉਪਰੰਤ ਉਹਨਾਂ ਦੀ ਗੈਂਧ ਦੀ ਮੁੜ ਜਾਂਚ ਕਰੋ।

🎳 ਆਪਣੇ ਪ੍ਰੇਖਣਾ ਨੂੰ ਲਿਖੋ।

- ਹੁਣ ਕੁੱਝ ਪਤਲਾ ਵਨੀਲਾ ਇਸੈਂਸ ਅਤੇ ਲੌਂਗਾਂ ਦਾ ਤੇਲ ਲਓ ਅਤੇ ਇਹਨਾਂ ਦੀ ਗੰਧ ਦੀ
- ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਹਲਕਾ HCl ਦਾ ਘੋਲ਼ ਅਤੇ ਦੂਜੀ ਵਿੱਚ ਹਲਕਾ NaOH ਦਾ ਘੋਲ਼ ਲਓ। ਦੋਹਾਂ ਵਿੱਚ ਹਲਕੇ ਵਨੀਲਾ ਇਸੈਂਸ ਦੀਆਂ ਕੁਝ ਬੂੰਦਾ ਪਾ ਕੇ ਹਿਲਾਓ। ਇਹਨਾਂ ਦੀ ਗੈਧ ਦੀ ਮੁੜ ਜਾਂਚ ਕਰੋ। ਜੇਕਰ ਗੈਧ ਵਿੱਚ ਕੁੱਝ ਅੰਤਰ ਹੋਵੇ ਤਾਂ ਰਿਕਾਰਡ ਕਰੋ।

■ ਇਸੇ ਤਰ੍ਹਾਂ ਹਲਕੇ HCl ਅਤੇ ਹਲਕੇ NaOH ਘੋਲਾਂ ਨਾਲ ਲੌਂਗਾਂ ਦੇ ਤੇਲ (clove oil) ਦੀ ਗੈਂਧ ਵਿੱਚ ਹੋਏ ਪਰਿਵਰਤਨ ਦੀ ਜਾਂਚ ਕਰ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਦਰਜ ਕਰੋ।

ਤੂਹਾਡੇ ਪ੍ਰੇਖਣਾ ਦੇ ਆਧਾਰ ਤੇ ਵਨੀਲਾ, ਪਿਆਜ਼ ਅਤੇ ਲੌਂਗਾਂ ਦੇ ਤੇਲ ਵਿੱਚੋਂ ਕਿਸ ਨੂੰ

ਆੱਲਫੈਕਟਰੀ ਸੂਚਕ ਵਜੋਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ? ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਖ਼ਾਰਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਨੂੰ ਸਮਝਣ ਲਈ ਆਓ ਕੁਝ ਹੋਰ ਪ੍ਯੋਗ

2.1.2 ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਧਾਤਾਂ ਨਾਲ ਕਿਵੇਂ ਕਿਰਿਆ ਕਰਦੇ ਹਨ? (How do Acids and Bases React with Metals?)

ਗਿਰਿਆ 2.3

ਸਾਵਧਾਨੀ : ਇਸ ਕਿਰਿਆ ਲਈ ਅਧਿਆਪਕ ਦੀ ਸਹਾਇਤਾ ਦੀ ਲੋੜ ਹੈ।

ਚਿੱਤਰ 2.1 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਉਪਕਰਣ ਸੈੱਟ ਕਰੋ।

- ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਲਗਭਗ 5 ਮਿਲੀ ਲਿਟਰ ਪਤਲਾ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਲਓ ਅਤੇ ਇਸ ਵਿੱਚ ਦਾਣੇਦਾਰ ਜਿਸਤ ਦੇ ਕੁਝ ਟੁਕੜੇ ਪਾਓ।
- ਦਾਣੇਦਾਰ ਜਿਸਤ ਦੇ ਟੁਕੜਿਆਂ ਦੀ ਸਤਹ ਉੱਪਰ ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ?
- ਨਿਕਲਦੀ ਗੈਸ ਨੂੰ ਸਾਬਣ ਦੇ ਘੋਲ਼ ਵਿੱਚੋਂ ਲੈਘਾਓ।
- ਸਾਬਣ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਬੁਲਬੁਲੇ ਕਿਉਂ ਬਣਦੇ ਹਨ?
- ਬਲਦੀ ਹੋਈ ਮੋਮਬੱਤੀ ਨੂੰ ਗੈਸ ਦੇ ਬੁਲਬੁਲਿਆਂ ਕੋਲ ਲੈ ਜਾਓ।

ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ?

ਕੁੱਝ ਹੋਰ ਤੇਜਾਬਾਂ ਜਿਵੇਂ ਕਿ HCl, HNO3 ਅਤੇ CH3COOH ਨਾਲ ਇਸ ਕਿਰਿਆ ਨੂੰ ਮੁੜ ਕਰੋ।

ਕੀ ਹਰ ਸਥਿਤੀ ਵਿੱਚ ਤੁਹਾਡਾ ਪ੍ਰੇਖਣ ਸਮਾਨ ਹੈ ਜਾਂ ਵੱਖ ਹੈ?

ਚਿੱਤਰ 2.1 ਦਾਣੇਦਾਰ ਜਿਸਤ ਦੇ ਟੁਕੜਿਆਂ ਦੇ ਨਾਲ ਪਤਲੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੀ ਕਿਰਿਆ ਅਤੇ ਪੈਦਾ ਹੋਈ ਹਾਈਡਰੋਜਨ ਗੈਸ ਦੀ ਜਲਣ ਦੁਆਰਾ ਜਾਂਚ

ਨੌਟ ਕਰੋ ਕਿ ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਧਾਤ ਨੇ ਤੇਜ਼ਾਬਾਂ ਤੋਂ ਹਾਈਡਰੋਜਨ ਨੂੰ ਵਿਸਥਾਪਤ ਕਰ ਦਿੱਤਾ ਹੈ। ਇਹ ਸਾਨੂੰ ਹਾਈਡਰੋਜਨ ਗੈਂਸ ਵਜੋਂ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਤੇਜ਼ਾਬ ਦੇ ਬਾਕੀ ਭਾਰ ਨਾਲ ਮਿਲ ਕੇ ਧਾਤ ਇੱਕ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ ਜਿਸ ਨੂੰ ਲੂਣ ਆਖਦੇ ਹਨ। ਤੇਜ਼ਾਬ ਨਾਲ ਧਾਤ ਦੀ ਕਿਰਿਆ ਨੂੰ ਸੰਖੇਪ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ:

ਤੇਜ਼ਾਬ + ਧਾਤ → ਲੂਣ + ਹਾਈਡਰੋਜਨ ਗੈਸ

ਤੁਸੀਂ ਜਿਨ੍ਹਾਂ ਕਿਰਿਆਵਾਂ ਦੇ ਪ੍ਰਯੋਗ ਕੀਤੇ ਹਨ, ਕੀ ਤੁਸੀਂ ਉਹਨਾਂ ਦੀਆਂ ਸਮੀਕਰਣਾਂ ਲਿਖ ਸਕਦੇ ਹੋ?

विविभा 2.4

- ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਦਾਣੇਦਾਰ ਜਿਸਤ ਦੇ ਕੁਝ ਟੁਕੜੇ ਲਓ।
- ਉਸ ਵਿੱਚ 2 ਮਿਲੀਲਿਟਰ ਸੋਡੀਅਮ ਹਾਈਡਰੌਕਸਾਈਡ ਦਾ ਘੋਲ ਪਾ ਕੇ ਗਰਮ ਕਰੋ।
- ਉੱਪਰ ਦਿੱਤੀ ਕਿਰਿਆ 2.3 ਦੀ ਤਰ੍ਹਾਂ ਬਾਕੀ ਦੇ ਚਰਨਾਂ ਨੂੰ ਦਰਸਾਓ ਅਤੇ ਆਪਣੇ ਪ੍ਰੇਖਣਾ ਨੂੰ ਨੋਟ ਕਰੋ।

ਇਸ ਕਿਰਿਆ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਲਿਖ ਸਕਦੇ ਹਾਂ:

ਤੁਸੀਂ ਵੇਖਦੇ ਹੋ ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਵੀ ਹਾਈਡਰੋਜਨ ਗੈਸ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਪਰ ਅਜਿਹੀਆਂ ਕਿਰਿਆਵਾਂ ਸਾਰੀਆਂ ਧਾਤਾਂ ਨਾਲ ਸੰਭਵ ਨਹੀਂ ਹਨ।

2.1.3 ਧਾਤ ਕਾਰਬੋਨੇਟ ਅਤੇ ਧਾਤ ਹਾਈਡਰੋਜਨਕਾਰਬੋਨੇਟ ਤੇਜ਼ਾਬਾਂ ਨਾਲ ਕਿਵੇਂ ਕਿਰਿਆ ਕਰਦੇ ਹਨ? (How do Metal Carbonates & Metal Hydrogencarbonates React with Acids?)

ਚਿੱਤਰ 2.2 ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ ਵਿੱਚੋਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਗੇਸ ਲੰਘਾਉਣਾ

ਕਿਰਿਆ 2,5

- ਦੋ ਪਰਖਨਲੀਆਂ ਲਓ, ਉਹਨਾਂ ਉੱਤੇ 'A' ਅਤੇ 'B'
 ਦੇ ਲੇਬਲ ਲਗਾਓ।
- ਪਰਖਨਲੀਆਂ A' ਵਿੱਚ ਲਗਭਗ 0.5 ਗਰਾਮ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ (Na₂CO₃) ਪਾਓ ਅਤੇ ਪਰਖਨਲੀ 'B' ਵਿੱਚ 0.5 ਗਰਾਮ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ (NaHCO₃) ਪਾਓ।
- ਦੋਵੇਂ ਪਰਖਨਲੀਆਂ ਵਿੱਚ ਵਾਰੋਵਾਰੀ ਲਗਭਗ 2 mL (ਮਿਲੀਲਿਟਰ) ਪਤਲਾ HCl ਪਾਓ।
- ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕੀਤੇ?
- ਚਿੱਤਰ 2.2 ਅਨੁਸਾਰ ਹਰ ਇੱਕ ਸਥਿਤੀ ਵਿੱਚ ਪੈਦਾ ਹੋਈ ਗੈਸ ਨੂੰ ਚੂਨੇ ਦੇ ਪਾਣੀ ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਵਿਚੋਂ ਲੰਘਾਓ ਅਤੇ ਆਪਣੇ ਪ੍ਰੇਖਣ ਲਿਖੋ।

ਉਪਰੋਕਤ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਹੋਣ ਵਾਲੀਆਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

ਪਰਖਨਲੀ 'A' : $Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$ ਪਰਖਨਲੀ 'B' : $NaHCO_3(s) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2(g)$

ਪੈਦਾ ਹੋਈ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਗੈਸ ਨੂੰ ਚੂਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚੋਂ ਲੰਘਾਉਣਾ ਹੈ।

$$Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$$
(ਜੂਨੇ ਦਾ ਪਾਣੀ) (ਚਿੱਟਾ ਅਵਖੇਪ)

ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਲੰਘਾਉਣ ਨਾਲ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ :

$$CaCO_3(s)+ H_2O(1)+ CO_2(g) \rightarrow Ca(HCO_3)_2(aq)$$

(ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ)

ਚੂਨੇ ਦਾ ਪੱਥਰ (limestone), ਚਾਕ (chalk) ਅਤੇ ਸੰਗਮਰਮਰ (marble) ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਵੱਖ-ਵੱਖ ਰੂਪ ਹਨ। ਸਾਰੇ ਧਾਤ ਕਾਰਬੋਨੇਟ ਅਤੇ ਧਾਤ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਤੇਜ਼ਾਬਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਸਬੰਧੰਤ ਲੂਣ, ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਪੈਦਾ ਕਰਦੇ ਹਨ।

ਇਸ ਕਿਰਿਆ ਨੂੰ ਆਮ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ :

ਧਾਤ ਕਾਰਬੋਨੇਟ/ਧਾਤ ਹਾਈਡਰੋਜਨਕਾਰਬੋਨੇਟ + ਤੇਜ਼ਾਬ → ਲੂਣ + ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ + ਪਾਣੀ

2.1.4 ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਆਪਸ ਵਿੱਚ ਕਿਵੇਂ ਕਿਰਿਆ ਕਰਦੇ ਹਨ? (How do acids and Bases React with each other?)

ਗਿਰਿਆ 2.6

- ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਲਗਭਗ 2 mL NaOH ਦਾ ਘੋਲ਼ ਲਓ ਅਤੇ ਇਸ ਵਿੱਚ ਦੇ ਬੂੰਦਾਂ ਫੀਨੋਲਫ਼ੈਬੈਲੀਨ ਘੋਲ਼ ਦੀਆਂ ਪਾਓ।
- ਘੋਲ ਦਾ ਰੰਗ ਕਿਹੋ ਜਿਹਾ ਹੈ?
- ਇਸ ਘੋਲ ਵਿੱਚ ਇੱਕ ਇੱਕ ਬੁੰਦ ਕਰਕੇ ਪਤਲਾ HCI ਪਾਓ।
- ਕੀ ਕਿਰਿਆ ਮਿਸ਼ਰਣ ਦੇ ਰੈਗ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਆਇਆ ਹੈ?
- ਤੇਜ਼ਾਰ ਪਾਉਣ ਉਪਰੇਤ ਫੀਨੋਲਫ਼ੈਥੈਲੀਨ ਦਾ ਰੰਗ ਕਿਉਂ ਬਦਲ ਗਿਆ?
- ਹੁਣ ਉਪਰੋਕਤ ਮਿਸ਼ਰਣ ਵਿੱਚ NaOH ਘੱਲ ਦੀਆਂ ਕੁੱਝ ਬੂੰਦਾਂ ਪਾਓ।
- ਕੀ ਫੀਨੱਲਫਬੈਲੀਨ ਮੁੜ ਗੁਲਾਬੀ ਰੰਗ ਦਾ ਹੋ ਗਿਆ?
- ਤੁਹਾਡੇ ਵਿਚਾਰ ਅਨੁਸਾਰ ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ?

ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਅਸੀਂ ਪ੍ਰੇਖਣ ਕੀਤਾ ਕਿ ਤੇਜ਼ਾਬ ਦੁਆਰਾ ਖ਼ਾਰ ਦਾ ਪ੍ਰਭਾਵ ਅਤੇ ਖ਼ਾਰ ਦੁਆਰਾ ਤੇਜ਼ਾਬ ਦਾ ਪ੍ਭਾਵ ਸਮਾਪਤ ਹੋ ਜਾਂਦਾ ਹੈ ਵਾਪਰਦੀ ਕਿਰਿਆ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ:

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_sO(l)$

ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਦੀ ਆਪਸੀ ਕਿਰਿਆ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਲੂਣ ਅਤੇ ਪਾਣੀ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਸ ਨੂੰ ਉਦਾਸੀਨੀਕਰਨ ਕਿਰਿਆ ਕਰਿੰਦੇ ਹਨ। ਆਮ ਰੂਪ ਵਿੱਚ ਉਦਾਸੀਨੀਕਰਨ ਕਿਰਿਆ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ :

ਖਾਰ + ਤੇਜ਼ਾਬ → ਲੂਣ + ਪਾਣੀ

2.1.5 ਤੇਜ਼ਾਬਾਂ ਨਾਲ ਧਾਤਵੀ ਆਕਸਾਈਡਾਂ (Metallic Oxides) ਦੀ ਕਿਰਿਆ

ਕਿਰਿਆ 2.7

- ਇੱਕ ਬੀਕਰ ਵਿੱਚ ਕਾਪਰ ਆਕਸਾਈਡ ਦੀ ਥੋੜ੍ਹੀ ਮਾਤਰਾ ਲਓ ਅਤੇ ਹਲਾਉਂਦੇ ਹੋਏ ਇਸ ਵਿੱਚ ਹੌਲੇ-ਹੌਲੇ ਪਤਲਾ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਪਾਓ।
- ਘੋਲ ਦਾ ਰੰਗ ਨੋਟ ਕਰੋ। ਕਾਪਰ ਆਕਸਾਈਡ ਨੂੰ ਕੀ ਹੋ ਗਿਆ ਹੈ।?

SEL PER PARTY

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਘੋਲ ਦਾ ਰੰਗ ਨੀਲਾ-ਹਰਾ ਹੋ ਗਿਆ ਹੈ ਅਤੇ ਕਾਪਰ ਆਕਸਾਈਡ ਘੁਲ਼ ਗਿਆ ਹੈ ਘੋਲ਼ ਦਾ ਨੀਲਾ-ਹਰਾ ਰੰਗ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਕਾਪਰ (ii) ਕਲੋਰਾਈਡ ਦੇ ਉਤਪੰਨ ਹੋਣ ਕਾਰਨ ਹੋਇਆ ਹੈ। ਧਾਤ ਆਕਸਾਈਡ ਅਤੇ ਤੇਜ਼ਾਬ ਵਿਚਕਾਰ ਪ੍ਰਤਿਕਿਰਿਆ ਨੂੰ ਆਮ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ :

ਧਾਤ ਆਕਸਾਈਡ + ਤੇਜ਼ਾਬ → ਲੂਣ + ਪਾਣੀ

ਹੁਣ ਉਪਰੋਕਤ ਪ੍ਤਿਕਿਰਿਆ ਦੀ ਸਮੀਕਰਨ ਲਿਖਕੇ ਉਸਨੂੰ ਸੰਤੁਲਿਤ ਕਰੋ। ਖ਼ਾਰ ਅਤੇ ਤੇਜ਼ਾਬ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਸਮਾਨ ਹੀ ਧਾਤਵੀ ਆਕਸਾਈਡ ਤੇਜ਼ਾਬ ਦੇ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਲੂਣ ਅਤੇ ਪਾਣੀ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਸ ਲਈ ਧਾਤਵੀ ਆਕਸਾਈਡ ਨੂੰ ਖ਼ਾਰੀ ਆਕਸਾਈਡ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

2.1.6 ਖਾਰਾਂ ਨਾਲ ਅਧਾਤਵੀ ਆਕਸਾਈਡਾਂ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ

ਕਿਰਿਆ 2.5 ਤੁਸੀਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ (ਚੂਨੇ ਦੇ ਪਾਣੀ) ਵਿੱਚ ਹੋਈ ਪ੍ਤਿਕਿਰਿਆ ਵੇਖੀ ਹੈ। ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ ਜੋ ਇੱਕ ਖਾਰ ਹੈ, ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੇ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਲੂਣ ਅਤੇ ਪਾਣੀ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਖਾਰ ਅਤੇ ਤੇਜ਼ਾਬ ਦੇ ਵਿਚਕਾਰ ਹੋਣ ਵਾਲੀ ਕਿਰਿਆ ਦੇ ਸਮਾਨ ਹੈ। ਇਸ ਲਈ ਇਹ ਸਿੱਟਾ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਅਧਾਤਵੀ ਆਕਸਾਈਡਾਂ ਦਾ ਸੁਭਾਓ ਤੋਜ਼ਾਬੀ ਹੁੰਦਾ

ਪ੍ਰਸ਼ਨ

- ਪਿੱਤਲ ਅਤੇ ਤਾਂਬੇ ਦੇ ਬਰਤਨਾਂ ਵਿੱਚ ਦਹੀਂ ਅਤੇ ਖੱਟੀਆਂ ਵਸਤਾਂ ਕਿਉਂ ਨਹੀਂ ਰੱਖਣੀਆਂ ਚਾਹੀਦੀਆਂ?
- ਧਾਤ ਨਾਲ ਤੇਜ਼ਾਬ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਹੋਣ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕਿਹੜੀ ਗੈਸ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ? ਇੱਕ ਉਦਾਹਰਨ ਦੇ ਕੇ ਸਮਝਾਓ। ਇਸ ਗੈਸ ਦੀ ਹੋਂਦ ਦੀ ਜਾਂਚ ਤੁਸੀਂ ਕਿਵੇਂ ਕਰੋਗੇ?
- 3. ਇੱਕ ਧਾਤ ਆਕਸਾਈਡ 'A' ਪਤਲੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਬੁਦਬਦਾਹਟ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ। ਪੈਦਾ ਹੋਈ ਗੈਸ ਬਲਦੀ ਹੋਈ ਮੋਮਬੱਤੀ ਨੂੰ ਬੁਝਾ ਦਿੰਦੀ ਹੈ। ਇਸ ਨਾਲ ਉਤਪੰਨ ਹੋਏ ਯੋਗਿਕਾਂ ਵਿੱਚ ਇੱਕ ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਹੈ ਤਾਂ ਇਸ ਪ੍ਰਤਿਕਿਰਿਆ ਲਈ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਨ ਲਿਖੋ।

2.2 ਸਾਰੇ ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਖ਼ਾਰਾਂ ਵਿੱਚ ਕੀ ਸਮਾਨਤਾ ਹਨ?(What

do all acids and All Bases Have in Common?)

ਸੈੱਕਸ਼ਨ 2.1 ਵਿੱਚ ਵੇਖਿਆ ਹੈ ਕਿ ਸਾਰੇ ਤੇਜ਼ਾਬਾਂ ਦੇ ਇਕੋ ਜਿਹੇ ਗੁਣ ਹਨ। ਗੁਣਾਂ ਦੀ ਇਸ ਸਮਾਨਤਾ ਦਾ ਕੀ ਕਾਰਨ ਹੈ? ਅਸੀਂ ਕਿਰਿਆ 2.3 ਵਿੱਚ ਵੇਖਿਆ ਹੈ ਕਿ ਧਾਤਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਨ ਨਾਲ ਬਹੁਤ ਸਾਰੇ ਤੇਜ਼ਾਬ ਹਾਈਡਰੋਜਨ ਉਤਪੰਨ ਕਰਦੇ ਹਨ। ਇਸ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਕੀ ਸਾਰੇ ਤੇਜ਼ਾਬਾਂ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਹੁੰਦੀ ਹੈ। ਆਓ, ਅਸੀਂ ਇੱਕ ਕਿਰਿਆ ਕਰਕੇ ਜਾਂਚ ਕਰੀਏ ਕਿ ਸਾਰੇ ਹਾਈਡਰੋਜਨ ਰੱਖਣ ਵਾਲੇ ਯੋਗਿਕ ਤੇਜ਼ਾਬੀ ਹੁੰਦੇ ਹਨ?

ਕਿਰਿਆ 2.8

- ਗੁਲੂਕੌਜ਼, ਅਲਕੋਹਲ, ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ, ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਆਦਿ ਦਾ ਘੋਲ੍ਹ
- ਇੱਕ ਕਾਰਕ ਵਿੱਚ ਦੋ ਮੇਖਾਂ ਲਗਾਕੇ ਕਾਰਕ ਨੂੰ 100 mL ਦੇ ਬੀਕਰ ਵਿੱਚ ਰੱਖ ਦਿਓ।

- ਚਿੱਤਰ 2.3 ਅਨੁਸਾਰ ਮੇਖਾਂ ਨੂੰ 6 ਵੋਲਟ ਦੀ ਇੱਕ ਬੈਟਰੀ ਦੇ ਦੋਵੇਂ ਟਰਮੀਨਲਾਂ ਨਾਲ ਇੱਕ ਬਲਬ ਅਤੇ ਸਵਿੱਚ ਰਾਹੀਂ ਜੋੜ ਦਿਓ।
- ਹੁਣ ਬੀਕਰ ਵਿੱਚ ਬੋੜਾ ਜਿਹਾ ਪਤਲਾ HCl ਪਾ ਕੇ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਲੰਘਾਓ।
- ਇਸੇ ਕਿਰਿਆ ਨੂੰ ਪਤਲੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਦੁਹਰਾਓ।
- ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕੀਤੇ।
- ਇਹਨਾਂ ਪ੍ਰਯੋਗਾਂ ਨੂੰ ਗੁਲੂਕੋਜ਼ ਅਤੇ ਅਲਕੋਹਲ ਦੇ ਘੋਲਾਂ ਨਾਲ ਵੱਖ ਵੱਖ ਦੁਹਰਾਓ। ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕੀਤੇ।
- ਕੀ ਬਲਬ ਹਰ ਸਥਿਤੀ ਵਿੱਚ ਚਮਕਦਾ ਹੈ?

ਤੇਜ਼ਾਬ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਬਲਬ ਚਮਕਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 2.3 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਪਰ ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਗੁਲੂਕੋਜ਼ ਅਤੇ ਅਲਕੋਹਲ ਦੇ ਘੋਲ ਬਿਜਲੀ ਨਹੀਂ ਲੰਘਣ ਦਿੰਦੇ। ਬਲਬ ਦੇ ਚਮਕਣ ਨਾਲ ਇਹ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਇਸ ਘੋਲ ਵਿੱਚੋਂ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਲੰਘ ਰਹੀ ਹੈ। ਘੋਲ੍ਹ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਦਾ ਪ੍ਰਵਾਹ ਆਇਨਾਂ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ।

ਕਿਉਂਕਿ ਤੇਜ਼ਾਬ ਵਿੱਚ ਮੌਜੂਦ ਧਨਆਇਨ H⁺ਹੈ ਇਸ ਤੋਂ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਤੇਜ਼ਾਬ ਘੋਲ਼ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਆਇਨ H⁺ (aq) ਪੈਦਾ ਕਰਦਾ ਹੈ ਅਤੇ ਇਸੇ ਕਰਕੇ ਉਸਦਾ ਸੁਭਾਅ ਤੇਜ਼ਾਬੀ ਹੁੰਦਾ ਹੈ।

ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ, ਕੈਲਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਆਦਿ ਜਿਹੇ ਖ਼ਾਰਾਂ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਇਸ ਕਿਰਿਆ ਨੂੰ ਦੁਹਰਾਓ। ਇਸ ਕਿਰਿਆ ਦੇ ਸਿੱਟਿਆਂ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹੋ?

2.2.1 ਪਾਣੀ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਨੂੰ ਕੀ ਹੁੰਦਾ ਹੈ?

ਕੀ ਤੇਜ਼ਾਬ ਕੇਵਲ ਪਾਣੀ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਹੀ ਆਇਨ ਪੈਦਾ ਕਰਦੇ ਹਨ? ਆਓ ਇਸ ਦੀ ਜਾਂਚ ਕਰੀਏ।

ਕਿਰਿਆ 2.9

- ਇੱਕ ਸਾਫ ਅਤੇ ਸੁੱਕੀ ਪਰਖਨਲੀ ਵਿੱਚ ਲਗਭਗ 1 ਗਰਾਮ ਬਾਰੀਕ ਸੁੱਕਾ NaCl ਲਓ ਅਤੇ ਚਿੱਤਰ 2.4 ਅਨੁਸਾਰ ਉਪਕਰਣ ਸੈੱਟ ਕਰੋ।
- 🏮 ਪਰਖਨਲੀ ਵਿੱਚ ਕੁੱਝ ਗਾੜ੍ਹਾ ਸਲਫਿਊਰਿੱਕ ਤੇਜ਼ਾਬ ਪਾਓ।
- ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕੀਤਾ? ਕੀ ਨਿਕਾਸ ਨਲੀ ਤੋਂ ਕੋਈ ਗੈਸ ਬਾਹਰ ਆ ਰਹੀ ਹੈ।
- ਬਾਹਰ ਆਉਂਦੀ ਗੈਸ ਦੀ ਵਾਰੇ ਵਾਰੀ ਸੁੱਕੇ ਅਤੇ ਗਿੱਲੇ ਨੀਲੇ ਲਿਟਮਸ ਪੇਪਰ ਨਾਲ ਜਾਂਚ ਕਰੋ।
- 🏮 ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਲਿਟਮਸ ਪੇਪਰ ਦਾ ਰੰਗ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ?
- ਉਪਰੋਕਤ ਕਿਰਿਆ ਦੇ ਆਧਾਰ ਤੇ ਤੁਸੀਂ ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਤੇਜ਼ਾਬੀ ਗੁਣਾਂ ਬਾਰੇ ਕੀ-ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹੋ?
 - (i) ਖੁਸ਼ਕ HCl ਗੈਸ
- (ii) HCl रा ਘੋਲ

ਚਿੱਤਰ 2.4 HCl ਗੈਸ ਦੀ ਉਤਪਤੀ

ਅਧਿਆਪਕ ਵਾਸਤੇ ਨੌਟ : ਜੇਕਰ ਹਵਾ ਵਧੇਰੇ ਸਿੱਲ੍ਹੀ ਹੋਵੇ ਤਾਂ ਗੈਸ ਨੂੰ ਖ਼ੁਸ਼ਕ ਕਰਨ ਲਈ ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਵਾਲੀ ਰੱਖਿਅਕ ਨਲੀ (Guard Tube) ਵਿੱਚੋਂ ਗੈਸ ਲੰਘਾਉਂਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਪ੍ਰਯੋਗ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਪਾਣੀ ਦੀ ਹੋਂਦ ਵਿੱਚ HCl ਤੋਂ ਹਾਈਡਰੋਜਨ ਆਇਨ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਪਾਣੀ ਦੀ ਅਣਹੋਂਦ ਵਿੱਚ HCl ਦੇ ਅਣੂਆਂ ਤੋਂ H- ਆਇਨ ਨਹੀਂ ਬਣ ਸਕਦੇ।

$$HCl + H_2O \rightarrow H_3O^* + Cl^*$$

ਹਾਈਡਰੋਜਨ ਆਇਨ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਵਿਚਰ ਸਕਦੇ ਪਰ ਇਹ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਨਾਲ ਮਿਲ ਕੇ ਰਹਿ ਸਕਦੇ ਹਨ।ਇਸ ਲਈ ਹਾਈਡਰੋਜਨ ਆਇਨਾਂ 2H-(aq) ਜਾਂ ਹਾਈਡਰੋਨੀਅਮ ਆਇਨ (H_qO') ਨਾਲ ਦਰਸਾਣਾ ਚਾਹੀਦਾ ਹੈ।

$$H_1 + H^3O \rightarrow H^3O_1$$

ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਤੇਜ਼ਾਬ ਪਾਣੀ ਵਿੱਚ H₃O+ਜਾਂ H+(aq) ਆਇਨ ਦਿੰਦੇ ਹਨ। ਆਓ, ਵੇਖੀਏ ਕਿਸੇ ਖ਼ਾਰ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲਣ ਨਾਲ ਕੀ ਹੁੰਦਾ ਹੈ :

NaOH(s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺(aq) + OH (aq)
KOH(s) $\xrightarrow{\text{H}_2\text{O}}$ K⁺(aq) + OH⁻ (aq)

$$Mg(OH)_2(s) \xrightarrow{H_2O} Mg^{2+}(aq) + 2OH$$
 (aq)

ਖ਼ਾਰ ਪਾਣੀ ਵਿੱਚ ਹਾਈਡਰੋਕਸਾਈਡ (OH) ਆਇਨ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਪਾਣੀ ਵਿੱਚ ਘੁਲਣ ਵਾਲੇ ਖ਼ਾਰ ਨੂੰ **ਐਲਕਲੀ** (Alkali) ਆਖਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ?

^^^^

ਸਾਰੇ ਖ਼ਾਰ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਖ਼ਾਰਾਂ ਨੂੰ ਐਲਕਲੀ ਕਹਿੰਦੇ ਹਨ। ਇਹਨਾਂ ਦਾ ਸਪਰਸ਼ ਸਾਬਣ ਦੀ ਤਰ੍ਹਾਂ (ਤਿਲਕਣਾ), ਸੁਆਦ ਕੌੜਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਪ੍ਰਕਿਰਤੀ ਖੋਰਕ ਹੁੰਦੀ ਹੈ। ਇਹਨਾਂ ਨੂੰ ਕਦੀ ਵੀ ਸਪਰਸ਼ ਨਹੀਂ ਕਰਨਾ ਚਾਹੀਦਾ ਅਤੇ ਨਾ ਹੀ ਇਹਨਾਂ ਦਾ ਸੁਆਦ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਹਾਨੀਕਾਰਕ ਹੁੰਦੇ ਹਨ। ਸਾਰਨੀ 2.1 ਵਿੱਚ ਕਿਹੜੇ ਖ਼ਾਰ ਐਲਕਲੀ ਹਨ?

> ਹੁਣ ਤੱਕ ਅਸੀਂ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਸਾਰੇ ਤੇਜ਼ਾਬ H^{*}(aq) ਅਤੇ ਸਾਰੇ ਖ਼ਾਰ OH (aq) ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਸ ਤੋਂ ਅਸੀਂ ਉਦਾਸੀਨੀਕਰਨ ਕਿਰਿਆ ਨੂੰ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾ ਸਕਦੇ ਹਨ:

ਤੇਜ਼ਾਬ + ਖਾਰ
$$\rightarrow$$
 ਲੂਣ + ਪਾਣੀ
 $HX + MOH \rightarrow MX + HOH$
 $H'(aq) + OH'(aq) \rightarrow H_2O(l)$

ਆਓ, ਵੇਖੀਏ ਤੋਜ਼ਾਬ ਜਾਂ ਖ਼ਾਰ ਵਿੱਚ ਪਾਣੀ ਮਿਲਾਉਣ ਨਾਲ ਕੀ ਹੁੰਦਾ ਹੈ?

ਚਿੱਤਰ 2.5 ਗਾੜ੍ਹੇ ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਵਾਲੇ ਬਰਤਨ⁺ਉੱਤੇ ਲੱਗੇ ਚਿਤਾਵਨੀ ਚਿੰਨ।

ਕਿਰਿਆ 2.10

- ਇੱਕ ਬੀਕਰ ਵਿੱਚ 10 mL ਪਾਣੀ ਲਓ।
- ਇਸ ਵਿੱਚ ਕੁੱਝ ਬੁੰਦਾ ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ (H₂SO₄) ਦੀਆਂ ਪਾਓ ਅਤੇ ਹੌਲੇ-ਹੌਲੇ ਘੁਮਾਓ।
- ਬੀਕਰ ਦੇ ਅਧਾਰ ਨੂੰ ਛੁਹੈ।
- ਕੀ ਤਾਪਮਾਨ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਆਇਆ?
- ਕੀ ਇਹ ਪ੍ਰਕਿਰਿਆ ਤਾਪ ਨਿਕਾਸੀ ਜਾਂ ਤਾਪਸੋਖੀ ਹੈ?
- ਉਪਰੋਕਤ ਕਿਰਿਆ ਨੂੰ ਸੋਡੀਅਮ ਹਾਇਡਰੋਕਸਾਈਡ ਦੇ ਨਾਲ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਾਪਤ ਪ੍ਰੇਖਣ ਲਿਖੋ।

ਪਾਣੀ ਵਿੱਚ ਤੇਜ਼ਾਬ ਜਾਂ ਖ਼ਾਰ ਨੂੰ ਘੋਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਬਹੁਤ ਤਾਪ ਨਿਕਾਸੀ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਗਾੜ੍ਹਾ ਨਾਈਟਰਿਕ ਤੇਜ਼ਾਬ ਜਾਂ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਮਿਲਾਉਣ ਸਮੇਂ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸਾਵਧਾਨੀ ਵਰਤਣੀ ਚਾਹੀਦੀ ਹੈ। ਤੇਜ਼ਾਬ ਨੂੰ ਸਦਾ ਹੌਲੀ-ਹੌਲੀ ਅਤੇ ਪਾਣੀ ਲਗਾਤਾਰ ਹਿਲਾਉਂਦੇ ਹੋਏ ਪਾਣੀ ਵਿੱਚ ਪਾਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਗਾੜ੍ਹੇ ਤੇਜ਼ਾਬ ਵਿੱਚ ਪਾਣੀ ਪਾਉਣ ਨਾਲ਼ ਪੈਦਾ ਹੋਏ ਤਾਪ ਕਾਰਨ ਮਿਸ਼ਰਣ ਦੇ ਛਿੱਟੇ ਬਾਹਰ ਆ ਸਕਦੇ ਹਨ ਅਤੇ ਸੰਬੰਧਿਤ ਵਿਅਕਤੀ ਨੂੰ ਸਾੜ ਸਕਦੇ ਹਨ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਉੱਚੇ ਸਥਾਨਿਕ ਤਾਪ ਦੇ ਕਾਰਨ ਪ੍ਰਯੋਗ ਵਿੱਚ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਕੱਚ ਦਾ ਬਰਤਨ ਵੀ ਟੁੱਟ ਸਕਦਾ ਹੈ। ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਦੇ ਕੈਨ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਦੀ ਬਤਲ ਉੱਤੇ ਚਿਤਾਵਨੀ ਦੇ ਚਿੰਨ੍ਹ (ਚਿੱਤਰ 2.5 ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ) ਵੱਲ ਧਿਆਨ ਦਿਓ।

ਪਾਣੀ ਵਿੱਚ ਤੇਜ਼ਾਬ ਜਾਂ ਖਾਰ ਮਿਲਾਉਣ ਨਾਲ ਆਇਨਾਂ ਦੇ ਗਾੜ੍ਹਾਪਨ (H₃O⁺/OH⁻) ਵਿੱਚ ਪ੍ਰਤਿ ਇਕਾਈ ਆਇਤਨ ਵਿੱਚ ਕਮੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਪਤਲਾ ਕਰਨਾ(Dilution) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨਾਲ ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਪਤਲੇ ਹੋ ਜਾਂਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- HCl, HNO₃ਆਦਿ ਜਲੀ ਘੋਲ਼ ਵਿੱਚ ਤੇਜ਼ਾਬੀ ਗੁਣ ਕਿਉਂ ਦਰਸਾਉਂਦੇ ਹਨ ਜਦੋਂ ਕਿ ਅਲਕੋਹਲ ਅਤੇ ਗੁਲੂਕੋਜ਼ ਜਿਹੇ ਯੋਗਿਕਾਂ ਦੇ ਜਲੀ ਘੋਲ਼ ਤੇਜ਼ਾਬੀ ਗੁਣ ਨਹੀਂ ਦਰਸਾਉਂਦੇ ਹਨ?
- ਤੇਜ਼ਾਬ ਦਾ ਜਲੀ ਘੋਲ਼ ਕਿਉਂ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਦਾ ਚਾਲਨ ਕਰਦਾ ਹੈ ?
- ਖੁਸ਼ਕ HCl ਗੈਸ ਖੁਸ਼ਕ ਲਿਟਮਸ ਪੇਪਰ ਦੇ ਰੰਗ ਨੂੰ ਕਿਉਂ ਨਹੀਂ ਬਦਲਦੀ ?
- ਤੇਜ਼ਾਬ ਨੂੰ ਹਲਕਾ ਕਰਦੇ ਸਮੇਂ ਇਹ ਕਿਉਂ ਸਲਾਹ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ਕਿ ਤੇਜ਼ਾਬ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਪਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਨਾ ਕਿ ਪਾਣੀ ਨੂੰ ਤੇਜ਼ਾਬ ਵਿੱਚ।
- ਤੇਜ਼ਾਬ ਨੂੰ ਪਤਲਾ ਕਰਦੇ ਸਮੇਂ ਹਾਈਡਰੋਨੀਅਮ ਆਇਨਾਂ (H₃O*) ਦੀ ਸੰਘਣਤਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ ?
- 6. ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਘੋਲ ਵਿੱਚ ਹਾਈਡਰੋਕਸਾਈਡ ਆਇਨਾਂ (OH⁻) ਦੀ ਸੰਘਣਤਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਘੋਲ ਵਿੱਚ ਵਧੇਰੇ ਖਾਰ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ ?

2.3 ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰਾਂ ਦੇ ਘੋਲ਼ ਕਿੰਨੇ ਸ਼ਕਤੀਸ਼ਾਲੀ (ਤੇਜ਼) ਹੁੰਦੇ ਹਨ?

How strong are Acid and Base Solutions?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਤੇਜ਼ਾਬ-ਖ਼ਾਰ ਸੂਚਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਦੀ ਪਹਿਚਾਣ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਅਸੀਂ ਪਿਛਲੇ ਸੈਕਸ਼ਨ ਵਿੱਚ H+ ਅਤੇ OH- ਆਇਨਾਂ ਦੇ ਘੋਲ਼ਾਂ ਦੀ ਸੰਘਣਤਾ ਘੱਟ ਕਰਨਾ ਅਤੇ ਪਤਲਾ ਕਰਨ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਸੀ। ਕੀ ਅਸੀਂ ਕਿਸੇ ਘੋਲ਼ ਵਿੱਚ ਮੌਜੂਦ ਆਇਨਾਂ ਦੀ ਸੰਖਿਆ ਜਾਣ ਸਕਦੇ ਹਾਂ? ਕੀ ਅਸੀਂ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ ਦਿੱਤਾ ਹੋਇਆ ਤੇਜ਼ਾਬ ਜਾਂ ਖ਼ਾਰ ਕਿੰਨਾਂ ਸ਼ਕਤੀਸ਼ਾਲੀ ਹੈ?

ਅਸੀਂ ਇਹ ਕੁੱਝ ਵਿਸ਼ਵਵਿਆਪੀ ਸੂਚਕ (Universal Indicator) ਜੋ ਕਿ ਅਨੇਕ ਸੂਚਕਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ, ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ ਵਿਸ਼ਵਵਿਆਪੀ ਸੂਚਕ ਕਿਸੇ ਘੋਲ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਆਇਨਾਂ ਦੀ ਵੱਖ-ਵੱਖ ਸੰਘਣਤਾ ਨੂੰ ਵਿਭਿੰਨ ਰੰਗਾਂ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।

ਕਿਸੇ ਘੋਲ਼ ਵਿੱਚ ਮੌਜੂਦ ਹਾਈਡਰੋਜਨ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਪਤਾ ਕਰਨ ਲਈ ਇੱਕ ਸਕੇਲ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਹੈ। ਜਿਸਨੂੰ **pH ਸਕੇਲ** ਕਹਿੰਦੇ ਹਨ। ਇਸ pH ਵਿੱਚ p ਤੋਂ ਭਾਵ ਹੈ 'ਪੁਟੇਜ਼' (Potenz) ਜੋ ਇੱਕ ਜਰਮਨ ਸ਼ਬਦ ਹੈ। ਜਿਸ ਦਾ ਭਾਵ ਹੈ 'ਸ਼ਕਤੀ'। ਇਸ pH ਸਕੇਲ ਤੇ ਅਸੀਂ pH ਦਾ ਮੁੱਲ O [ਬਹੁਤ ਤੇਜਾਬੀ] ਤੋਂ 14 [ਬਹੁਤ ਖ਼ਾਰੀ] ਤੱਕ ਮਾਪ ਸਕਦੇ ਹਾਂ।ਸਾਧਾਰਨ ਭਾਸ਼ਾ ਵਿੱਚ pH ਨੂੰ ਇੱਕ ਅਜਿਹੀ ਸੰਖਿਆ ਦੇ ਰੂਪ ਵਿੱਚ ਸਮਝਿਆ ਜਾਵੇ ਜੋ ਕਿਸੇ ਘੋਲ਼ ਦਾ ਤੇਜ਼ਾਬੀਪਣ ਅਤੇ ਖਾਰੀਪਣ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਹਾਈਡਰੋਨੀਅਮ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਜਿੰਨੀ ਵਧੇਰੇ ਹੋਵੇਗੀ ਉਨ੍ਹੀ ਹੀ pH ਘੱਟ ਹੋਵੇਗੀ।

ਕਿਸੇ ਵੀ ਉਦਾਸੀਨ(Neutral) ਘੋਲ਼ ਦਾ pH ਮਾਨ 7 ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਕਿਸੇ ਘੋਲ਼ ਦਾ pH ਸਕੇਲ ਤੇ ਮਾਨ 7 ਤੋਂ ਘੱਟ ਹੈ ਤਾਂ ਇਹ ਤੇਜ਼ਾਬੀ (Acidic) ਘੋਲ਼ ਹੋਵੇਗਾ ਅਤੇ ਜੇਕਰ pH ਮਾਨ 7 ਤੋਂ 14 ਵੱਲ ਵਧਦਾ ਹੈ ਤਾਂ ਇਹ ਘੋਲ ਵਿੱਚ OH ਦੀ ਸੰਘਣਤਾ ਦੇ ਵਾਧੇ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਭਾਵ ਖ਼ਾਰ ਦੀ ਸ਼ਕਤੀ ਵਧਦੀ ਹੈ। ਆਮ ਤੌਰ ਤੇ pH ਮਾਪਣ ਲਈ ਵਿਸ਼ਵਵਿਆਪੀ ਸੂਚਕ ਨਾਲ ਅੰਕਿਤ ਪੇਪਰ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਅਜਿਹਾ ਇੱਕ ਪੇਪਰ ਚਿੱਤਰ 2.6 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 2.6 H⁴(aq) ਅਤੇ OH (aq) ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਵਾਧੇ ਨਾਲ pH ਵਿੱਚ ਵਿਭਿੰਨਤਾ

ਸਾਰਨੀ 2.2

ਕਿਰਿਆ 2,11

- ਦਿੱਤੀ ਗਈ ਸਾਰਨੀ 2.2 ਵਿੱਚ pH ਮਾਨਾਂ ਦੀ ਜਾਂਚ ਕਰੋ।
- 🍍 ਆਪਣੇ ਪ੍ਰੇਖਣ ਲਿਖੋ।
- ਆਪਣੇ ਪ੍ਰੇਖਣਾ ਦੇ ਆਧਾਰ ਤੇ ਦੱਸੋ ਕਿ ਹਰ ਇੱਕ ਵਸਤੂ ਦਾ ਸੁਭਾਅ ਕਿਹੋ ਜਿਹਾ ਹੈ?

खडा ह	titos	pH lass or feet	weteer pH ww	संबद्धाः संबद्धाः
1	ਲਾਰ (ਭੋਜਨ ਖਾਣ ਤੋਂ ਪਹਿਲਾ)			
2	ਲਾਰ (ਭੇਜਨ ਖਾਣ ਤੋਂ ਬਾਅਦ)			
3	ਨਿੰਬੂ ਦਾ ਰਸ			
4	ਰੰਗ ਰਹਿਤ ਸੋਡਾ ਵਾਟਰ			
5	ਗਾਜਰ ਰਸ			
6	ਕਾਫ਼ੀ			
7	ਟਮਾਟਰ ਰਸ			
8	ਨਲਕੇ ਦਾ ਪਾਣੀ			
9	1M NaOH			
0	1M HCl			

ਚਿੱਤਰ 2.7 ਕੁੱਝ ਆਮ ਵਸਤਾਂ ਦੀ pH ਨੂੰ pH *ਪੇਪਰ ਤੇ ਵਿਖਾਇਆ ਗਿਆ ਹੈ (ਰੰਗ ਕੇਵਲ ਲਗਭਗ ਮਾਰਗ ਦਰਸ਼ਨ ਲਈ ਹਨ।)*

ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਦੀ ਸ਼ਕਤੀ ਉਤਪਨ ਕੀਤੇ ਲੜੀਵਾਰ H·ਅਤੇ OH·ਆਇਨਾਂ ਦੀ ਸੰਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਅਤੇ ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ ਸਮਾਨ ਸੰਘਣਤਾ, ਮੰਨ ਲਓ ਮੋਲਰ (Molar) ਦੇ ਲੈਂਦੇ ਹਾਂ ਤਾਂ ਇਹ ਵੱਖ-ਵੱਖ ਮਾਤਰਾ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਆਇਨ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਤੇਜ਼ਾਬ ਜੋ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ H·ਆਇਨ ਪੈਦਾ ਕਰਦੇ ਹਨ ਉਹ ਸ਼ਕਤੀਸ਼ਾਲੀ ਤੇਜ਼ਾਬ (Strong Acid))ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹ ਤੇਜ਼ਾਬ ਜਿਹੜੇ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ H·ਆਇਨ ਪੈਦਾ ਕਰਦੇ ਹਨ ਉਹ ਕਮਜੋਰ ਤੇਜ਼ਾਬ (Weak Acid) ਹੁੰਦੇ ਹਨ ਕੀ ਤੁਸੀਂ ਹੁਣ ਇਹ ਦਸ ਸਕਦੇ ਹੋ ਕਿ ਸ਼ਕਤੀਸ਼ਾਲੀ ਅਤੇ ਕਮਜੋਰ ਖ਼ਾਰ ਕੀ ਹੁੰਦੇ ਹਨ?

2.3.1 ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ pH ਦਾ ਮਹੱਤਵ

ਕੀ ਪੌਦੇ ਅਤੇ ਸਜੀਵ pH ਪ੍ਰਤਿ ਸੰਵੇਦਨਸ਼ੀਲ ਹੁੰਦੇ ਹਨ?

ਸਾਡਾ ਸਰੀਰ 7.0 ਤੋਂ 7.8 pH ਦੇ ਵਿਚਕਾਰ ਕੰਮ ਕਰਦਾ ਹੈ। ਸਜੀਵ ਪ੍ਰਾਣੀ ਕੇਵਲ ਥੋੜੀ pH ਤਬਦੀਲੀ ਦੀ ਸੀਮਾਂ ਵਿੱਚ ਹੀ ਜੀਵਤ ਰਹਿ ਸਕਦੇ ਹਨ। ਜਦੋਂ ਵਰਖਾ ਦੇ ਪਾਣੀ ਦੀ pH ਦਾ ਮਾਨ 5.6 ਤੋਂ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਤੇਜ਼ਾਬੀ ਵਰਖਾ(Acid Rain) ਕਹਾਉਂਦੀ ਹੈ ਜਦੋਂ ਤੇਜ਼ਾਬੀ ਵਰਖਾ ਦਾ ਪਾਣੀ ਨਦੀ ਵਿੱਚ ਜਾਂਦਾ ਹੈ, ਨਦੀ ਦੇ ਪਾਣੀ ਦੀ pH ਘੱਟ ਜਾਂਦੀ ਹੈ। ਅਜਿਹੇ ਪਾਣੀ ਵਿੱਚ ਜਲੀ-ਜੀਵਾਂ ਪ੍ਰਾਣੀਆਂ ਦਾ ਜੀਵਤ ਰਹਿਣਾ ਔਖਾ ਹੋ ਜਾਂਦਾ ਹੈ।

ਕੀ ਤੁਸੀਂ ਸਾਣਦੇ ਹੋ?

ਦੂਜੇ ਗ੍ਰਹਿਆਂ ਵਿੱਚ ਤੇਜ਼ਾਬ

ਸ਼ੁੱਕਰ (Venus) ਗ੍ਰਹਿ ਦਾ ਵਾਯੂਮੰਡਲ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਦੇ ਸੰਘਣੇ ਚਿੱਟੇ ਅਤੇ ਪੀਲੇ ਬਦਲਾਂ ਦਾ ਬਣਿਆ ਹੋਇਆ ਹੈ। ਕੀ ਤੁਹਾਨੂੰ ਲੱਗਦਾ ਹੈ ਕਿ ਇਸ ਗ੍ਰਹਿ ਉੱਤੇ ਜੀਵਨ ਸੰਭਵ ਹੈ?

ਤੁਹਾਡੇ ਬਗੀਚੇ ਦੀ ਮਿੱਟੀ ਦਾ pH ਕੀ ਹੈ?

ਚੰਗੇ ਵਾਧੇ ਲਈ ਪੌਦਿਆਂ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇਸ਼ pH ਸੀਮਾਂ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਪੌਦੇ ਦੇ ਚੰਗੇ ਵਾਧੇ ਲਈ ਜ਼ਰੂਰੀ pH ਦੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਥਾਵਾਂ ਤੋਂ ਮਿੱਟੀ ਇਕੱਠੀ ਕਰੋ ਅਤੇ ਕਿਰਿਆ 2.12 ਅਨੁਸਾਰ ਉਹਨਾਂ ਦੀ pH ਦੀ ਜਾਂਚ ਕਰੋ। ਇਸ ਗੱਲ ਦਾ ਵੀ ਧਿਆਨ ਰੱਖੇ ਕਿ ਜਿੱਥੋਂ ਮਿੱਟੀ ਲਈ ਗਈ ਹੈ ਉੱਥੇ ਕਿਹੜੇ ਪੌਦੇ ਉਪਜੇ ਹੋਏ ਹਨ?

ਕਿਰਿਆ 2.12

- ੂ ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਲਗਭਗ 2 ਗਰਾਮ ਮਿੱਟੀ ਲਓ ਅਤੇ ਇਸ ਵਿੱਚ 5 mL ਪਾਣੀ ਪਾਓ।
- ਪਰਖਨਲੀ ਦੀ ਸਮੱਗਰੀ ਨੂੰ ਹਿਲਾਓ।
- ੂ ਸਮੱਗਰੀ ਨੂੰ ਪੁਣੋ ਅਤੇ ਫਿਲਟ੍ਰੇਟ ਨੂੰ ਇੱਕ ਪੱਰਖਨਲੀ ਵਿੱਚ ਇੱਕਠਾ ਕਰੋ।
- ਵਿਸ਼ਵਵਿਆਪੀ ਸੂਚਕ ਪੇਪਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇਸ ਫਿਲਟ੍ਰੇਟ ਦੀ pH ਦੀ ਜਾਂਚ ਕਰੇ।
- ੂ ਤੁਸੀਂ ਆਪਣੇ ਖੇਤਰ ਵਿੱਚ ਪੌਦਿਆਂ ਦੇ ਢੁਕਵੇਂ ਵਿਕਾਸ ਲਈ ਮਿੱਟੀ ਦੀ ਆਦਰਸ਼ pH ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਕੀ ਸਿੱਟਾ ਕੱਢਿਆ ਹੈ?

ਸਾਡੇ ਪਾਚਣ ਪ੍ਰਬੰਧ ਵਿੱਚ pH

ਇਹ ਬੜੀ ਦਿਲਚਸਪੀ ਵਾਲੀ ਗੱਲ ਹੈ ਕਿ ਸਾਡਾ ਮਿਹਦਾ ਹਾਈਡਰੋਕਲਰਿਕ ਤੇਜ਼ਾਬ (Hydrochloric acid) ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਹ ਮਿਹਦੇ ਨੂੰ ਹਾਨੀ ਕੀਤੇ ਬਿਨਾਂ ਭੋਜਨ ਦੇ ਪਾਚਣ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਬਦਹਜ਼ਮੀ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਮਿਹਦਾ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਤੇਜ਼ਾਬ ਪੈਦਾ ਕਰਦਾ ਹੈ ਜਿਸ ਕਾਰਨ ਮਿਹਦੇ ਵਿੱਚ ਦਰਦ ਅਤੇ ਜਲਣ ਅਨੁਭਵ ਹੁੰਦੀ ਹੈ। ਇਸ ਦਰਦ ਤੋਂ ਛੁਟਕਾਰਾ ਪਾਉਣ ਲਈ ਐਂਟਏਸਿਡ (antacid) ਜਿਹੇ ਖਾਰਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਅਧਿਆਇ ਦੇ ਆਰੰਭ ਵਿੱਚ ਅਜਿਹਾ ਹੀ ਇਲਾਜ ਤੁਸੀਂ ਜ਼ਰੂਰ ਸੁਝਾਇਆ ਹੋਵੇਗਾ। ਇਹ ਐਂਟਏਸਿਡ ਤੇਜ਼ਾਬ ਦੀ ਵੱਧ ਮਾਤਰਾ ਨੂੰ ਉਦਾਸੀਨ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਸ ਮੰਤਵ ਲਈ ਮੈਂਗਨੀਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ (ਮਿਲਕ ਆਫ ਮੈਗਨੀਸ਼ੀਆ) ਜਿਹੇ ਕਮਜੋਰ ਖਾਰ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

pH ਪਰਿਵਰਤਨ ਕਾਰਨ ਦੰਦਾ ਦਾ ਖੋਰ

ਮੂੰਹ ਵਿੱਚ pH ਦਾ ਮਾਨ 5.5 ਤੋਂ ਘੱਟ ਹੋਣ ਤੇ ਦੰਦਾਂ ਦਾ ਖੋਰ (Teeth Decay) ਆਰੰਭ ਹੋ ਜਾਂਦਾ ਹੈ। ਦੰਦਾਂ ਦਾ ਇਨੇਮਲ (Enamel) ਜੋ ਕਿ ਸਰੀਰ ਦੀ ਸਭ ਤੋਂ ਕਠੌਰ ਵਸਤੂ ਹੈ, ਕੈਲਸ਼ੀਅਮ ਫਾਸਫੇਟ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਇਹ ਪਾਣੀ ਵਿੱਚ ਨਹੀਂ ਘੁਲਦਾ ਪਰ ਜਦੋਂ ਮੂੰਹ ਦੀ pH ਦਾ ਮਾਨ 5.5 ਤੋਂ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਦਾ ਖੋਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਮੂੰਹ ਵਿੱਚ ਮੌਜੂਦ ਬੈੱਕਟੀਰੀਆ ਭੋਜਨ ਖਾਣ ਪਿਛੋਂ ਮੂੰਹ ਵਿੱਚ ਰਹੀ ਖੰਡ ਅਤੇ ਭੋਜਨ ਦੇ ਕਣਾਂ ਦਾ ਨਿਮਨੀਕਰਨ ਕਰਕੇ ਤੇਜ਼ਾਬ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਦੰਦਾ ਦੇ ਖੋਰ ਤੋਂ ਬਚਣ ਦਾ ਸਭ ਤੋਂ ਵਧੀਆਂ ਢੰਗ ਹੈ ਕਿ ਭੋਜਨ ਖਾਣ ਪਿੱਛੋਂ ਮੂੰਹ ਨੂੰ ਪੂਰਨ ਤੌਰ ਤੇ ਸਾਫ ਕਰ ਲਿਆ ਜਾਵੇ। ਮੂੰਹ ਦੇ ਦੰਦਾਂ ਦੀ ਸਫਾਈ ਲਈ ਟੁੱਥਪੇਸਟ ਜੋ ਕਿ ਆਮ ਕਰਕੇ ਖਾਰੀ ਹੁੰਦੇ ਹਨ, ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਇਹ ਤੇਜ਼ਾਬ ਦੀ ਵੱਧ ਮਾਤਰਾ ਨੂੰ ਉਦਾਸੀਨ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਦੰਦਾਂ ਦੀ ਖੋਰ ਰੁੱਕ ਜਾਂਦੀ ਹੈ।

ਜੀਵਾਂ ਅਤੇ ਪੌਦਿਆਂ ਦੁਆਰਾ ਪੈਦਾ ਰਸਾਇਣਾਂ ਦੁਆਰਾ ਆਤਮਰੱਖਿਆ

ਕੀ ਤੁਹਾਨੂੰ ਕਦੇ ਸ਼ਹਿਦ ਮੁੱਖੀ ਨੇ ਡੰਗ ਮਾਰਿਆ ਹੈ? ਸ਼ਹਿਦ ਮੁੱਖੀ ਦਾ ਡੰਗ ਇੱਕ ਤੇਜ਼ਾਬ ਛੱਡਦਾ ਹੈ ਜਿਸਦੇ ਕਾਰਨ ਦਰਦ ਅਤੇ ਜਲਣ ਹੁੰਦੀ ਹੈ। ਡੰਗ ਮਾਰੇ ਗਏ ਸਥਾਨ ਤੇ ਮਿੱਠੇ ਸੋਡੇ ਜਿਹੇ ਕਮਜੋਰ ਖਾਰ ਲਗਾਉਣ ਨਾਲ ਆਰਾਮ ਆਉਂਦਾ ਹੈ। ਨੇਟਲ (nettle) ਪੱਤੇ ਦੇ ਡੰਗ ਵਾਲੇ ਵਾਲ ਮੈਥਿਨਾਇਕ ਤੇਜ਼ਾਬ ਛੱਡ ਦਿੰਦੇ ਹਨ ਜਿਸ ਦੇ ਕਾਰਣ ਜਲਣ ਵਾਲੀ ਦਰਦ ਹੁੰਦੀ ਹੈ।

ๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅ

ਕੁਦਰਤ ਉਦਾਸੀਨੀਕਰਨ ਦਾ ਵਿਕਲਪ ਦਿੰਦੀ ਹੈ।

ਨੇਟਲ (nettle) ਬੂਟੀ ਨੁਮਾਂ ਪੌਦਾ ਹੈ ਜੋ ਜੰਗਲ ਵਿੱਚ ਉਗਦਾ ਹੈ। ਇਸਦੇ ਪੱਤਿਆਂ ਨੂੰ ਡੰਗ ਵਰਗੇ ਵਾਲ਼ ਲੱਗੇ ਹੁੰਦੇ ਹਨ। ਜਿਹੜੇ ਜੇਕਰ ਅਚਨਚੇਤ ਨਾਲ ਛੂਹੇ ਜਾਣ ਤਾਂ ਡੰਗ ਜਿਹਾ ਦਰਦ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਵਾਲਾਂ ਵਿੱਚੋਂ ਮੈਥਿਨਾਇਕ ਤੇਜ਼ਾਬ ਦੇ ਰਿਸਾਵ

ਕਾਰਨ ਇਹ ਦਰਦ ਹੁੰਦਾ ਹੈ। ਪਰੰਪਰਾ ਤੌਰ ਤੇ ਇਸ ਦਾ ਇਲਾਜ ਡੰਗ ਵਾਲੀ ਥਾਂ ਤੇ ਪਲਾਹ ਪੌਦੇ ਦੇ ਪੱਤੇ ਰਗੜ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਪੌਦੇ ਵਧੇਰੇ ਕਰਕੇ ਨੇਟਲ ਦੇ ਲਾਗੇ ਹੀ ਜੰਗਲ ਵਿੱਚ ਉਗਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਪਲਾਹ ਦੇ ਪੌਦੇ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦਾ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹੋ? ਹੁਣ ਤੁਸੀਂ ਜਾਣ ਗਏ ਹੋਵੇਗੇ ਕਿ ਅਗਲੀ ਵਾਰ ਪਹਾੜਾਂ ਉੱਤੇ ਚੜ੍ਹਨ ਸਮੇਂ ਸੁਭਾਵਕ ਤੌਰ ਤੇ ਨੇਟਲ ਪੌਦੇ ਨੂੰ ਛੂਹੇ ਜਾਣ ਤੇ ਤੁਸੀਂ ਕੀ ਕਰਨਾ ਹੈ? ਕੀ ਤੁਸੀਂ ਅਜਿਹੇ ਹੋਰ ਪਰੰਪਰਾਗਤ ਇਲਾਜ਼ ਜਾਣਦੇ ਹੋ ਜੋ ਡੰਗ ਲੱਗਣ ਤੇ ਅਸਰਦਾਰ ਹੁੰਦੇ ਹਨ?

ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ?

ਸਾਰਨੀ 2.3 ਕੁੱਝ ਕੁਦਰਤੀ ਤੇਜ਼ਾਬ

ਕੁਦਰਤੀ ਸੋਮਾ	डेस घ	ਕੁਦਰਤੀ ਸੌਮਾ	ਤਜ਼ਾਬ
fяда ^т	ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ	ਖੱਟਾ ਦੁੱਧ (ਦਹੀ)	ਲੈਕਟਿਕ ਤੇਜ਼ਾਬ
ਸੰਤਰਾ	ਸਿਟਰਿਕ ਤੇਜ਼ਾਬ	ਨਿੰਬੂ	ਸਿਟਰਿੱਕ ਤੇਜ਼ਾਬ
ਇਮਲੀ	ਟਾਰਟੈਰਿਕ ਤੇਜ਼ਾਬ	ਕੀੜੀ ਦਾ ਡੇਗ	ਮੈਥੇਨਾਇਕ ਤੇਜ਼ਾਬ
ਟਮਾਟਰ	ਆਗਜ਼ੈਲਿਕ ਤੋਜਾਬ	ਨੇਟਲ ਦਾ ਡੰਗ	ਮੈਥੇਨਾਇੱਕ ਤੇਜ਼ਾਬ

ਪ੍ਰਸ਼ਨ

- ਤੁਹਾਡੇ ਕੋਲ ਦੋ ਘੋਲ਼ 'A' ਅਤੇ 'B' ਹਨ। ਘੋਲ਼ 'A' ਦੀ pH ਦਾ ਮਾਨ 6 ਹੈ ਅਤੇ ਘੋਲ਼ 'B' ਦੀ pH ਦਾ ਮਾਨ 8 ਹੈ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਘੋਲ਼ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਵੱਧ ਹੈ? ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਘੋਲ਼ ਤੇਜ਼ਾਬੀ ਅਤੇ ਕਿਹੜਾ ਘੋਲ਼ ਖ਼ਾਰੀ ਹੈ?
- 2. ਹਾਈਡਰੋਜਨ ਆਇਨਾਂ H*(aq)ਦੀ ਸੰਘਣਤਾ ਦਾ ਘੋਲ਼ ਦੀ ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ।
- ਕੀ ਖਾਰੀ ਘੋਲਾਂ ਵਿੱਚ H'(aq) ਆਇਨ ਵੀ ਹੁੰਦੇ ਹਨ? ਜੇਕਰ ਹਾਂ, ਤਾਂ ਉਹ ਖਾਰੀ ਕਿਉਂ ਹੁੰਦੇ ਹਨ?
- 4. ਤੁਹਾਡੇ ਵਿਚਾਰ ਅਨੁਸਾਰ ਕੋਈ ਕਿਸਾਨ ਆਪਣੇ ਖੇਤ ਦੀ ਮਿੱਟੀ ਦੀ ਕਿਸ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਅਣ-ਬੁਝੇ ਚੂਨੇ (ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ) ਜਾਂ ਬੁਝੇ ਹੋਏ ਚੂਨੇ (ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ) ਜਾਂ ਚਾਕ (ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ) ਦੀ ਆਪਣੇ ਖੇਤ ਵਿੱਚ ਵਰਤੋਂ ਕਰੇਗਾ?

2.4 ਲੂਣਾਂ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਵਧੇਰੇ ਜਾਣਕਾਰੀ (MORE ABOUT SALTS)

ਪਿਛਲੇ ਭਾਗਾਂ ਵਿੱਚ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਪ੍ਕਿਰਿਆਵਾਂ ਦੌਰਾਨ ਲੂਣਾਂ ਦੀ ਉਤਪਤੀ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਹੈ। ਆਓ, ਇਹਨਾਂ ਦੀ ਤਿਆਰੀ ਗੁਣਾਂ ਅਤੇ ਉਪਯੋਗਾਂ ਬਾਰੇ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੀਏ।

2.4.1 ਲੂਣ ਪਰਿਵਾਰ

ਕਿਰਿਆ 2.13

- ਹੇਠ ਦਿੱਤੇ ਲੁਣਾਂ ਦੇ ਸੂਤਰ ਲਿਖੋ:
- ਪੋਟਾਸ਼ੀਅਮ ਸਲਫੋਟ, ਸੋਡੀਅਮ ਸਲਫੋਟ, ਕੈਲਸ਼ੀਅਮ ਸਲਫੋਟ, ਮੈਗਨੀਸ਼ੀਅਮ ਸਲਫੋਟ, ਕਾਪਰ ਸਲਫੋਟ, ਸੋਡੀਅਮ ਕਲੌਰਾਈਡ, ਸੋਡੀਅਮ ਨਾਈਟ੍ਰੇਟ, ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ, ਅਮੈਨੀਅਮ ਕਲੌਰਾਈਡ।
- ਉਹਨਾਂ ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੀ ਪਛਾਣ ਕਰੋ ਜਿਹਨਾਂ ਤੋਂ ਉਪਰੋਕਤ ਲੂਣ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।
- ਸਮਾਨ ਧਨ ਜਾਂ ਰਿਣ ਮੂਲਕ ਵਾਲੇ ਲੂਣਾਂ ਨੂੰ ਇੱਕ ਹੀ ਪਰਿਵਾਰ ਦੇ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ NaCl, Na_iSO_i ਸੋਡੀਅਮ ਲੂਣਾਂ ਦੇ ਪਰਿਵਾਰ ਨਾਲ ਸਬੰਧ ਰੱਖਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ NaCl, KCl ਕਲੋਰਾਈਡ ਲੂਣਾਂ ਦੇ ਪਰਿਵਾਰ ਨਾਲ ਸਬੰਧਿਤ ਹਨ। ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਦਿੱਤੇ ਲੂਣਾਂ ਵਿੱਚ ਤੁਸੀਂ ਕਿੰਨੇ ਪਰਿਵਾਰਾਂ ਦੀ ਪਹਿਚਾਣ ਕਰ ਸਕਦੇ ਹੋ?

2.4.2 ਲੂਣਾਂ ਦੀ pH

ਕਿਰਿਆ 2,14

- ਹੇਠ ਲਿਖੇ ਲੂਣਾਂ ਦੇ ਨਮੂਨੇ ਇਕੱਠੇ ਕਰੋ :
- ਸੋਡੀਅਮ ਕਲੌਰਾਈਡ, ਪੋਟਾਸ਼ੀਅਮ ਨਾਈਟਰੇਟ, ਐਲੂਮੀਨਿਅਮ ਕਲੌਰਾਈਡ, ਜ਼ਿੰਕ ਸਲਫੇਟ, ਕਾਪਰ ਸਲਫੇਟ, ਸੋਡੀਅਮ ਐਸੀਟੇਟ, ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ। ਕੁੱਝ ਹੋਰ ਉਪਲਬੱਧ ਲੂਣ ਵੀ ਲਏ ਜਾਣ।
- 😦 ਉਹਨਾਂ ਦੀ ਜਾਂਚ ਕਰੋ ਕਿ ਕੀ ਉਹ ਕਸ਼ੀਦਣ ਪਾਣੀ ਵਿੱਚ ਘੁਲਦੇ ਹਨ।
- ਇਹਨਾਂ ਘੋਲ਼ਾਂ ਦੀ ਲਿਟਮਸ ਉੱਤੇ ਹੁੰਦੀ ਕਿਰਿਆ ਦੀ ਜਾਂਚ ਕਰੋ ਅਤੇ pH ਪੈਪਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਉਹਨਾਂ ਦੇ pH ਮਾਨ ਦਾ ਪਤਾ ਕਰੋ।
- ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਲੂਣ ਤੇਜ਼ਾਬੀ, ਖਾਰੀ ਜਾਂ ਉਦਾਸੀਨ ਹਨ?
- 😱 ਲੂਣ ਬਣਾਉਣ ਵਾਸਤੇ ਵਰਤੇ ਜਾਂਦੇ ਤੇਜ਼ਾਬ ਜਾਂ ਖ਼ਾਰ ਦੀ ਪਛਾਣ ਕਰੋ।
- ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਦੀ ਰਿਪੋਰਟ ਸਾਰਨੀ 2.4 ਵਿੱਚ ਲਿਖੋ।

ਸਾਰਨੀ 2.4

FF.	pН	ਭਰਤਿਆ ਤੇਸ਼ਾਵ	ਵਰਗਿਆ ਮਾਰ
Ly is		Property of the	

ਸ਼ਕਤੀਸ਼ਾਲੀ ਤੇਜ਼ਾਬ ਅਤੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਖਾਰ ਦੇ ਲੂਣ ਉਦਾਸੀਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੀ pH ਦਾ ਮਾਨ 7 ਹੁੰਦਾ ਹੈ।ਸ਼ਕਤੀਸ਼ਾਲੀ ਤੇਜ਼ਾਬ ਅਤੇ ਕਮਜੋਰ ਖ਼ਾਰ ਦੇ ਲੂਣ ਤੇਜ਼ਾਬੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੀ pH ਦਾ ਮਾਨ 7 ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ।ਸ਼ਕਤੀਸ਼ਾਲੀ ਖ਼ਾਰ ਅਤੇ ਕਮਜੋਰ ਤੇਜ਼ਾਬ ਦੇ ਲੂਣ ਖ਼ਾਰੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੇ pH ਦਾ ਮਾਨ 7 ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ।

2.4.3 ਸਾਧਾਰਨ ਲੂਣ ਤੋਂ ਰਸਾਇਣ

ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਦੇ ਘੋਲਾਂ ਦੀ ਆਪਸੀ ਕਿਰਿਆ ਕਰਕੇ ਪੈਦਾ ਹੋਏ ਲੂਣ ਨੂੰ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਆਖਦੇ ਹਨ। ਇਸੇ ਲੂਣ ਦੀ ਵਰਤੋਂ ਅਸੀਂ ਆਪਣੇ ਭੋਜਨ ਵਿੱਚ ਕਰਦੇ ਹਾਂ ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਤੁਸੀਂ ਪ੍ਰੇਖਣ ਕੀਤਾ ਹੈ ਕਿ ਇਹ ਉਦਾਸੀਨ ਹੁੰਦਾ ਹੈ।

ਸਮੁੰਦਰੀ ਪਾਣੀ ਵਿੱਚ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਲੂਣ ਘੁਲੇ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਲੂਣਾਂ ਤੋਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਵੱਖ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਵਿਸ਼ਵ ਦੇ ਕਈ ਭਾਗਾਂ ਵਿੱਚ ਵੀ ਠੱਸ ਲੂਣ ਦੇ ਭੰਡਾਰ ਹਨ।ਵੱਡੇ

ਆਕਾਰ ਦੇ ਇਹ ਕਰਿਸਟਲ ਅਸ਼ੁੱਧੀਆਂ ਕਾਰਨ ਆਮ ਕਰਕੇ ਭੂਰੇ ਰੰਗ ਦੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਰਾਕ ਸਾਲਟ(Rock salt) ਆਖਦੇ ਹਨ। ਇਹ ਰਾਕ ਸਾਲਟ ਉਸ ਸਮੇਂ ਬਣੇ ਜਦੋਂ ਸਮੁੰਦਰ ਦਾ ਕੋਈ ਭਾਗ ਬੀਤੇ ਯੁੱਗ ਵਿੱਚ ਸੁੱਕ ਗਿਆ। ਰਾਕ ਸਾਲਟ ਨੂੰ ਵੀ ਕੋਲੇ ਦੀ ਤਰ੍ਹਾਂ ਖਾਨਾਂ ਵਿਚੋਂ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ। ਤੁਸੀਂ ਮਹਾਤਮਾ ਗਾਂਧੀ ਜੀ ਦੀ ਡਾਂਡੀ (Dandi) ਯਾਤਰਾ ਬਾਰੇ ਜਰੂਰ ਸੁਣਿਆ ਹੋਵੇਗਾ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਸਾਡੇ ਸੁਤੰਤਰਤਾ ਸੰਗਰਾਮ ਵਿੱਚ ਲੂਣ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸੰਕੇਤ ਸੀ।

ਸਾਧਾਰਨ ਲੂਣ—ਰਸਾਇਣਾਂ ਦਾ ਕੱਚਾ ਪਦਾਰਥ

ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਸਾਧਾਰਨ ਲੂਣ ਸਾਡੇ ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਵਾਲ਼ੇ ਕਈ ਪਦਾਰਥਾਂ ਜਿਵੇਂ ਕਿ ਕਾਸਟਿਕ ਸੋਡਾ (ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ), ਮਿੱਠਾ ਸੋਡਾ, ਵਾਸ਼ਿੰਗ ਸੋਡਾ, ਰੰਗਕਾਟ ਆਦਿ ਲਈ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਕੱਚਾ ਪਦਾਰਥ ਹੈ। ਆਓ, ਵੇਖੀਏ ਕਿ ਕਿਵੇਂ ਇੱਕ ਵਸਤੂ ਦੀ ਵਰਤੋਂ ਵੱਖ ਵੱਖ ਵਸਤੂਆਂ ਬਣਾਉਣ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ (Sodium Hydroxide)

ਜਦੋਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਜਲੀ ਘੋਲ਼ ਵਿੱਚੋਂ ਬਿਜਲੀ ਲੰਘਾਈ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਹ ਅਪਘਟਿਤ ਹੋ ਕੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਕਲੋਰ-ਐਲਕਲੀ ਪ੍ਰਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਨਿਰਮਤ ਉਤਪਾਦ ਕਲੋਰੀਨ ਲਈ ਕਲੋਰੋ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਲਈ ਐਲਕਲੀ ਹਨ।

$2NaCl(aq) + 2H_2O(l) \rightarrow 2NaOH(aq) + Cl_2(g) + H_2(g)$

ਕਲੌਰੀਨ ਗੈਸ ਐਨੌਡ ਤੇ ਮੁਕਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਹਾਈਡਰੋਜਨ ਗੈਸ ਕੈਥੋਡ ਤੇ। ਕੈਥੋਡ ਲਾਗੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਵੀ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਤਿੰਨੋ ਉਤਪਾਦ ਉਪਯੋਗੀ ਹਨ। ਚਿੱਤਰ 2.8 ਇਹਨਾਂ ਉਤਪਾਦਾਂ ਦੇ ਉਪਯੋਗਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਰੰਗਕਾਟ ਪਾਊਡਰ (Bleaching Powder)

ਤੁਸੀਂ ਪਹਿਲਾਂ ਹੀ ਜਾਣਦੇ ਹੋ ਕਿ ਸੋਡੀਅਮ ਕਲੌਰਾਈਡ ਦੇ ਜਲੀ -ਘੋਲ਼ ਦੇ ਬਿਜਲਈ ਅਪਘਟਨ (Electrolysis) ਰਾਹੀਂ ਕਲੌਰੀਨ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਕਲੌਰੀਨ ਗੈਸ ਦਾ ਉਪਯੋਗ ਰੰਗਕਾਟ ਪਾਊਡਰ ਦੇ ਨਿਰਮਾਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਖ਼ੁਸ਼ਕ ਬੁਝੇ ਹੋਏ ਚੂਨੇ [Ca(OH),] ਉੱਤੇ ਕਲੌਰੀਨ ਦੀ ਕਿਰਿਆ ਦੁਆਰਾ ਰੰਗਕਾਟ ਪਾਊਡਰ ਦਾ ਉਤਪਾਦਨ ਹੁੰਦਾ ਹੈ। ਰੰਗਕਾਟ ਪਾਊਡਰ ਨੂੰ CaOCl, ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਪਰ ਇਸ ਦੀ ਵਾਸਤਵਿਕ ਰਚਨਾ ਕਾਫੀ ਗੁੰਝਲ਼ਦਾਰ ਹੁੰਦੀ ਹੈ।

Ca(OH)₂ + Cl₂ → CaOCl₂ + H₂O ਰੰਗਕਾਟ ਪਾਊਡਰ ਦਾ ਉਪਯੋਗ:

- ਕੱਪੜਾ ਉਦਯੋਗ ਵਿੱਚ ਸੂਤੀ ਅਤੇ ਲਿਨਨ ਦਾ ਰੰਗ ਉਡਾਉਣ ਲਈ, ਕਾਗਜ਼ ਦੀਆਂ ਫੈਕਟਰੀਆਂ ਵਿੱਚ ਲੱਕੜੀ ਦੀ ਲੇਟੀ ਦੇ ਗੁੱਦੇ ਦਾ ਰੰਗ ਉਡਾਉਣ ਲਈ ਅਤੇ ਧੋਤੇ ਕੱਪੜਿਆਂ ਦਾ ਰੰਗ ਉਡਾਉਣ ਲਈ।
- (ii) ਕਈ ਰਸਾਇਣਿਕ ਉਦਯੋਗਾਂ ਵਿੱਚ ਆਕਸੀਕਾਰਕ (Oxidising Agent) ਵਜੋਂ।
- (iii) ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਨੂੰ ਜੀਵਾਣੂ ਰਹਿਤ ਕਰਨ ਲਈ ਇੱਕ ਰੋਗਾਣੂ ਨਾਸ਼ਕ ਵਜੋਂ। ਬੇਕਿੰਗ ਸੋਡਾ ਜਾਂ ਮਿੱਠਾ ਸੋਡਾ (Baking Soda)

ਬੇਕਿੰਗ ਜਾਂ ਮਿੱਠੇ ਸੋਡੇ ਦਾ ਉਪਯੋਗ ਆਮਤੌਰ ਤੇ ਰਸੋਈ ਵਿੱਚ ਖਸਤਾ ਪਕੌੜੇ ਬਨਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਦੇ-ਕਦੇ ਇਸ ਦੀ ਵਰਤੋਂ ਭੋਜਨ ਛੇਤੀ ਪਕਾਉਣ ਲਈ ਵੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਯੋਗਿਕ ਦਾ ਰਸਾਇਣਿਕ ਨਾਂ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਹੈ। ਇਸ ਦਾ ਰਸਾਇਣਿਕ ਸੂਤਰ (NaHCO₃) ਹੈ। ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਇੱਕ ਕੱਚੇ ਪਦਾਰਥ ਵਜੋਂ ਵਰਤ ਕੇ ਇਸਦਾ ਨਿਰਮਾਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 $NaCl + H_2O + CO_2 + NH_3 \rightarrow NH_4Cl + NaHCO_3$ (ਅਮੋਨੀਅਮ (ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ) ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ)

ਕੀ ਤੁਸੀਂ ਕਿਰਿਆ 2.14 ਵਿੱਚ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ pH ਮਾਨ ਦੀ ਜਾਂਚ ਕੀਤੀ ਸੀ? ਕੀ ਤੁਸੀਂ ਇਹ ਸੰਬੰਧ ਸਥਾਪਿਤ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਇਸ ਨੂੰ ਕਿਉਂ ਤੇਜ਼ਾਬ ਉਦਾਸੀਨ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ? ਇਹ ਇੱਕ ਕਮਜੋਰ ਖ਼ਾਰ ਹੈ। ਭੋਜਨ ਪਕਾਉਣ ਸਮੇਂ ਇਸਨੂੰ ਗਰਮ ਕਰਨ ਨਾਲ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਵਾਪਰਦੀ ਹੈ:

 $2NaHCO_3$ $\xrightarrow{$ $\rightarrow Na_2CO_3 + H_2O + CO_2}$ $(ਸੋਡੀਅਮ <math>\qquad$ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ

ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦਾ ਉਪਯੋਗ ਸਾਡੇ ਘਰਾਂ ਵਿੱਚ ਕਈ ਤਰ੍ਹਾਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ ਉਪਯੋਗ

(i) ਬੇਕਿੰਗ ਪਾਊਡਰ ਬਣਾਉਣ ਲਈ ਬੇਕਿੰਗ ਪਾਊਡਰ ਬੇਕਿੰਗ ਸੋਡੇ (ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ) ਅਤੇ ਟਾਰਟਰਿਕ ਤੇਜ਼ਾਬ ਜਿਹੇ ਹਲਕੇ ਖਾਣਯੋਗ ਤੇਜ਼ਾਬ ਦਾ ਮਿਸ਼ਰਣ ਹੈ। ਜਦੋਂ ਬੇਕਿੰਗ ਪਾਊਡਰ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਾਂ ਪਾਣੀ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ:

 $NaHCO_3 + H^+ \rightarrow CO_2 + H_2O + ਤੇਜ਼ਾਬ ਦਾ ਸੋਡੀਅਮ ਲੂਣ (ਕਿਸੇ ਤੇਜ਼ਾਬ ਤੋਂ)$

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੇ ਕਾਰਨ ਡਬਲ ਰੋਟੀ ਜਾਂ ਕੇਕ ਉੱਭਰ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਹ ਨਰਮ ਅਤੇ ਛੇਕਦਾਰ ਬਣ ਜਾਂਦੀ ਹੈ।

- ਸੰਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਵੀ ਐਂਟ-ਐਸੀਡ ਦਾ ਇੱਕ ਘਟਕ ਹੈ। ਖਾਰ ਹੋਣ ਕਰਕੇ ਇਹ ਮਿਹਦੇ ਦੇ ਤੇਜ਼ਾਬ ਨੂੰ ਉਦਾਸੀਨ ਕਰਦਾ ਹੈ ਅਤੇ ਆਰਾਮ ਪਹੁਚਾਉਂਦਾ ਹੈ।
- (iii) ਇਸ ਦਾ ਪ੍ਯੋਗ ਸੋਡਾ-ਤੇਜ਼ਾਬ ਅੱਗ ਬੁਝਾਉ ਯੰਤਰ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਧੋਣ ਵਾਲਾ ਸੋਡਾ (Washing Soda)

ਇੱਕ ਹੋਰ ਰਸਾਇਣ ਜੋ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਉਹ ਹੈ $\mathrm{Na_2CO_3.10H_2O}$ (ਧੋਣ ਵਾਲਾ ਸੋਡਾ)। ਤੁਸੀਂ ਉਪਰੋਕਤ ਵਿਓਰੇ ਵਿੱਚ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕੀਤਾ ਹੈ ਕਿ ਬੇਕਿੰਗ ਸੋਡੇ ਨੂੰ ਗਰਮ ਕਰਕੇ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਕਿਰਿਸਟਲੀਕਰਨ(Crystallisation) ਦੁਆਰਾ ਕਪੜੇ ਧੋਣ ਵਾਲਾ ਸੋਡਾ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਇੱਕ ਖਾਰੀ ਲੂਣ ਹੈ।

 $Na_2CO_3 + 10H_2O \rightarrow Na_2CO_3.10H_2O$ (ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ)

ਇਸ ਯੋਗਿਕ ਵਿੱਚ 10H,O ਕੀ ਦਰਸਾਉਂਦੇ ਹਨ? ਕਿ ਇਹ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਨੂੰ ਸਿੱਲ੍ਹਾਂ ਬਣਾਉਂਦੇ ਹਨ? ਅਸੀਂ ਇਸ ਬਾਰੇ ਅਗਲੇ ਭਾਗ ਵਿੱਚ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ।

ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਕਈ ਉਦਯੋਗਿਕ ਪ੍ਕਿਰਿਆਵਾਂ ਲਈ ਉਪਯੋਗੀ ਰਸਾਇਣ ਵੀ ਹਨ।

ਕਪੜੇ-ਧੋਣ ਵਾਲੇ ਸੋਡੇ ਦੇ ਉਪਯੋਗ

- (i) ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਉਪਯੋਗ ਕੱਚ, ਸਾਬਣ ਅਤੇ ਕਾਗਜ਼ ਉਦਯੋਗਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
- (ii) ਇਸ ਦਾ ਉਪਯੋਗ ਸੋਡੀਅਮ ਦੇ ਯੋਗਿਕਾ ਜਿਵੇਂ ਕਿ ਬੋਰੈਕਸ (Borax) ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- (iii) ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਉਪਯੋਗ ਘਰਾਂ ਵਿੱਚ ਸਫਾਈ ਕਰਨ ਵਜੋਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

(iv) ਪਾਣੀ ਦੀ ਸਥਾਈ ਕਠੋਰਤਾ ਹਟਾਉਣ ਲਈ ਇਸ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। 2.4.4 ਕੀ ਲੂਣਾਂ ਦੇ ਕਰਿਸਟਲ (ਰਵੇ) ਅਸਲ ਵਿੱਚ ਸੁੱਕੇ ਹੁੰਦੇ ਹਨ? 🥢

ਕਿਰਿਆ 2.15

- ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਕੁੱਝ ਕਰਿਸਟਲਾਂ ਨੂੰ ਸੁੱਕੀ ਉਬਲਣ ਪਰਖਨਲੀ ਵਿੱਚ ਗਰਮ ਕਰੋ।
- 🍙 ਗਰਮ ਕਰਨ ਉਪਰੰਤ ਕਾਪਰ ਸਲਫੋਟ ਦਾ ਕੀ ਰੰਗ ਹੈ?
- ਕੀ ਉਬਲਣ ਨਲੀ ਵਿੱਚ ਪਾਣੀ ਦੀਆਂ ਬੂੰਦਾ ਵਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ? ਇਹ ਕਿੱਥੋਂ ਆਈਆਂ ਹਨ?
- ਗਰਮ ਕਰਨ ਤੋਂ ਪਿੱਛੋਂ ਪ੍ਰਾਪਤ ਹੋਏ ਕਾਪਰ ਸਲਵੇਟ ਉੱਤੇ ਦੋ ਤਿੰਨ ਬੂੰਦਾਂ ਪਾਣੀ ਦੀਆਂ ਪਾਓ।
- ਭੂਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਕੀ ਕਾਪਰ ਸਲਫੇਟ ਦਾ ਨੀਲਾ ਰੰਗ ਆ ਗਿਆ ਹੈ?

ਚਿੱਤਰ 2.9 ਕਰਿਸਟਲੀ ਜਲ ਨੂੰ ਹਟਾਉਣਾ

ਖੁਸ਼ਕ ਵਿਖਾਈ ਦੇਣ ਵਾਲੇ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਕਰਿਸਟਲਾਂ ਵਿੱਚ ਕਰਿਸਟਲੀ ਜਲ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਕਰਿਸਟਲਾਂ ਨੂੰ ਗਰਮ ਕਰਦੇ ਹਾਂ ਤਾਂ ਇਹ ਕਰਿਸਟਲੀ ਜਲ ਨਿਕਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਲੂਣ ਦਾ ਰੰਗ ਚਿੱਟਾ ਹੋ ਜਾਂਦਾ ਹੈ।

ਜੇਕਰ ਤੁਸੀਂ ਚਿੱਟੇ ਕਰਿਸਟਲਾਂ ਨੂੰ ਮੁੜ ਪਾਣੀ ਨਾਲ ਗਿੱਲਾ ਕਰਦੇ ਹੋ ਤਾਂ ਕਰਿਸਟਲਾਂ ਦਾ ਨੀਲਾ ਰੰਗ ਮੁੜ ਆ ਜਾਂਦਾ ਹੈ।

ਲੂਣ ਦੇ ਇੱਕ ਫਾਰਮੂਲਾ ਇਕਾਈ ਵਿੱਚ ਪਾਣੀ ਦੇ ਨਿਸਚਿਤ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਕਰਿਸਟਲੀ ਜਲ (Water of Crystallisation) ਆਖਦੇ ਹਨ।

ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਇਕ ਸੂਤਰ ਇਕਾਈ ਵਿੱਚ ਪਾਣੀ ਦੇ ਪੰਜ ਅਣੂ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਜਲੀ $(\bar{\sigma} = \bar{\sigma} = \bar{\sigma})$ ਕਾਪਰ ਸਲਫੇਟ ਦਾ ਸੂਤਰ $(\bar{\sigma} = \bar{\sigma} = \bar{\sigma})$ ਹੈ। ਹੁਣ ਤੁਸੀਂ ਦਸ ਸਕਦੇ ਹੋ ਕਿ $(\bar{\sigma} = \bar{\sigma})$ ਹੈ। ਹੁਣ ਤੁਸੀਂ ਦਸ ਸਕਦੇ ਹੋ ਕਿ $(\bar{\sigma} = \bar{\sigma})$ ਹੈ। ਹੁਣ ਤੁਸੀਂ ਦਸ ਸਕਦੇ ਹੋ ਕਿ $(\bar{\sigma} = \bar{\sigma})$

ਜਿਪਸੰਮ ਇੱਕ ਹੋਰ ਲੂਣ ਹੈ ਜਿਸ ਵਿੱਚ ਕਰਿਸਟਲੀ ਜਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਕਰਿਸਟਲੀ ਜਲ ਦੇ ਦੋ ਅਣੂ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਸੂਤਰ CaSO₄.2H₂O ਹੈ। ਅਸੀਂ ਹੁਣ ਇਸ ਲੂਣ ਦੇ ਉਪਯੋਗਾਂ ਵੱਲ ਧਿਆਨ ਦਿੰਦੇ ਹਾਂ।

ਪਲਾਸਟਰ ਆਫ ਪੈਰਿਸ (Plaster of Paris ਜਾਂ Pop)

ਜਿਪਸਮ ਨੂੰ 373 K ਤੇ ਗਰਮ ਕਰਨ ਨਾਲ ਇਹ ਅੰਸ਼ਕ ਰੂਪ ਵਿੱਚ ਕਰਿਸਟਲੀ ਜਲ ਖੋ ਕੇ ਕੈਲਸ਼ੀਅਮ ਸਲਫੇਟ ਹੈਮੀਹਾਈਡਰੇਟ ($CaSO_4$. $\frac{1}{2}$ H_2O) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਪਲਾਸਟਰ ਆੱਫ਼ ਪੈਰਿਸ ਆਖਦੇ ਹਨ। ਡਾਕਟਰ ਇਸ ਦੀ ਵਰਤੋਂ ਟੁੱਟੀਆਂ ਹੱਡੀਆਂ ਨੂੰ ਸਹੀ ਥਾਂ ਤੇ ਸਥਿਰ ਰੱਖਣ ਲਈ ਪਲਾਸਟਰ ਵਜੋਂ ਕਰਦੇ ਹਨ। ਪਲਾਸਟਰ ਆੱਫ਼ ਪੈਰਿਸ ਇੱਕ ਚਿੱਟਾ ਪਾਊਡਰ ਹੈ ਜੋ ਪਾਣੀ ਦੀ ਉਪਯੁਕਤ ਮਾਤਰਾ ਨਾਲ ਮਿਲਾਉਣ ਉਪਰੰਤ ਮੁੜ ਜਿਪਸਮ ਵਿੱਚ ਬਦਲਕੇ ਸਖ਼ਤ ਪਦਾਰਥ ਪ੍ਦਾਨ ਕਰਦਾ ਹੈ।

 $CaSO_4 \cdot \frac{1}{2} H_2O + 1\frac{1}{2} H_2O \rightarrow CaSO_4 \cdot 2H_2O$ (ਪਲਾਸਟਰ ਆਫ ਪੈਰਿਸ) (ਜਿਪਸਮ)

ਇਹ ਧਿਆਨ ਦਿਓ ਕਿ ਪਲਾਸਟਰ ਆੱਫ਼ ਪੈਰਿਸ ਵਿੱਚ ਇੱਕ CaSO, ਇਕਾਈ ਨਾਲ ਕੇਵਲ ਅੱਧਾ ਪਾਣੀ ਦਾ ਅਣੂ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ? ਇਹ ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ ਕਿਉਂਕਿ CaSO, ਦੇ ਦੋ ਇਕਾਈ ਸੂਤਰ ਪਾਣੀ ਦੇ ਇਕ ਅਣੂ ਨਾਲ ਸਾਂਝੇ ਤੌਰ ਤੇ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਪਲਾਸਟਰ ਆੱਫ਼ ਪੈਰਿਸ ਦੀ ਵਰਤੋਂ ਖਿਡੌਣੇ ਬਣਾਉਣ, ਸਜਾਵਟੀ ਸਾਮਾਨ ਤਿਆਰ ਕਰਨ ਅਤੇ ਸਤਹ ਨੂੰ ਪੱਧਰਾ ਬਨਾਉਣ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪਤਾ ਕਰੋ ਕਿ ਕੈਲਸ਼ੀਅਮ ਹੈਮੀਹਾਈਡਰੇਟ ਨੂੰ ਪਲਾਸਟਰ ਆੱਫ਼ ਪੈਰਿਸ ਕਿਉਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ?

ਪ੍ਰਸ਼ਨ

- l. CaOCl₂ ਯੋਗਿਕ ਦਾ ਸਾਧਾਰਨ ਨਾਂ ਕੀ ਹੈ?
- 2. ਉਸ ਵਸਤੂ ਦਾ ਨਾਂ ਦੱਸੋ ਜੋ ਕਲੌਰੀਨ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਰੰਗਕਾਟ ਪਾਊਡਰ ਪੈਦਾ ਕਰਦੀ ਹੈ?
- ਸੋਡੀਅਮ ਦੇ ਉਸ ਯੋਗਿਕ ਦਾ ਨਾਂ ਦੱਸੋਂ ਜੋ ਕਠੋਰ ਪਾਣੀ ਨੂੰ ਹਲਕਾ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ?
- ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ ਘੋਲ਼ ਨੂੰ ਗਰਮ ਕਰਨ ਨਾਲ ਕੀ ਹੁੰਦਾ ਹੈ। ਸੰਬੰਧਿਤ ਕਿਰਿਆ ਦੀ ਸਮੀਕਰਣ ਲਿਖੋ।
- 5. ਪਲਾਸਟਰ ਆਫ ਪੈਰਿਸ ਅਤੇ ਪਾਣੀ ਵਿਚਕਾਰ ਵਾਪਰਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੀ ਸਮੀਕਰਣ ਲਿਖੋ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ਹੈ?

- ਤੇਜ਼ਾਬ-ਖਾਰ ਸੂਚਕ ਰੰਗ ਜਾਂ ਰੰਗਾਂ ਦੇ ਮਿਸ਼ਰਣ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਤੇਜ਼ਾਬ ਜਾਂ ਖਾਰ ਦੀ ਹੋਂਦ ਦੀ ਸੂਚਨਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਘੋਲ ਵਿੱਚ H^{*}(aq) ਆਇਨਾਂ ਦੀ ਉਤਪਤੀ ਕਰਕੇ ਹੀ ਵਸਤਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਤੇਜ਼ਾਬੀ ਹੁੰਦੀ ਹੈ। ਘੋਲ ਵਿੱਚ OH^{*}
 (aq) ਆਇਨਾਂ ਦੇ ਨਿਰਮਾਣ ਕਾਰਨ ਵਸਤਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਖ਼ਾਰੀ ਹੁੰਦੀ ਹੈ।
- ਜਦੋਂ ਕੋਈ ਤੇਜ਼ਾਬ ਕਿਸੇ ਧਾਤ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਹਾਈਡਰੋਜਨ ਗੈਸ ਬਾਹਰ ਨਿਕਲਦੀ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਸਬੰਧੰਤ ਲੂਣ ਦੀ ਉਤਪਤੀ ਹੁੰਦੀ ਹੈ।
- ਜਦੋਂ ਤੇਜ਼ਾਬ ਕਿਸੇ ਧਾਤਵੀ ਕਾਰਬੋਨੇਟ ਜਾਂ ਧਾਤਵੀ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਸੰਬੰਧਤ ਲੂਣ, ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਪੈਦਾ ਹੁੰਦੇ ਹਨ।
- ਤੇਜ਼ਾਬੀ ਅਤੇ ਖਾਰੀ ਪਾਣੀ ਘੋਲ ਬਿਜਲਈ ਚਾਲਕ ਹੁੰਦੇ ਹਨ ਕਿਉਂਕਿ ਉਹ ਹਾਈਡਰੋਜਨ ਆਇਨ ਅਤੇ ਹਾਈਡਰੋਕਸਾਈਡ ਆਇਨ ਪੈਦਾ ਕਰਦੇ ਹਨ।
- ਤੇਜ਼ਾਬ ਜਾਂ ਐਲਕਲੀ ਅਤੇ ਖਾਰ ਦੀ ਸ਼ਕਤੀ ਦੀ ਜਾਂਚ pH (0-14) ਸਕੇਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜੋ ਘੱਲ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਦਾ ਮਾਪ ਹੁੰਦੀ ਹੈ।
- ਉਦਾਸੀਨ ਘੋਲ ਦੀ pH ਦਾ ਮਾਨ ਠੀਕ 7 ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿ ਤੇਜਾਬੀ ਘੋਲ ਦੀ pH ਦਾ ਮਾਨ 7 ਤੋਂ ਘੱਟ ਅਤੇ ਖ਼ਾਰੀ ਘੋਲ਼ ਦੀ pH ਦਾ ਮਾਨ 7 ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ।
- ਜੀਵਤ ਵਸਤਾਂ ਆਪਣੀਆਂ ਢਾਹ ਉਸਾਰੂ ਕਿਰਿਆਵਾਂ pH ਦੀ ਅਨੁਕੂਲਤ ਸੀਮਾਂ ਵਿੱਚ ਕਰਦੀਆਂ ਹਨ।
- ਗਾੜ੍ਹੇ ਤੇਜ਼ਾਬਾਂ ਜਾਂ ਖਾਰਾਂ ਦਾ ਪਾਣੀ ਨਾਲ ਮਿਲਣਾ ਉੱਚ ਤਾਪ ਨਿਕਸੀ ਪ੍ਕਿਰਿਆ ਹੈ।
- ਤੇਜ਼ਾਬ ਅਤੇ ਖ਼ਾਰ ਇੱਕ ਦੂਜੇ ਨੂੰ ਉਦਾਸੀਨ ਕਰਦੇ ਹਨ ਅਤੇ ਸਬੰਧਤ ਲੂਣ ਅਤੇ ਪਾਣੀ ਪੈਦਾ ਕਰਦੇ ਹਨ।
- ਲੂਣ ਦੇ ਇੱਕ ਸੂਤਰ ਇਕਾਈ ਵਿੱਚ ਪਾਣੀ ਦੇ ਨਿਸ਼ਚਿਤ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਕਰਿਸਟਲੀ ਜਲ ਕਹਿੰਦੇ ਹਨ।
- ਸਾਡੇ ਰੋਜਾਨਾ ਜੀਵਨ ਅਤੇ ਉਦਯੋਗਾਂ ਵਿੱਚ ਲੂਣਾਂ ਦੇ ਅਨੇਕ ਉਪਯੋਗ ਹਨ।

ਅਭਿਆਸ

1.	ਇਕੋ ਘੋਲ਼ ਲਾ	ਲ ਲਿਟਮਸ ਨੂੰ ਨਾਲਾ ਕਰ	ਰਿਦਾ ਹੈ, ਇਸ ਦਾ ਸਭਵ	50 5 pri 0.
	(a) 1	(b) 4	(c) 5	(d) 10

 ਇੱਕ ਘੋਲ਼ ਅੰਡੇ ਦੇ ਛਿਲਕੇ ਦੇ ਬਾਰੀਕ ਟੁਕੜਿਆਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਇੱਕ ਗੈਸ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਜੋ ਚੂਨੇ ਦੇ ਪਾਣੀ ਨੂੰ ਦੁਧੀਆ ਕਰ ਦਿੰਦੀ ਹੈ। ਘੋਲ ਵਿੱਚ ਮੌਜੂਦ ਹੈ:

	A STATE OF THE STA		7005 E1998E1	DE ANTERESTA
(a)	NaCl	(b) HCl	(c) LiCl	(d) KCl
100000	Control of the Contro			

- 3. ਸੋਡੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ (NaOH) ਦਾ 10 mL ਘੋਲ, HCl ਦੇ 8 mL ਘੋਲ਼ ਨਾਲ ਪੂਰਨ ਤੌਰ ਤੇ ਉਦਾਸੀਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ NaOH ਦੇ ਉਸੀ ਘੋਲ ਦੇ 20 mL ਲਈਏ ਤਾਂ ਉਸ ਨੂੰ ਉਦਾਸੀਨ ਕਰਨ ਲਈ HCl ਦੇ ਉਸੇ ਘੋਲ਼ ਦੀ ਕਿੰਨੀ ਮਾਤਰਾ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ?
 - (a) 4 mL
 - (b) 8 mL
 - (c) 12 mL
 - (d) 16 mL
- 4. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਕਿਸਮ ਦੀ ਦਵਾਈ ਬਦਹਜਮੀ ਦਾ ਇਲਾਜ ਕਰਨ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ?
 - (a) भेंटीघारिष्ट्रिटिक (Antibiotic)
 - (b) ਐਨਾਲਜੈਸਿਕ (Analgesic)
 - (c) ਔਟਐਸਿਡ (Antacid)
 - (d) भेंटीमेर्पाटक (Antiseptic)
- 5. ਹੇਠ ਲਿਖੀਆਂ ਕਿਰਿਆਵਾਂ ਲਈ ਪਹਿਲਾਂ ਸ਼ਬਦ ਸਮੀਕਰਣਾਂ ਅਤੇ ਫਿਰ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣਾਂ ਲਿਖੋ।
 - (a) ਪਤਲਾ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਦਾਣੇਦਾਰ ਜ਼ਿੰਕ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।
 - (b) ਪਤਲਾ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਮੈਗਨੀਸ਼ੀਅਮ ਰਿਬਨ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।
 - (c) ਪਤਲਾ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਐਲੂਮੀਨੀਅਮ ਪਾਊਡਰ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।
 - (d) ਪਤਲਾ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਆਇਰਨ ਦੀਆਂ ਕਤਰਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।
- 6. ਅਲਕੋਹਲ ਅਤੇ ਗੁਲੂਕੋਜ਼ ਜਿਹੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਵੀ ਹਾਈਡਰੋਜਨ ਹੁੰਦੀ ਹੈ ਪਰ ਉਹਨਾਂ ਨੂੰ ਤੇਜ਼ਾਬ ਵਜੋਂ ਵਰਗੀਕ੍ਰਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ। ਇਸ ਨੂੰ ਸਿੱਧ ਕਰਨ ਲਈ ਇੱਕ ਕਿਰਿਆ ਦਾ ਵਰਨਣ ਕਰੋ।
- 7. ਕਸ਼ੀਦਤ ਪਾਣੀ ਕਿਉਂ ਬਿਜਲੀ ਚਾਲਕ ਨਹੀਂ ਜਦੋਂ ਕਿ ਮੀਂਹ ਦਾ ਪਾਣੀ ਹੁੰਦਾ ਹੈ≀
- 8. ਪਾਣੀ ਦੀ ਅਣਹੋਂਦ ਵਿੱਚ ਤੇਜ਼ਾਬਾਂ ਦਾ ਵਿਵਹਾਰ ਤੇਜ਼ਾਬੀ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦਾ।
- 9. ਪੰਜ ਘੋਲ A, B, C, D, ਅਤੇ E ਦੀ ਜਦੋਂ ਵਿਸ਼ਵ ਵਿਆਪੀ ਸੂਚਕ ਨਾਲ ਪਰਖ ਕੀਤੀ ਗਈ ਤਾਂ ਲੜੀਵਾਰ ਉਹਨਾਂ ਦੇ pH ਮਾਨ: 4, 1, 11, 7 ਅਤੇ 9 ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਉਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਘੋਲ :
 - (a) ਉਦਾਸੀਨ ਹੈ?
 - (b) ਸ਼ਕਤੀਸ਼ਾਲੀ ਖ਼ਾਰੀ ਹੈ?
 - (c) ਸ਼ਕਤੀਸ਼ਾਲੀ ਤੇਜ਼ਾਬੀ ਹੈ?
 - (d) ਕਮਜੋਰ ਤੇਜ਼ਾਬੀ ਹੈ?
 - (e) ਕਮਜੋਰ ਖ਼ਾਰੀ ਹੈ?

pH ਮਾਨਾਂ ਨੂੰ ਹਾਈਡਰੋਜਨ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਦੇ ਵਧਦੇ ਕ੍ਮ ਵਿੱਚ ਲਿਖੇ।

10. ਪਰਖਨਲੀ 'A' ਅਤੇ 'B' ਵਿੱਚ ਸਮਾਨ ਲੰਬਾਈ ਦੀਆਂ ਮੈਗਨੀਸ਼ੀਅਮ ਦੀਆਂ ਪੱਟੀਆਂ ਲਈਆਂ ਗਈਆਂ ਹਨ। ਪਰਖ ਨਲੀ 'A' ਵਿੱਚ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ (HCI) ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪਰਖਨਲੀ 'B' ਵਿੱਚ ਐਸਿਟਿਕ ਤੇਜ਼ਾਬ (CH₃COOH) ਦੋਵੇਂ ਤੇਜ਼ਾਬਾ ਦੀ ਸੰਘਣਤਾ ਅਤੇ ਮਾਤਰਾ ਸਮਾਨ ਹੈ। ਕਿਸ ਪਰਖਨਲੀ ਵਿੱਚ ਵਧੇਰੇ ਤੇਜ਼ੀ ਨਾਲ ਸੀ-ਸੀ ਦੀ ਆਵਾਜ ਆਉਂਦੀ ਹੈ ਅਤੇ ਕਿਉਂ?

- 11. ਤਾਜ਼ੇ ਦੁੱਧ ਦੀ pH ਦਾ ਮਾਨ 6 ਹੁੰਦਾ ਹੈ ।ਦਹੀ ਬਣ ਜਾਣ ਉਪਰੰਤ ਇਸ ਦੇ pH ਮਾਨ ਵਿੱਚ ਕੀ ਪਰਿਵਰਤਨ ਆਏਗਾ? ਵਿਆਖਿਆ ਸਹਿਤ ਉੱਤਰ ਦਿਓ।
- 12. ਇਕ ਦੋਧੀ ਦੁੱਧ ਵਿੱਚ ਥੋੜਾ ਜਿਹਾ ਬੇਕਿੰਗ ਸੋਡਾ ਮਿਲਾ ਦਿੰਦਾ ਹੈ।
 - (a) ਉਹ ਤਾਜ਼ੇ ਦੁੱਧ ਦੀ pH ਦਾ ਮਾਨ 6 ਤੋਂ ਬਦਲਕੇ ਬੋੜ੍ਹਾ ਜਿਹਾ ਖ਼ਾਰੀ ਕਿਉਂ ਕਰਦਾ ਹੈ?
 - (b) ਇਸ ਦੁੱਧ ਨੂੰ ਦਹੀਂ ਬਣਨ ਵਿੱਚ ਵਧੇਰੇ ਸਮਾਂ ਕਿਉਂ ਲਗਦਾ ਹੈ?
- 13. ਪਲਾਸਟਰ ਆਫ ਪੈਰਿਸ ਨੂੰ ਨਮੀਰਿਧਕ ਬਰਤਨ ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਵਰਨਣ ਕਰੋ ਕਿਉਂ?
- 14. ਉਦਾਸੀਨੀਕਰਨ ਕਿਰਿਆ ਤੋਂ ਕੀ ਭਾਵ ਹੈ? ਇਸ ਦੀਆਂ ਦੋ ਉਦਾਹਰਣਾਂ ਦਿਓ।
- 15. ਕਪੜੇ ਧੋਣ ਵਾਲੇ ਸੋਡੇ ਅਤੇ ਬੇਕਿੰਗ ਸੋਡੇ ਦੇ ਦੋ ਮਹੱਤਵਪੂਰਨ ਉਪਯੋਗ ਦਿਓ।

ਗਰੁੱਪ ਕਿਰਿਆਵਾਂ

(1) ਆਪਣਾ ਸੂਚਕ ਆਪ ਤਿਆਰ ਕਰੋ।

- 🎍 ਕੂੰਡੀ ਵਿੱਚ ਚੁਕੰਦਰ ਦੀ ਜੜ੍ਹ ਨੂੰ ਰਗੜੇ।
- 💌 ਸਤ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਉੱਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਪਾਓ।
- 🕨 ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਸਿੱਖੀਆਂ ਵਿਧੀਆਂ ਅਨੁਸਾਰ ਸਤ ਪੁਣੋ।
- ਪਹਿਲਾਂ ਪਰਖੀਆਂ ਵਸਤਾਂ ਦੀ ਪਰਖ ਕਰਨ ਲਈ ਫਿਲਟਰੇਟ ਨੂੰ ਇਕੱਠਾ ਕਰੋ।
- ਪਰਖਨਲੀ ਸਟੈਂਡ ਵਿੱਚ ਚਾਰ ਪਰਖਨਲੀਆਂ ਖੜੀਆਂ ਕਰੋ ਅਤੇ ਉਹਨਾਂ ਨੂੰ A, B, C ਅਤੇ D ਅੰਕਿਤ ਕਰੋ। ਇਹਨਾਂ ਪਰਖਨਲੀਆਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਨਿੰਬੂ ਰਸ ਦਾ ਘੋਲ਼, ਸੋਡਾ ਵਾਟਰ, ਸਿਰਕਾ ਅਤੇ ਬੇਕਿੰਗ ਸੋਡੇ ਦਾ 2 mL ਘੋਲ਼ ਪਾਓ।
- ਹਰ ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਚੁਕੰਦਰ ਦੀ ਜੜ੍ਹ ਦੇ ਸਤ ਦੀਆਂ 2-3 ਬੂੰਦਾਂ ਪਾਓ ਅਤੇ ਰੰਗ ਵਿੱਚ ਜੇਕਰ ਕੋਈ ਪਰਿਵਰਤਨ ਆਇਆ ਹੈ ਤਾਂ ਨੋਟ ਕਰੋ। ਆਪਣੇ ਪ੍ਰੇਖਣ ਇੱਕ ਸਾਰਨੀ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
- ਤੁਸੀਂ ਕੁੱਝ ਕੁਦਰਤੀ ਪਦਾਰਥਾਂ ਜਿਵੇਂ ਕਿ ਲਾਲ ਪੱਤਾ ਗੋਭੀ ਦੀਆਂ ਪੱਤੀਆਂ ਦਾ ਨਿਚੋੜ, ਕੁਝ ਫੁਲਾਂ ਜਿਵੇਂ ਪੇਟੂਨੀਆ (Petunia), ਹਾਈਡਰੇਂਜੀਆ (Hydrangea) ਅਤੇ ਜੇਰਾਨੀਅਮ (Geranium) ਦੀਆਂ ਰੈਗਦਾਰ ਪੱਤੀਆਂ, ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸੂਚਕ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ।

(II) ਸੋਡਾ-ਤੇਜ਼ਾਬ ਅੱਗ ਬੁਝਾਉ ਯੰਤਰ ਤਿਆਰ ਕਰਨਾ

- ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਅੱਗ ਬੁਝਾਊ ਯੈਤਰ ਵਿੱਚ ਧਾਤ ਹਾਈਡਰੋਜਨਕਾਰਬੋਨੇਟ ਦੇ ਨਾਲ ਤੇਜ਼ਾਬ ਦੀ ਕਿਰਿਆ ਦਾ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ।
- ਇੱਕ ਵਾਸ਼ਬੋਤਲ ਵਿੱਚ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦਾ 20 ml ਘੋਲ਼ ਲਓ।
- ਜਲਣ ਨਲੀ ਜਿਸ ਵਿੱਚ ਪਤਲਾ ਗੰਧਕ ਦਾ ਤੇਜ਼ਾਬ ਲਿਆ ਹੋਵੇ, ਵਾਸ਼ਬੇਤਲ ਵਿੱਚ ਲਟਕਾਓ। ਚਿੱਤਰ 2.10
- 🏮 ਵਾਸ਼ਬੋਤਲ ਦਾ ਮੂੰਹ ਬੈਦ ਕਰ ਦਿਓ।
- ਵਾਸ਼ਬੋਤਲ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਟੇਢਾ ਕਰੋ ਜਿਸ ਨਾਲ ਜਲਣ-ਨਲੀ ਦਾ ਤੇਜ਼ਾਬ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ ਘੋਲ੍ਹ ਵਿੱਚ ਮਿਸ਼ਰਿਤ ਹੋ ਜਾਵੇ।
- 🔳 ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਨੌਜ਼ਲ ਰਾਹੀਂ ਬੁਦਬੁਦਾਹਟ ਬਾਹਰ ਆ ਰਹੀ ਹੈ।
- ਬਾਹਰ ਆਉਂਦੀ ਗੈਸ ਨੂੰ ਜਲਦੀ ਮੋਮਬੱਤੀ ਵੱਲ ਕਰੋ। ਕੀ ਵਾਪਰਦਾ ਹੈ?

ਚਿੱਤਰ 2.10 (a) ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਵਾਲੀ ਵਾਸ਼ਬੋਤਲ ਵਿੱਚ ਲਟਕੀ ਹੋਈ ਪਤਲੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਵਾਲੀ ਜਲਣ ਨਲੀ।

(b) ਨੌਜ਼ਲ ਤੋਂ ਬਾਹਰ ਆਉਂਦੀ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਗੈਸ

ਅਧਿਆਇ 3 ਪਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ (Metals and Non-metals)

ਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਤੁਸੀਂ ਕਈ ਤੱਤਾਂ ਬਾਰੇ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕੀਤਾ ਹੈ। ਤੁਹਾਨੂੰ ਪਤਾ ਹੈ ਕਿ ਤੱਤਾਂ ਦਾ ਉਹਨਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਵਰਗੀਕਰਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

- 😱 ਆਪਣੇ ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਉਪਯੋਗਾਂ ਬਾਰੇ ਸੋਚੋ।
- ਤੱਤਾਂ ਨੂੰ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਵਰਗੀਕਰਨ ਵਾਸਤੇ ਤੁਸੀਂ ਉਹਨਾਂ ਦੇ ਕਿਹੜੇ ਗੁਣਾਂ ਬਾਰੇ ਸੋਚਿਆ?
- ਇਹ ਗੁਣ ਤੱਤਾਂ ਦੇ ਉਪਯੋਗਾਂ ਨਾਲ ਕਿਵੇਂ ਸੰਬੰਧਤ ਹਨ? ਆਓ ਇਹਨਾਂ ਕੁੱਝ ਗੁਣਾਂ ਬਾਰੇ ਵਿਸਥਾਰ ਸਹਿਤ ਅਧਿਐਨ ਕਰੋ।

3.1 ਭੌਤਿਕ ਗੁਣ

3.1.1 ਧਾਤਾਂ

ਵਸਤਾਂ ਨੂੰ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਣ ਲਈ ਸਭ ਤੋਂ ਸਰਲ ਢੰਗ ਉਹਨਾਂ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨਾ ਹੈ। ਆਓ ਇਸ ਦਾ ਅਧਿਐਨ ਕਰੋ ਹੇਠ ਦਿੱਤੀਆਂ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਕਰੀਏ : ਕਿਰਿਆ 3.1 ਤੋਂ 3.6 ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਧਾਤਾਂ ਦੇ ਨਮੂਨੇ ਪ੍ਰਾਪਤ ਕਰੋ :

ਆਇਰਨ, ਕਾਪਰ, ਐਲੂਮਿਨੀਅਮ, ਮੈਗਨੀਸ਼ੀਅਮ, ਲੈੱਡ, ਜ਼ਿੰਕ ਅਤੇ ਕੋਈ ਹੋਰ ਧਾਤਾਂ ਜੋ ਸੌਖਿਆਂ ਹੀ ਉਪਲਬਧ ਹੋਣ।

ਗਿਰਿਆ 3.1

- ਆਇਰਨ, ਕਾਪਰ, ਐਲੂਮਿਨੀਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਦੇ ਨਮੂਨੇ ਲਓ। ਹਰ ਨਮੂਨਾ ਕਿਹੋ ਜਿਹਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ ਨੋਟ ਕਰੋ।
- ੂ ਹਰ ਨਮੂਨੇ ਦੀ ਸਤਹ ਨੂੰ ਰੇਗਮਾਰ ਨਾਲ ਰਗੜ ਕੇ ਸਾਫ ਕਰੋ ਅਤੇ ਮੁੜ ਵੇਖੋ ਉਹ ਕਿਹੋ ਜਿਹਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

ਆਪਣੇ ਸ਼ੁੱਧ ਰੂਪ ਵਿੱਚ ਧਾਤਾਂ ਦੀ ਸਤਹ ਚਮਕੀਲੀ ਹੁੰਦੀ ਹੈ। ਧਾਤਾਂ ਦੇ ਇਸ ਗੁਣ ਨੂੰ ਧਾਤਵੀ ਚਮਕ (Metallic Lustare) ਆਖਦੇ ਹਨ।

ਕਿਰਿਆ 3,2

- ਆਇਰਨ, ਐਲੂਮਿਨੀਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਛੋਟੇ ਛੋਟੇ ਟੁਕੜੇ ਲਓ। ਇਹਨਾਂ ਧਾਤਾਂ ਨੂੰ ਤੇਜ਼ ਧਾਰ ਚਾਕੂ ਨਾਲ ਕੱਟਣ ਦਾ ਯਤਨ ਕਰੋਂ ਅਤੇ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਲਿਖੋ।
- ਚਿਮਟੀ ਨਾਲ ਸੋਡੀਅਮ ਦੇ ਇੱਕ ਟੁਕੜੇ ਨੂੰ ਫੜੋ।
 ਸਾਵਧਾਨੀ: ਸੋਡੀਅਮ ਦਾ ਉਪਯੋਗ ਕਰਨ ਸਮੇਂ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਸਾਵਧਾਨ ਰਹੇ। ਇਸ ਨੂੰ ਫਿਲਟਰ ਪੇਪਰ ਦੀਆਂ ਤਹਿਆਂ ਵਿੱਚ ਰੱਖ ਕੇ ਸੁਕਾਓ।
- 😦 ਇਸ ਨੂੰ ਵਾਚ ਗਲਾਸ ਤੇ ਰੱਖੋਂ ਅਤੇ ਚਾਕੂ ਨਾਲ ਕੱਟਣ ਦਾ ਯਤਨ ਕਰੋ।
- ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕੀਤਾ?

ਤੁਸੀਂ ਅਨੁਭਵ ਕਰੋਗੇ ਕਿ ਧਾਤਾਂ ਆਮ ਕਰਕੇ ਕਠੌਰ ਹੁੰਦੀਆਂ ਹਨ। ਹਰ ਇੱਕ ਧਾਤ ਦੀ ਕਠੌਰਤਾ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ 3.3

- 😦 ਆਇਰਨ, ਜ਼ਿੰਕ, ਲੈੱਡ ਅਤੇ ਕਾਪਰ ਦੇ ਟੁਕੜੇ ਲਓ।
- ਕਿਸੇ ਇੱਕ ਧਾਤ ਦੇ ਟੁਕੜੇ ਨੂੰ ਲੋਹੇ ਦੇ ਬਲਾਕ ਤੇ ਰੱਖ ਕੇ ਹਥੌੜੇ ਨਾਲ ਚਾਰ ਜਾਂ ਪੰਜ ਵਾਰ ਕੁੱਟੋ। ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ?
- 😦 ਧਾਤਾਂ ਦੇ ਦੂਜੇ ਟੁਕੜਿਆਂ ਨਾਲ ਵੀ ਇਹੋ ਕਿਰਿਆ ਕਰੋ।
- 😦 ਇਹਨਾਂ ਧਾਤੂਆਂ ਦੇ ਟੁਕੜਿਆਂ ਦੇ ਆਕਾਰ ਵਿੱਚ ਆਈਆਂ ਤਬਦੀਲੀਆਂ ਨੋਟ ਕਰੋ।

ਤੁਹਾਨੂੰ ਪਤਾ ਲੱਗੇਗਾ ਕਿ ਕੁੱਝ ਧਾਤਾਂ ਨੂੰ ਕੁੱਟ ਕੇ ਪਤਲੀਆਂ ਚਾਦਰਾਂ ਬਣਾਈਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਇਸੇ ਗੁਣ ਨੂੰ ਕੁਟੀਣਯੋਗਤਾ (Malleability) ਕਹਿੰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਸੋਨਾ ਅਤੇ ਚਾਂਦੀ ਸਭ ਤੋਂ ਵੱਧ ਕਟੀਣਯੋਗ ਧਾਤਾਂ ਹਨ?

ਕਿਰਿਆ 3.4

- 😦 ਆਇਰਨ, ਕਾਪਰ, ਐਲੂਮਿਨੀਅਮ, ਲੈੱਡ ਆਦਿ ਜਿਹੀਆਂ ਕੁੱਝ ਧਾਤਾਂ ਤੇ ਧਿਆਨ ਦਿਓ।
- ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜੀਆਂ ਧਾਤਾਂ ਤਾਰਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਉਪਲਬਧ ਹਨ?

ਧਾਤਾਂ ਨੂੰ ਖਿੱਚ ਕੇ ਬਾਰੀਕ ਤਾਰਾਂ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਨੂੰ ਖ਼ਚੀਣਯੋਗਤਾ (Ductility) ਆਖਦੇ ਹਨ। ਸੋਨਾ ਸਭ ਤੋਂ ਵੱਖ ਖ਼ਚੀਣਯੋਗ ਧਾਤ ਹੈ। ਤੁਹਾਨੂੰ ਇਹ ਜਾਣ ਕੇ ਹੈਰਾਨੀ ਹੋਵੇਗੀ ਕਿ ਇੱਕ ਗਰਾਮ ਸੋਨੇ ਤੋਂ 2 ਕਿਲੋਮੀਟਰ ਲੈਬੀ ਤਾਰ ਖਿੱਚੀ ਜਾ ਸਕਦੀ ਹੈ।

ਧਾਤਾਂ ਦੀ ਕੁਟੀਣਯੋਗਤਾ ਅਤੇ ਖਚੀਣ ਯੋਗਤਾ ਸਦਕਾ ਉਹਨਾਂ ਨੂੰ ਸਾਡੀ ਇੱਛਾ ਅਨੁਸਾਰ ਵੱਖ ਵੱਖ ਆਕਾਰ ਦਿੱਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ ਕੁੱਝ ਧਾਤਾਂ ਦੇ ਨਾਂ ਲੈ ਸਕਦੇ ਹੋ ਜਿਹਨਾਂ ਦਾ ਉਪਯੋਗ ਖਾਣਾ ਪਕਾਉਣ ਵਾਲੇ ਭਾਂਡੇ ਬਣਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ? ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਇਹਨਾਂ ਧਾਤਾਂ ਦਾ ਉਪਯੋਗ ਭਾਂਡੇ ਬਣਾਉਣ ਲਈ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ? ਇਸ ਦਾ ਉੱਤਰ ਲੱਭਣ ਲਈ ਆਓ ਹੇਠ ਦਿੱਤੀ ਕਿਰਿਆ ਕਰੀਏ:

ਕਿਰਿਆ 3.5

- ਐਲਮਿਨੀਅਮ ਜਾਂ ਕਾਪਰ ਦੀ ਇੱਕ ਤਾਰ ਲਓ। ਚਿੱਤਰ 3.1 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਇਸ ਤਾਰ ਨੂੰ ਕਲੈਂਪ ਦੀ ਮੁੱਦਦ ਨਾਲ ਸਟੈਂਡ
- 😱 ਤਾਰ ਦੇ ਖੁੱਲ੍ਹੇ ਸਿਰੇ ਤੇ ਮੌਮ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇੱਕ ਪਿੰਨ ਚਪਕਾਓ।
- ਸਪਿਰਟ ਲੈਂਪ ਜਾਂ ਮੋਮਬੱਤੀ ਜਾਂ ਬਰਨਰ ਨਾਲ ਕਲੈਂਪ ਦੇ ਨੇੜੇ ਤਾਰ ਨੂੰ ਗਰਮ ਕਰੋ।
- ਥੋੜ੍ਹੀ ਦੇਰ ਪਿੱਛੋਂ ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ?
- ਆਪਣੇ ਪੇਖਣ ਨੋਟ ਕਰੋ। ਕੀ ਧਾਤ ਦੀ ਤਾਰ ਪਿਘਲ ਗਈ ਹੈ?

ਚਿੱਤਰ 3.1 ਧਾਤਾਂ ਤਾਪ ਦੀਆਂ ਚਾਲਕ ਹਨ।

ਉਪਰੋਕਤ ਕਿਰਿਆ ਤੋਂ ਸਿੱਧ ਹੈਦਾ ਹੈ ਕਿ ਧਾਤਾਂ ਤਾਪ ਦੀਆਂ ਸਚਾਲਕ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਉੱਚੇ ਹੋਦੇ ਹਨ। ਸਿਲਵਰ ਅਤੇ ਕਾਪਰ ਤਾਪ ਦੇ ਸਭ ਤੋਂ ਚੰਗੇ ਚਾਲਕ ਹਨ। ਲੈੱਡ ਅਤੇ ਮਰਕਰੀ ਇਨ੍ਹਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਤਾਪ ਦੇ ਘੱਟ ਚਾਲਕ ਹਨ।

ਕੀ ਧਾਤਾਂ ਬਿਜਲੀ ਦੀਆਂ ਸਚਾਲਕ ਹਨ? ਆਓ ਪਤਾ ਕਰੀਏ।

ਕਿਰਿਆ 3,6

- ਚਿੱਤਰ 3.2 ਅਨੁਸਾਰ ਇੱਕ ਬਿਜਲਈ ਸਰਕਟ ਸੈੱਟ ਕਰੋ।
- ਜਿਸ ਧਾਤ ਦੀ ਪਰਖ ਕਰਨੀ ਹੈ ਉਸ ਨੂੰ ਸਰਕਟ ਵਿੱਚ ਟਰਮੀਨਲ (A) ਅਤੇ ਟਰਮੀਨਲ (B) ਦੇ ਵਿਚਕਾਰ ਇਸ ਤਰ੍ਹਾਂ ਰੱਖੋ ਜਿਵੇਂ ਚਿੱਤਰ ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ?
- ਕੀ ਬੱਲਬ ਚਮਕਦਾ ਹੈ? ਇਸ ਤੋਂ ਕੀ ਪਤਾ ਲੱਗਦਾ ਹੈ?

ਚਿੱਤਰ 3.2 ਹੋਦੀਆਂ ਹਨ।

ਤੁਸੀਂ ਜ਼ਰੂਰ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਜਿਸ ਤਾਰ ਨਾਲ ਤੁਹਾਡੇ ਘਰ ਵਿੱਚ ਬਿਜਲੀ ਪਹੁੰਚਦੀ ਹੈ ਉਸ ਉੱਤੇ ਪਾਲੀਵੀਨਾਇਲ ਕਲੋਰਾਈਡ(PVC) ਜਾਂ ਰਬੜ ਵਰਗੀ ਸਮੱਗਰੀ ਦੀ ਪਰਤ ਚੜ੍ਹੀ ਹੁੰਦੀ ਧਾਤਾਂ ਬਿਜਲੀ ਦੀਆਂ ਸਚਾਲਕ ਹੈ। ਬਿਜਲੀ ਦੀਆਂ ਤਾਰਾਂ ਉੱਪਰ ਅਜਿਹੀਆਂ ਵਸਤਾਂ ਦੀ ਪਰਤ ਕਿਉਂ ਚੜਾਈ ਹੁੰਦੀ ਹੈ?

ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਧਾਤਾਂ ਕਿਸੇ ਕਠੋਰ ਸਤਹ ਤੇ ਟਕਰਾਉਂਦੀਆਂ ਹਨ? ਕੀ ਉਹ ਆਵਾਜ਼ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ? ਉਹ ਧਾਤਾਂ ਜੋ ਕਿਸੇ ਸਖਤ ਸਤੂਹ ਤੇ ਟਕਰਾਉਣ ਨਾਲ ਆਵਾਜ਼ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ ਉਹਨਾਂ ਨੂੰ ਸੋਨੋਰਜ਼ ਧਾਤਾਂ ਜਾਂ ਸੂਰੀਲੀ ਧੂਨੀ ਪੈਦਾ ਕਰਨ ਵਾਲੀਆਂ ਧਾਤਾਂ ਆਖਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਸਕੂਲ ਦੀਆਂ ਘੰਟੀਆਂ ਧਾਤਾਂ ਦੀਆਂ ਕਿਉਂ ਬਣੀਆਂ ਹੁੰਦੀਆਂ ਹਨ?

3.1.2 ਅਧਾਤਾਂ

ਪਿਛਲੀ ਸ਼ੇਣੀ ਵਿੱਚ ਤੁਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ ਕਿ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਅਧਾਤਾਂ ਦੀ ਸੰਖਿਆ ਬਹੁਤ ਘੱਟ ਹੈ। ਕਾਰਬਨ, ਸਲਫਰ, ਆਇਓਡੀਨ, ਆਕਸੀਜਨ, ਹਾਈਡਰੋਜਨ ਆਦਿ ਅਧਾਤਾਂ ਦੀਆਂ ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਹਨ। ਬਰੋਮੀਨ ਇੱਕ ਅਜਿਹੀ ਅਧਾਤ ਹੈ ਜੋ ਤਰਲ ਹੈ। ਇਸ ਤੋਂ ਬਿਨ੍ਹਾਂ ਬਾਕੀ ਸਾਰੀਆਂ ਅਧਾਤਾਂ ਠੋਸ ਹਨ ਜਾਂ ਗੈਸ।

ਕੀ ਧਾਤਾਂ ਦੀ ਤਰ੍ਹਾਂ ਅਧਾਤਾਂ ਦੇ ਵੀ ਕੁੱਝ ਭੌਤਿਕ ਗੁਣ ਹੁੰਦੇ ਹਨ? ਆਓ ਪਤਾ ਕਰੀਏ।

ਕਿਰਿਆ 3.7

- 😦 ਕਾਰਬਨ ਕੋਲਾ ਜਾਂ ਗਰੇਵਾਈਟ ਸਲਵਰ ਅਤੇ ਆਇਓਡੀਨ ਦੇ ਨਮੂਨੇ ਇਕੱਤਰ ਕਰੋ।
- ਇਹਨਾਂ ਅਧਾਤੂਆਂ ਨਾਲ 3.1 ਤੋਂ 3.6 ਤੱਕ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਾਪਤ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਲਿਖੋ।

ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਨਾਲ਼ ਸੰਬੰਧਤ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਸਾਰਨੀ 3.1 ਵਿੱਚ ਸੰਕਲਿਤ ਕਰੋ।

ਸਾਰਣੀ 3,1

हुनी हैं	ਤੱਤ	AAT	ਸਤਰ ਦੀ ਕਿਸਮ	ਕਨਜ਼ਰਾ	ਕਟੀਟਯੋਗਤਾ	ਬਚੀਟ ਯੋਗਤਾ	379	धिसली	ਸੂਗੋਲੀ ਆਵਾਜ਼
				-	Site Inc.			12.0	
					1				1000

ਸਾਰਨੀ 3.1 ਵਿੱਚ ਲਿਖੇ ਪ੍ਰੇਖਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਆਪਣੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਆਮ ਭੌਤਿਕ ਗੁਣਾਂ ਬਾਰੇ ਚਰਚਾ ਕਰੋ। ਤੁਸੀਂ ਜ਼ਰੂਰ ਇਸ ਸਿੱਟੇ ਤੇ ਪੁੱਜੇ ਹੋਵੋਗੇ ਕਿ ਕੇਵਲ ਭੌਤਿਕ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਹੀ ਅਸੀਂ ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਨ ਨਹੀਂ ਕਰ ਸਕਦੇ ਕਿਉਂਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕਈ ਉਲੰਘਣਾਵਾਂ ਹਨ। ਉਦਾਹਰਨ ਵਜੋਂ :

- (i) ਪਾਰ (mercury) ਨੂੰ ਛੱਡ ਕੇ ਬਾਕੀ ਸਾਰੀਆਂ ਧਾਤਾਂ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਠੱਸ ਅਵਸਥਾ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਕਿਰਿਆ 3.5 ਵਿੱਚ ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਧਾਤਾਂ ਦਾ ਪਿਘਲਣ ਅੰਕ ਉੱਚਾ ਹੁੰਦਾ ਹੈ ਪਰ ਗੈਲੀਅਮ ਅਤੇ ਸੀਜ਼ਿਅਮ ਦੇ ਪਿਘਲਣ ਅੰਕ ਬਹੁਤ ਨੀਵੇਂ ਹਨ। ਇਹ ਦੋਵੇਂ ਧਾਤਾਂ ਪਿਘਲ ਜਾਣਗੀਆਂ ਜੇਕਰ ਇਹਨਾਂ ਨੂੰ ਤੁਸੀਂ ਆਪਣੀ ਹਥੇਲੀ ਉੱਤੇ ਰੱਖੋਗੇ।
- (ii) ਆਇਓਡੀਨ ਅਧਾਤ ਹੁੰਦਿਆਂ ਹੋਇਆ ਵੀ ਚਮਕੀਲੀ ਹੈ।
- (iii) ਕਾਰਬਨ ਅਜਿਹੀ ਅਧਾਤ ਹੈ ਜੋ ਵੱਖ ਵੱਖ ਰੂਪਾਂ ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਹਰ ਇੱਕ ਰੂਪ ਨੂੰ ਭਿੰਨ ਰੂਪ ਆਖਦੇ ਹਨ। ਹੀਰਾ ਕਾਰਬਨ ਦਾ ਇੱਕ ਭਿੰਨ ਰੂਪ ਹੈ। ਇਹ ਸਭ ਤੋਂ ਕਨੌਰ ਪ੍ਰਾਕਿਰਤਕ ਵਸਤੂ ਹੈ ਅਤੇ ਇਸ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਬਹੁਤ ਉੱਚੇ ਹਨ। ਕਾਰਬਨ ਦਾ ਇੱਕ ਹੋਰ ਭਿੰਨ ਰੂਪ ਗਰੇਫਾਈਟ ਹੈ ਜੋ ਬਿਜਲੀ ਦਾ ਸੂਚਾਲਕ ਹੈ।
- (iv) ਅਲਕਲੀ ਧਾਤਾਂ (ਲਿਥੀਅਮ, ਸੋਡੀਅਮ, ਪੋਟਾਸ਼ੀਅਮ) ਇੰਨੀਆਂ ਨਰਮ ਹਨ ਕਿ ਇਹਨਾਂ ਨੂੰ ਚਾਕੂ ਨਾਲ ਕੱਟਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ ਦੀ ਘਣਤਾ ਅਤੇ ਪਿਘਲਣ ਅੰਕ ਬਹੁਤ ਨੀਵੇਂ ਹਨ।

ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਵਧੇਰੇ ਸਪਸ਼ਟਤਾ ਨਾਲ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਜੋਂ ਵਰਗੀਕਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਰਿਆ 3.8

- ੂ ਮੈਗਨੀਸ਼ੀਅਮ ਦਾ ਇੱਕ ਰਿੱਬਨ ਅਤੇ ਥੋੜ੍ਹਾ ਸਲਫਰ ਪਾਊਡਰ ਲਓ।
- ੂ ਮੈਗਨੀਸ਼ੀਅਮ ਰਿਬੱਨ ਨੂੰ ਜਲਾਓ ਅਤੇ ਇਸ ਦੀ ਸੁਆਹ ਨੂੰ ਇਕੱਠੀ ਕਰਕੇ ਉਸ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲੋ।
- 🍙 ਪ੍ਰਾਪਤ ਘੋਲ਼ ਦੀ ਨੀਲੇ ਅਤੇ ਲਾਲ ਲਿਟਮਸ ਨਾਲ ਜਾਂਚ ਕਰੋ।
- 🍙 ਮੈਗਨੀਸ਼ੀਅਮ ਨੂੰ ਜਲਾਉਣ ਉਪਰੰਤ ਜੋ ਉਪਜ ਪ੍ਰਾਪਤ ਹੋਈ ਹੈ ਕੀ ਉਹ ਤੇਜ਼ਾਬੀ ਹੈ ਜਾਂ ਖਾਰੀ?
- ੂ ਹੁਣ ਸਲਫਰ ਪਾਊਡਰ ਨੂੰ ਜਲਾਓ। ਜਲਣ ਨਾਲ ਉਤਪੰਨ ਪੂੰਏ ਨੂੰ ਇਕੱਠਾ ਕਰਨ ਲਈ ਉਸ ਉੱਪਰ ਪੁੱਠੀ ਪਰਖ ਨਲੀ ਰੱਖੋ।

- ਉਕਤ ਪਰਖ ਨਲੀ ਵਿੱਚ ਕੁੱਝ ਪਾਣੀ ਪਾਓ ਅਤੇ ਹਿਲਾਓ।
- ਇਸ ਘੋਲ ਨੂੰ ਨੀਲੇ ਅਤੇ ਲਾਲ ਲਿਟਮਸ ਨਾਲ ਪਰਖੋ।
- ਕੀ ਸਲਫਰ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਉਤਪੰਨ ਹੋਇਆ ਉਤਪਾਦ ਤੇਜ਼ਾਬੀ ਹੈ ਜਾਂ ਖਾਰੀ।
- ਕੀ ਤੁਸੀਂ ਇਹਨਾਂ ਪ੍ਰਤਿ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਲਿਖ ਸਕਦੇ ਹੋ?

ਵਧੇਰੇ ਕਰਕੇ ਅਧਾਤਾਂ ਤੇਜ਼ਾਬੀ ਆਕਸਾਈਡ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ ਜੋ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਕੇ ਤੇਜ਼ਾਬ ਬਣਾਉਂਦੇ ਹਨ ਜਦੋਂ ਕਿ ਵਧੇਰੇ ਧਾਤਾਂ ਖਾਰੀ ਆਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਧਾਤਵੀ ਆਕਸਾਈਡਾਂ ਬਾਰੇ ਤੁਸੀਂ ਅਗਲੇ ਭਾਗ ਵਿੱਚ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪਾਪਤ ਕਰੋਗੇ।

ਪ੍ਰਸ਼ਨ

- ਅਜਿਹੀ ਧਾਤ ਦੀ ਉਦਾਹਰਣ ਦਿਓ ਜੋ :
 - (i) ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਤਰਲ ਹੈ।
- (ii) ਸੌਖਿਆਂ ਚਾਕੂ ਨਾਲ ਕੱਟੀ ਜਾ ਸਕਦੀ ਹੈ।
- (iii) ਤਾਪ ਦੀ ਸਭ ਤੋਂ ਉੱਤਮ ਚਾਲਕ ਹੈ। (iv) ਤਾਪ ਦੀ ਘੱਟ ਚਾਲਕ ਹੈ।

ਅਸੀਂ ਅੱਗੇ ਦਿੱਤੇ ਸੈਕਸ਼ਨ 3.2.1 ਤੋਂ 3.2.4 ਵਿੱਚ ਧਾਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਬਾਰੇ ਪੜ੍ਹਾਂਗੇ। ਇਸ ਮੰਤਵ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਧਾਤਾਂ ਦੇ ਨਮੂਨੇ ਇਕੱਠੇ ਕਰੋ: ਐਲੂਮਿਨੀਅਮ, ਕਾਪਰ, ਆਇਰਨ, ਲੈੱਡ, ਮੈਗਨੀਸ਼ੀਅਮ, ਜ਼ਿੰਕ ਅਤੇ ਸੋਡੀਅਮ।

3 .2 .1 ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਧਾਤਾਂ ਨੂੰ ਹਵਾ ਵਿੱਚ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ?

ਕਿਰਿਆ 3.8 ਵਿੱਚ ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਮੈਗਨੀਸ਼ੀਅਮ ਹਵਾ ਵਿੱਚ ਚੁੰਧਿਆਉਣ ਵਾਲੀ ਤੇਜ਼ ਲਾਟ ਨਾਲ ਜਲਦਾ ਹੈ। ਕੀ ਸਾਰੀਆਂ ਧਾਤਾਂ ਇਸੇ ਤਰ੍ਹਾਂ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ? ਆਓ ਹੇਠ ਲਿਖੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰਕੇ ਇਹ ਚੈੱਕ ਕਰੀਏ

ਕਿਰਿਆ 3.9

ਸਾਵਧਾਨੀ : ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਵਿੱਚ ਅਧਿਆਪਕ ਜੀ ਦਾ ਸਹਿਯੋਗ ਜ਼ਰੂਰੀ ਹੈ। ਅੱਖਾਂ ਦੀ ਸੁਰੱਖਿਆ ਲਈ ਜੇਕਰ ਵਿਦਿਆਰਥੀ ਤੇਜ਼ ਰੋਸ਼ਨੀ ਦੇ ਬਚਾਓ ਵਾਲੀਆਂ ਐਨਕਾਂ ਲਗਾ ਲੈਣ ਤਾਂ ਚੰਗਾ ਹੋਵੇਗਾ।

- ਇਕੱਤਰ ਕੀਤੀਆਂ ਹੋਈਆਂ ਧਾਤਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਥ ਨੂੰ ਚਿਮਟੀ ਨਾਲ ਫੜ ਕੇ ਅੱਗ ਵਿੱਚ ਜਲਾਉਣ ਦਾ ਯਤਨ ਕਰੋ। ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਕਿਰਿਆ ਦੂਜੀਆਂ ਧਾਤਾਂ ਨਾਲ ਦੁਹਰਾਓ।
- ਜੇਕਰ ਕੋਈ ਉਤਪਾਦ ਉਪਜਿਆ ਹੋਵੇ ਤਾਂ ਉਸਨੂੰ ਇਕੱਠਾ ਕਰੋ।
- ਉਪਜਾਂ ਅਤੇ ਧਾਤ ਦੀ ਸਤਹ ਨੂੰ ਨੰਢਾ ਹੋਣ ਦਿਓ।
- ਕਿਹੜੀ ਧਾਤ ਸੌਖਿਆਂ ਜਲਦੀ ਹੈ?
- ਤੁਸੀਂ ਲਾਟ ਦਾ ਕੀ ਰੰਗ ਵੇਖਿਆ ਸੀ ਜਦੋਂ ਧਾਤ ਜਲਦੀ ਸੀ?
- ਜਲਣ ਉਪਰੰਤ ਧਾਤ ਦੀ ਸਤਹ ਕਿਹੋ ਜਿਹੀ ਦਿਖਾਈ ਦਿੰਦੀ ਸੀ?
- 🔳 ਧਾਤਾਂ ਨੂੰ ਆਕਸੀਜਨ ਦੇ ਨਾਲ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਆਧਾਰ ਤੇ ਘਟਦੇ ਕ੍ਰਮ ਵਿੱਚ ਤਰਤੀਬ ਦਿਓ।
- ਕੀ ਉਹਨਾਂ ਦੇ ਉਤਪਾਦ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹਨ?

ਲੱਗਭੱਗ ਸਾਰੀਆਂ ਧਾਤਾਂ ਆਕਸੀਜਨ ਨਾਲ ਮਿਲ ਕੇ ਸੰਗਤ ਆਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ।

ਉਦਾਹਰਨ ਵਜੋਂ ਜਦੋਂ ਕਾਪਰ ਨੂੰ ਹਵਾ ਵਿੱਚ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਹਵਾ ਦੀ ਆਕਸੀਜਨ ਨਾਲ ਮਿਲ ਕੇ ਕਾਲੇ ਰੰਗ ਦਾ ਕਾਪਰ ਆਕਸਾਈਡ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ।

$$2\mathrm{Cu} + \mathrm{O_2} \rightarrow 2\mathrm{CuO}$$
 (ਕਾਪਰ) [ਕਾਪਰ (II) ਆਕਸਾਈਡ]

ਇਸੇ ਤਰ੍ਹਾਂ ਐਲੂਮਿਨੀਅਮ ਹਵਾ ਵਿੱਚ ਗਰਮ ਕਰਨ ਨਾਲ ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ ਬਣਾਉਂਦਾ ਹੈ।

4Al +
$$3O_2$$
 → $2Al_2O_3$
(ਐਲੂਮਿਨੀਅਮ) (ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ)

ਅਧਿਆਇ 2 ਤੋਂ ਯਾਦ ਕਰੋ ਕਿ ਕਾਪਰ ਆਕਸਾਈਡ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਕਿਵੇਂ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਸਾਨੂੰ ਪਤਾ ਹੈ ਕਿ ਧਾਤਵੀ ਆਕਸਾਈਡਾਂ ਦਾ ਸੁਭਾਅ ਖਾਰੀ ਹੁੰਦਾ ਹੈ ਪ੍ਰੰਤੂ ਕੁੱਝ ਧਾਤ ਆਕਸਾਈਡ ਜਿਵੇਂ ਕਿ ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ ਅਤੇ ਜ਼ਿੰਕ ਆਕਸਾਈਡ ਤੇਜ਼ਾਬੀ ਅਤੇ ਖਾਰੀ ਦੋਵੇਂ ਤਰ੍ਹਾਂ ਦਾ ਵਿਵਹਾਰ ਦਰਸਾਂਉਂਦੇ ਹਨ। ਅਜਿਹੇ ਧਾਤਵੀ ਆਕਸਾਈਡ ਜੋ ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੋਹਾਂ ਨਾਲ ਪ੍ਤਿਕਿਰਿਆ ਕਰਕੇ ਸੰਗਤ ਲੂਣ ਅਤੇ ਪਾਣੀ ਬਣਾਉਂਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਐਮਫੋਟੈਰਿਕ ਆਕਸਾਈਡ ਕਹਿੰਦੇ ਹਨ।

$$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$$

 $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$
(ਸੋਡੀਅਮ ਐਲੂਮੀਨੇਟ)

ਬਹੁਤ ਸਾਰੇ ਧਾਤਵੀ ਆਕਸਾਈਡ ਪਾਣੀ ਵਿੱਚ ਅਘੁੱਲ ਹਨ ਪ੍ਰੰਤੂ ਕੁੱਝ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਕੇ ਅਲਕਲੀ ਉਤਪੰਨ ਕਰਦੇ ਹਨ। ਸੋਡੀਅਮ ਆਕਸਾਈਡ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਆਕਸਾਈਡ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਕੇ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਅਲਕਲੀ ਬਣਾਉਂਦੇ ਹਨ।

$$Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$$

 $K_2O(s) + H_2O(l) \rightarrow 2KOH(aq)$

ਕਿਰਿਆ 3.9 ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਸਾਰੀਆਂ ਧਾਤਾਂ ਆਕਸੀਜਨ ਨਾਲ ਇੱਕ ਹੀ ਦਰ ਨਾਲ ਪ੍ਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ।ਵੱਖ ਵੱਖ ਧਾਤਾਂ ਆਕਸੀਜਨ ਨਾਲ ਭਿੰਨ ਭਿੰਨ ਕਿਰਿਆਸ਼ੀਲਤਾ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ। ਪੋਟਾਸ਼ੀਅਮ ਅਤੇ ਸੋਡੀਅਮ ਜਿਹੀਆਂ ਕੁੱਝ ਧਾਤਾਂ ਇੰਨੀ ਤੇਜ਼ੀ ਨਾਲ ਪ੍ਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਪੋਟਾਸ਼ੀਅਮ ਅਤੇ ਸੋਡੀਅਮ ਜਿਹੀਆਂ ਕੁੱਝ ਧਾਤਾਂ ਇੰਨੀ ਤੇਜ਼ੀ ਨਾਲ ਪ੍ਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ ਕਿ ਖੁੱਲ੍ਹੇ ਵਿੱਚ ਰੱਖਣ ਨਾਲ ਉਹਨਾਂ ਨੂੰ ਅੱਗ ਲੱਗ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਸੁਰੱਖਿਅਤ ਰੱਖਣ ਅਤੇ ਇਤਫ਼ਾਕੀਆ ਅੱਗ ਲੱਗਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਉਹਨਾਂ ਨੂੰ ਮਿੱਟੀ ਦੇ ਤੇਲ ਵਿੱਚ ਡਥੋ ਕੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਸਾਧਾਰਨ ਤਾਪਮਾਨ ਤੇ ਮੈਗਨੀਸ਼ੀਅਮ, ਐਲੂਮਿਨੀਅਮ, ਜ਼ਿੰਕ, ਲੈੱਡ ਆਦਿ ਜਿਹੀਆਂ ਧਾਤਾਂ ਨੂੰ ਆਕਸਾਈਡਾਂ ਦੀ ਪਤਲੀ ਪਰਤ ਨਾਲ ਢਕਿਆ ਜਾਂਦਾ ਹੈ। ਆਕਸਾਈਡਾਂ ਦੀ ਇਹ ਸੁਰੱਖਿਅਕ ਪਰਤ ਧਾਤਾਂ ਨੂੰ ਹੋਰ ਆਕਸੀਕਰਨ ਤੋਂ ਬਚਾਉਂਦੀ ਹੈ। ਗਰਮ ਕਰਨ ਨਾਲ ਲੋਹੇ ਨੂੰ ਅੱਗ ਤਾਂ ਨਹੀਂ ਲੱਗਦੀ ਪਰ ਜਦੋਂ ਲੋਹ ਚੂਰਣ ਨੂੰ ਬਰਨਰ ਦੀ ਲਾਟ ਵਿੱਚ ਪਾਉਂਦੇ ਹਾਂ ਤਾਂ ਉਹ ਤੇਜ਼ੀ ਨਾਲ ਜਲਣ ਲਗਦਾ ਹੈ। ਕਾਪਰ ਨੂੰ ਹਵਾ ਵਿੱਚ ਗਰਮ ਕਰਨ ਨਾਲ ਉਸ ਨੂੰ ਅੱਗ ਨਹੀਂ ਲੱਗਦੀ ਪ੍ਰੰਤੂ ਗਰਮ ਕਾਪਰ ਉੱਤੇ ਕਾਪਰ (ii) ਆਕਸਾਈਡ ਦੀ ਕਾਲੇ ਰੰਗ ਦੀ ਪਰਤ ਜੰਮ ਜਾਂਦੀ ਹੈ। ਸਿਲਵਰ ਅਤੇ ਗੋਲਡ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਵੀ ਆਕਸੀਜਨ ਨਾਲ ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦੇ।

ਐਨੋਡੀਕਰਨ (Anodising) ਐਲੂਮੀਨੀਅਮ ਉੱਤੇ ਆਕਸਾਈਡ ਦੀ ਮੋਟੀ ਪਰਤ ਚੜਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੈ। ਐਲੂਮਿਨੀਅਮ ਜਦੋਂ ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦਾ ਹੈ ਤਾਂ ਉਸ ਉੱਤੇ ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ ਦੀ ਪਤਲੀ ਅਤੇ ਸਖ਼ਤ ਤਹਿ ਜਮ ਜਾਂਦੀ ਹੈ।ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ ਦੀ ਪਰਤ ਐਲੂਮਿਨੀਅਮ ਨੂੰ ਖੁਰਨ ਤੋਂ ਬਚਾਉਂਦੀ ਹੈ। ਇਸ ਪਰਤ ਨੂੰ ਵਧੇਰੇ ਮੋਟਾ ਕਰਕੇ ਐਲੂਮਿਨੀਅਮ ਨੂੰ ਖੋਰ ਤੋਂ ਵਧੇਰੇ ਸੁਰੱਖਿਤ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਐਨੋਡੀਕਰਨ ਦੇ ਲਈ ਐਲੂਮਿਨੀਅਮ ਦੀ ਇੱਕ ਸਾਫ ਵਸਤੂ ਨੂੰ ਐਨੇਂਡ ਬਣਾ ਕੇ ਪਤਲੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਦੇ ਨਾਲ ਬਿਜਲਈ ਅਪਘਟਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਐਨੋਡ ਉੱਤੇ ਉਤਪੰਨ ਹੁੰਦੀ ਆਕਸੀਜਨ ਗੈਸ ਐਲੂਮਿਨੀਅਮ ਦੇ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਆਕਸਾਈਡ ਦੀ ਇੱਕ ਮੋਟੀ ਤਹਿ ਬਣਾ ਦਿੰਦੀ ਹੈ। ਇਸ ਆਕਸਾਈਡ ਦੀ ਪਰਤ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਰੇਗ ਕਰਕੇ ਐਲੂਮਿਨੀਅਮ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਦਿਲ ਖਿੱਚਵੀਂ ਦਿੱਖ ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਕਿਰਿਆ 3.9 ਕਰਨ ਉਪਰੰਤ ਤੁਸੀਂ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਧਾਤਾਂ ਦੇ ਲਏ ਗਏ ਨਮੁਨਿਆਂ ਵਿੱਚੋਂ ਸੋਡੀਅਮ ਸਭ ਤੋਂ ਵੱਧ ਕਿਰਿਆਸ਼ੀਲ ਹੈ। ਮੈਗਨੀਸ਼ੀਅਮ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਹੌਲੀ ਹੈ ਅਤੇ ਸੋਡੀਅਮ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੈ। ਪ੍ਰੰਤੂ ਆਕਸੀਜਨ ਵਿੱਚ ਜਲਾਉਣ ਨਾਲ ਸਾਨੂੰ ਜ਼ਿੰਕ, ਆਇਰਨ, ਕਾਪਰ ਅਤੇ ਲੈੱਡ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਾ ਪਤਾ ਨਹੀਂ ਲੱਗਦਾ। ਕੁੱਝ ਹੋਰ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਕਰਕੇ ਅਸੀਂ ਇਹਨਾਂ ਧਾਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਕ੍ਰਮ ਦੀ ਲੜੀ ਬਣਾਉਣ ਦਾ ਯਤਨ ਕਰਦੇ ਹਾਂ।

3.2.2 ਧਾਤਾਂ ਜਦੋਂ ਪਾਣੀ ਨਾਲ ਪਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ?

ਕਿਰਿਆ 3.10

ਸਾਵਧਾਨੀ: ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਅਧਿਆਪਕ ਜੀ ਦੇ ਸਹਿਯੋਗ ਦੀ ਜ਼ਰੂਰਤ ਹੈ।

- ਕਿਰਿਆ 3.9 ਦੀ ਤਰ੍ਹਾਂ ਆਮ ਧਾਤਾਂ ਦੇ ਨਮੂਨੇ ਇਕੱਤਰ ਕਰੋ।
- ਧਾਤਾਂ ਦੇ ਨਮੁਨਿਆਂ ਦੇ ਛੋਟੇ ਛੋਟੇ ਟੁਕੜੇ ਵੱਖ ਵੱਖ ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਅੱਧੇ ਭਰੇ ਬੀਕਰਾਂ ਵਿੱਚ ਪਾਓ।
- ਕਿਹੜੀਆਂ ਧਾਤਾਂ ਨੇ ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਪਤਿਕਿਰਿਆ ਕੀਤੀ ? ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਆਧਾਰ ਤੇ ਉਹਨਾਂ ਨੂੰ ਵਧਦੇ ਕੂਮ ਵਿੱਚ ਲੜੀਬੱਧ ਕਰੋ।

ਚਿੱਤਰ 3.3 ਧਾਤ ਨਾਲ ਭਾੜ ਦੀ ਕਿਰਿਆ

- ਕੀ ਕਿਸੇ ਧਾਤ ਨੇ ਪਾਣੀ ਉੱਪਰ ਅੱਗ ਪੈਦਾ ਕੀਤੀ?
- ਕੀ ਕੋਈ ਧਾਤ ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਪਾਣੀ ਉੱਪਰ ਤੈਰਨ ਲੱਗੀ ? ਜਿਨ੍ਹਾਂ ਧਾਤਾਂ ਨੇ ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਕਿਰਿਆ ਨਹੀਂ ਕੀਤੀ ਉਹਨਾਂ ਨੂੰ ਵੱਖ ਵੱਖ ਗਰਮ ਪਾਣੀ ਨਾਲ ਅੱਧੇ ਭਰੇ ਬੀਕਰਾਂ ਵਿੱਚ ਪਾਓ।
- ਉਹ ਧਾਤਾਂ ਜਿਨ੍ਹਾਂ ਨੇ ਗਰਮ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕੀਤੀ ਉਹਨਾਂ ਲਈ ਚਿੱਤਰ 3.3 ਵਿੱਚ ਦਿੱਤੇ ਅਨੁਸਾਰ ਉਪਕਰਨ ਦਾ ਪ੍ਰਬੰਧ ਕਰੋ ਅਤੇ ਉਹਨਾਂ ਦੀ ਭਾਫ਼ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਕਿਹੜੀਆਂ ਧਾਤਾਂ ਭਾਫ਼ ਨਾਲ ਵੀ ਪਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ?
- ਪਾਣੀ ਨਾਲ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਆਧਾਰ ਤੇ ਧਾਤਾਂ ਨੂੰ ਘਟਦੇ ਕਮ ਵਿੱਚ ਲੜੀਬੱਧ ਕਰੋ।

ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਧਾਤਾਂ ਧਾਤ ਆਕਸਾਈਡ ਅਤੇ ਹਾਈਡਰੋਜਨ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ। ਜੋ ਧਾਤ ਆਕਸਾਈਡ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹਨ ਉਹ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਕੇ ਧਾਤ ਹਾਈਡਰਾਕਸਾਈਡ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਪ੍ਰੰਤੂ ਸਾਰੀਆਂ ਧਾਤਾਂ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ।

ਧਾਤ + ਪਾਣੀ → ਧਾਤ ਆਕਸਾਈਡ + ਹਾਈਡਰੋਜਨ ਧਾਤ ਆਕਸਾਈਡ + ਪਾਣੀ → ਧਾਤ ਹਾਈਡਰਾਕਸਾਈਡ

ਪੋਟਾਸ਼ੀਅਮ ਅਤੇ ਸੋਡੀਅਮ ਜਿਹੀਆਂ ਧਾਤਾਂ ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਬੜੀ ਤੇਜ਼ੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰਤਿਕਿਰਿਆ ਇੰਨੀ ਪ੍ਰਚੈਡ, (ਤੇਜ਼) ਅਤੇ ਤਾਪ ਨਿਕਾਸੀ ਹੁੰਦੀ ਹੈ ਕਿ ਬਾਹਰ ਨਿਕਲਦੀ ਹਾਈਡਰੋਜਨ ਗੈਸ ਨੂੰ ਤੁਰੰਤ ਅੱਗ ਲੱਗ ਜਾਂਦੀ ਹੈ।

$$2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g) + ਤਾਪ ਊਰਜਾ 2Na(s) + $2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g) + ਤਾਪ ਊਰਜਾ$$$

ਕੈਲਸ਼ੀਅਮ ਦੀ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਘੱਟ ਤੇਜ਼ ਹੁੰਦੀ ਹੈ। ਉਤਪੰਨ ਹੋਈ ਤਾਪ ਊਰਜਾ ਹਾਈਡਰੋਜਨ ਨੂੰ ਅੱਗ ਲਾਉਣ ਲਈ ਕਾਫੀ ਨਹੀਂ ਹੁੰਦੀ।

ਕਿਉਂਕਿ ਉਪਰੋਕਤ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਹੋਈ ਹਾਈਡਰੋਜਨ ਗੈਸ ਦੇ ਘੱਟ ਬੁਲਬਲੇ ਕੈਲਸ਼ੀਅਮ ਧਾਤ ਦੀ ਸਤਹ ਨਾਲ ਚਿਪਕ ਜਾਂਦੇ ਹਨ ਇਸ ਲਈ ਕੈਲਸ਼ੀਅਮ ਤੈਰਨ ਲੱਗਦਾ ਹੈ।

ਮੈਗਨੀਸ਼ੀਅਮ ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦਾ। ਇਹ ਗਰਮ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਮੈਗਨੀਸ਼ੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ ਅਤੇ ਹਾਈਡਰੋਜਨ ਗੈਸ ਬਣਾਉਂਦਾ ਹੈ। ਪੈਦਾ ਹੋਈ ਹਾਈਡਰੋਜਨ ਗੈਸ ਦੇ ਬੁਲਬੁਲੇ ਮੈਗਨੀਸ਼ੀਅਮ ਧਾਤ ਦੀ ਸਤਹ ਨਾਲ ਲੱਗਣ ਕਰਕੇ ਇਹ ਵੀ ਤੈਰਨ ਲੱਗਦੀ ਹੈ।

ਐਲੂਮਿਨੀਅਮ, ਆਇਰਨ ਅਤੇ ਜ਼ਿੰਕ ਜਿਹੀਆਂ ਧਾਤਾਂ ਨਾ ਤਾਂ ਠੰਢੇ ਪਾਣੀ ਨਾਲ ਅਤੇ ਨਾ ਹੀ ਗਰਮ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਧਾਤਾਂ ਭਾਫ਼ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਧਾਤ ਆਕਸਾਈਡ ਅਤੇ ਹਾਈਡਰੋਜਨ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ।

2Al(s) +
$$3H_2O(g) \rightarrow Al_2O_3(s) + 3H_2(g)$$

3Fe(s) + $4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)$

ਲੈੱਡ, ਕਾਪਰ, ਸਿਲਵਰ ਅਤੇ ਗੋਲਡ ਜਿਹੀਆਂ ਧਾਤਾਂ ਪਾਣੀ ਨਾਲ ਬਿਲਕੁਲ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ।

3.2.3 ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਧਾਤਾਂ ਤੇਜ਼ਾਬਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ?

ਤੁਸੀਂ ਪਹਿਲਾਂ ਹੀ ਸਿੱਖਿਆ ਹੈ ਕਿ ਧਾਤਾਂ ਤੇਜ਼ਾਬਾਂ ਨਾਲ ਪ੍ਤਿਕਿਰਿਆ ਕਰਕੇ ਲੂਣ ਅਤੇ ਹਾਈਡਰੋਜਨ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ।

ਪ੍ਰੰਤੂ ਕੀ ਸਾਰੀਆਂ ਧਾਤਾਂ ਇਸੇ ਤਰ੍ਹਾਂ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ? ਆਓ ਪਤਾ ਕਰੀਏ।

ਕਿਰਿਆ 3.11

- ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਤੋਂ ਬਿਨਾਂ ਬਾਕੀ ਸਾਰੀਆਂ ਧਾਤਾਂ ਦੇ ਨਮੂਨੇ ਮੁੜ ਇਕੱਤਰ ਕਰੋ। ਜੇਕਰ ਨਮੂਨੇ ਬਦਰੰਗੇ ਹਨ ਤਾਂ ਰੇਗਮਾਰ ਨਾਲ ਰਗੜ ਕੇ ਸਾਫ ਕਰ ਲਓ।
- ਸਾਵਧਾਨੀ: ਸੋਡੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਨੂੰ ਨਾ ਲਓ ਕਿਉਂਕਿ ਇਹ ਠੈਢੇ ਪਾਣੀ ਨਾਲ ਵੀ ਬਹੁਤ ਤੇਜ਼ ਪਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ।

- ਨਮੂਨਿਆਂ ਨੂੰ ਵੱਖ ਵੱਖ ਪਤਲੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਦੀਆਂ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ ਪਾਓ।
- ਥਰਮਾਮੀਟਰਾਂ ਨੂੰ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ ਇਸ ਪ੍ਕਾਰ ਲਟਕਾਓ ਕਿ ਉਹਨਾਂ ਦੇ ਬਲਬ ਤੇਜ਼ਾਬ ਵਿੱਚ ਡੁੱਬ ਜਾਣ।
- ਬੁਲਬੁਲੇ ਬਣਨ ਦੀ ਦਰ ਦਾ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਕਿਹੜੀ ਧਾਤ ਪਤਲੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਤੇਜ਼ੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀ ਹੈ।
- 🏮 ਤੁਸੀਂ ਕਿਸ ਧਾਤ ਨਾਲ ਸਭ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ਨੋਟ ਕੀਤਾ।
- ਧਾਤਾਂ ਨੂੰ ਪਤਲੇ ਤੇਜ਼ਾਬ ਨਾਲ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਆਧਾਰ ਪਰ ਘਟਦੇ ਕ੍ਰਮ ਵਿੱਚ ਲਿਖੋ।

ਪਤਲੇ ਹਾਈਡਰੋਕਲੌਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਮੈਗਨੀਸ਼ੀਅਮ, ਐਲੂਮਿਨੀਅਮ, ਜ਼ਿੰਕ ਅਤੇ ਆਇਰਨ ਦੀਆਂ ਹੁੰਦੀਆਂ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਦੀਆਂ ਸਮੀਕਰਣਾਂ ਲਿਖੋ।

ਜਦੇਂ ਧਾਤਾਂ ਨਾਈਟਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ ਤਾਂ ਹਾਈਡਰੋਜਨ ਗੈਸ ਉਤਪੰਨ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ HNO_3 ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਆਕਸੀਕਾਰਕ ਹੈ ਜੋ ਉਤਪੰਨ ਹੋਈ H_2 ਆਕਸੀਕਿਰਿਤ ਕਰਕੇ ਪਾਣੀ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰ ਦਿੰਦਾ ਹੈ ਅਤੇ ਆਪ ਨਾਈਟਰੋਜਨ ਦੇ ਕਿਸੀ ਆਕਸਾਈਡ ($\mathrm{N}_2\mathrm{O}$, NO , NO_2) ਵਿੱਚ ਲਘੂਕਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਪ੍ਰੰਤੂ ਮੈਗਨੀਸੀਅਮ (Mg) ਅਤੇ ਮੈਗਨੀਜ਼ (Mn), ਅਤਿ ਪਤਲੇ HNO_3 ਨਾਲ ਪ੍ਤਿਕਿਰਿਆ ਕਰਕੇ H_2 ਬਾਹਰ ਕੱਢਦੇ ਹਨ।

ਕਿਰਿਆ 3.11 ਵਿੱਚ ਤੁਸੀਂ ਜ਼ਰੂਰ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਬੁਲਬੁਲੇ ਬਣਨ ਦੀ ਦਰ ਮੈਗਨੀਸ਼ੀਅਮ ਨਾਲ ਸਭ ਤੋਂ ਵੱਧ ਸੀ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰਤਿਕਿਰਿਆ ਸਭ ਤੋਂ ਵੱਧ ਤਾਪ ਨਿਕਾਸੀ ਸੀ। ਕਿਰਿਆਸ਼ੀਲਤਾ ਇਸ ਕਰਮ ਵਿੱਚ ਘਟਦੀ ਹੈ। Mg > Al >Zn >Fe

ਕਾਪਰ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਨਾ ਤਾਂ ਬੁਲਬੁਲੇ ਬਣੇ ਅਤੇ ਨਾ ਹੀ ਤਾਪਮਾਨ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਹੋਇਆ। ਇਸ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਕਾਪਰ ਪਤਲੇ HCl ਨਾਲ ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦਾ।

ᢓᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬᠬ

ਐਕਵਾ ਰੀਜੀਆ – Aqua regia (ਪਾਣੀ ਦਾ ਲਾਤੀਨੀ ਸ਼ਬਦ) 3:1 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਗਾੜ੍ਹੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਅਤੇ ਗਾੜ੍ਹੇ ਨਾਈਟਰਿਕ ਤੇਜ਼ਾਬ ਦਾ ਤਾਜ਼ਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ।ਇਹ ਗੋਲਡ ਨੂੰ ਆਪਣੇ ਵਿੱਚ ਘੋਲ ਲੈਂਦਾ ਹੈ ਜਦੋਂ ਕਿ ਦੋਹਾਂ ਵਿੱਚੋਂ ਇਕੱਲਿਆਂ ਕਿਸੇ ਤੇਜ਼ਾਬ ਵਿੱਚ ਇਹ ਸਮਰੱਥਾ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।ਐੱਕਵਾ ਰੀਜੀਆ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਖੋਰਨ ਨਾਲ ਧੂੰਆਂ ਦਿੰਦੀ ਤਰਲ ਹੈ।ਇਹ ਉਹਨਾਂ ਕੁੱਝ ਪ੍ਰਤੀਕਰਕਾਂ (Reagents) ਵਿੱਚੋਂ ਇੱਕ ਹੈ ਜੋ ਗੋਲਡ ਅਤੇ ਪਲਾਟੀਨਮ ਨੂੰ ਆਪਣੇ ਵਿੱਚ ਘੋਲ ਲੈਂਦੇ ਹਨ।

3.2.4 ਹੋਰ ਧਾਤੂ ਲੂਣਾਂ ਦੇ ਘੋਲ਼ਾਂ ਨਾਲ ਧਾਤਾਂ ਕਿਵੇਂ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ?

ਕਿਰਿਆ 3.12

- 🗷 ਕਾਪਰ ਦੀ ਇੱਕ ਸਾਫ ਤਾਰ ਅਤੇ ਲੋਹੇ ਦੀ ਇੱਕ ਮੇਖ ਲਓ।
- ਕਾਪਰ ਦੀ ਤਾਰ ਨੂੰ ਪਰਖ ਨਲੀ ਵਿੱਚ ਆਇਰਨ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਅਤੇ ਲੋਹੇ ਦੀ ਮੇਖ ਨੂੰ ਇੱਕ ਦੂਜੀ ਪਰਖ ਨਲੀ ਵਿੱਚ ਲਏ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਰੱਖੋ। (ਚਿੱਤਰ 3.4)
- 🔹 ਕੋਈ 20 ਮਿੰਟ ਪਿੱਛੋਂ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਰਿਕਾਰਡ ਕਰੋ।
- ਤੁਹਾਨੂੰ ਕਿਸ ਪਰਖ ਨਲੀ ਵਿੱਚ ਪ੍ਰਤਿਕਿਰਿਆ ਹੋਈ ਜਾਪਦੀ ਹੈ?
- ਤੁਸੀਂ ਕਿਸ ਆਧਾਰ ਤੇ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਅਸਲ ਵਿੱਚ ਪ੍ਰਤਿਕਿਰਿਆ ਹੋਈ ਹੈ?
- ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਦਾ ਕਿਰਿਆ 3.9, 3.10 ਅਤੇ 3.11 ਨਾਲ ਕੋਈ ਸੰਬੰਧ ਸਥਾਪਿਤ ਕਰ ਸਕਦੇ ਹੋ?
- ਇਸ ਪ੍ਤਿਕਿਰਿਆ ਲਈ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਨ ਲਿਖੋ।
- ਇਹ ਕਿਸ ਪ੍ਕਾਰ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਹੈ?

ਚਿੱਤਰ 3.4 : ਧਾਤਾਂ ਦੀ ਲਣਾਂ ਦੇ ਘੋਲਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ

ਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਆਪਣੇ ਤੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਘੋਲਾਂ ਜਾਂ ਪਿਘਲੀ ਅਵੱਸਥਾ ਵਿੱਚੋਂ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੰਦੀਆਂ ਹਨ।

ਪਿਛਲੇ ਸੈਕਸ਼ਨ ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਸਾਰੀਆਂ ਧਾਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਇੱਕੋ ਜਿਹੀ ਨਹੀਂ ਹੁੰਦੀ। ਅਸੀਂ ਵੱਖ ਵੱਖ ਧਾਤਾਂ ਦੀ ਆਕਸੀਜਨ, ਪਾਣੀ ਅਤੇ ਤੇਜ਼ਾਬਾਂ ਨਾਲ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੀ ਜਾਂਚ ਕੀਤੀ ਸੀ। ਪ੍ਰੰਤੂ ਸਾਰੀਆਂ ਧਾਤਾਂ ਇਹਨਾਂ ਪ੍ਰਤਿਕਰਮਕਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ ਕਰਦੀਆਂ।ਇਸ ਲਈ ਅਸੀਂ ਸਾਰੀਆਂ ਧਾਤਾਂ ਦੇ ਇਕੱਠੇ ਕੀਤੇ ਨਮੂਨਿਆਂ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਘਟਦੇ ਕ੍ਰਮ ਵਿੱਚ ਨਹੀਂ ਰੱਖ ਸਕੇ। ਅਧਿਆਇ 1 ਵਿੱਚ ਵਿਸਥਾਪਨ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਦਾ ਕੀਤਾ ਅਧਿਅਨ ਧਾਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਾ ਚੰਗੇਰਾ ਪ੍ਰਮਾਣ ਦਿੰਦਾ

ਹੈ। ਇਸ ਨੂੰ ਜਾਨਣਾ ਬਹੁਤ ਸਰਲ ਅਤੇ ਅਸਾਨ ਹੈ। ਜੇਕਰ ਧਾਤ (A) ਧਾਤ (B) ਨੂੰ ਉਸਦੇ ਯੋਗਿਕ ਦੇ ਘੋਲ ਵਿੱਚੋਂ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੰਦੀ ਹੈ ਤਾਂ ਧਾਤ (B) ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਧਾਤ A ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੈ।

ਧਾਤ (A) + ਧਾਤ B ਦੇ ਲੂਣਾਂ ਦਾ ਘੋਲ → ਧਾਤ A ਦੇ ਲੂਣਾਂ ਦਾ ਘੋਲ + ਧਾਤ (B)

ਕਿਰਿਆ 3.12 ਵਿੱਚ ਕੀਤੇ ਤੁਹਾਡੇ ਪ੍ਰੇਖਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਕਾਪਰ ਅਤੇ ਆਇਰਨ ਵਿੱਚੋਂ ਕਿਹੜੀ ਧਾਤ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੈ?

3.2.5 ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ

ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਉਹ ਸੂਚੀ ਹੈ ਜਿਸ ਵਿੱਚ ਧਾਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਘਟਦੇ ਕ੍ਰਮ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਵਿਸਥਾਪਿਤ ਪ੍ਰਯੋਗਾਂ (ਕਿਰਿਆ 1.9 ਅਤੇ 3.12) ਉਪਰੰਤ ਹੇਠਲੀ ਲੜੀ (ਸਾਰਨੀ 3.2) ਨੂੰ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ ਜਿਸ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਕਹਿੰਦੇ ਹਨ।

ਸਾਰਣੀ 3.2 ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ : ਧਾਤਾਂ ਦੀਆਂ ਸਾਪੇਖ ਕਿਰਿਆਸ਼ੀਲਤਾਵਾਂ

К	ਪੋਟਾਸ਼ੀਅਮ	ਸਭ ਤੋਂ ਵੱਧ ਕਿਰਿਆਸ਼ੀਲ
Na	ਸੋਡੀਅਮ	
Ca	ਕੈਲਸ਼ੀਅਮ	DESIGN CONTRACTOR
Mg	ਮੈਗਨੀਸ਼ੀਅਮ	L. P. J. L. S. W. S. C. L.
A1	ਐਲੂਮਿਨੀਅਮ	
Zn	ਜ਼ਿੰਕ (ਜਿਸਤ)	ਘਟਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ
Fe	ਆਇਰਨ (ਲੋਹਾ)	
Pb	ਲੈੱਡ (ਸਿੱਕਾ)	
Ħ	ਹਾਈਡਰੋਜਨ	
Cu	ਕਾਪਰ (ਤਾਂਬਾ)	NOT BUT TO STEE OF STREET
Hg	ਮਰਕਰੀ(ਪਾਰਾ)	
Ag	ਸਿਲਵਰ (ਚਾਂਦੀ)	
Au	ਗੋਲਡ(ਸੋਨਾ)	/ ਸਭ ਤੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਂ

ਪਸ਼ਨ

- ਸੋਡੀਅਮ ਨੂੰ ਕੈਰੋਸੀਨ ਵਿੱਚ ਡੁਬੋ ਕੇ ਕਿਉਂ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ?
- 2. ਇਹਨਾਂ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਲਈ ਸਮੀਕਰਨ ਲਿਖੋ :
 - (i) ਆਇਰਨ ਦੀ ਭਾਫ਼ ਨਾਲ।
 - (11) ਕੈਲਸ਼ੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਦੀ ਪਾਣੀ ਨਾਲ।
- 3. A. B. C ਅਤੇ D ਚਾਰ ਧਾਤਾਂ ਦੇ ਨਮੂਨੇ ਲਏ ਗਏ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਇੱਕ ਇੱਕ ਕਰਕੇ ਹੇਠਲੇ ਘੋਲਾਂ ਵਿੱਚ ਪਾਇਆ ਗਿਆ। ਇਸ ਤੋਂ ਪ੍ਰਾਪਤ ਸਿੱਟਿਆਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਸਾਰਨੀਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ।

ਥਾਤ	ਆਇਰਨ(Ц) ਸਲਵੌਟ	ਕਾਪਰ (II) ਸਲਫੇਟ	ਜ਼ਿਕ ਸਲਫੇਟ	ਜਿਲਵਰ ਸਲਫਟ
A	ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ	ਵਿਸਥਾਪਨ		
В	ਵਿਸਥਾਪਨ		ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ	
C	ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ	ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ		ਵਿਸਥਾਪਨ
Ď	ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ	ਕੋਈ ਪ੍ਰਤਿਕਿਰਿਆ ਨਹੀਂ		The second secon

ਇਸ ਸਾਰਨੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਧਾਤਾਂ A, B, C ਅਤੇ D ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਦਿਓ।

- (1) ਸਭ ਤੋਂ ਵੱਧ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਕਿਹੜੀ ਹੈ?
- (іі) ਧਾਤ В ਨੂੰ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਪਾਇਆ ਜਾਵੇ ਤਾਂ ਕੀ ਹੋਵੇਗਾ?
- (iii) ਧਾਤ A, B, C ਅਤੇ D ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਘਟਦੇ ਕੁਮ ਵਿੱਚ ਰੱਖੋ।
- 4. ਜਦੋਂ ਪਤਲੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਆਇਰਨ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਇਸ ਦੀ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਲਿਖੋ। ਤੇਜ਼ਾਬ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਉੱਤੇ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕਿਹੜੀ ਗੈਸ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।
- ਜਦੋਂ ਤੁਸੀਂ ਜ਼ਿੰਕ ਨੂੰ ਆਇਰਨ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚ ਪਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੈ? ਵਾਪਰਦੀ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਲਿਖੋ।

3.3 ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਕਿਵੇਂ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ?

ਉੱਪਰ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਤੁਸੀਂ ਪ੍ਰਤਿਕਰਮਕਾਂ (Reagents) ਨਾਲ ਧਾਤਾਂ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਵੇਖੀਆਂ ਹਨ। ਧਾਤਾਂ ਇਸ ਪ੍ਕਾਰ ਪ੍ਰਤਿਕਿਰਿਆ ਕਿਉਂ ਕਰਦੀਆਂ ਹਨ? ਆਓ ਅਸੀਂ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਅਧਿਅਨ ਕੀਤੀ ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਨੂੰ ਯਾਦ ਕਰੀਏ। ਅਸੀਂ ਸਿੱਖਿਆ ਸੀ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵੈਲੈੱਸ ਸ਼ੈੱਲ ਦਾ ਅਸ਼ਟਕ ਪੂਰਾ ਹੋਣ ਕਾਰਨ ਨੌਬਲ ਗੈਸਾਂ ਬਹੁਤ ਘੱਟ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਅਸੀਂ ਤੱਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਨੂੰ ਤੱਤਾਂ ਦੁਆਰਾ ਸੰਯੋਜਕ ਸੈੱਲ ਦੀ ਪੂਰਤੀ ਦੀ ਇੱਛਾ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਆਖਿਆ ਕਰ ਸਕਦੇ ਹਾਂ।

ਆਓ ਅਸੀਂ ਨੌਬਲ ਗੈਸਾਂ, ਕੁੱਝ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਉੱਤੇ ਮੁੜ ਝਾਤ ਮਾਰੀਏ।

ਅਸੀਂ ਸਾਰਨੀ 3.3 ਵਿੱਚ ਵੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਸੋਡੀਅਮ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਇਲੈਕਟਰਾਨ ਹੈ। ਜੇਕਰ ਇਹ ਆਪਣੇ M ਸ਼ੈੱਲ ਤੋਂ ਇੱਕ ਇਲੈੱਕਟਰਾਨ ਨੂੰ ਤਿਆਗ ਦਿੰਦਾ ਹੈ ਤਾਂ L ਸ਼ੈੱਲ ਇਸ ਦਾ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਬਣ ਜਾਂਦਾ ਹੈ।ਜਿਸ ਵਿੱਚ ਸਥਾਈ ਅਸ਼ਟਕ ਮੌਜ਼ੂਦ ਹੈ।ਇਸ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਅਜੇ ਵੀ 11 ਪਰੋਟਾਨ ਹਨ ਪ੍ਰੰਤੂ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਸੰਖਿਆ 10 ਹੋ ਜਾਂਦੀ ਹੈ।ਜਿਸ ਦੇ ਫਲਸਰੂਪ ਇਸ ਉੱਤੇ ਇੱਕ ਧਨ ਚਾਰਜ ਵੱਧ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸੋਡੀਅਮ ਧਨ ਆਇਨ Na⁺ ਜਾਂ ਕੈਟਾਇਨ ਪੈਦਾ ਹੁੰਦਾ ਹੈ।ਇਸ ਦੇ ਵਿਪਰੀਤ ਕਲੋਰੀਨ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸੈੱਲ ਵਿੱਚ 7 ਇਲੈਕਟਰਾਨ ਹਨ ਅਤੇ ਇਸ ਨੂੰ ਆਪਣਾ ਅਸ਼ਟਕ ਪੂਰਾ ਕਰਨ ਲਈ ਇੱਕ ਇਲੈਕਟਰਾਨ ਦੀ ਲੋ ੜ ਹੈ। ਜੇਕਰ ਸੋਡੀਅਮ ਅਤੇ ਕਲੋਰੀਨ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੇ ਹਨ ਤਾਂ ਸੋਡੀਅਮ ਦੁਆਰਾ ਤਿਆਗਿਆ ਇੱਕ ਇਲੈੱਕਟਰਾਨ ਕਲੋਰੀਨ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੀ ਹੈ।ਇੱਕ ਇਲੈੱਕਟਰਾਨ ਪ੍ਰਾਪਤ ਕਰਕੇ ਕਲੋਰੀਨ ਪਰਮਾਣੂ ਇਕਾਈ ਰਿਣ ਚਾਰਜ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ 17 ਪਰੋਟਾਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਸਦੇ K, L, ਅਤੇ M ਸੈੱਲਾਂ ਵਿੱਚ 18 ਇਲੈਕਟਰਾਨ ਹੁੰਦੇ ਹਨ।ਇਸ ਤਰ੍ਹਾਂ ਕਲੋਰਾਈਡ ਰਿਣ ਆਇਨ Cl-ਜਾਂ ਐਨਾਇਨ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ।ਇਸ ਲਈ ਇਹ ਦੋਵੇਂ ਤੱਤਾਂ ਵਿਚਕਾਰ ਹੇਠਾਂ

ਸੋਡੀਅਮ ਅਤੇ ਕਲੋਰਾਈਡ ਆਇਨਾਂ ਉੱਤੇ ਉਲਟ ਚਾਰਜ ਹੋਣ ਕਾਰਨ ਇਹ ਆਪਸ ਵਿੱਚ ਆਕਰਸ਼ਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਬਲ ਸਥਿਰ ਬਿਜਲਈ ਆਕਰਸ਼ਨ ਬਲ ਕਾਰਣ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਰਹਿੰਦੇ ਹਨ। ਇਹ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਨੋਟ ਕਰਨ ਯੋਗ ਹੈ ਕਿ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ (Nacl) ਅਣੂਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਸਗੋਂ ਇਹ ਵਿਰੋਧੀ ਆਇਨਾਂ ਦੇ ਸਮੂਹ ਵਿੱਚ ਵਿਚਰਦਾ ਹੈ।

ਚਿੱਤਰ 3.5 ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੀ ਉਤਪਤੀ

ਸਾਰਨੀ 3.3 ਕੁੱਝ ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ

ਭੱਭ ਦੀ ਕਿਸਮ	ਤੱਤ	प्रमन्द्र अंब	ਸਲਾ ਵਿਚ K	शिलेव L	radio i M	ਦੀ ਗਿਣਤੀ N
ਨੋਬਲ ਗੇਸ਼ਾ	ਹੀਲੀਅਮ (ਸੰਗ	2	100			
	Shirts (Ne)	10	2	13.		
Co P	ਆਰਗਨ (Ar)	18	2	8	8	
वारा -	ਸੋਡੀਅਮ (Na)	11	2	8	1	1 9
	ਮੈਗਨੀਸ਼ੀਅਮ (Mg)	12	2	8	2	
3	ਐਲੂਮਿਨੀਅਮ (Al)	13	2	8	3	
	ਪੋਟਾਸ਼ੀਅਮ (K)	19	2	8	8	1
	ਕੈਲਸ਼ੀਅਮ (Ca)	20	2	8	8	2
ਅਧਾਤਾਂ	ਨਾਈਟਰੋਜਨ (N)	7	2	5		
	ਆਕਸੀਜਨ (O)	8	2	6		
	ਵਲੋਰੀਨ (F)	9	2	7		
A COLOR	ਫਾਸਫੋਰਸ (P)	15	2	8	5	
	ਸਲਵਰ (S)	16	2	8	6	

ਆਓ ਅਸੀਂ ਇੱਕ ਹੋਰ ਆਇਨਿਕ ਯੋਗਿਕ ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਦੀ ਸਿਰਜਨਾ ਦਾ ਅਧਿਐਨ ਕਰੀਏ। (ਚਿੱਤਰ 3.6)।

Mg
$$\longrightarrow$$
 Mg²⁺ + 2e⁻
2,8,2 2,8
(ਮੈਗਨੀਸ਼ੀਅਮ ਕੈਟਾਇਨ)
Cl +e⁻ \longrightarrow Cl⁻
2,8,7 2,8,8

(ਕਲੋਰਾਈਡ ਐਨਾਇਨ)

ਚਿੱਤਰ : 3.6 ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੌਰਾਈਡ ਦੀ ਉਤਪਤੀ

ਧਾਤ ਤੋਂ ਅਧਾਤ ਵੱਲ ਇਲੈਕਟਰਾਨਾਂ ਦੇ ਜਾਣ ਨਾਲ ਬਣੇ ਯੋਗਿਕ ਨੂੰ ਆਇਨੀ ਯੋਗਿਕ ਜਾਂ ਬਿਜਲਈ ਸੰਯੋਜਕ ਯੋਗਿਕ ਆਖਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ MgCl, ਵਿੱਚ ਮੌਜ਼ੂਦ ਧਨ ਆਇਨਾਂ ਅਤੇ ਰਿਣ ਆਇਨ ਦਾ ਨਾਂ ਦੱਸ ਸਕਦੇ ਹੋ।

3.3.1 ਆਇਨੀ ਯੋਗਿਕਾਂ ਦੇ ਗੁਣ

ਆਇਨੀ ਯੋਗਿਕਾਂ ਦੀ ਗੁਣ ਜਾਨਣ ਲਈ ਆਓ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੀਏ

ਕਿਰਿਆ 3.13

- ਵਿਗਿਆਨ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਤੋਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ, ਪੋਟਾਸ਼ੀਅਮ, ਆਇਓਡਾਈਡ, ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਜਾਂ ਕੋਈ ਉਪਲਬਧ ਲੁਣ ਲਓ।
- ਇਹਨਾਂ ਲੂਣਾਂ ਦੀ ਭੌਤਿਕ ਅਵਸਥਾ ਕੀ ਹੈ?
- □ ਧਾਤ ਦੇ ਸਪੈਚੂਲੇ ਉੱਤੇ ਥੋੜ੍ਹੀ ਮਾਤਰਾ ਵਿੱਚ ਨਮੂਨੇ ਨੂੰ ਲਓ ਅਤੇ ਉਸ ਨੂੰ ਬਰਨਰ ਲਾਟ ਤੇ ਗਰਮ ਕਰੋ। (ਚਿੱਤਰ 3.7)।
- ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ? ਕੀ ਨਮੂਨੇ ਨੇ ਲਾਟ ਨੂੰ ਕੋਈ ਰੰਗ ਦਿੱਤਾ? ਕੀ ਯੋਗਿਕ ਪਿਘਲਦੇ ਹਨ?
- ਨਮੂਨੇ ਨੂੰ ਪਾਣੀ, ਪੈਟਰੋਲ ਅਤੇ ਮਿੱਟੀ ਦੇ ਤੇਲ ਵਿੱਚ ਘੋਲਣ ਦਾ ਯਤਨ ਕਰੇ।
- ਚਿੱਤਰ 3.8 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਬਿਜਲੀ ਦਾ ਸਰਕਟ ਸੈੱਟ ਕਰੋ ਅਤੇ ਕਿਸੇ ਇੱਕ ਲੂਣ ਦੇ ਘੋਲ ਵਿੱਚ ਇਲੈੱਕਟਰੋਡ ਪਾਓ। ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਇਸੇ ਤਰ੍ਹਾਂ ਬਾਕੀ ਲੂਣਾ ਦੇ ਨਮੂਨਿਆਂ ਦੀ ਜਾਂਚ ਕਰੋ।
- ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਦੇ ਸੁਭਾਅ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢਦੇ ਹੋ?

ਚਿੱਤਰ 3.7 ਸਪੈਚੂਲੇ ਤੇ ਲੂਣ ਦੇ ਨਮੂਨੇ ਨੂੰ ਗਰਮ ਕਰਨਾ

ਚਿੱਤਰ 3.8 ਲੂਣਾਂ ਦੇ ਘੋਲ੍ਹਾਂ ਦੀ ਚਾਲਕਤਾ ਦੀ ਜਾਂਚ

ਸਾਰਨੀ 3.4 ਕੁਝ ਆਇਨੀ ਯੋਗਿਕਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਾਲ ਅੰਕ

ਆਇਨੀ ਯੋਗਿਕ	ਪਿਘਲਣ ਅੰਕ	ਉਬਾਲ ਅੰਕ
NaC1	1074	1686
LiCl	887	1600
CaCl,	1045	1900
CaO	2850	3120
MgCl,	981	1685

ਆਇਨੀ ਯੋਗਕਾਂ ਦੇ ਹੇਠ ਲਿਖੇ ਆਮ ਗੁਣਾਂ ਵੱਲ ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੋਵੇਗਾ :

- (i) ਭੌਤਿਕ ਅਵਸਥਾ : ਆਇਨੀ ਯੋਗਿਕ ਠੌਸ ਅਤੇ ਕੁੱਝ ਕਠੌਰ ਹੁੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਅੰਦਰ ਆਇਨਾਂ ਵਿਚਕਾਰ ਮਜ਼ਬੂਤ ਆਕਰਸ਼ਨ ਬਲ ਹੁੰਦਾ ਹੈ। ਇਹ ਯੋਗਿਕ ਆਮ ਕਰਕੇ ਕੜਕੀਲੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦਬਾਓ ਪਾਉਣ ਨਾਲ ਟੁਕੜੇ ਟੁਕੜੇ ਹੋ ਜਾਂਦੇ ਹਨ।
- (ii) ਪਿਘਲਾਓ ਅਤੇ ਉਬਾਲ਼ ਦਰਜੇ : ਆਇਨੀ ਯੋਗਕਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਾਲ ਅੰਕ ਉੱਚੇ ਹੁੰਦੇ ਹਨ।(ਵੇਖੋ ਸਾਰਨੀ 3.1)। ਇਸ ਦਾ ਕਾਰਨ ਹੈ ਕਿ ਮਜ਼ਬੂਤ ਅੰਤਰ ਆਇਨੀ ਖਿੱਚ ਨੂੰ ਤੋੜਨ ਲਈ ਊਰਜਾ ਦੀ ਕਾਫੀ ਮਾਤਰਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।
- (iii) ਘੁਲਣਸ਼ੀਲਤਾ : ਬਿਜਲਈ ਸਹਿਸੰਯੋਗਿਕ ਯੋਗਿਕ ਆਮ ਕਰਕੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਮਿੱਟੀ ਦੇ ਤੇਲ, ਪੈਟਰੋਲ ਆਦਿ ਵਿੱਚ ਅਘੁਲ ਹੁੰਦੇ ਹਨ।
- (iv) ਬਿਜਲੀ ਚਲਕਤਾ : ਕਿਸੇ ਘੋਲ ਵਿੱਚੋਂ ਬਿਜਲੀ ਲੰਘਾਉਣ ਲਈ ਚਾਰਜਿਤ ਕਣਾਂ ਭਾਵ ਆਇਨਾਂ ਦੀ ਗਤੀ ਜ਼ਰੂਰੀ ਹੈ।ਆਇਨੀ ਯੋਗਿਕਾਂ ਦੇ ਪਾਣੀ ਘੋਲਾਂ ਵਿੱਚ ਆਇਨ ਹੁੰਦੇ ਹਨ। ਜੋ ਬਿਜਲੀ ਲੰਘਾਉਣ ਨਾਲ ਵਿਰੋਧੀ ਇਲੈਕਟ੍ਰੋਡ ਵੱਲ ਚਲੇ ਜਾਂਦੇ ਹਨ। ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਆਇਨੀ ਯੋਗਿਕ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਦੇ ਚਾਲਕ ਨਹੀਂ ਹੁੰਦੇ ਕਿਉਂ ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਦੀ ਕਠੌਰ ਬਣਤਰ ਕਾਰਣ ਆਇਨਾਂ ਦੀ ਗਤੀ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦੀ। ਪ੍ਰੰਤੂ ਆਇਨੀ ਯੋਗਿਕ ਪਿਘਲੀ ਅਵਸਥਾ ਵਿੱਚ ਬਿਜਲੀ ਦੇ ਚਾਲਕ ਹੁੰਦੇ ਹਨ। ਇਹ ਇਸ ਕਰਕੇ ਹੈ ਕਿਉਂਕਿ ਪਿਘਲੀ ਅਵਸਥਾ ਵਿੱਚ ਉਲਟ ਚਾਰਜਿਤ ਆਇਨਾਂ ਵਿਚਕਾਰ ਆਕਰਸ਼ਨ ਬਲਾਂ ਉੱਤੇ ਤਾਪ ਊਰਜਾ ਦਾ ਕਾਬੂ ਪੈ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਆਇਨ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਗਤੀ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਬਿਜਲੀ ਦਾ ਚਾਲਨ ਕਰਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- (i) ਸੋਡੀਅਮ, ਆਕਸੀਜਨ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਬਿੰਦੂ ਰਚਨਾ ਲਿਖੋ।
 - (ii) ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਅਦਲਾ ਬਦਲੀ ਕਰਕੇ Na₂O ਅਤੇ MgO ਦੀ ਸਿਰਜਣਾਂ ਦਰਸਾਓ।
 - (ш) ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਿਹੜੇ ਆਇਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ?
- ਆਇਨੀ ਯੋਗਿਕਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਕਿਉਂ ਵੱਧ ਹੁੰਦੇ ਹਨ?

3.4 ਧਾਤਾਂ ਦੇ ਪ੍ਰਾਪਤੀ ਸਥਾਨ

ਪ੍ਰਿਥਵੀ ਦੀ ਪੇਪੜੀ ਧਾਤਾਂ ਦਾ ਮੁੱਖ ਸਰੋਤ ਹੈ। ਸਮੁੰਦਰੀ ਪਾਣੀ ਵਿੱਚ ਵੀ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਆਦਿ ਜਿਹੇ ਕੁੱਝ ਘੁਲਣਸ਼ੀਲ ਲੂਣ ਮੌਜੂਦ ਹਨ। ਪ੍ਰਿਥਵੀ ਦੀ ਪੇਪੜੀ ਵਿੱਚ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਮਿਲਣ ਵਾਲੇ ਤੱਤ ਜਾਂ ਯੋਗਕਾਂ ਨੂੰ ਖਣਿਜ (Minral) ਆਖਦੇ ਹਨ। ਕੁੱਝ ਸਥਾਨਾਂ ਤੇ ਖਣਿਜਾਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਧਾਤ ਦੀ ਪ੍ਰਤਿਸ਼ਤ ਮਾਤਰਾ ਕਾਫੀ ਵੱਧ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚੋਂ ਧਾਤ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ ਲਾਹੇਵੰਦ ਢੰਗ ਨਾਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਅਜਿਹੀਆਂ ਖਣਿਜਾਂ ਨੂੰ ਕੱਚੀ-ਧਾਤਾਂ ਕਹਿੰਦੇ ਹਨ।

3.4.1 ਧਾਤਾਂ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ

ਧਾਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਬਾਰੇ ਤੁਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ। ਇਸ ਗਿਆਨ ਦੀ ਰੋਸ਼ਨੀ ਵਿੱਚ ਤੁਸੀਂ ਸੌਖ ਨਾਲ ਸਮਝ ਸਕਦੇ ਹੋ ਕਿ ਕੱਚੀ ਧਾਤ ਤੋਂ ਧਾਤ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕੁੱਝ ਧਾਤਾਂ ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਵਿੱਚ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਕੁੱਝ ਧਾਤਾਂ ਉਹਨਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਵਿੱਚ ਹੇਠਾਂ ਆਉਣ ਵਾਲੀਆਂ ਧਾਤਾਂ ਸਭ ਤੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਆਮ ਕਰਕੇ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਉਦਹਾਰਨ ਵਜੋਂ ਗੋਲਡ, ਸਿਲਵਰ, ਪਲਾਟੀਨਮ ਅਤੇ ਕਾਪਰ ਸੁਤੰਤਰ ਅਵਸਥਾ ਵਿੱਚ ਪਾਏ ਜਾਂਦੇ ਹਨ। ਕਾਪਰ ਅਤੇ ਸਿਲਵਰ ਧਾਤਾਂ ਸਲਫਾਈਡ ਜਾਂ ਆਕਸਾਈਡ ਕੱਚੀ-ਧਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਯੁਕਤ ਅਵਸਥਾ ਵਿੱਚ ਵੀ ਮਿਲਦੀਆਂ ਹਨ। ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਦੇ ਸਭ ਉੱਪਰ

ਦੀਆਂ ਧਾਤਾਂ (K, Na, Ca, Mg ਅਤੇ Al) ਇੰਨੀਆਂ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ ਕਿ ਇਹ ਕਦੇ ਵੀ ਸੁਤੰਤਰ ਤੱਤਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਪਾਈਆਂ ਜਾਂਦੀਆਂ। ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਦੇ ਮੱਧ ਦੀਆਂ ਧਾਤਾਂ (Zn, Fe, Pb,ਆਦਿ) ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਔਸਤ ਜਾਂ ਮੱਧ ਦਰਜੇ ਦੀ ਹੁੰਦੀ ਹੈ। ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਵਿੱਚ ਇਹ ਮੁੱਖ ਤੌਰ ਤੇ ਆਕਸਾਈਡਾਂ, ਸਲਫਾਈਡਾਂ ਜਾਂ ਕਾਰਬੋਨੇਟਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਤੁਸੀਂ ਇਹ ਵੇਖੋਗੇ ਕਿ ਬਹੁਤ ਸਾਰੀਆਂ ਧਾਤਾਂ ਦੀਆਂ ਕੱਚੀਆਂ–ਧਾਤਾਂ ਆਕਸਾਈਡ ਹਨ। ਇਸ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਆਕਸੀਜਨ ਇੱਕ ਕਿਰਿਆਸ਼ੀਲ ਤੱਤ ਹੈ ਜੋ ਧਰਤੀ ਉੱਤੇ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ।

ਇਸ ਲਈ, ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਧਾਤਾਂ ਨੂੰ ਹੇਠ ਦਿੱਤੇ ਤਿੰਨ ਵਰਗਾਂ (ਚਿੱਤਰ 3.9) ਵਿੱਚ ਵੰਡ ਸਕਦੇ ਹਾਂ:(i) ਨੀਵੀਂ ਕਿਰਿਆਸ਼ੀਲਤਾ ਵਾਲੀਆਂ ਧਾਤਾਂ (ii) ਮੱਧ ਕਿਰਿਆਸ਼ੀਲਤਾ ਵਾਲੀਆਂ ਧਾਤਾਂ (iii) ਉੱਚ ਕਿਰਿਆਸ਼ੀਲਤਾ ਵਾਲੀਆਂ ਧਾਤਾਂ। ਹਰ ਇੱਕ ਵਰਗ ਵਿੱਚ ਆਉਣ ਵਾਲੀਆਂ ਧਾਤਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਕੱਚੀ ਧਾਤ ਤੋਂ ਸ਼ੁੱਧ ਧਾਤ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ ਕਈ ਪੜਾਆਂ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਪੜਾਅ ਦਾ ਸੰਖੇਪ ਚਿੱਤਰ 3.10 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਅਗਲੇ ਸੈਕਸ਼ਨਾਂ ਵਿੱਚ ਹਰ ਇੱਕ ਪੜਾਅ ਦਾ ਵਰਨਣ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 3.9 ਕਿਰਿਆਸ਼ੀਲਤਾ ਅਤੇ ਧਾਤਕਰਮ

ਚਿੱਤਰ : 3.10 ਕੱਚੀ ਧਾਤ ਤੋਂ ਨਿਸ਼ਕਰਸ਼ਨ ਲਈ ਵੱਖ ਵੱਖ ਚਰਨ

3.4.2 ਕੱਚੀ ਧਾਤਾਂ ਦਾ ਸੰਘਣਾਪਨ (Enrichment of ores)

ਧਰਤੀ ਤੋਂ ਕੱਢੀ ਗਈ ਕੱਚੀ ਧਾਤ ਵਿੱਚ ਆਮ ਕਰ ਕੇ ਬਹੁਤ ਮਾਤਰਾ ਵਿੱਚ ਅਸ਼ੁੱਧੀਆਂ ਜਿਵੇਂ ਕਿ ਮਿੱਟੀ, ਰੇਤ ਆਦਿ ਮਿਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਗੈਂਗ (gangue) ਆਖਦੇ ਹਨ। ਧਾਤਾਂ ਦੇ ਨਿਸ਼ਕਰਸ਼ਨ ਤੋਂ ਪਹਿਲਾਂ ਕੱਚੀ ਧਾਤ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧੀਆਂ ਦਾ ਹਟਾਇਆ ਜਾਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਕੱਚੀ ਧਾਤ ਤੋਂ ਗੈਂਗ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਜਿਹੜੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਉਹ ਕੱਚੀ ਧਾਤ ਅਤੇ ਗੈਂਗ ਦੇ ਭੌਤਿਕ ਜਾਂ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਉੱਪਰ ਆਧਾਰਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਉਦੇਸ਼ ਦੀ ਪੂਰਤੀ ਲਈ ਭਿੰਨ ਭਿੰਨ ਤਕਨੀਕਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

3.4.3 ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਵਿੱਚ ਸਭ ਤੋਂ ਹੇਠਾਂ ਆਉਣ ਵਾਲੀਆਂ ਧਾਤਾਂ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ

ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਵਿੱਚ ਸਭ ਤੋਂ ਹੇਠਾਂ ਆਉਣ ਵਾਲੀਆਂ ਧਾਤਾਂ ਬਹੁਤ ਆਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਧਾਤਾਂ ਦੇ ਆਕਸਾਈਡਾਂ ਨੂੰ ਕੇਵਲ ਗਰਮ ਕਰਨ ਨਾਲ ਹੀ ਧਾਤਾਂ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ।ਉਦਾਹਰਨ ਵਜੋਂ, ਸਿਨਾਬਾਰ (HgS), ਮਰਕਰੀ (ਪਾਰੇ) ਦੀ ਇੱਕ ਕੱਚੀ ਧਾਤ ਹੈ। ਇਸ ਨੂੰ ਹਵਾ ਵਿੱਚ ਗਰਮ ਕਰਨ ਨਾਲ ਇਹ ਪਹਿਲਾਂ ਮਰਕਿਊਰਿਕ ਆਕਸਾਈਡ (HgO) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਫਿਰ ਵਧੇਰੇ ਗਰਮ ਕਰਨ ਨਾਲ ਮਰਕਿਊਰਿਕ ਆਕਸਾਈਡ ਮਰਕਰੀ ਵਿੱਚ ਲਘੂਕਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

$$2HgS(s) + 3O_2(g)$$
 $\xrightarrow{\text{digh adar}} 2HgO(s) + 2SO_2(g)$
 $2HgO(s)$ $\xrightarrow{\text{digh adar}} 2Hg(l) + O_2(g)$

ਇਸੇ ਪ੍ਕਾਰ, ਪ੍ਰਾਕਿਰਤਕ ਰੂਪ ਵਿੱਚ ਮਿਲਣ ਵਾਲੀ ਕੱਚੀ ਧਾਤ ਤੋਂ ਕਾਪਰ (ਤਾਂਬਾ) Cu,S ਨੂੰ ਹਵਾ ਵਿੱਚ ਗਰਮ ਕਰਕੇ ਉਪਲਬਧ ਹੋ ਜਾਂਦਾ ਹੈ।

$$2Cu_2S + 3O_2(g) \xrightarrow{\text{ਗਰਮ ਕਰਨਾ}} 2Cu_2O(s) + 2SO_2(g)$$

 $2Cu_2O + Cu_2S \xrightarrow{\text{ਗਰਮ ਕਰਨਾ}} 6Cu(s) + SO_2(g)$

3.4.4 ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਦੇ ਮੱਧ ਵਿੱਚ ਸਥਿਤ ਧਾਤਾਂ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ

ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਦੇ ਮੱਧ ਵਿੱਚ ਸਥਿਤ ਧਾਤਾਂ ਜਿਵੇਂ ਕਿ ਆਇਰਨ, ਜ਼ਿੰਕ, ਲੈੱਡ ਅਤੇ ਕਾਪਰ ਆਦਿ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਰਮਿਆਨੀ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਇਹ ਆਮ ਕਰਕੇ ਸਲਫਾਈਡਾਂ ਜਾਂ ਕਾਰਬੋਨੇਟਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਸਲਫਾਈਡ ਜਾਂ ਕਾਰਬੋਨੇਟ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਧਾਤ ਨੂੰ ਉਸੇ ਦੇ ਆਕਸਾਈਡ ਤੋਂ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵਧੇਰੇ ਸੌਖਾ ਹੈ। ਇਸ ਲਈ ਲਘਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਧਾਤ ਦੇ ਸਲਫਾਈਡ ਅਤੇ ਕਾਰਬੋਨੇਟ ਨੂੰ ਧਾਤ ਆਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਸਲਫਾਈਡ ਕੱਚੀ ਧਾਤ ਨੂੰ ਜ਼ਿਆਦਾ ਹਵਾ ਦੀ ਹੋਂਦ ਵਿੱਚ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਗਰਮ ਕਰਨ ਨਾਲ ਇਹ ਆਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਭੁੰਨਣਾ ਆਖਦੇ ਹਨ। ਕਾਰਬੋਨੇਟ ਕੱਚੀ ਧਾਤ ਨੂੰ ਜ਼ਿਆਦਾ ਸੀਮਤ ਹਵਾ ਵਿੱਚ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਗਰਮ ਕਰਨ ਨਾਲ ਉਹ ਆਕਸਾਈਡ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਕਿਰਿਆ ਨੂੰ ਭਸਮੀਕਰਨ ਕਹਿੰਦੇ ਹਨ। ਜ਼ਿੰਕ ਦੀ ਕੱਚੀ ਧਾਤ ਦੇ ਭੁੰਨਣ (Roasting) ਅਤੇ ਭਸਮੀਕਰਨ (Galvination) ਸਮੇਂ ਹੇਠ ਲਿਖੀਆਂ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ :

ਭੰਨਣ :

$$2ZnS(s) + 3O_2(g)$$
 ਗਰਮ ਕਰਨਾ $2ZnO(s) + 2SO_2(g)$ ਭਸਮੀਕਰਨ :

ZnCO₃(s) ਗਰਮ ਕਰਨਾ ZnO(s) + CO₂(g) ਇਸ ਤੋਂ ਪਿੱਛੋਂ ਕਾਰਬਨ ਜਿਹੇ ਲਘੂਕਰਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਧਾਤ ਆਕਸਾਈਡ ਤੋਂ ਧਾਤ ਪ੍ਰਾਪਤ ਕਰ ਲਈ ਜਾਂਦੀ ਹੈ। ਉਦਹਾਰਣ ਵਜੋਂ, ਜਦੋਂ ਜ਼ਿੰਕ ਆਕਸਾਈਡ ਨੂੰ ਕਾਰਬਨ ਨਾਲ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਜ਼ਿੰਕ ਆਕਸਾਈਡ ਨੂੰ ਜ਼ਿੰਕ ਵਿੱਚ ਲਘੂਕਰਿਤ ਕਰ ਦਿੰਦੀ ਹੈ :

$$ZnO(s) + C(s) \xrightarrow{\text{digH adar}} Zn(s) + CO(g)$$

ਪਹਿਲੇ ਅਧਿਆਇ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਆਕਸੀਕਰਨ ਅਤੇ ਲਘੂਕਰਨ ਪ੍ਕਿਰਿਆਵਾਂ ਦੀ ਤੁਹਾਨੂੰ ਪਹਿਲਾਂ ਹੀ ਜਾਣਕਾਰੀ ਹੈ। ਧਾਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਯੋਗਿਕਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵੀ ਲਘੁਕਰਨ ਪ੍ਰਕਿਰਿਆ ਹੈ।

ਕਾਰਬਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਧਾਤ ਦੇ ਆਕਸਾਈਡ ਨੂੰ ਧਾਤ ਵਿੱਚ ਲਘੂਕਰਨ ਕਰਨ ਤੋਂ ਬਿਨਾਂ ਵਿਸਥਾਪਨ ਪ੍ਰਤਿਕਿਰਿਆ ਦਾ ਉਪਯੋਗ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਵਧੌਰੇ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਜਿਵੇਂ ਕਿ ਸੋਡੀਅਮ, ਕੈਲਸ਼ੀਅਮ, ਐਲੂਮਿਨੀਅਮ ਆਦਿ ਨੂੰ ਲਘੁਕਾਰਕ ਵਜੋਂ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲਤਾ ਵਾਲੀਆਂ ਧਾਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚੋਂ ਵਿਸਥਾਪਤ ਕਰ ਦਿੰਦੀਆਂ ਹਨ। ਉਦਹਾਰਣ ਵਜੋਂ ਜਦੋਂ ਐਲੂਮਿਨੀਅਮ ਪਾਊਡਰ ਨਾਲ ਮੈਗਨੀਜ਼ ਡਾਈਆਕਸਾਈਡ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਹੇਠ ਦਿੱਤੀ ਪ੍ਰਤਿਕਿਰਿਆ ਵਾਪਰਦੀ ਹੈ।

ਕੀ ਤੁਸੀਂ ਉਹਨਾਂ ਵਸਤਾਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਦਾ ਆਕਸੀਕਰਨ ਜਾਂ ਲਘੁਕਰਨ ਹੋ ਰਿਹਾ ਹੈ?

ਚਿੱਤਰ : 3.11 ਰੇਲ ਪਟੜੀਆਂ ਨੂੰ ਜੋੜਨ ਲਈ ਥਰਮੀ ਪ੍ਰਕਿਰਿਆ

ਇਹ ਵਿਸਥਾਪਨ ਪ੍ਤਿਕਿਰਿਆਵਾਂ ਬਹੁਤ ਤਾਪ ਨਿਕਾਸੀ ਹਨ। ਇਹਨਾਂ ਵਿੱਚ ਛੱਡੀ ਹੋਈ ਤਾਪ ਊਰਜਾ ਇੰਨੀ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ ਕਿ ਧਾਤਾਂ ਤਰਲ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਅਸਲ ਵਿੱਚ ਆਇਰਨ (III) ਆਕਸਾਈਡ (Fe₂O₃) ਦੇ ਨਾਂਲ ਐਲੂਮਿਨੀਅਮ ਦੀ ਵਰਤੋਂ ਰੇਲ ਦੀਆਂ ਪਟੜੀਆਂ ਅਤੇ ਮਸ਼ੀਨੀ ਪੁਰਜਿਆਂ ਦੀਆਂ ਦਰਾੜਾਂ ਨੂੰ ਜੋੜਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਤਿਕਿਰਿਆ ਨੂੰ **ਬਰਮਿਟ ਪ੍ਰਤਿਕਿਰਿਆ** ਕਹਿੰਦੇ ਹਨ।

$$\mathrm{Fe_2O_3(s)} + 2\mathrm{Al(s)} \rightarrow 2\mathrm{Fe(l)} + \mathrm{Al_2O_3(s)} + ਤਾਪ ਊਰਜਾ$$

3.4.5 ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਵਿੱਚ ਸਭ ਤੋਂ ਉੱਪਰ ਸਥਿਤ ਧਾਤਾਂ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ

ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਵਿੱਚ ਸਭ ਤੋਂ ਉੱਪਰ ਸਥਿਤ ਧਾਤਾਂ ਅਤਿਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ ਇਹਨਾਂ ਦੇ ਯੋਗਿਕਾਂ ਨੂੰ ਕਾਰਬਨ ਨਾਲ ਗਰਮ ਕਰਕੇ ਇਹ ਪ੍ਰਾਪਤ ਨਹੀਂ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ। ਉਦਾਹਰਨ ਵਜੋਂ ਸੋਡੀਅਮ, ਮੈਗਨੀਸ਼ੀਅਮ, ਕੈਲਸ਼ੀਅਮ, ਐਲੂਮਿਨੀਅਮ ਆਦਿ ਦੇ ਆਕਸਾਈਡਾਂ ਦਾ ਕਾਰਬਨ ਦੁਆਰਾ ਲਘੂਕਰਨ ਕਰਕੇ ਉਹਨਾਂ ਨੂੰ ਸੰਗਤ ਧਾਤ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਹਨਾਂ ਧਾਤਾਂ ਦਾ ਕਾਰਬਨ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਆਕਸੀਜਨ ਨਾਲ ਬੰਧਨ ਵਧੇਰੇ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ। ਇਹਨਾਂ ਧਾਤਾਂ ਨੂੰ ਬਿਜਲੀ ਅਪਘਟਨੀ ਲਘੂਕਰਨ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਸੋਡੀਅਮ, ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਐਲੂਮਿਨੀਅਮ ਨੂੰ ਉਹਨਾਂ ਦੇ ਪਿਘਲੇ ਕਲੌਰਾਈਡਾਂ ਦੇ ਬਿਜਲ -ਅਪਘਟਨ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕੈਥੋਡ (ਰਿਣ ਇਲੈੱਕਟਰੋਡ) ਤੇ ਧਾਤਾਂ ਜਮ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਐਨੋਡ (ਧਨ ਇਲੈੱਕਟਰੋਡ) ਤੇ ਕਲੌਰੀਨ ਪੈਂਦਾ ਹੁੰਦੀ ਹੈ।ਵਾਪਰਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਇਸ ਪਕਾਰ ਹੈ:

ਇਸੇ ਪ੍ਕਾਰ ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ ਦੇ ਬਿਜਲ ਅਪਘਟਟ ਲਘੂਕਰਨ ਦੁਆਰਾ ਐਲੂਮਿਨੀਅਮ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਸਵਿੱਚ 3.4.6 ਧਾਤਾਂ ਦਾ ਸ਼ੁਧੀਕਰਨ ਉੱਪਰ ਵਰਨਣ ਧਾਤਾਂ ਪੂਰਨ ਰੂਪ ਵਿੱ ਤੇਜ਼ਾਬਿਆ ਕੇ ਸ਼ੁੱਧ ਧਾਤ ਪ੍ਰਾਪਤ ਕਾਪਰ ਸਲਫੇਟ ਘੋਲ਼ ਇਸਲ ਅਘਘਟਨੀ ਵਿ ਐਨੋਡ ਗਾਦ

ਚਿੱਤਰ 3.12 ਕਾਪਰ ਸਲਫੇਟ ਦਾ ਘੋਲ ਬਿਜਲ ਅਪਘਟਕ ਹੈ। ਅਖ਼ੁੱਧ ਕਾਪਰ ਐਨੋਡ ਹੈ। ਜਦੋਂ ਖ਼ੁੱਧ ਕਾਪਰ ਦੀ ਪੱਤੀ ਕੈਥੋਡ ਦਾ ਕੰਮ ਕਰਦੀ ਹੈ।ਬਿਜਲੀ ਲੰਘਾਉਣ ਵਾਲੇ ਖ਼ੁੱਧ ਕਾਪਰ ਕੈਥੋਡ ਪਰ ਜਮ ਸਕਦਾ ਹੈ।

ਉੱਪਰ ਵਰਨਣ ਕੀਤੀਆਂ ਵੱਖ ਵੱਖ ਲਘੂਕਰਨ ਪ੍ਕਿਰਿਆਵਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਧਾਤਾਂ ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਸ਼ੁੱਧ ਨਹੀਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧੀਆਂ ਕੱਢ ਕੇ ਸ਼ੁੱਧ ਧਾਤ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਧਾਤਾਂ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧੀਆਂ ਕੱਢਣ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਵਿਧੀ ਬਿਜਲ ਅਪਘਟਨੀ ਵਿਧੀ ਹੈ।

ਬਿਜਲ ਅਘਘਟਨੀ ਵਿਧੀ: ਕਾਪਰ, ਜ਼ਿੰਕ, ਟਿੱਨ, ਨਿਕਲ, ਸਿਲਵਰ ਅਤੇ ਗੋਲਡ ਜਿਹੀਆਂ ਅਨੇਕ ਧਾਤਾਂ ਦਾ ਸ਼ੁਧੀਕਰਨ ਬਿਜਲ ਅਪਘਟਨ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਅਸ਼ੁੱਧ ਧਾਤ ਨੂੰ ਐਨੋਡ ਅਤੇ ਸ਼ੁੱਧ ਧਾਤ ਦੀ ਪਤਲੀ ਪੱਤੀ ਨੂੰ ਕੈਥੋਡ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਧਾਤ ਦੇ ਲੂਣ ਦਾ ਉਪਯੋਗ ਬਿਜਲ-ਅਘਟਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ 3.12 ਅਨੁਸਾਰ ਉਪਕਰਨ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ। ਬਿਜਲ-ਅਪਘਟਕ ਵਿੱਚੋਂ ਜਦੋਂ ਬਿਜਲੀ ਲੰਘਾਈ ਜਾਂਦੀ ਹੈ ਤਾਂ ਐਨੋਡ ਤੋਂ ਅਸ਼ੁੱਧ ਧਾਤ ਬਿਜਲ-ਅਪਘਟਕ ਵਿੱਚ ਘਲ ਜਾਂਦੀ ਹੈ। ਇੰਨੀ ਹੀ

ਮਾਤਰਾ ਵਿੱਚ ਸ਼ੁੱਧ ਧਾਤ ਬਿਜਲ-ਅਪਘਟਕ ਤੋਂ ਕੈਥੋਡ ਤੇ ਜੰਮ ਜਾਂਦੀ ਹੈ। ਘੁਲਣਸ਼ੀਲ ਅਸ਼ੁੱਧੀਆਂ ਘੋਲ ਵਿੱਚ ਘੁਲ ਜਾਂਦੀਆਂ ਹਨ ਪਰ ਅਘੁਲ ਅਸ਼ੁੱਧੀਆਂ ਐਨੌਡ ਹੇਠਾਂ ਇਕੱਠੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਨੂੰ **ਐਨੌਡ ਗਾਦ** (Anode mud) ਆਖਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- ਹੇਠ ਲਿਖੇ ਪਦਾਂ (terms) ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ :
 (1) ਖਣਿਜ (11) ਕੱਚੀ ਧਾਤ (111) ਗੈਂਗ
- ਦੋ ਧਾਤਾਂ ਦੇ ਨਾਂ ਦੱਸੋ ਜੇ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਮੁਕਤ ਅਵਸਥਾ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ।
- ਧਾਤ ਨੂੰ ਉਸ ਦੇ ਆਕਸਾਈਡ ਤੋਂ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਿਹੜੀ ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਿਆ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ?

?

3.5 ਬੌਰ

ਖੋਰ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਅਧਿਆਇ ਇੱਕ ਵਿੱਚ ਤੁਸੀਂ ਹੇਠ ਦਿੱਤੀਆਂ ਗੱਲਾਂ ਦੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰ ਚੁੱਕੇ ਹੋ :

- ਸਿਲਵਰ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਕੁੱਝ ਦਿਨ ਹਵਾ ਵਿੱਚ ਖੁੱਲ੍ਹੀਆਂ ਰੱਖਣ ਨਾਲ ਉਹ ਕਾਲੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਕੁੱਝ ਸਿਲਵਰ ਉੱਤੇ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਹਾਈਡਰੋਜਨ ਸਲਫਾਈਡ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਹੋਣ ਕਾਰਨ ਸਿਲਵਰ ਸਲਫਾਈਡ ਦੀ ਪਰਤ ਬਣਨ ਕਰਕੇ ਹੁੰਦਾ ਹੈ।
- ਕਾਪਰ ਹਵਾ ਵਿਚਲੀ ਸਿੱਲ੍ਹੀ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦਾ ਹੈ ਜਿਸ ਕਰਕੇ ਇਸ ਦੀ ਸਤਹ ਦੀ ਭੂਰੇ ਰੰਗ ਦੀ ਚਮਕ ਹੌਲੇ ਹੌਲੇ ਖਤਮ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸ ਉੱਤੇ ਹਰੇ ਰੰਗ ਦੀ ਪਰਤ ਚੜ੍ਹ ਜਾਂਦੀ ਹੈ। ਇਹ ਹਰੇ ਰੰਗ ਦਾ ਪਦਾਰਥ ਕਾਪਰ ਕਾਰਬੋਨੇਟ ਹੁੰਦਾ ਹੈ।
- ਲੋਹੇ ਨੂੰ ਲੰਮੇ ਸਮੇਂ ਤੱਕ ਸਿੱਲੀ ਹਵਾ ਵਿੱਚ ਰੱਖਣ ਨਾਲ ਇਸ ਉੱਤੇ ਭੂਰੇ ਰੰਗ ਦੀ ਭਰਭਰੀ ਵਸਤੂ ਦੀ ਪਰਤ ਚੜ੍ਹ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨੂੰ ਜੰਗ ਆਖਦੇ ਹਨ। ਆਓ ਉਹਨਾਂ ਪਰਿਸਥਿਤੀਆਂ ਦਾ ਪਤਾ ਕਰੀਏ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਲੋਹੇ ਨੂੰ ਜੰਗ ਲੱਗ ਜਾਂਦਾ ਹੈ

ਕਿਰਿਆ 3.14

- ਤਿੰਨ ਪਰਖ ਨਲੀਆਂ ਲਓ ਅਤੇ ਹਰ ਇੱਕ ਵਿੱਚ ਲੋਹੇ ਦੀਆਂ ਸਾਫ ਕਿੱਲਾਂ ਪਾਓ।
- ਇਹਨਾਂ ਪਰਖ ਨਲੀਆਂ ਨੂੰ A, B, ਅਤੇ C ਚਿੰਨ੍ਹ ਲਗਾਓ। ਪਰਖ ਨਲੀ A ਵਿੱਚ ਥੋੜਾ ਪਾਣੀ ਪਾ ਕੇ ਕਾਰਕ ਨਾਲ ਬੈਦ ਕਰ ਦਿਓ।
- ਪਰਖਨਲੀ B ਵਿੱਚ ਉਬਾਲਿਆ ਹੋਇਆ ਕਸ਼ੀਦਿਆ ਪਾਣੀ ਪਾ ਕੇ ਉਸ ਵਿੱਚ 1 mL ਤੇਲ ਪਾਓ ਅਤੇ ਕਾਰਕ ਨਾਲ ਬੈਦ ਕਰੋ। ਤੇਲ ਪਾਣੀ ਉੱਤੇ ਤੈਰਨ ਲੱਗੇਗਾ ਅਤੇ ਹਵਾ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਜਾਣ ਤੋਂ ਰੋਕ ਦੇਵੇਗਾ
- ਪਰਖ ਨਲੀ C ਵਿੱਚ ਥੋੜ੍ਹਾ ਪਾਣੀ ਰਹਿਤ ਕੈਲਸ਼ੀਅਮ ਕਲੌਰਾਈਡ ਪਾ ਕੇ ਕਾਰਕ ਨਾਲ ਬੰਦ ਕਰ ਦਿਓ।ਪਾਣੀ ਰਹਿਤ ਕੈਲਸ਼ੀਅਮ ਕਲੌਰਾਈਡ ਹਵਾ ਦੀ ਸਿੱਲ੍ਹ ਸੋਖ ਲਵੇਗਾ ਇਹਨਾਂ ਪਰਖ ਨਲੀਆਂ ਨੂੰ ਕੁੱਝ ਦਿਨ ਪਏ ਰਹਿਣ ਪਿੱਛੋਂ ਇਹਨਾਂ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ (ਚਿੱਤਰ 3.13)।

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਪਰਖ ਨਲੀ A ਵਿੱਚ ਰੱਖੀਆਂ ਲੋਹੇ ਦੀਆਂ ਮੇਖਾਂ ਉੱਤੇ ਜੰਗ ਲੱਗ ਗਿਆ ਹੈ ਪ੍ਰੰਤੂ ਪਰਖ ਨਲੀ B ਅਤੇ C ਵਿੱਚ ਰੱਖੀਆਂ ਮੇਖਾਂ ਨੂੰ ਜੰਗ ਨਹੀਂ ਲੱਗਾ ਹੈ। ਪਰਖ ਨਲੀ A ਦੀਆਂ ਮੇਖਾਂ ਕੇਵਲ ਪਾਣੀ ਅਤੇ ਹਵਾ ਦੋਹਾਂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹੀਆਂ ਹਨ। ਪਰਖਨਲੀ B ਦੀਆਂ ਮੇਖਾਂ ਕੇਵਲ ਪਾਣੀ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹੀਆਂ ਹਨ ਅਤੇ ਪਰਖ ਨਲੀ C ਦੀਆਂ ਮੇਖਾਂ ਸੁੱਕੀ ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹੀਆਂ ਹਨ। ਇਸ ਤੋਂ ਲੋਹੇ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਜੰਗ ਲੱਗਣ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਅਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹਾਂ?

ਚਿੱਤਰ 3.13ਲੋਹੇ ਨੂੰ ਜੰਗ ਲੱਗਣ ਦੀ ਸਥਿਤੀ ਦੀ ਜਾਂਚ ਕਰਨਾ। ਪਰਖ ਨਲੀ A ਵਿੱਚ ਹਵਾ ਅਤੇ ਪਾਣੀ ਦੋਵੇਂ ਮੌਜੂਦ ਹਨ। ਪਰਖ ਨਲੀ B ਵਿੱਚ ਪਾਣੀ ਮਿਲੀ ਹਵਾ ਨਹੀਂ ਹੈ। ਪਰਖਨਲੀ Cਵਿੱਚ ਸ਼ੱਕੀ ਹਵਾ ਹੈ।

3.5.1 ਖੋਰ ਤੋਂ ਸੁਰੱਖਿਆ

ਪੇਂਟ ਕਰਕੇ, ਤੇਲ ਲਗਾਕੇ, ਗਰੀਸ ਲਗਾ ਕੇ, ਗੈਲਵੈਨੀਕਰਨ ਕਰਕੇ, ਕਰੋਮੀਅਮ ਲੇਪ ਕਰਕੇ ਐਨੋਡੀਕਰਨ ਕਰਕੇ ਜਾਂ ਮਿਸ਼ਰਤ ਧਾਤ ਬਣਾ ਕੇ ਲੋਹੇ ਨੂੰ ਜੇਗ ਲੱਗਣ ਤੋਂ ਬਚਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਲੋਹੇ ਅਤੇ ਇਸਪਾਤ ਨੂੰ ਜੰਗ ਤੋਂ ਸੁਰੱਖਿਅਤ ਰੱਖਣ ਲਈ ਉਹਨਾਂ ਉੱਪਰ ਜ਼ਿੰਕ ਦੀ ਪਤਲੀ ਪਰਤ ਚੜ੍ਹਾਉਣ ਦੀ ਵਿਧੀ ਨੂੰ ਗੈਲਵੈਨੀਕਰਨ ਕਹਿੰਦੇ ਹਨ। ਜ਼ਿੰਕ ਦੀ ਪਰਤ ਟੁੱਟ ਜਾਣ ਤੇ ਵੀ ਗੈਲਵੈਨੀਕ੍ਰਿਤ ਵਸਤੂ ਜੰਗ ਤੋਂ ਬਚੀ ਰਹਿੰਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਸ ਦਾ ਕਾਰਨ ਦੱਸ ਸਕਦੇ ਹੋ।

ਧਾਤ ਦੇ ਗੁਣਾਂ ਨੂੰ ਚੋਗੇਰਾ ਬਣਾਉਣ ਲਈ ਬਹੁਤ ਚੇਗੀ ਵਿਧੀ ਮਿਸ਼ਰਤ ਧਾਤ ਬਣਾਉਣ ਦੀ ਹੈ। ਇਸ ਵਿਧੀ ਦੁਆਰਾ ਅਸੀਂ ਇੱਛਾ ਅਨੁਸਾਰ ਵਸਤੂਆਂ ਦੇ ਗੁਣ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਉਦਾਹਰਨ ਵਜੋਂ, ਲੋਹਾ ਸਭ ਤੋਂ ਵੱਧ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਧਾਤ ਹੈ ਪ੍ਰੰਤੂ ਇਸ ਦੀ ਵਰਤੋਂ ਕਦੇ ਵੀ ਸ਼ੁੱਧ ਅਸਵਥਾ ਵਿੱਚ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿ ਕਿਉਂਕਿ ਸ਼ੁੱਧ ਲੋਹਾ ਬਹੁਤ ਨਰਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਦੋਂ ਗਰਮ ਹੋਵੇ ਤਾਂ ਸੌਖਿਆਂ ਹੀ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ। ਪ੍ਰੰਤੂ ਜਦੋਂ ਇਸ ਵਿੱਚ ਥੋੜ੍ਹੀ ਜਿਹੀ ਕਾਰਬਨ (ਲੱਗਭੱਗ 0.05 ਪ੍ਰਤਿਸ਼ਤ) ਮਿਲਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਹ ਕਠੌਰ ਅਤੇ ਮਜਬੂਤ ਬਣ ਜਾਂਦਾ ਹੈ। ਲੋਹੇ ਨਾਲ ਨਿਕਲ ਅਤੇ ਕਰੋਮੀਅਮ ਮਿਲਾਉਣ ਨਾਲ ਸਾਨੂੰ ਸਟੇਨਲੈੱਸ ਸਟੀਲ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਜੋ ਕਠੌਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਸ ਨੂੰ ਜੰਗ ਨਹੀਂ ਲੱਗਦਾ। ਇਸ ਪ੍ਰਕਾਰ ਜੇਕਰ ਲੋਹੇ ਨਾਲ ਕੋਈ ਹੋਰ ਵਸਤੂ ਮਿਸ਼ਰਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਸ ਦੇ ਗੁਣ ਬਦਲ ਜਾਂਦੇ ਹਨ। ਅਸਲ ਵਿੱਚ ਕੋਈ ਹੋਰ ਵਸਤੂ ਮਿਲਾ ਕੇ ਕਿਸੇ ਵੀ ਧਾਤ ਦੇ ਗੁਣ ਬਦਲੇ ਜਾ ਸਕਦੇ ਹਨ। ਮਿਲਾਈ ਜਾਣ ਵਾਲੀ ਵਸਤੂ ਧਾਤ ਜਾਂ ਅਧਾਤ ਹੋ ਸਕਦੀ ਹੈ। ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਧਾਤਾਂ ਜਾਂ ਧਾਤ ਅਤੇ ਅਧਾਤ ਦੇ ਸਮ ਅੰਗੀ (homogeneous) ਮਿਸ਼ਰਨ ਨੂੰ ਮਿਸ਼ਰਤ ਧਾਤ ਜਾਂ ਐਲਾਇ (Alloy) ਕਹਿੰਦੇ ਹਨ। ਮਿਸ਼ਰਤ ਧਾਤ ਤਿਆਰ ਕਰਨ ਲਈ ਪਹਿਲਾਂ ਮੂਲਧਾਤ ਨੂੰ ਪਿਘਲਾ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫਿਰ ਦੂਜੇ ਤੱਤਾਂ ਨੂੰ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਇਸ ਵਿੱਚ ਘੋਲ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਾਪਤ ਸਮਅੰਗੀ ਮਿਸ਼ਰਨ ਨੂੰ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਠੰਢਾ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਜੇਕਰ ਮਿਸ਼ਰਤ ਧਾਤ ਵਿੱਚ ਇੱਕ ਧਾਤ ਪਾਰਾ (ਮਰਕਰੀ) ਹੋਵੇ ਤਾਂ ਇਸ ਨੂੰ **ਪਾਰਾ-ਧਾਤ-ਮਿਸ਼ਰਨ** ਜਾਂ ਅਮੈਲਗਮ (Amalgam) ਆਖਦੇ ਹਨ। ਮਿਸ਼ਰਤ-ਧਾਤ ਦੀ ਬਿਜਲਈ ਚਾਲਕਤਾ ਅਤੇ ਪਿਘਲਣ ਤਾਪ ਸਬੰਧਿਤ ਸ਼ੁੱਧ ਧਾਤਾਂ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਨ ਵਜੋਂ ਕਾਪਰਅਤੇ ਜ਼ਿੰਕ (Cu ਅਤੇ Zn) ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ ਪਿੱਤਲ ਅਤੇ ਕਾਪਰ ਅਤੇ ਟਿਨ (Cu ਅਤੇ Sn) ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ ਕਾਂਸੀ ਬਿਜਲੀ ਦੇ ਚੰਗੇ ਚਾਲਕ ਨਹੀਂ ਹਨ ਪ੍ਰੰਤੂ ਕਾਪਰ ਦਾ ਉਪਯੋਗ ਬਿਜਲਈ ਸਰਕਟ ਬਨਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਲੈੱਡ ਅਤੇ ਟਿੱਨ (Pb ਅਤੇ Sn) ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ ਸੋਲਡਰ ਹੈ ਜਿਸ ਦਾ ਪਿਘਲਣ ਤਾਪ ਅੰਕ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਉਪਯੋਗ ਬਿਜਲੀ ਦੀਆਂ ਤਾਰਾਂ ਨੂੰ ਅਪਾਸ ਵਿੱਚ ਜੋੜਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਸ਼ੁੱਧ ਸੋਨੇ ਨੂੰ 24 ਕੈਰਟ ਸੋਨਾ ਕਹਿੰਦੇ ਹਨ ਜੋ ਕਾਫੀ ਨਰਮ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਹ ਗਹਿਣੇ ਬਣਾਉਣ ਲਈ ਉਪਯੁਕਤ ਨਹੀਂ ਹੈ। ਇਸ ਨੂੰ ਸਖ਼ਤ ਬਣਾਉਣ ਲਈ ਇਸ ਨਾਲ ਚਾਂਦੀ ਜਾਂ ਤਾਂਬਾ ਮਿਸ਼ਰਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਭਾਰਤ ਵਿੱਚ ਗਹਿਣੇ ਬਣਾਉਣ ਲਈ ਵਧੇਰੇ ਕਰਕੇ 22 ਕੈਰਟ ਸੋਨੇ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਹੈ ਕਿ 22 ਭਾਗ ਸ਼ੁੱਧ ਸੋਨੇ ਵਿੱਚ 2 ਭਾਗ ਚਾਂਦੀ ਜਾਂ ਤਾਂਬਾ ਮਿਸ਼ਰਤ ਕੀਤਾ ਹੁੰਦਾ ਹੈ।

ते इसी सरहे हैं?

ਦਿੱਲੀ ਸਥਿਤ ਲੋਹੇ ਦਾ ਥੰਮ (ਲੱਠ)

ਪਾਚੀਨ ਭਾਰਤੀ ਧਾਤਕ੍ਰਮ ਦਾ ਚਮਤਕਾਰ

ਲਗਭਗ 400 ਈਸਵੀ ਪੂਰਬ ਭਾਰਤ ਦੇ ਲੋਹ ਕਾਮਿਆਂ ਨੇ ਦਿੱਲੀ ਵਿੱਚ ਕੁਤਬਮੀਨਾਰ ਦੇ ਲਾਗੇ ਲੋਹੇ ਦਾ ਇੱਕ ਥੰਮ੍ਹ (ਲੱਠ) ਬਣਾਇਆ। ਉਹਨਾਂ ਨੇ ਕਮਾਏ ਹੋਏ ਲੋਹੇ ਨੂੰ ਜੰਗ ਲੱਗਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਇੱਕ ਵਿਧੀ ਵਿਕਸਤ ਕੀਤੀ।ਸੰਭਵ ਤੌਰ ਤੇ ਇਸ ਦੀ ਸਤਹ ਉੱਤੇ ਮੈਗਨੈਟਿਕ ਆਕਸਾਈਡ ਦੀ ਪਤਲੀ ਪਰਤ ਬਣਨ ਕਰਕੇ ਅਜਿਹਾ ਹੈ ਜੋ ਕਿ ਥੰਮ੍ਹ ਨੂੰ ਕੀਤੀਆਂ ਕਈ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਿਆਵਾਂ ਦਾ ਸਿੱਟਾ ਹੈ।ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਭਿੰਨ ਭਿੰਨ ਲੂਣਾਂ ਨਾਲ ਇਸ ਨੂੰ ਲੇਪਨ ਕਰਨ ਉਪਰੰਤ ਗਰਮ ਕੀਤਾ ਤੇ ਇੱਕਦਮ ਠੰਢਾ ਕੀਤਾ। ਇਹ ਲੋਹੇ ਦਾ ਥੰਮ੍ਹ 8 ਮੀਟਰ ਉੱਚਾ ਹੈ ਅਤੇ ਇਸ ਦਾ ਭਾਰ 6 ਟਨ (6000 ਕਿਲੋਗਰਾਮ) ਹੈ।

ਪ੍ਰਸ਼ਨ

 ਜ਼ਿੰਕ, ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਕਾਪਰ ਦੇ ਧਾਤਵੀ ਆਕਸਾਈਡਾਂ ਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਧਾਤਾਂ ਨਾਲ (ਵੱਖ ਵੱਖ) ਗਰਮ ਕੀਤਾ ਗਿਆ :

d.a.	ਜਿਸਤ	HEINTHINN II	ਕਾਪਰ
ਜ਼ਿੰਕ ਆਕਸਾਈਡ			
ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ			
ਕਾਪਰ ਆਕਸਾਈਡ			

ਦੱਸੋਂ ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਰਸਾਇਣਿਕ ਵਿਸਥਾਪਨ ਪ੍ਰਤਿਕਿਰਿਆ ਹੋਵੇਗੀ?

- 2. ਕਿਹੜੀਆਂ ਧਾਤਾਂ ਆਸਾਨੀ ਨਾਲ ਨਹੀਂ ਖੁਰਦੀਆਂ?
- 3. ਮਿਸ਼ਰਤ-ਧਾਤਾਂ ਕੀ ਹੁੰਦੀਆਂ ਹਨ?

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- 😱 ਤੱਤਾਂ ਨੂੰ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਵਰਗੀਕਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਧਾਤਾਂ ਚਮਕੀਲੀਆਂ, ਕੁਟੀਣਯੋਗ, ਖਚੀਣਯੋਗ, ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦੀਆਂ ਸੁਚਾਲਕ ਹੁੰਦੀਆਂ ਹਨ। ਪਾਰੇ (Mercury) ਤੋਂ ਬਿਨਾਂ ਸਾਰੀਆਂ ਧਾਤਾਂ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਠੱਸ ਹੁੰਦੀਆਂ ਹਨ। ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਪਾਰਾ ਦ੍ਵ ਹੁੰਦੀ ਹੈ।
- ਧਾਤਾਂ ਬਿਜਲੀ ਧਨਾਤਮਕ ਤੱਤ ਹਨ ਕਿਉਂਕਿ ਇਹ ਅਧਾਤਾਂ ਨੂੰ ਇਲੈੱਕਟ੍ਰਾਨ ਦੇ ਕੇ ਧਨ ਆਇਨ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੈ ਜਾਂਦੀਆਂ ਹਨ।
- ਧਾਤਾਂ ਆਕਸੀਜਨ ਨਾਲ ਮਿਲੀਆਂ ਹਨ ਅਤੇ ਵਧੇਰੇ ਕਰਕੇ ਖਾਰੀ ਆਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਜ਼ਿੰਕ ਆਕਸਾਈਡ ਅਤੇ ਐਲੂਮਿਨੀਅਮ ਆਕਸਾਈਡ ਤੇਜ਼ਾਬੀ ਆਕਸਾਈਡ ਅਤੇ ਖਾਰੀਆਂ ਆਕਸਾਈਡ ਦੋਹਾਂ ਦੇ ਗੁਣ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਆਕਸਾਈਡਾਂ ਨੂੰ ਐਮਫੋਟੈਰਿਕ ਆਕਸਾਈਡ ਆਖਦੇ ਹਨ।
- 🌉 ਵੱਖ ਵੱਖ ਧਾਤਾਂ ਦੀ ਪਾਣੀ ਅਤੇ ਪਤਲੇ ਤੇਜ਼ਾਬਾਂ ਪ੍ਰਤਿ ਭਿੰਨ ਭਿੰਨ ਕਿਰਿਆਸ਼ੀਲਤਾ ਹੈ।
- ਧਾਤਾਂ ਦੀ ਉਹ ਸੂਚੀ ਜਿਸ ਵਿੱਚ ਇਨ੍ਹਾਂ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੇ ਘਟਦੇ ਕ੍ਮ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ ਉਸ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਆਖਦੇ ਹਨ।
- ਕਿਰਿਆਸ਼ੀਲਤਾ ਲੜੀ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਤੋਂ ਉਪਰਲੀਆਂ ਧਾਤਾਂ ਹਾਈਡਰੋਜਨ ਨੂੰ ਤੇਜ਼ਾਬਾਂ ਵਿੱਚੋਂ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੀਆਂ ਹਨ।
- 😦 ਵੱਧ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਨੂੰ ਉਸ ਦੇ ਲੂਣ ਦੇ ਘੋਲ ਵਿੱਚੋਂ ਵਿਸਥਾਪਿਤ ਕਰ ਦਿੰਦੀ ਹੈ।
- 💶 ਧਾਤਾਂ ਕੁਦਰਤ ਵਿੱਚ ਸੁਤੰਤਰ ਰੂਪ ਜਾਂ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ।

- ਕੱਚੀ-ਧਾਤ ਤੋਂ ਧਾਤ ਦਾ ਨਿਸ਼ਕਰਸ਼ਨ ਅਤੇ ਉਸ ਦੀ ਵਰਤੋਂ ਲਈ ਸ਼ੁੱਧ ਕਰਨ ਨੂੰ ਧਾਤ-ਕਰਮ ਆਖਦੇ ਹਨ।
- 🔹 ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਧਾਤਾਂ ਅਤੇ ਧਾਤ ਅਤੇ ਅਧਾਤ ਦੇ ਸਮਅੰਗੀ ਮਿਸ਼ਰਨ ਨੂੰ ਮਿਸ਼ਰਤ ਧਾਤ ਕਹਿੰਦੇ ਹਨ।
- ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਸਿੱਲੀ ਹਵਾ ਵਿੱਚ ਰੱਖਣ ਨਾਲ ਕੁੱਝ ਧਾਤਾਂ ਜਿਵੇਂ ਕਿ ਲੋਹੇ, ਦੀ ਸਤਹ ਖੁਰ ਜਾਂਦੀ ਹੈ। ਇਸ ਘਟਨਾ ਨੂੰ ਖੋਰ ਆਖਦੇ ਹਨ।
- ਅਧਾਤਾਂ ਦੇ ਗੁਣ ਧਾਤਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਉਲਟ ਹੁੰਦੇ ਹਨ। ਇਹ ਨਾ ਕੁਟੀਣਯੋਗ ਅਤੇ ਨਾ ਹੀ ਖਚੀਣਯੋਗ ਹਨ। ਗਰੇਫਾਈਟ ਨੂੰ ਛੱਡ ਕੇ ਬਾਕੀ ਸਾਰੀਆਂ ਅਧਾਤਾਂ ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦੀਆਂ ਕੁਚਾਲਕ ਹਨ। ਗਰੇਫਾਈਟ ਬਿਜਲੀ ਦਾ ਸੁਚਾਲਕ ਹੈ।
- ਜਦੋਂ ਅਧਾਤਾਂ ਧਾਤਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ ਤਾਂ ਉਹ ਇਲੈੱਕਟਰਾਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਰਿਣ ਚਾਰਜਿਤ ਆਇਨ ਬਣਾਉਂਦੀਆਂ ਹਨ।
- ਅਧਾਤਾਂ ਆਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ ਜੋ ਤੇਜ਼ਾਬੀ ਜਾਂ ਉਦਾਸੀਨ ਹੁੰਦੇ ਹਨ।
- ਅਧਾਤਾਂ ਪਤਲੇ ਤੇਜ਼ਾਬਾਂ ਤੋਂ ਹਾਈਡਰੋਜਨ ਵਿਸਥਾਪਿਤ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ ਇਹ ਹਾਈਡਰੋਜਨ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡਰਾਈਡ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ।

ਅਭਿਆਸ

- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਜੋੜਾ ਵਿਸਥਾਪਨ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰੇਗਾ?
 - (a) NaCl ਘੋਲ ਅਤੇ ਕਾਪਰ ਧਾਤ
 - (b) MgCl, ਘੋਲ਼ ਅਤੇ ਐਲੂਮਿਨੀਅਮ ਧਾਤ
 - (c) FeSO, ਘੋਲ਼ ਅਤੇ ਸਿਲਵਰ ਧਾਤ
 - (d) AgNO₃ ਘੋਲ਼ ਅਤੇ ਕਾਪਰ ਧਾਤ
- 2. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਵਿਧੀ ਆਇਰਨ ਦੀ ਕੜਾਹੀ (frying pan) ਨੂੰ ਜੰਗ ਲੱਗਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਉਪਯੁਕਤ ਹੈ :
 - (a) ਗਰੀਸ ਲਗਾਉਣਾ
 - (b) ਪੇਂਟ ਕਰਨਾ
 - (c) ਜ਼ਿੰਕ ਦੀ ਪਰਤ ਚੜ੍ਹਾਉਣਾ
 - (d) ਉੱਕਤ ਸਾਰੇ
- 3. ਇੱਕ ਤੱਤ ਆਕਸੀਜਨ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਉੱਚ ਪਿਘਲਣ ਅੰਕ ਵਾਲਾ ਯੋਗਿਕ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਯੋਗਿਕ ਪਾਣੀ ਵਿੱਚ ਵੀ ਘੁਲਣਸ਼ੀਲ ਹੈ। ਸੰਭਵ ਤੌਰ ਤੇ ਇਹ ਤੱਤ ਹੈ :
 - (a) ਕੈਲਸ਼ੀਅਮ
 - (b) ਕਾਰਬਨ
 - (c) ਸਿਲੀਕਾਨ
 - (d) ਆਇਰਨ
- 4. ਭੋਜਨ ਰੱਖਣ ਵਾਲੇ ਕੈਨਾਂ ਨੂੰ ਟਿਨ ਦੀ ਝਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜ਼ਿੰਕ ਦੀ ਨਹੀਂ, ਕਿਉਂਕਿ?
 - (a) ਜ਼ਿੰਕ ਟਿੱਨ ਨਾਲੋਂ ਮਹਿੰਗੀ ਹੈ।
 - (b) ਜ਼ਿੰਕ ਦਾ ਪਿ਼ਘਲਣ ਅੰਕ ਟਿੱਨ ਨਾਲੋਂ ਉੱਚਾ ਹੈ।
 - (c) ਜ਼ਿੰਕ ਟਿੱਨ ਨਾਲੋਂ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੈ।
 - (d) ਜ਼ਿੰਕ ਟਿੱਨ ਨਾਲੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੈ।

- 5. ਤੁ<mark>ਹਾਨੂੰ ਇੱਕ</mark> ਹਥੌੜਾ, ਇੱਕ ਬੈਟਰੀ, ਇੱਕ ਬੱਲਲ, ਤਾਰਾਂ ਅਤੇ ਸਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।
 - (a) ਤੁਸੀਂ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤ ਦੇ ਨਮੂਨਿਆਂ ਨੂੰ ਪਹਿਚਾਨਣ ਲਈ ਇਹਨਾਂ ਨੂੰ ਕਿਵੇਂ ਵਰਤੋਗੇ?
 - (b) ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਨੂੰ ਪਛਾਨਣ ਲਈ ਕੀਤੀਆਂ ਪਰਖਾਂ ਦੀ ਉਪਯੋਗਤਾ ਦਾ ਮੁਲੰਕਣ ਕਰੋ।
- 6. ਐਮਫੋਟੈਰਿਕ ਆਕਸਾਈਡ ਕੀ ਹੁੰਦੇ ਹਨ? ਐਮਫੋਟੈਰਿਕ ਆਕਸਾਈਡਾਂ ਦੀਆਂ ਦੋ ਉਦਾਹਰਨਾਂ ਦਿਓ।
- 7. ਦੋ ਧਾਤਾਂ ਦੇ ਨਾਂ ਲਓ ਜੋ ਹਲਕੇ ਤੇਜ਼ਾਬਾਂ ਵਿੱਚੋਂ ਹਾਈਡਰੋਜਨ ਵਿਸਥਾਪਿਤ ਕਰ ਦੇਣਗੀਆਂ ਅਤੇ ਦੋ ਧਾਤਾਂ ਦੇ ਨਾਂ ਲਓ ਜੋ ਹਲਕੇ ਤੇਜ਼ਾਬਾਂ ਵਿੱਚੋਂ ਹਾਈਡਰੋਜਨ ਵਿਸਥਾਪਿਤ ਨਹੀਂ ਕਰਨਗੀਆਂ।
- 8. ਇੱਕ ਧਾਤ M ਦੇ ਬਿਜਲੀ ਅਪਘਟਨ ਸ਼ੁਧੀਕਰਨ ਲਈ ਤੁਸੀਂ ਤਾਪ ਕਿਰਿਆ ਐਨੌਡ, ਕੈਥੋਡ ਅਤੇ ਬਿਜਲੀ ਵਿਘਟਕ ਵਜੋਂ ਕੀ ਲਓਗੇ?
- ਪਰਤਯੂਸ਼ ਨੇ ਸਲਫਰ ਪਾਊਡਰ ਨੂੰ ਸਪੈਚੁਲੇ ਉੱਤੇ ਲੈ ਕੇ ਗਰਮ ਕੀਤਾ। ਉਸ ਨੇ ਉਤਪੰਨ ਗੈਸ ਨੂੰ ਉਸ ਉੱਪਰ ਪੁੱਠੀ ਪਰਖ ਨਲੀ ਰੱਖ ਕੇ ਇਕੱਠਾ ਕੀਤਾ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।
 - (a) ਗੈਸ ਦੀ ਕੀ ਕਿਰਿਆ ਹੋਵੇਗੀ :
 - (i) ਸੁੱਕੇ ਲਿਟਮਸ ਪੱਤਰ ਉੱਤੇ।
 - (ii) ਸਿੱਲੇ, ਲਿਟਮਸ ਪੱਤਰ ਉੱਤੇ।
 - (b) ਵਾਪਰਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੀ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਨ ਲਿਖੋ।
- 10. ਆਇਰਨ ਨੂੰ ਜੰਗ ਲੱਗਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਦੇ ਢੰਗ ਦੱਸੋ।
- 11. ਅਧਾਤਾਂ ਆਕਸੀਜਨ ਨਾਲ ਸੰਯੁਕਤ ਹੋ ਕੇ ਕਿਹੇ ਜਿਹੇ ਆਕਸਾਈਡ ਬਣਾਉਂਦੀਆਂ ਹਨ?

12. ਕਾਰਨ ਦੱਸੋ :

- (a) ਪਲਾਟੀਨਮ, ਗੋਲਡ ਅਤੇ ਸਿਲਵਰ ਗਹਿਣੇ ਬਨਾਉਣ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ।
- (b) ਸੋਡੀਅਮ, ਪੋਟਾਸ਼ੀਅਮ ਅਤੇ ਲਿੱਥੀਅਮ ਨੂੰ ਤੇਲ ਵਿੱਚ ਸਟੋਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- (c) ਐਲੂਮਿਨੀਅਮ ਇੱਕ ਬਹੁਤ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਹੈ ਪਰ ਫਿਰ ਵੀ ਇਹ ਖਾਣਾ ਪਕਾਉਣ ਵਾਲੇ ਬਰਤਨ ਬਨਾਉਣ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।
- (d) ਨਿਸ਼ਕਰਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਕਾਰਬੋਨੇਟ ਅਤੇ ਸਲਵਾਈਡ ਕੱਚੀਆਂ ਧਾਤਾਂ ਨੂੰ ਆਮ ਕਰਕੇ ਆਕਸਾਈਡਾਂ ਵਿੱਚ ਬਦਲ ਲਿਆ ਜਾਂਦਾ ਹੈ।
- 13. ਤੁਸੀਂ ਕਾਪਰ ਦੇ ਬਦਰੇਗੇ ਬਰਤਨਾਂ ਨੂੰ ਨਿੰਬੂ ਜਾਂ ਇਮਲੀ ਦੇ ਰਸ ਨਾਲ ਸਾਫ ਕਰਦੇ ਜ਼ਰੂਰ ਵੇਖਿਆ ਹੋਵੇਗਾ। ਵਿਆਖਿਆ ਕਰੋ ਕਿ ਇਹ ਖੱਟੀਆਂ ਵਸਤਾਂ ਬਰਤਨਾਂ ਨੂੰ ਸਾਫ ਕਰਨ ਲਈ ਕਿਵੇਂ ਪ੍ਰਭਾਵੀ ਹਨ?
- 14. ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਅੰਤਰ ਦੱਸ।
- 15. ਇੱਕ ਵਿਅਕਤੀ ਸੁਨਿਆਰ ਬਣ ਕੇ ਘਰ-ਘਰ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਉਸ ਨੇ ਪੁਰਾਣੇ ਅਤੇ ਚਮਕ ਰਹਿਤ ਸੋਨੇ ਦੇ ਗਹਿਣਿਆਂ ਨੂੰ ਚਮਕਾਉਣ ਦਾ ਬਚਨ ਦਿੱਤਾ। ਇੱਕ ਸਾਦਾ ਇਸਤਰੀ ਨੇ ਸੋਨੇ ਦੀਆਂ ਚੂੜੀਆਂ ਦਾ ਜੋੜਾ ਉਸ ਵਿਅਕਤੀ ਨੂੰ ਦਿੱਤਾ ਜੋ ਉਸ ਨੇ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਘੋਲ ਵਿੱਚ ਡੁਬੇ ਦਿੱਤਾ॥ ਉਸ ਵਿਅਕਤੀ ਨੇ ਉਹ ਵਿਸ਼ੇਸ਼ ਘੋਲ ਵਿੱਚ ਡੁਬੇੀਆਂ ਚੂੜੀਆਂ ਨਵੀਆਂ ਵਾਂਗ ਚਮਕਣ ਲੱਗੀਆਂ ਪਰ ਉਹਨਾਂ ਦਾ ਕਾਫੀ ਭਾਰ ਘਟ ਗਿਆ ਸੀ। ਇਸਤਰੀ ਬਹੁਤ ਦੁਖੀ ਹੋਈ। ਵਿਅਕਤੀ ਨਾਲ ਬੇ-ਨਤੀਜਾ ਬਹਿਸ ਹੋਈ ਪਰ ਵਿਅਕਤੀ ਛੇਤੀ ਹੀ ਖਿਸਕ ਗਿਆ। ਕੀ ਤੁਸੀਂ ਇੱਕ ਜਸੂਸ ਬਣ ਕੇ ਘੋਲ ਦੀ ਪ੍ਰਕਿਰਤੀ ਬਾਰੇ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ?
- 16. ਕਾਰਨ ਦੱਸੋ ਕਿ ਕਿਉਂ ਗਰਮ ਪਾਣੀ ਦੇ ਟੈਂਕ ਕਾਪਰ ਦੇ ਬਣਾਏ <mark>ਜਾਂਦੇ ਹਨ। ਸਟੀਲ ਦੇ ਨਹੀਂ (ਜੋ ਆਇਨ ਦੀ ਮਿਸ਼ਰਤ</mark> ਧਾਤ ਹੈ)।

ਅਧਿਆਇ 4

(Carbon and Its Compounds)

ਫਿਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਬਹੁਤ ਸਾਰੇ ਯੋਗਿਕਾਂ ਜੋ ਸਾਡੇ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹਨ, ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਹੈ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਕੁੱਝ ਹੋਰ ਰੋਚਕ ਯੋਗਿਕਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਗੁਣਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਇੱਥੇ ਅਸੀਂ ਇੱਕ ਤੱਤ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਵੀ ਅਧਿਐਨ ਕਰਾਂਗੇ ਜਿਸ ਦਾ ਸਾਡੇ ਲਈ ਤੱਤ ਅਤੇ ਸੰਯੁਕਤ ਦੋਵੇਂ ਰੂਪਾਂ ਵਿੱਚ ਬਹੁਤ ਵੱਧ ਮਹੱਤਵ ਹੈ।

ਕਿਰਿਆ 4.1

- ਉਨ੍ਹਾਂ ਦਸ ਵਸਤਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਵੇਰ ਤੋਂ ਤੁਸੀਂ ਵਰਤਿਆ ਜਾਂ ਖਾਧਾ ਹੈ।
- ਇਸ ਸੂਚੀ ਨੂੰ ਆਪਣੇ ਸਾਥੀਆਂ ਦੁਆਰਾ ਬਣਾਈ ਸੂਚੀ ਨਾਲ ਮਿਲਾਓ।
- ਜੇਕਰ ਕੁੱਝ ਵਸਤਾਂ ਇੱਕ ਤੋਂ ਵੱਧ ਪਦਾਰਥ ਤੋਂ ਬਣੀਆਂ ਹੋਣ ਤਾਂ ਉਹਨਾਂ ਨੂੰ ਦੋਵੇਂ ਸੰਬੰਧਿਤ ਖਾਨਿਆਂ ਵਿੱਚ ਲਿਖੋ।

ਆਖਰੀ ਖਾਨੇ ਵਿੱਚ ਆਈਆਂ ਵਸਤਾਂ ਵੱਲ ਧਿਆਨ ਦਿਓ। ਤੁਹਾਡੇ ਅਧਿਆਪਕ ਜੀ ਤੁਹਾਨੂੰ ਦੱਸਣਗੇ ਕਿ ਉਹਨਾਂ ਵਿੱਚੋਂ ਬਹੁਤ ਸਾਰੀਆਂ ਵਸਤਾਂ ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਤੋਂ ਬਣੀਆਂ ਹੋਈਆਂ ਹਨ। ਇਸ ਦੀ ਪਰਖ ਕਰਨ ਲਈ ਕੀ ਤੁਸੀਂ ਕੋਈ ਢੰਗ ਸੋਚ ਸਕਦੇ ਹੋ? ਕਾਰਬਨ ਦੇ ਯੌਗਿਕਾਂ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਕੀ ਉਪਜੇਗਾ? ਕੀ ਤੁਸੀਂ ਇਸ ਦੀ ਪੁਸ਼ਟੀ ਕਰਨ ਵਾਲੀ ਕਿਸੇ ਪਰਖ ਨੂੰ ਜਾਣਦੇ ਹੋ?

ਤੁਹਾਡੇ ਦੁਆਰਾ ਬਣਾਈ ਸੂਚੀ ਵਿੱਚ ਭੋਜਨ, ਕੱਪੜੇ, ਦਵਾਈਆਂ, ਪੁਸਤਕਾਂ ਆਦਿ ਅਨੇਕ ਵਸਤਾਂ ਇਸ ਬਹੁਮੁੱਖੀ (Versatile) ਤੱਤ ਕਾਰਬਨ ਤੇ ਆਧਾਰਿਤ ਹਨ। ਇਹਨਾਂ ਤੋਂ ਇਲਾਵਾ ਸਾਰੀਆਂ ਸਜੀਵ ਰਚਨਾਵਾਂ ਵੀ ਕਾਰਬਨ ਤੇ ਆਧਾਰਿਤ ਹਨ। ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਅਤੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਬਹੁਤ ਥੋੜ੍ਹੀ ਮਾਤਰਾ ਹੈ। ਪੇਪੜੀ ਵਿੱਚ ਖਣਿਜਾਂ (ਜਿਵੇਂ ਕਾਰਬੋਨੇਟ, ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ, ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ) ਦੇ ਰੂਪ ਵਿੱਚ ਕੇਵਲ 0.02% ਕਾਰਬਨ ਮੌਜ਼ੂਦ ਹੈ ਅਤੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ 0.03% ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਹੈ। ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਇੰਨੀ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਕਾਰਬਨ ਹੋਣ ਦੇ ਬਾਵਜੂਦ ਕਾਰਬਨ ਦਾ ਮਹੱਤਵ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੈ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਕਾਰਬਨ ਦੇ ਗੁਣਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ ਜਿਨ੍ਹਾਂ ਦੇ ਕਾਰਣ ਇਹ ਅਸੰਗਤੀ ਉਤਪੰਨ ਹੋਈ ਹੈ।

4.1 ਕਾਰਬਨ ਦੇ ਬੰਧਨ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ

ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਆਇਨੀ ਯੌਗਿਕਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਸੀ। ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਆਇਨੀ ਯੌਗਿਕਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਾਲ ਅੰਕ ਉੱਚੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹ ਘੋਲ਼ ਅਤੇ ਪਿਘਲੀ ਅਵਸਥਾ ਵਿੱਚ ਬਿਜਲੀ ਦੇ ਚਾਲਕ ਹੁੰਦੇ ਹਨ। ਅਸੀਂ ਇਹ ਵੀ ਵੇਖਿਆ ਕਿ ਆਇਨੀ ਯੌਗਿਕਾਂ ਵਿੱਚ ਬੰਧਨ ਦੀ ਪ੍ਰਕਿਰਤੀ ਇਹਨਾਂ ਗੁਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰਦੀ ਹੈ। ਸਾਰਨੀ 4.1 ਵਿੱਚ ਕੁੱਝ ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਦੇ ਪਿਘਲਣ ਅਤੇ ਉਬਲਣ ਅੰਕ ਦਿੱਤੇ ਗਏ ਹਨ।

ਜਿਵੇਂ ਕਿ ਅਧਿਆਇ 2 ਵਿੱਚ ਵੇਖਿਆ ਹੈ ਵਧੇਰੇ ਕਰਕੇ ਕਾਰਬਨ ਦੇ ਯੌਗਿਕ ਬਿਜਲੀ ਦੇ ਚਾਲਕ ਨਹੀਂ *ਸਾਰਣੀ 4.1* ਕਾਰਬਨ ਦੇ ਕੁਝ ਯੋਗਿਕਾਂ ਦੇ ਪਿਘਲਣ ਅਤੇ ਉਬਾਲ ਅੰਕ ਹਨ। ਸਾਰਨੀ 4.1 ਵਿੱਚ ਯੋਗਿਕਾਂ ਦੇ ਦਿੱਤੇ ਪਿਘਲਾਓਦਰਜੇ ਅਤੇ ਉਬਾਲਦਰਜੇ ਦੇ ਅੰਕੜਿਆਂ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਇਸ ਨਿਰਣੇ ਤੋਂ ਪਹੁੰਚ ਸਕਦੇ ਹਾਂ ਇਹਨਾਂ ਯੌਗਿਕਾਂ ਦੇ ਅਣੂਆਂ ਵਿਚਕਾਰ ਬਲ ਵਧੇਰੇ ਬਲ ਨਹੀਂ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਯੌਗਿਕ ਵਧੇਰੇ ਕਰਕੇ ਬਿਜਲੀ ਦੇ ਕੁਚਾਲਕ ਹਨ ਇਸ ਲਈ ਅਸੀਂ ਇਸ ਸਿੱਟੇ ਤੇ ਪਹੁੰਚ ਸਕਦੇ ਹਾਂ ਕਿ ਇਹਨਾਂ ਯੌਗਿਕਾਂ ਦੇ ਬੈਧਨਾਂ ਤੋਂ ਕੋਈ

ਯੌਗਿਕ	ਪਿਘਲਣ ਅਕ	ਉਬਲਣ ਅਕ (K)
ਐਸਿਟਿਕ ਤੇਜ਼ਾਬ (CH, COOH)	290	391
ਕਲੋਰੋਫਾਰਮ (СНСІ,)	209	334
ਈषेत्रेल (CH3 CH2OH)	156	351
ਮੀਬੇਨ (CH ₄)	90	111

ਆਇਨ ਉਤਪੰਨ ਨਹੀਂ ਹੁੰਦੇ।ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਦੀ ਸੰਯੋਜਨ ਸਮਰੱਥਾ ਬਾਰੇ ਪੜ੍ਹਿਆ ਅਤੇ ਜਾਣਿਆ ਇਹ ਕਿਵੇਂ ਸੈਯੋਜਕ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਸੈਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਹੈ। ਆਓ ਹੁਣ ਅਸੀਂ ਕਾਰਬਨ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਬਾਰੇ ਜਾਣਦੇ ਹਾਂ।ਕਾਰਬਨ ਦਾ ਪਰਮਾਣੂ ਅੰਕ 6 ਹੈ। ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਵੱਖ-ਵੱਖ ਘੇਰਿਆਂ ⁄ਸ਼ੈਲਾਂ ਵਿੱਚ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਵੰਡ ਕੀ ਹੋਵੇਗੀ? ਕਾਰਬਨ ਵਿੱਚ ਕਿੰਨੇ ਸੈਯੋਜਕ ਇਲੈੱਕਟਰਾਨ ਹੋਣਗੇ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਬਾਹਰੀ ਸ਼ੈਲ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਭਰ ਦੇਣ ਭਾਵ ਨੇੜੇ ਦੀ ਨੌਬਲ ਗੈਸ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਆਧਾਰ ਤੇ ਤੱਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਆਇਨੀ ਯੌਗਿਕ ਬਨਾਉਣ ਵਾਲੇ ਤੱਤ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈਲ ਵਿੱਚ ਇਲੈੱਕਟਰਾਨ ਪ੍ਰਾਪਤ ਕਰਕੇ ਜਾਂ ਇਸ ਵਿੱਚੋਂ ਇਲੈੱਕਟਰਾਨ ਖੋ ਕੇ ਇਹੋ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।ਕਾਰਬਨ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸੈੱਲ ਵਿੱਚ ਚਾਰ ਇਲੈੱਕਟਰਾਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨੋਬਲ ਗੈਸ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਇਸ ਨੂੰ ਚਾਰ ਇਲੈੱਕਟਰਾਨ ਪ੍ਰਾਪਤ ਕਰਨ ਜਾਂ ਗੁਆਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਜੇਕਰ ਇਹਨਾਂ ਇਲੈੱਕਟਰਾਨਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨਾ ਜਾਂ ਗੁਆਉਣਾ ਹੋਵੇਂ ਤਾਂ :

- (i) ਇਹ ਚਾਰ ਇਲੈੱਕਟਰਾਨ ਪ੍ਰਾਪਤ ਕਰਕੇ C^{-4} ਜਾਂ C^{4-} ਰਿਣ ਆਇਨ ਬਣਾ ਸਕਦੀ ਹੈ ਪਰ ਛੇ ਪਰੋਟਾਨਾਂ ਵਾਲੇ ਨਿਊਕਲੀਅਸ ਲਈ ਦਸ ਇਲੈੱਕਟਰਾਨਾਂ ਭਾਵ ਚਾਰ ਵਾਧੂ ਇਲੈੱਕਟਰਾਨਾਂ ਨੂੰ ਸਾਂਭਣਾ ਔਖਾ ਹੋਵੇਗਾ
 - (ii) ਇਹ ਚਾਰ ਇਲੈੱਕਟਰਾਨ ਗੁਆ ਕੇ C⁴⁺ ਧਨ ਆਇਨ ਬਣਾ ਸਕਦੀ ਹੈ ਪਰ ਇਲੈੱਕਟਰਾਨਾਂ ਨੂੰ ਗੁਆ ਕੇ ਛੇ ਪਰੋਟਾਨਾਂ ਵਾਲੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਦੋ ਇਲੈੱਕਟਰਾਨਾਂ ਵਾਲਾ ਕਾਰਬਨ ਧਨ ਆਇਨ ਬਨਾਉਣ ਲਈ ਕਾਫੀ ਉਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ।

ਕਾਰਬਨ ਆਪਣੇ ਦੂਜੇ ਪਰਮਾਣੂਆਂ ਅਤੇ ਦੂਜੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਿਕ ਇਲੈੱਕਟਰਾਨਾਂ ਨੂੰ ਸਾਂਝਾ ਕਰਕੇ ਇਸ ਸਮੱਸਿਆ ਨੂੰ ਸੁਲਝਾ ਲੈਂਦਾ ਹੈ। ਨਾ ਕੇਵਲ ਕਾਰਬਨ ਸਗੋਂ ਬਹੁਤ ਸਾਰੇ ਹੋਰ ਤੱਤ ਵੀ ਇਸੇ ਪ੍ਕਾਰ ਇਲੈਕਟਰਾਨਾਂ ਨੂੰ ਸਾਂਝਾ ਕਰਕੇ ਅਣੂਆਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਜਿਨ੍ਹਾਂ ਇਲੈਕਟਰਾਨਾਂ ਨੂੰ ਸਾਂਝਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਉਹ ਦੋਵੇਂ ਪਰਮਾਣੂਆਂ ਦੇ ਬਾਹਰੀ ਸ਼ੈਲਾਂ ਦੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਦੋਵੇਂ ਪਰਮਾਣੂ ਨੇੜੇ ਦੀ ਨੋਬਲ ਗੈਸ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਕਾਰਬਨ ਦੇ ਯੌਗਿਕਾਂ ਦਾ ਵਰਨਣ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਆਓ ਅਸੀਂ ਪਹਿਲਾਂ ਇਲੈਕਟਰਾਨਾਂ ਦੀ ਸਾਂਝ ਸਦਕਾ ਬਣੇ ਕੁੱਝ ਆਮ ਅਣੂਆਂ ਬਾਰੇ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰੀਏ।

ਚਿੱਤਰ 4.1 ਹਾਈਡਰੋਜਨ ਦਾ ਇੱਕ ਅਣੂ

ਚਿੱਤਰ 4.2 ਹਾਈਡਰੋਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿਚਕਾਰ ਇਕਹਿਰਾ ਬੰਧਨ

ਇਸ ਤਰ੍ਹਾਂ ਨਾਲ ਬਣੇ ਅਣੂਆਂ ਵਿੱਚ ਸਭ ਤੋਂ ਸਾਦਾ ਅਣੂ-ਜ਼ਾਈਡਰੋਜਨ ਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਪਹਿਲਾਂ ਹੀ ਅਧਿਐਨ ਕੀਤਾ ਹੈ ਹਾਈਡਰੋਜਨ ਦੇ ਪਰਮਾਣੂ ਦਾ ਪਰਮਾਣੂ ਅੰਕ ਇੱਕ ਹੈ। ਇਸ ਲਈ ਇਸ ਦੇ K ਸੈੱਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟਰਾਨ ਹੈ ਅਤੇ K ਸੈੱਲ ਪੂਰਾ ਭਰਨ ਲਈ ਇਸ ਨੂੰ ਇੱਕ ਹੋਰ ਇਲੈੱਕਟਰਾਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਹਾਈਡਰੋਜਨ ਦੇ ਦੋ ਪ੍ਰਮਾਣੂ ਆਪਣੇ ਇਲੈਕਟਰਾਨ ਸਾਂਝੇ ਕਰਕੇ ਹਾਈਡਰੋਜਨ ਦਾ ਇੱਕ ਅਣੂ H₂ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਹਾਈਡਰੋਜਨ ਦਾ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਆਪਣੇ ਨੇੜੇ ਦੀ ਨੋਬਲ ਗੈਸ, ਹੀਲੀਅਮ ਦੀ ਇਲੈਕਟਰਾਨੀ

ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦਾ ਹੈ ਜਿਸ ਨਾਲ K ਸ਼ੈਲ ਵਿੱਚ ਦੋ ਇਲੈੱਕਟਰਾਨ ਹੋ ਜਾਂਦੇ ਹਨ। ਸੰਯੋਜਕ ਇਲੈੱਕਟਰਾਨ ਦਰਸਾਉਣ ਲਈ ਅਸੀਂ ਬਿੰਦੀਆਂ ਅਤੇ ਕਰਾਸਾਂ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਾਂ (ਚਿੱਤਰ 4.1)।

ਸਾਂਝੇ ਕੀਤੇ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਜੋੜੀ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇੱਕ ਬੰਧਨ ਬਣਾਉਂਦੀ ਹੈ। ਇਕਹਿਰੇ ਬੰਧਨ ਨੂੰ ਦੋ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਇੱਕ ਛੋਟੀ ਰੇਖਾ ਦੁਆਰਾ ਵੀ ਵਿਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਚਿੱਤਰ 4.2 ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਕਲੋਰੀਨ ਦਾ ਪਰਮਾਣੂ ਅੰਕ 17 ਹੈ। ਇਸ ਦੀ ਪਰਮਾਣੂ ਤਰਤੀਬ ਅਤੇ ਸੰਯੋਕਤਾ ਕੀ ਹੋਵੇਗੀ? ਕਲੋਰੀਨ ਦੋ ਪਰਮਾਣਵੀ ਅਣੂ ਬਣਾਉਂਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਸ ਅਣੂ ਦੀ ਇਲੈੱਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਬਣਾ ਸਕਦੇ ਹੈ? ਯਾਦ ਰੱਖੋ ਕਿ ਕੇਵਲ ਸੰਯੋਜਕ ਸ਼ੈਲ ਦੇ ਇਲੈੱਕਟਰਾਨਾਂ ਨੂੰ ਹੀ ਚਿੱਤਰ ਵਿੱਚ ਵਿਖਾਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

XX XX XOX OX ਆਕਸੀਜਨ ਪਰਮਾਣ XX XX xxXX o, ਅਣ O O хx $\mathbf{x}\mathbf{x}$ 0 = 0

ਚਿੱਤਰ 4.3 ਆਕਸੀਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਦੂਹਰਾ ਬੰਧਨ

ਚਿੱਤਰ 4.4 ਨਾਈਟਰੋਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਤੀਹਰਾ ਬੈਧਨ

ਅਕਸੀਜਨ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਦੂਹਰਾ ਬੰਧਨ ਬਣਦਾ ਹੈ।ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਆਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂ ਦੇ L ਸ਼ੇਲ ਵਿੱਚ 6 ਇਲੈੱਕਟਰਾਨ ਹੁੰਦੇ ਹਨ (ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਅੰਕ 8 ਹੈ।) ਅਤੇ ਇਸ ਨੂੰ ਆਪਣਾ ਅਸ਼ਟਕ ਪੂਰਾ ਕਰਨ ਲਈ ਦੋ ਹੋਰ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।ਇਸ ਲਈ ਆਕਸੀਜਨ ਦਾ ਹਰ ਪਰਮਾਣੂ ਆਕਸੀਜਨ ਦੇ ਦੂਜੇ ਪਰਮਾਣੂ ਨਾਲ ਦੇ ਇਲੈੱਕਟਰਾਨਾਂ ਨੂੰ ਸਾਂਝਾ ਕਰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸਾਨੂੰ ਚਿੱਤਰ 4.3 ਦੇ ਅਨੁਸਾਰ ਰਚਨਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਆਕਸੀਜਨ ਦੇ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਦੋ ਇਲੈੱਕਟਰਾਨਾਂ ਨਾਲ ਸਾਨੂੰ ਦੋ ਸਾਂਝੇ ਕੀਤੇ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਜੋੜੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਦੋ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਦੂਹਰਾ ਬੰਧਨ ਬਣਨਾ ਆਖਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ ਹੁਣ ਪਾਣੀ ਦੇ ਅਣੂ ਦਾ ਚਿੱਤਰ ਬਣਾ ਸਕਦੇ ਹੋ ਜਿਸ ਵਿੱਚ ਆਕਸੀਜਨ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿਚਕਾਰ ਬੰਧਨਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ? ਕੀ ਇਸ :.. ਦੂ ਵਿੱਚ ਇਕਹਿਰੇ ਬੰਧਨ ਹਨ ਜਾਂ ਦੋਹਰੇ ਬੰਧਨ ਹਨ?

ਨਾਈਟਰੋਜਨ ਦੇ ਦੋ ਪਰਮਾਣਵੀ ਅਣੂ ਵਿੱਚ ਕਿਹੋ ਜਿਹੇ ਬੰਧਨ ਹੋਣਗੇ? ਨਾਈਟਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਅੰਕ 7 ਹੈ। ਇਸ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਅਤੇ ਸੰਯੋਜਕ ਸਮਰੱਥਾ ਕੀ ਹੈ? ਅਸ਼ਟਕ ਪੂਰਾ ਕਰਨ ਲਈ ਨਾਈਟਰੋਜਨ ਦੇ ਇੱਕ ਅਣੂ ਵਿੱਚ ਨਾਈਟਰੋਜਨ ਦਾ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਤਿੰਨ ਇਲੈੱਕਟਰਾਨ ਦਿੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਇਲੈੱਕਟਰਾਨਾਂ ਦੇ ਤਿੰਨ ਸਾਂਝੇ ਕੀਤੇ ਜੋੜੇ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਦੋ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਤੀਹਰੇ ਬੰਧਨ ਦਾ ਬਣਨਾ ਕਹਿੰਦੇ ਹਨ। N_2 ਦੀ ਇਲੈੱਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਅਤੇ ਇਸ ਦਾ ਤੀਹਰਾ ਬੰਧਨ ਚਿੱਤਰ 4.4 ਅਨੁਸਾਰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ह्यि बी सल्हे

ਅਮੌਨੀਆਂ ਦੇ ਅਣੂ ਦਾ ਸੂਤਰ NH₃ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਸ ਅਣੂ ਦੀ ਇਲੈੱਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਨੂੰ ਚਿੱਤਰ ਦੁਆਰਾ ਦਰਸਾ ਸਕਦੇ ਹੋ ਜਿਸ ਵਿੱਚ ਇਹ ਦਰਸਾਇਆ ਗਿਆ ਹੋਵੇ ਕਿ ਕਿਵੇਂ ਸਾਰੇ ਚਾਰ ਪਰਮਾਣੂਆਂ ਨੂੰ ਨੇੜੇ ਦੀ ਨੋਬਲ ਗੈਸ ਦੀ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਦੀ ਰਚਨਾ ਪ੍ਰਾਪਤ ਹੋਈ ਹੈ? ਕੀ ਇਸ ਅਣੂ ਵਿੱਚ ਇਕਹਿਰੇ, ਦੂਹਰੇ ਅਤੇ ਤੀਹਰੇ ਬੰਧਨ ਹਨ?

ਆਓ ਅਸੀਂ ਹੁਣ ਮੀਥੇਨ ਵੱਲ ਧਿਆਨ ਕਰੀਏ ਜੋ ਕਾਰਬਨ ਦਾ ਇੱਕ ਯੌਗਿਕ ਹੈ। ਮੀਥੇਨ ਦੀ ਵਰਤੋਂ ਵਧੇਰੇ ਕਰਕੇ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਹ ਬਾਇਓਗੈਸ ਅਤੇ ਨਪੀੜਤ ਪ੍ਰਾਕਿਰਿਤਕ ਗੈਸ (ਸੀ. ਐਨ. ਜੀ. CNG) ਦਾ ਮੁੱਖ ਅੰਗ ਹੈ। ਇਹ ਕਾਰਬਨ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਯੌਗਿਕਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਸਰਲ ਯੌਗਿਕ ਹੈ। ਮੀਥੇਨ ਦਾ ਸੂਤਰ CH₄ ਹੈ। ਜਿਵੇਂ ਕਿ ਤੁਹਾਨੂੰ ਪਤਾ ਹੀ ਹੈ ਕਿ ਹਾਈਡਰੋਜਨ ਦੀ ਸੰਯੋਜਕਤਾ ਇੱਕ ਹੈ। ਕਾਰਬਨ ਚੌਹ-ਸੰਯੋਜਕ ਹੈ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਚਾਰ ਸੰਯੋਜਕ ਇਲੈੱਕਟਰਾਨ ਹੁੰਦੇ ਹਨ। ਨੋਬਲ ਗੈਸ ਇਲੈੱਕਟਰਾਨੀ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਾਰਬਨ ਇਹਨਾਂ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਸਾਂਝ ਹਾਈਡਰੋਜਨ ਦੇ ਚਾਰ ਪਰਮਾਣੂਆਂ ਨਾਲ ਕਰਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 4.5 ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਇਸ ਪ੍ਕਾਰ ਦੋ-ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਇਲੈੱਕਟਰਾਨਾਂ ਦੇ ਇੱਕ ਜੋੜੇ ਦੀ ਸਾਂਝ ਦੁਆਰਾ ਬਣਨ ਵਾਲੇ ਬੰਧਨ ਨੂੰ ਸਹਿ-ਸੰਯੋਜਕ ਬੰਧਨ ਕਹਿੰਦੇ ਹਨ। ਸਹਿਸੰਯੋਜਕ ਬੰਧਨਾਂ ਵਾਲੇ ਅਣੂਆਂ ਦੇ ਅੰਦਰ ਤਾਂ ਮਜ਼ਬੂਤ ਬੰਧਨ ਹੁੰਦੇ ਹਨ ਪ੍ਰੰਤੂ ਇਹਨਾਂ ਦੇ ਅਣੂਆਂ ਵਿਚਕਾਰ ਬਲ ਬਹੁਤ ਮੱਧਮ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ ਫਲਸਰੂਪ ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਾਲ ਅੰਕ ਨੀਵੇਂ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਸਾਂਝ ਹੁੰਦੀ ਹੈ ਅਤੇ ਚਾਰਜਿਤ ਕਣ ਨਹੀਂ ਉਤਪੰਨ ਹੁੰਦੇ ਇਸ ਲਈ ਸੰਯੋਜਕ ਯੋਗਿਕ ਬਿਜਲੀ ਦੇ ਮੰਦ ਚਾਲਕ ਜਾਂ ਕੁਚਾਲਕ ਹੁੰਦੇ ਹਨ।

ਚਿੱਤਰ 4.5 ਮਿਥੇਨ ਦੀ ਇਲੈੱਕਟਰਾਨ ਰਚਨਾ

ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਕਾਰਬਨ ਤੱਤ ਬਹੁਤ ਸਾਰੇ ਵੱਖ-ਵੱਖ ਭੌਤਿਕ ਗੁਣਾਂ ਨਾਲ ਭਿੰਨ-ਭਿੰਨ ਰੂਪਾਂ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ। ਹੀਰਾ ਅਤੇ ਗਰੇਫਾਈਟ ਦੋਵੇਂ ਹੀ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ ਪਰ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇੱਕ ਦੂਜੇ ਨਾਲ ਪਰਸਪਰ ਬੰਧਨਾਂ ਦੇ ਢੰਗਾਂ ਦੇ ਆਧਾਰ ਕਾਰਨ ਇਹਨਾਂ ਵਿੱਚ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਹੀਰੇ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਕਾਰਬਨ ਦੇ ਚਾਰ ਹੋਰ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਬੱਝਿਆ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਇੱਕ ਦਰਿੜ ਤਿੰਨ ਅਕਾਰੀ ਰਚਨਾ ਬਣਦੀ ਹੈ। ਗਰੇਫਾਈਟ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਬੰਧਨ ਕਾਰਬਨ ਦੇ ਤਿੰਨ ਹੋਰ ਪਰਮਾਣੂਆਂ ਨਾਲ ਇੱਕ ਹੀ ਤਲ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਛੇ ਕੋਣੀ ਵਿਵਸਥਾ ਮਿਲਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਇੱਕ ਬੰਧਨ ਦੂਹਰਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦੇ ਕਾਰਨ ਕਾਰਬਨ ਦੀ ਸੈਯੋਜਕਤਾ ਪੂਰੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਗਰੇਫਾਈਟ ਦੀ ਰਚਨਾ ਵਿੱਚ ਛੇ ਕੋਣੀ ਤਲ ਇੱਕ ਦੂਜੇ ਉੱਪਰ ਸਥਿਤ ਹੋਦੇ ਹਨ।

ਗਰੇਫਾਈਟ ਦੀ ਰਚਨਾ

ਹੀਰੇ ਦੀ ਰਚਨਾ

C-60 ਬਕਮਿੰਸਟਰਫ਼ਲਰੀਨ ਦੀ ਰਚਨਾ

ਇਹਨਾਂ ਦੋ ਵੱਖ-ਵੱਖ ਰਚਨਾਵਾਂ ਦੇ ਕਾਰਨ ਹੀਰੇ ਅਤੇ ਗਰੇਫਾਈਟ ਦੇ ਭੌਤਿਕ ਗੁਣ ਭਿੰਨ-ਭਿੰਨ ਹੁੰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਇਹਨਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਇੱਕ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਹੀਰਾ ਹੁਣ ਤੱਕ ਜਾਣੇ ਜਾਂਦੇ ਪਦਾਰਥਾਂ ਵਸਤੂਆਂ ਵਿੱਚ ਸਭ ਤੋਂ ਸਖ਼ਤ ਵਸਤੂ ਹੈ ਜਦੋਂ ਕਿ ਗਰੇਫਾਈਟ ਚੀਕਣਾ ਅਤੇ ਤਿਲਕਣਸ਼ੀਲ ਹੁੰਦਾ ਹੈ। ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਤੁਸੀਂ ਜਿਨਾਂ ਅਧਾਤਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਸੀ ਉਹਨਾਂ ਦੇ ਉਲਟ ਗਰੇਫਾਈਟ ਬਿਜਲੀ ਦਾ ਸੁਚਾਲਕ ਹੈ।

ਸ਼ੁੱਧ ਕਾਰਬਨ ਨੂੰ ਅਤਿ ਉੱਚੇ ਦਬਾਓ ਅਤੇ ਤਾਪਮਾਨ ਅਧੀਨ ਰੱਖਣ ਨਾਲ ਹੀਰਾ ਸੈਸ਼ਲਿਸ਼ਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ

ਸੰਸਲਿਸਟ ਹੀਰੇ ਆਕਾਰ ਵਿੱਚ ਛੋਟੇ ਹੁੰਦੇ ਹਨ ਪ੍ਰੰਤੂ ਇਹ ਕੁਦਰਤੀ ਹੀਰਿਆਂ ਵਰਗੇ ਹੀ ਹੁੰਦੇ ਹਨ।

ਫੁਲਰੀਨ ਕਾਰਬਨ ਭਿੰਨ ਰੂਪਾਂ ਦਾ ਇੱਕ ਹੋਰ ਵਰਗ ਹੈ।ਸਭ ਤੋਂ ਪਹਿਲਾਂ C-60 ਦੀ ਪਹਿਚਾਣ ਕੀਤੀ ਗਈ ਸੀ ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂ ਫੁੱਟਬਾਲ ਦੇ ਰੂਪ ਵਿੱਚ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਅਮਰੀਕੀ ਆਰਕੀਟੇਕਟ ਬਕਮਿਸਟਰ ਫੁੱਲਰ (Buckminster Fuller) ਦੁਆਰਾ ਡਿਜ਼ਾਇਨ ਕੀਤੇ ਗਏ ਜਿਯੋਡੇਸਿਕ ਗੁੰਬਦ ਵਰਗੇ ਲਗਦੇ ਹਨ ਇਸ ਲਈ ਇਸ ਅਣੂ ਨੂੰ ਫੁਲਰੀਨ ਦਾ ਨਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਪ੍ਰਸ਼ਨ

 $_{1}$. ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਇਲੈਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਕੀ ਹੋਵੇਗੀ ਜਿਸ ਦਾ ਫਾਰਮੂਲਾ $\mathrm{CO_{2}}$ ਹੈ?

 ਸਲਫਰ ਦਾ ਅਣੂ ਜੋ ਕਿ ਸਲਫਰ ਦੇ ਅੱਠ ਪਰਮਾਣੂਆਂ ਦਾ ਬਣਿਆ ਹੈ ਉਸ ਦੀ ਇਲੈਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਕੀ ਹੋਵੇਗੀ?

ਸ਼ੈਕੇਤ : ਸਲਫਰ ਦੇ ਅੱਠ ਪਰਮਾਣੂ ਇੱਕ ਛੱਲੇ ਦੇ ਰੂਪ ਵਿੱਚ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਹੁੰਦੇ ਹਨ।

4.2 बाउपक सो प्रदाननी प्रविवाही (Versatile Nature of Carbon)

ਵੱਖ ਵੱਖ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਅਸੀਂ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਸਾਂਝ ਦੁਆਰਾ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੀ ਸਿਰਜਣਾ ਵੇਖੀ ਹੈ। ਅਸੀਂ ਸਰਲ ਕਾਰਬਨ ਯੋਗਿਕ, ਮੀਥੇਨ ਦੀ ਰਚਨਾ ਵੀ ਵੇਖੀ ਹੈ। ਅਧਿਆਇ ਦੇ ਆਰੰਭ ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਕਿੰਨੀਆਂ ਵਸਤਾਂ ਜੋ ਅਸੀਂ ਵਰਤਦੇ ਹਾਂ ਉਹਨਾਂ ਵਿੱਚ ਕਾਰਬਨ ਹੁੰਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਅਸੀਂ ਆਪ ਵੀ ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਦੇ ਬਣੇ ਹੋਏ ਹਾਂ। ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੇ ਸੂਤਰ ਵਾਲੇ ਇਸ ਸਮੇਂ ਗਿਆਤ ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਅਨੁਮਾਨ ਤਿੰਨ ਮਿਲੀਅਨ ਲਗਾਇਆ ਹੈ। ਬਾਕੀ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਯੋਗਿਕਾਂ ਨੂੰ ਇਕੱਠਿਆਂ ਰੱਖਣ ਨਾਲ ਵੀ ਇਹਨਾਂ ਯੌਗਿਕਾਂ ਦੀ ਗਿਣਤੀ ਕਿਤੇ ਵੱਧ ਹੈ। ਇਹ ਕਿਉਂ ਹੈ ਕਿ ਇਹ ਗੁਣ ਕੇਵਲ ਕਾਰਬਨ ਵਿੱਚ ਹੀ ਮਿਲਦਾ ਹੈ ਕਿਸੇ ਹੋਰ ਤੱਤ ਵਿੱਚ ਨਹੀਂ? ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੀ ਪ੍ਕਿਰਤੀ ਕਾਰਨ ਕਾਰਬਨ ਵਿੱਚ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਯੌਗਿਕ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਹੈ। ਕਾਰਬਨ ਵਿੱਚ ਦੋ ਕਾਰਕ ਵੇਖੇ ਗਏ ਹਨ:

(i) ਕਾਰਬਨ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਹੀ ਹੋਰ ਪਰਮਾਣੂਆਂ ਨਾਲ ਬੈਧਨ ਬਨਾਉਣ ਦੀ ਵਚਿੱਤਰ ਸਮਰੱਥਾ ਹੈ ਜਿਸ ਨਾਲ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਅਣੂ ਬਣਦੇ ਹਨ। ਇਸ ਗੁਣ ਨੂੰ ਲੜੀਬੈਧਨ (catenation) ਆਖਦੇ ਹਨ। ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਦੀਆਂ ਲੰਬੀਆਂ ਲੜੀਆਂ, ਭਿੰਨ ਭਿੰਨ ਸ਼ਾਖਿਤ ਲੜੀਆਂ ਅਤੇ ਬੰਦ ਲੜੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂ ਇਕਹਿਰੇ, ਦੂਹਰੇ ਅਤੇ ਤੀਹਰੇ ਬੈਧਨਾਂ ਵਿੱਚ ਵੀ ਜੁੜੇ ਹੋ ਸਕਦੇ ਹਨ। ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਕੇਵਲ ਇਕਹਿਰੇ ਬੈਧਨ ਨਾਲ ਜੁੜੇ ਕਾਰਬਨ ਦੇ ਯੌਗਿਕਾਂ ਨੂੰ ਸੰਤ੍ਰਿਪਤ ਯੌਗਿਕ (saturated Compounds) ਕਹਿੰਦੇ ਹਨ। ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਦੂਹਰੇ ਜਾਂ ਤੀਹਰੇ ਬੈਧਨਾਂ ਵਾਲੇ ਕਾਰਬਨ ਦੇ ਯੌਗਿਕਾਂ ਨੂੰ ਅਸੰਤ੍ਰਿਪਤ ਯੌਗਿਕ (Unsatureated Compounds) ਆਖਦੇ ਹਨ। ਕਾਰਬਨ ਦੇ ਯੌਗਿਕਾਂ ਵਿੱਚ ਜਿਸ ਸੀਮਾ ਤੱਕ ਲੜੀਬੈਧਨ ਦਾ ਗੁਣ ਹੈ ਉਹ ਹੋਰ ਕਿਸੇ ਤੱਤ ਵਿੱਚ ਨਹੀਂ ਹੈ। ਸਿਲੀਕਾਨ ਹਾਈਡਰੋਜਨ ਨਾਲ ਯੌਗਿਕ ਬਣਾਉਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸੱਤ ਜਾਂ ਅੱਠ ਪਰਮਾਣੂਆਂ ਤੱਕ ਦੀ

ਲੜੀ ਹੁੰਦੀ ਹੈ ਪਰ ਇਹ ਯੌਗਿਕ ਬਹੁਤ ਕਿਰਿਆਸ਼ੀਲ ਹਨ। ਕਾਰਥਨ-ਕਾਰਥਨ ਬੰਧਨ ਬਹੁਤ ਮਜ਼ਬੂਤ ਹੁੰਦਾ ਹੈ ਇਸੇ ਲਈ ਇਹ ਸਥਾਈ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਬਹੁਤ ਸਾਰੇ ਕਾਰਥਨ ਪਰਮਾਣੂਆਂ ਦੇ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਹੋਏ ਯੌਗਿਕ ਮਿਲਦੇ ਹਨ।

(ii) ਕਿਉਂਕਿ ਕਾਰਬਨ ਦੀ ਸੰਯੋਜਗਤਾ 4 ਹੈ ਇਸ ਲਈ ਕਾਰਬਨ ਦੇ ਹੋਰ ਚਾਰ ਪਰਮਾਣੂਆਂ ਅਤੇ ਕੁੱਝ ਹੋਰ ਇੱਕ ਸੰਯੋਜਕ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਨਾਲ ਬੰਧਨ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੈ। ਆਕਸੀਜਨ, ਹਾਈਡਰੋਜਨ, ਨਾਈਟਰੋਜਨ, ਸਲਫਰ, ਕਲੋਰੀਨ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਹੋਰ ਤੱਤਾਂ ਨਾਲ ਕਾਰਬਨ ਦੇ ਯੌਗਿਕ ਬਣਦੇ ਹਨ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਅਜਿਹੇ ਵਿਸ਼ੇਸ਼ ਗੁਣਾਂ ਵਾਲੇ ਯੌਗਿਕ ਬਣਦੇ ਹਨ ਜੋ ਅਣੂ ਵਿੱਚ ਕਾਰਬਨ ਤੋਂ ਬਿਨਾਂ ਮੌਜੂਦ ਤੱਤਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ।

ਵਧੇਰੇ ਕਰਕੇ ਤੱਤਾਂ ਦੇ ਨਾਲ ਕਾਰਬਨ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਬੈਧਨ ਬਹੁਤ ਮਜਬੂਤ ਹੁੰਦੇ ਹਨ ਜਿਸ ਦੇ ਫਲਸਰੂਪ ਇਹ ਯੋਗਿਕ ਅਸਾਧਾਰਨ ਤੌਰ ਤੇ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। ਕਾਰਬਨ ਦੁਆਰਾ ਪ੍ਬਲ ਬੈਧਨਾਂ ਦੇ ਨਿਰਮਾਣ ਦਾ ਇੱਕ ਕਾਰਣ ਇਸ ਦਾ ਛੋਟਾ ਆਕਾਰ ਵੀ ਹੈ। ਇਸ ਦੇ ਕਾਰਨ ਇਲੈੱਕਟਰਾਨਾਂ ਦੇ ਸਾਂਝੇ ਕੀਤੇ ਜੋੜਿਆਂ ਨੂੰ ਨਿਊਕਲੀਅਸ ਮਜ਼ਬੂਤੀ ਨਾਲ ਪਕੜ ਰੱਖਦਾ ਹੈ। ਵੱਡੇ ਪਰਮਾਣੂਆਂ ਵਾਲੇ ਤੱਤਾਂ ਤੋਂ ਬਣੇ ਬੈਧਨ ਤੁਲਨਾਂ ਵਿੱਚ ਬਹੁਤ ਕਮਜ਼ੋਰ ਹੁੰਦੇ ਹਨ।

ਕਾਰਬਨਿੱਕ ਯੋਗਿਕ

ਕਾਰਬਨ ਵਿੱਚ ਪਾਏ ਜਾਣ ਵਾਲੇ ਦੋ ਗੁਣ ਭਾਵ ਚੌਹ-ਸੰਯੋਜਕਤਾ ਅਤੇ ਲੜੀਬੰਧਨ ਨਾਲ ਬਹੁਤ ਸੰਖਿਆ ਵਿੱਚ ਯੋਗਿਕਾਂ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ। ਬਹੁਤ ਸਾਰੇ ਯੋਗਿਕਾਂ ਦੇ ਅਣ-ਕਾਰਬਨ ਪਰਮਾਣੂ ਅਤੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂਹ ਵੱਖ ਵੱਖ ਕਾਰਬਨ ਲੜੀਆਂ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਸ਼ੁਰੂ ਵਿੱਚ ਇਹਨਾਂ ਯੌਗਿਕਾਂ ਨੂੰ ਕੁਦਰਤੀ ਵਸਤਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ ਅਤੇ ਇਹ ਸਮਝਿਆ ਗਿਆ ਕਿ ਇਹ ਕਾਰਬਨ ਯੌਗਿਕ ਜਾਂ ਕਾਰਬਨਿਕ ਯੌਗਿਕ ਕੇਵਲ ਜੀਵਾਂ ਵਿੱਚ ਹੀ ਨਿਰਮਿਤ ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਮੰਨਿਆ ਗਿਆ ਕਿ ਇਹਨਾਂ ਦੇ ਸੰਸਲੇਸ਼ਨਾਂ ਵਾਸਤੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸ਼ਕਤੀ ਜ਼ਰੂਰੀ ਹੈ। ਸੰਨ 1828 ਵਿੱਚ ਫਰੇਡਰਿਕ ਵੋਹਲਰ (Friedrich Wöhler) ਨੇ ਅਮੋਨੀਅਮ ਸਾਏਨੇਟ ਤੋਂ ਯੂਰੀਆ ਬਣਾ ਕੇ ਇਸ ਨੂੰ ਗਲਤ ਸਾਬਤ ਕੀਤਾ। ਪਰ ਅਧਿਐਨ ਕਾਰਬਨ ਦੇ ਆਕਸਾਈਡਾਂ, ਕਾਰਬੋਨੇਟਾਂ, ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟਾਂ ਨੂੰ ਛੱਡ ਕੇ ਕਾਰਬਨ ਦੇ ਬਾਕੀ ਸਾਰੇ ਯੌਗਿਕਾਂ ਦਾ ਅਧਿਅਨ ਕਾਰਬਨਿਕ ਰਸਾਇਣ ਅਧੀਨ ਹੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

4.2.1 ਸੰਤ੍ਰਿਪਤ ਅਤੇ ਅਸੰਤ੍ਰਿਪਤ ਕਾਰਬਨ ਯੋਗਿਕ

ਮੀਬੇਨ ਦੀ ਰਚਨਾ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਸਮਝ ਲਈ ਹੈ। ਕਾਰਬਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਤੋਂ ਬਣਨ ਵਾਲਾ ਇੱਕ ਹੋਰ ਯੋਗਿਕ ਈਬੇਨ ਹੈ ਜਿਸ ਦਾ ਸੂਤਰ C_pH_p ਹੈ। ਸਾਦਾ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੀ ਰਚਨਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂਆਂ ਨੂੰ ਇਕਹਿਰੇ ਬੰਧਨ ਦੁਆਰਾ ਆਪਸ ਵਿੱਚ ਜੋੜਿਆਂ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫਿਰ ਕਾਰਬਨ ਦੀ ਬਾਕੀ ਸੰਯੋਜਕ ਸਮਰੱਥਾ ਪੂਰੀ ਕਰਨ ਲਈ ਹਾਈਡਰੋਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਹਾਰਨ ਵਜੋਂ, ਹੇਠ ਦਿੱਤੇ ਚਰਨਾ ਰਾਹੀਂ ਈਥੇਨ ਦੀ ਰਚਨਾ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ :

C-C

ਪੜਾਅ- 1

ਚਿੱਤਰ 4.6 (a) ਇਕਹਿਰੇ ਬੰਧਨ ਦੁਆਰਾ ਜੁੜੇ ਕਾਰਬਨ ਪਰਮਾਣੂ

ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੀਆਂ ਤਿੰਨ ਸੰਯੋਕਤਾਵਾਂ ਅਸੰਤੁਸ਼ਟ ਰਹਿੰਦੀਆਂ ਹਨ ਇਸ ਲਈ ਹਰ ਇੱਕ ਦਾ ਬੰਧਨ ਤਿੰਨ ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨਾਂਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਤੋਂ ਹੇਠ ਲਿਖੀ ਸਥਿਤੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ :

H-C-C-H

บฮาพ- 2

ਚਿੱਤਰ 4.6 (c) ਈਥੇਨ ਦੀ ਇਲੈੱਕਟਰਾਨ-ਬਿੰਦੂ ਰਚਨਾ ਚਿੱਤਰ 4.6 (b) ਤਿੰਨ ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨਾਲ ਜੁੜਿਆ ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਈਥੇਨ ਦੀ ਇਲੈੱਕਟਰਾਨ-ਬਿੰਦੂ ਰਚਨਾ ਚਿੱਤਰ 4.6 (c) ਵਿੱਚ ਵਿਖਾਈ ਗਈ ਹੈ।

ਕੀ ਤੁਸੀਂ ਹੁਣ ਇਸੇ ਪ੍ਕਾਰ ਪਰੋਪੇਨ ਦੀ ਰਚਨਾਂ ਦਾ ਚਿੱਤਰ ਬਣਾ ਸਕਦੇ ਹੋ? ਇਸ ਦਾ ਅਣਵੀ ਸੂਤਰ C₃H₈ਕੀ ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਯੋਜਕਤਾ ਉਹਨਾਂ ਵਿਚਕਾਰ ਬਣੇ ਇਕਹਿਰੇ ਬੰਧਨ ਨਾਲ ਸੰਤੁਸ਼ਟ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਯੌਗਿਕਾਂ ਨੂੰ ਸੰਤਰਿਪਤ ਯੌਗਿਕ ਆਖਦੇ ਹਨ। ਆਮ ਕਰਕੇ ਇਹ ਯੌਗਿਕ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਨਹੀਂ ਹੁੰਦੇ।

ਕਾਰਬਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੇ ਇੱਕ ਹੋਰ ਯੋਗਿਕ ਦਾ ਸੂਤਰ ਹੈ C_2H_4 ਜਿਸ ਨੂੰ ਈਥੀਨ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਅਣੂ ਨੂੰ ਕਿਵੇਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ? ਇਸ ਮੰਤਵ ਲਈ ਅਸੀਂ ਪਹਿਲਾਂ ਜਿਹੀ ਚਰਨਬਧ ਵਿਧੀ ਅਪਣਾਵਾਂਗੇ।

C=C

ਪੜਾਮ- 1

ਹਰ ਇੱਕ ਕਾਰਬਨ ਨੂੰ ਦੋ ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂ ਆਉਂਦੇ ਹਨ :

ਪੜਾਅ- 2

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੀ ਇੱਕ ਸੰਯੋਕਤਾ ਅਜੇ ਵੀ ਅਪੂਰਨ ਰਹਿੰਦੀ ਹੈ।ਇਸ ਨੂੰ ਤਾਂ ਹੀ ਪੂਰਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਦੋਂ ਦੋ ਕਾਰਬਨਾਂ ਵਿਚਕਾਰ ਦੂਹਰਾ ਬੈਧਨ ਹੋਵੇਂ ਜਿਸ ਨਾਲ ਹੇਠ ਲਿਖੀ ਸਥਿਤੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ :

ਚਰਨ 3

ਚਿੱਤਰ 4.7 ਈਥੀਨ ਦੀ ਰਚਨਾ ਵਿੱਚ ਈਥੀਨ ਦੀ ਇਲੈੱਕਟਰਾਨ-ਬਿੰਦੂ ਰਚਨਾ ਦਿੱਤੀ ਗਈ ਹੈ।

ਕਾਰਬਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੇ ਇੱਕ ਹੋਰ ਯੋਗਿਕ ਦਾ ਸੂਤਰ C₂H₂ ਹੈ ਜਿਸ ਦਾ ਨਾਂ ਈਥਾਇਨ ਹੈ। ਕੀ ਤੁਸੀਂ ਈਥਾਇਨ ਦੀ ਇਲੈੱਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਦਾ ਚਿੱਤਰ ਬਣਾ ਸਕਦੇ ਹੋ? ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਸੰਯੋਜਕਤਾਵਾਂ ਪੂਰੀਆਂ ਕਰਨ ਲਈ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਕਿੰਨੇ ਬੰਧਨ ਜ਼ਰੂਰੀ ਹਨ? ਕਾਰਬਨ ਦੇ ਅਜਿਹੇ ਯੌਗਿਕ ਜਿੱਥੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਦੋਹਰੇ ਜਾਂ ਤੀਹਰੇ ਬੰਧਨ ਹੋਣ

ਉਹਨਾਂ ਨੂੰ ਅਸੰਤ੍ਰਿਪਤ ਕਾਰਬਨ ਯੋਗਿਕ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਯੌਗਿਕ ਸੰਤ੍ਰਿਪਤ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੇ ਹਨ।

ਚਿੱਤਰ 4.7 ਈਥੀਨ ਦੀ ਇਲੈਕੱਟਾਨ ਬਿੰਦੂ ਰਚਨਾ।

4.2.2 ਲੜੀਆਂ, ਸ਼ਾਖਾਵਾਂ ਅਤੇ ਛੱਲੇ (Chains, Branches and Rings)

ਪਿਛਲੇ ਸੈਕਸ਼ਨ (ਭਾਗ) ਵਿੱਚ ਅਸੀਂ ਲੜੀਵਾਰ 1,2 ਅਤੇ 3 ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਾਲੇ ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਮੀਥੇਨ, ਈਥੇਨ ਅਤੇ ਪਰੋਪੇਨ ਬਾਰੇ ਵਿਚਾਰ ਕੀਤੀ ਸੀ। ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਅਜਿਹੀਆਂ ਲੜੀਆਂ ਵਿੱਚ ਕਈ ਦਹਾਕੇ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਹੋ ਸਕਦੇ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਛੇ ਦੇ ਨਾਂ ਅਤੇ ਰਚਨਾ ਸਾਰਨੀ 4.2 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸਾਰਨੀ 4.2 ਕਾਰਬਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੇ ਸੈਤ੍ਰਿਪਤ ਯੋਗਿਕਾਂ ਦੇ ਸੂਤਰ ਅਤੇ ਰਚਨਾ

ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ	ਨਾਮ	ਸੂਤਰ ਆਮ ਸੂਤਰ C _u H _{2n} +2	ਰਚਨਾ
1 20	ਮੀਥੇਨ	CH ₄	н н-с-н н
2	ਈਥੋਨ	$\mathbf{C_2H_6}$	Н Н Н-С-С-Н Н Н
3	ਪ੍ਰੋਪੇਨ	C ₃ H ₈	H H H H-C-C-C-H H H H
4	ਬਿਊਟੇਨ	$\mathbf{C_4H_{10}}$	H H H H H-C-C-C-C-H H H H H
5	ਪੈੱਨਟੇਨ	$\mathbf{C_{5}H_{12}}$	H H H H H H-C-C-C-C-C-H H H H H H
6	ਹੈੱਕਸੇਨ	C ₆ H ₁₄	Н Н Н Н Н Н-С-С-С-С-С-С-Н Н Н Н Н Н

ਪਰ ਆਓ ਅਸੀਂ ਬਿਊਟੇਨ ਉੱਪਰ ਆਪਣਾ ਧਿਆਨ ਮੁੜ ਕੇਂਦਰਿਤ ਕਰੀਏ। ਜੇ ਅਸੀਂ ਚਾਰ ਕਾਰਬਨਾਂ ਦਾ ਢਾਂਚਾ ਬਣਾਈਏ ਤਾਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਦੋ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੇ ਢਾਂਚੇ ਬਣ ਸਕਦੇ ਹਨ :

ਚਿੱਤਰ 4.8 (a) ਦੋ ਸੰਭਾਵਿਤ ਕਾਰਬਨ ਢਾਂਚੇ

ਬਾਕੀ ਸੰਯੋਜਕਤਾ ਦੀ ਥਾਂ ਹਾਈਡਰੋਜਨ ਲਾਉਣ ਨਾਲ ਹੇਠਾਂ ਲਿਖੇ ਅਣੂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ :

ਚਿੱਤਰ 4.8 (b) ਸੂਤਰ C_4H_{10} ਤੋਂ ਦੋ ਰਚਨਾਵਾਂ ਲਈ ਸੰਪੂਰਨ ਅਣੂ

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਇਹਨਾਂ ਦੋਵੇਂ ਰਚਨਾਂ ਦਾ ਇੱਕ ਹੀ ਸੂਤਰ $C_i H_{i0}$ ਹੈ। ਅਜਿਹੇ ਯੌਗਿਕ ਜਿਨ੍ਹਾਂ ਦੇ ਸਮਾਨ ਅਣਵੀ ਸੂਤਰ ਹੋਣ ਪਰ ਵਿਭਿੰਨ ਰਚਨਾਵਾਂ ਹੋਣ ਉਹਨਾਂ ਨੂੰ ਬਣਤਰੀ ਸਮਅੰਗਕ (Structral Isomers) ਕਹਿੰਦੇ ਹਨ।

ਸਿੱਧੀਆਂ ਅਤੇ ਸ਼ਾਖਿਤ ਕਾਰਬਨ ਲੜੀਆਂ ਤੋਂ ਇਲਾਵਾ ਕੁੱਝ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂ ਛੱਲੇ ਦੇ ਆਕਰ ਵਿੱਚ ਵਿਚਰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਸਾਈਕਲੋਹੈਕਸੇਨ ਦਾ ਸੂਤਰ C_6H_{12} ਹੈ ਅਤੇ ਇਸ ਦੀ ਰਚਨਾ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ :

ਚਿੱਤਰ 4.9 ਸਾਈਕਲੋਹੈਕਸੇਨ ਦੀ ਰਚਨਾ (a) ਕਾਰਬਨ ਢਾਂਚਾ (b) ਸੰਪੂਰਨ ਅਣੂ

ਕੀ ਤੁਸੀਂ ਸਾਈਕਲਹੈਕਸੇਨ ਦੇ ਅਣੂ ਦੀ ਇਲੈੱਕਟਰਾਨ-ਬਿੰਦੂ ਰਚਨਾ ਦਾ ਚਿੱਤਰ ਬਣਾ ਸਕਦੇ ਹੈ। ਸਿੱਧੀ ਲੜੀ, ਸ਼ਾਖਿਤ ਲੜੀ ਅਤੇ ਸਾਈਕਲਿਕ ਕਾਰਬਨ ਯੋਗਿਕ, ਸਾਰੇ ਸੰਤ੍ਰਿਪਤ ਅਤੇ ਅਸੰਤ੍ਰਿਪਤ ਹੋ ਸਕਦੇ ਹਨ। ਜਿਵੇਂ ਕਿ ਬੈੱਨਜੀਨ C_eH_e ਦੀ ਰਚਨਾ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹੈ-

ਚਿੱਤਰ 4.10 ਬੇਨਜੀਨ ਦੀ ਰਚਨਾ

ਇਹਨਾਂ ਵਿੱਚੋਂ ਸੰਤ੍ਰਿਪਤ ਯੋਗਿਕਾਂ ਨੂੰ ਐਲਕੇਨ ਆਖਦੇ ਹਨ। ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇੱਕ ਜਾਂ ਵੱਧ ਦੂਹਰੇ ਬੰਧਨ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਐਲਕੀਨ (Alkene) ਕਹਿੰਦੇ ਹਨ। ਇੱਕ ਜਾਂ ਵੱਧ ਤੀਹਰਾ ਬੰਧਨ ਰੱਖਣ ਵਾਲੇ ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ ਐਲਕਾਇਨ (Alkyne) ਅਖਵਾਉਂਦਾ ਹੈ।

4.2.3 ਕੀ ਤੁਸੀਂ ਮੇਰੇ ਮਿੱਤਰ ਬਣੋਗੇ?

ਕਾਰਬਨ ਬਹੁਤ ਮਿੱਤਰਤਾ ਪੂਰਨ ਤੱਤ ਹੈ। ਹੁਣ ਤੱਕ ਅਸੀਂ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੋ ਯੌਗਿਕਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਦੇ ਰਹੇ ਹਾਂ। ਪ੍ਰੰਤੂ ਕਾਰਬਨ ਦੂਜੇ ਹੋਰ ਤੱਤਾਂ ਜਿਵੇਂ ਕਿ ਹੈਲੋਜਨ, ਆਕਸੀਜਨ, ਨਾਈਟਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਨਾਲ ਵੀ ਬੰਧਨ ਬਣਾਉਂਦੀ ਹੈ। ਹਾਈਡਰੋਕਾਰਬਨ ਲੜੀ ਵਿੱਚ ਇਹ ਤੱਤ ਇੱਕ ਜਾਂ ਵੱਧ ਹਾਈਡਰੋਜਨਾਂ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਵਿਸਥਾਪਿਤ ਕਰਦੇ ਹਨ ਕਿ ਕਾਰਬਨ ਦੀ ਸੰਯੋਜਕਤਾ ਪੂਰੀ ਰਹਿੰਦੀ ਹੈ। ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਨੂੰ ਵਿਸਥਾਪਿਤ ਕਰਨ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਬਿਖ਼ਮ ਪਰਮਾਣੂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਬਿਖ਼ਮ ਪਰਮਾਣੂ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਤਰ੍ਹਾਂ ਜੁੜੇ ਸਮੂਹਾਂ ਵਿੱਚ ਵੀ ਮੌਜ਼ੂਦ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਸਾਰਨੀ 4.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ। ਇਹ ਬਿਖ਼ਮ ਪਰਮਾਣੂ ਅਤੇ ਇਹਨਾਂ ਦੇ ਸਮੂਹ ਜਿਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਵਿੱਚ ਉਪਸਥਿਤ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਇਹ ਗੁਣ ਕਾਰਬਨ ਲੜੀ ਦੀ ਲੰਬਾਈ ਅਤੇ ਪ੍ਰਕਿਰਤੀ ਪਰ ਨਿਰਭਰ ਨਹੀਂ ਹੁੰਦੇ ਜਿਸ ਦੇ ਫਲਸਰੂਪ ਇਹ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਫੰਕਸ਼ਨਲ ਗਰੁੱਪ (Functunal Group)) ਕਹਾਉਂਦੇ ਹਨ। ਸਾਰਨੀ 4.3 ਵਿੱਚ ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਦਿੱਤੇ ਗਏ ਹਨ। ਛੋਟੀ ਰੇਖਾ ਦੁਆਰਾ ਸਮੂਹ ਦੀ ਮੁਕਤ ਸੰਯੋਜਕਤਾ ਜਾਂ ਸੰਯੋਜਕਤਾਵਾਂ ਦਿਖਾਈਆਂ ਗਈਆਂ ਹਨ। ਹਾਈਡਰੋਜਨ ਦੇ ਇੱਕ ਜਾਂ ਵੱਧ ਪਰਮਾਣੂਆਂ ਨੂੰ ਪ੍ਰਤਿਸਥਾਪਿਤ ਕਰਕੇ ਇਸ ਸੰਯੋਜਕਤਾ ਦੁਆਰਾ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਕਾਰਬਨ ਲੜੀ ਨਾਲ ਜੁੜੇ ਰਹਿੰਦੇ ਹਨ।

ਸਾਰਣੀ 4.3 ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕੁੱਝ ਕਿਰਿਆਤਮਕ ਸਮੂਹ

ਬਿਖ਼ਮ ਪਰਮਾਣ Hetrostom	ਕਿਰਿਆਤਮਕ ਸਮੂਹ Functional Group	ਕਿਆਿਤਮਕ ਸਮੂਹ ਦਾ ਫਾਰਮੂਲਾ Formula of Functional Group
Cl/Br	ਹੈਲੋ-(ਕਲੋਰੋ/ ਬਰੋਮੋ)	−CI, −Br
ਆਕਸੀਜਨ	1. ਐਲਕੋਹਲ	(ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਵਿਸਥਾਪਕ) —OH
	2. ਐਲਡੀਹਾਈਡ	-cZH
	3. ਕੀਟੋਨ	-ç-
	4. ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ	O -C-OH

4.2.4 ਸਮਜਾਤੀ ਲੜੀ (Homologous series)

ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਆਪੋ ਵਿੱਚ ਜੋੜ ਕੇ ਭਿੰਨ ਭਿੰਨ ਲੰਬਾਈ ਦੀਆਂ ਲੜੀਆਂ ਬਣਾਈਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਇਹਨਾਂ ਲੜੀਆਂ ਵਿੱਚ ਸਥਿਤ ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਉਪਰੋਕਤ ਕਿਸੀ ਵੀ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਨਾਲ ਵਿਸਥਾਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਜਿਵੇਂ ਕਿ ਅਲਕੋਹਲ ਦੀ ਮੌਜ਼ੂਦਗੀ ਕਾਰਬਨ ਯੋਗਿਕ ਦੇ ਗੁਣਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ ਭਾਵੇਂ ਕਾਰਬਨ ਲੜੀ ਦੀ ਲੰਬਾਈ ਕੁੱਝ ਵੀ ਹੋਵੇ। ਉਦਹਾਰਣ ਵਜੋਂ CH₃OH, C₂H₅OH, C₃H₇OH ਅਤੇ C₄H₅OH ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਬਹੁਤ ਸਮਾਨਤਾ ਹੈ। ਇਸ ਲਈ ਯੋਗਿਕਾਂ ਦੀ ਅਜਿਹੀ ਲੜੀ ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਲੜੀ ਵਿੱਚ ਸਥਿਤ ਹਾਈਡਰੋਜਨ ਨੂੰ ਇੱਕ ਹੀ ਪ੍ਰਕਾਰ ਦਾ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਵਿਸਥਾਪਿਤ ਕਰਦਾ ਹੈ ਉਸ ਨੂੰ ਸਮਜਾਤੀ ਲੜੀ ਕਹਿੰਦੇ ਹਨ।

ਹੁਣ ਅਸੀਂ ਪਹਿਲਾਂ ਦਿੱਤੀ ਸਾਰਨੀ 4.2 ਵਿੱਚ ਸਮਜਾਤੀ ਲੜੀ ਵੱਲ ਧਿਆਨ ਦੇਵਾਂਗੇ।ਜੇਕਰ ਅਸੀਂ ਉਕਤ ਯੌਗਿਕਾਂ ਦੇ ਸੂਤਰਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਵੇਖੀਏ, ਜਿਵੇਂ ਕਿ :

CH₄ ਅਤੇ C₂H₆ -

ਇਹਨਾਂ ਵਿੱਚ ਇੱਕ –CH₂- ਇਕਾਈ ਦਾ ਅੰਤਰ ਹੈ।

C₂H₆ ਅਤੇ C₃H₈ -

ਇਹਨਾਂ ਵਿੱਚ ਇੱਕ –CH₂- ਇਕਾਈ ਦਾ ਅੰਤਰ ਹੈ।

ਅਗਲੀ ਜੋੜੀ-ਪਰੋਪੇਨ (C₃H₃) ਅਤੇ ਬਿਊਟੇਨ (C₄H₁₀) ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ?

ਕੀ ਤੁਸੀਂ ਇਹਨਾਂ ਜੋੜਿਆਂ ਦੇ ਅਣਵੀ ਪੁੰਜਾਂ ਵਿੱਚ ਅੰਤਰ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ (ਕਾਰਬਨ ਦਾ

ਪਰਮਾਣੂ ਪੁੰਜ 12u ਅਤੇ ਹਾਈਡਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ 1u ਹੈ)।

ਇਸ ਤਰ੍ਹਾਂ ਅਲਕੀਨਾਂ ਦੀ ਸਮਜਾਤੀ ਲੜੀ ਨੂੰ ਦੇਖੋ। ਇਸ ਲੜੀ ਦਾ ਪਹਿਲਾ ਮੈਂਬਰ ਈਥੀਨ ਹੈ ਜਿਸ ਬਾਰੇ ਅਸੀਂ ਪਹਿਲਾਂ ਸੈਕਸ਼ਨ 4.2.1 ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਈਥੀਨ ਦਾ ਸੂਤਰ ਕੀ ਹੈ? ਇਸ ਲੜੀ ਦੇ ਅਗਲੇ ਮੈਂਬਰਾਂ ਦੇ ਕ੍ਰਮਵਾਰ ਸੂਤਰ C_3H_6 , C_4H_8 ਅਤੇ C_5H_{10} ਹਨ। ਕੀ ਇਹਨਾਂ ਵਿੱਚ ਵੀ -CH₂- ਇਕਾਈ ਦਾ ਅੰਤਰ ਹੈ।

ਕੀ ਤੁਹਾਨੂੰ ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਕੋਈ ਸੰਬੰਧ ਪ੍ਤੀਤ ਹੁੰਦਾ ਹੈ? ਐਲਕੀਨਾਂ ਦਾ ਆਮ ਸੂਤਰ C_nH_{2n} ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿੱਥੇ n=2,3,4 ਹੈ। ਕੀ ਤੁਸੀਂ ਇਸੇ ਪ੍ਕਾਰ ਐਲਕੇਨਾਂ ਅਤੇ ਐਲਕਾਇਨਾਂ ਦਾ

ਆਮ ਸੂਤਰ ਬਣਾ ਸਕਦੇ ਹੋ?

ਜਦੋਂ ਕਿਸੇ ਸਮਜਾਤੀ ਲੜੀ ਵਿੱਚ ਅਣਵੀ ਪੁੰਜ ਵਧਦਾ ਹੈ ਤਾਂ ਭੌਤਿਕ ਗੁਣਾਂ ਵਿੱਚ ਤਰਤੀਵ (Gradation) ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ।ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਅਣਵੀ ਪੁੰਜ ਦੇ ਵਧਣ ਦੇ ਨਾਲ ਨਾਲ ਪਿਘਲਾਓ ਦਰਜੇ ਅਤੇ ਉਬਾਲ਼ ਦਰਜੇ ਅੰਕਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਹੋਰ ਭੌਤਿਕ ਗੁਣ ਜਿਵੇਂ ਕਿ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਘੋਲਕ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਵਿੱਚ ਵੀ ਤਰਤੀਵ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਪ੍ਰੰਤੂ ਰਸਾਇਣਿਕ ਗੁਣ, ਜਿਹੜੇ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਦੁਆਰਾ ਨਿਸ਼ਚਿਤ ਹੁੰਦੇ ਹਨ, ਸਮਜਾਤੀ ਲੜੀ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਰਹਿੰਦੇ ਹਨ।

ਕਿਰਿਆ 4.2

ਹੇਠ ਦਿੱਤਿਆਂ ਸੂਤਰਾਂ ਅਤੇ ਅਣਵੀ ਪੁੰਜਾਂ ਵਿੱਚ ਅੰਤਰ ਦੀ ਗਣਨਾ ਕਰੋ :
 (a). CH₃OH ਅਤੇ C₂H₅OH (b) C₂H₅OH ਅਤੇ C₃H₇OH ਅਤੇ (c) C₃H₇OH ਅਤੇ C₄H₇OH

ਕੀ ਇਹਨਾਂ ਤਿੰਨਾਂ ਵਿੱਚ ਕੋਈ ਸਮਾਨਤਾ ਹੈ?

 ਇੱਕ ਪਰਿਵਾਰ ਤਿਆਰ ਕਰਨ ਲਈ ਇਹਨਾਂ ਅਲਕੋਹਲਾਂ ਨੂੰ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਤਰਤੀਬ ਦਿਓ। ਕੀ ਇਸ ਪਰਿਵਾਰ ਨੂੰ ਸਮਜਾਤੀ ਲੜੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ।

 ਸਾਰਨੀ 4.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਦੂਜੇ ਕਿਰਿਆਤਮਕ ਸਮੂਹਾਂ ਲਈ ਚਾਰ ਕਾਰਬਨ ਤੱਕ ਦੇ ਯੋਗਿਕਾਂ ਵਾਲੀ ਸਮਜਾਤੀ ਲੜੀ ਤਿਆਰ ਕਰੋ।

4.2.5 ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਦਾ ਨਾਂ-ਕਰਣ

ਕਿਸੇ ਸਮਜਾਤੀ ਲੜੀ ਵਿੱਚ ਯੋਗਿਕਾਂ ਦੇ ਨਾਵਾਂ ਦਾ ਆਧਾਰ ਮੂਲ ਕਾਰਬਨ ਦੀਆਂ ਲੜੀਆਂ ਉੱਪਰ ਆਧਾਰਿਤ ਹੁੰਦਾ ਹੈ। ਜਿਸ ਨੂੰ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਦੇ ਅਨੁਸਾਰ ਅਗੇਤਰ ਜਾਂ ਪਛੇਤਰ ਵਾਕ ਅੰਸ਼ ਦੁਆਰਾ ਸੰਸ਼ੋਦਿਤ ਕੀਤਾ ਗਿਆ ਹੋਵੇ। ਉਦਾਹਰਣ ਵਜੋਂ ਕਿਰਿਆ 4.2 ਵਿੱਚ ਲਏ ਗਏ ਅਲਕੋਹਲਾਂ ਦੇ ਨਾਂ ਹਨ : ਮੀਬੇਨਾਲ, ਈਥੇਨਾਲ, ਪਰਾਪੇਨਾਲ ਅਤੇ ਬਿਊਟੇਨਾਲ।

ਹੇਠਾਂ ਦਿੱਤੀ ਵਿਧੀ ਦੁਆਰਾ ਕਿਸੇ ਵੀ ਕਾਰਬਨ ਯੋਗਿਕ ਦਾ ਨਾਮਕਰਨ ਕੀਤਾ ਜਾ ਸਕਦਾ

ਹੈ।

- (i) ਯੋਗਿਕ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ। ਤਿੰਨ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਾਲੇ ਐਲਕੇਨ ਯੋਗਿਕ ਦਾ ਨਾਂ ਪਰੋਪੇਨ ਹੋਵੇਗਾ।
- (ii) ਜੇਕਰ ਕਿਰਿਆਤਮਿਕ ਸਮੂਹ ਮੌਜ਼ੂਦ ਹੋਵੇ ਤਾਂ ਉਸ ਨੂੰ ਅਗੇਤਰ ਜਾਂ ਪਛੇਤਰ ਨਾਲ ਯੋਗਿਕ ਦੇ ਨਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। (ਸਾਰਨੀ 4.4 ਅਨੁਸਾਰ)।
- (iii) ਜੇਕਰ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਦਾ ਨਾਂ ਪਛੇਤਰ ਦੇ ਆਧਾਰ ਤੇ ਦਿੱਤਾ ਜਾਣਾ ਹੋਵੇ ਤਾਂ

ਕਾਰਬਨ ਲੜੀ ਦੇ ਅੰਗਰੇਜ਼ੀ ਨਾਂ ਦੀ 'e' ਹਟਾ ਕੇ ਉਸ ਵਿੱਚ ਢੁਕਵਾਂ ਪਛੇਤਰ ਸੰਸ਼ੋਧਿਤ ਕਰ ਲੈਂਦੇ ਹਨ। ਉਦਾਹਰਨ ਵਜੋਂ ਕੀਟੋਨ (Ketone) ਸਮੂਹ ਦੀਆਂ ਤਿੰਨ ਕਾਰਬਨਾਂ ਵਾਲੀ ਲੜੀ ਨੂੰ ਹੇਠ ਲਿਖੀ ਵਿਧੀ ਰਾਹੀਂ ਨਾਂ ਦਿੱਤਾ ਜਾਵੇਗਾ :

Propane – 'e' = propan + 'one' = propanone (ਪ੍ਰੋਪੈਨੋਨ)

(iv) ਜੇਕਰ ਕਾਰਬਨ ਲੜੀ ਅਸੰਤ੍ਰਿਪਤ ਹੈ ਤਾਂ ਕਾਰਬਨ ਲੜੀ ਦੇ ਨਾਂ ਵਿੱਚ ਅੰਤਲੇ 'ane' ਦੀ ਥਾਂ 'ene' ਜਾਂ 'yne' ਸਥਾਪਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਸਾਰਨੀ 4.4 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਦੂਹਰੇ ਬੰਧਨ ਵਾਲੀ ਤਿੰਨ ਕਾਰਬਨਾਂ ਵਾਲੀ ਲੜੀ ਨੂੰ ਪਰੋਪੀਨ (propene) ਆਖਿਆ ਜਾਵੇਗਾ ਅਤੇ ਜੇਕਰ ਇਸ ਵਿੱਚ ਤੀਹਰਾ ਬੰਧਨ ਹੋਵੇ ਤਾਂ ਇਸ ਨੂੰ ਪਰੋਪਾਇਨ (propyne) ਆਖਿਆ ਜਾਵੇਗਾ।

ਸਾਰਣੀ 44 ਕਿਰਿਆਤਮਿਕ ਸਮੂਹਾਂ ਦਾ ਨਾਮਕਰਨ

ਕਿਰਿਆਤਮਕ ਸਮੂਹ	ਅਗੇਤਰ/ਪਛੇਤਰ	ਉਦਾਰਰਨ	
1. ਹੈਲੌਜਨ (Halogen)	ਅਗੇਤਰ ਕਲੋਰੋ, ਬਰੋਮੋ ਆਦਿ	H H H H H H	
		H H H H-C-C-C-Br H H H	ਬਰੋਮੋਪਰੋਪੇਨ (Bromopropane)
2. ਐਲਕੋਹਲ (Alcohal)	ਪਛੇਤਰ -ਓਲ– al	H H H H-C-C-C-OH H H H	ਪਰੋਪੋਨੌਲਕ (Propanol)
3. ਐਲਡੀਹਾਈਡ (Aldehyde)	ਪਛੇਤਰ - ਅਲ - al	H H H H-C-C-C-C=O H H	ਪ੍ਰੋਪਾਨਲ (Propanal)
4. ਕੀਟੋਨ (Ketone)	ਪਛੇਤਰ - ਓਨ, - one	H H H-C-C-C-H H O H	ਪਰੋਪੇਨੌਨ (Propanone)
5. ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ (Carboxylic Acid)	ਪਛੇਤਰ – ਆਇਕ ਐਸਿਡ - oic acid	H H O H-C-C-C-OH H H	ਪਰੋਪੇਨੋਇਕ ਐਸਿਡ (Propanoic Acid)
6. ਦੂਹਰਾਬੰਧਨ (ਐਲਕੀਨ) (Double Bond) (Alkene)	ਪਛੇਤਰ – ਈਨ, – ene	H-C-C=C H H H	ਪਰੋਪੀਨ (Propene)
7. ਤੀਹਰਾ ਬੰਧਨ (ਐਲਕਾਇਨ) (Triple bond) (Alkyne)	ਪਛੇਤਰ - ਆਇਨ - yne	H-C-C=C-H	ਪਰੋਪਾਇਨ

ਪ੍ਰਸ਼ਨ

- ਪੈਨਟੇਨ ਦੇ ਤੁਸੀਂ ਕਿੰਨੇ ਬਣਤਰੀ ਸਮ ਅੰਗਕ ਬਣਾ ਸਕਦੇ ਹੈ?
- ਕਾਰਬਨ ਦੇ ਉਹ ਦੋ ਗੁਣ ਕਿਹੜੇ ਹਨ ਜਿਨ੍ਹਾਂ ਕਾਰਨ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਚਾਰ ਚੁਫੇਰੇ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੀ ਵੱਡੀ ਸੰਖਿਆ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ?
- ਸਾਈਕਲੋਪੈੱਨਟੇਨ ਦਾ ਸੂਤਰ ਅਤੇ ਇਲੈੱਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਕੀ ਹੈ?
- 4 ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਦੀ ਰਚਨਾ ਦੇ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾਓ :
 - (i) ਈਥੇਨੋਇਕ ਐਸਿਡ
- (॥) ਬਰੋਮੋਪੈੱਨਟੇਨ*

(iii) ਬਿਊਟੇਨੋਨ

- (iv) ਹੈਕਸੇਨਲ
- *ਕੀ ਬਰੋਮੋਪੈਨਟੇਨ ਦੇ ਬਣਤਰੀ ਸਮ ਅੰਗਕ ਸੰਭਵ ਹਨ?
- ਹੇਠ ਲਿਖੇ ਯੈਗਿਕਾਂ ਦਾ ਨਾਮਕਰਨ ਕਿਵੇਂ ਕਰੋਗੇ :

4.3 ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ

ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੇ ਕੁੱਝ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਕਿਉਂਕਿ ਸਾਡੇ ਦੁਆਰਾ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦੇ ਜਾਂਦੇ ਬਹੁਤੇ ਬਾਲਣ ਕਾਰਬਨ ਅਤੇ ਉਸ ਦੇ ਯੋਗਿਕ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਅਸੀਂ ਪਹਿਲਾਂ ਬਲਣ (ਜਲਣ) ਦੇ ਬਾਰੇ ਵਿੱਚ ਪੜ੍ਹਾਂਗੇ।

4.3.1 ਬਲਣ (Combustion)

ਕਾਰਬਨ ਆਪਣੇ ਸਾਰੇ ਭਿੰਨ ਰੂਪਾਂ ਵਿੱਚ ਆਕਸੀਜਨ ਅੰਦਰ ਬਲ ਕੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਦੇ ਨਾਲ ਨਾਲ ਤਾਪ ਊਰਜਾ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦਿੰਦੀ ਹੈ। ਵਧੇਰੇ ਕਰਕੇ ਕਾਰਬਨ ਦੇ ਯੌਗਿਕ ਵੀ ਬਲਣ ਨਾਲ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਉਤਪੰਨ ਕਰਦੇ ਹਨ। ਨਿਮਨ ਲਿਖਿਤ ਉਹ ਆਕਸੀਕਰਨ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਤੁਸੀਂ ਪਹਿਲੇ ਅਧਿਆਇ ਵਿੱਚ ਕੀਤਾ ਸੀ:

(ii)
$$CH_4 + O_2 \rightarrow CO_2 + H_2O + ਤਾਪ + ਪ੍ਰਕਾਸ਼$$

(iii)
$$CH_3CH_2OH + C_2 \rightarrow CO_2 + H_2O + ਤਾਪ + ਪ੍ਕਾਸ਼$$

ਪਹਿਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਧਿਅਨ ਕੀਤੀ ਗਈ ਵਿਧੀ ਦੁਆਰਾ (ii), ਅਤੇ (iii) ਪ੍ਤਿਕਿਰਿਆਵਾਂ ਨੂੰ ਸੰਤਲਿਤ ਕਰੋ।

ਕਿਰਿਆ 4,3

ਸਾਵਧਾਨੀ: ਇਹ ਕਿਰਿਆ ਕਰਨ ਲਈ ਅਧਿਆਪਕ ਜੀ ਦੀ ਸਹਾਇਤਾ ਦੀ ਲੋੜ ਹੈ।

 ਇੱਕ ਚਪਟ ਚਮਚ (ਸਪੈਚੂਲਾ) ਵਿੱਚ ਇੱਕ ਇੱਕ ਕਰਕੇ ਕੁੱਝ ਕਾਰਬਨ ਯੌਗਿਕ (ਨੈਫਥਲੀਨ, ਕੈੱਮਫਰ, ਅਲਕੋਹਲ) ਲਓ ਅਤੇ ਜਲਾਓ।

- ਲਾਟ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ ਅਤੇ ਨੇਂਟ ਕਰੋ ਕਿ ਕੀ ਪੁੰਆਂ ਪੈਦਾ ਹੁੰਦਾ ਹੈ ਜਾਂ ਨਹੀਂ?
- ਲਾਟ ਦੇ ਉੱਤੇ ਇੱਕ ਧਾਤ ਦੀ ਪੱਤਰੀ ਰੱਖ। ਇਹਨਾਂ ਯੌਗਿਕਾਂ ਵਿੱਚੋਂ ਕੀ ਕਿਸੇ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਪੱਤਰੀ ਉੱਤੇ ਕੁੱਝ ਜੰਮਿਆ ਹੈ?

ਕਿਰਿਆ 4.4

- ਇੱਕ ਬੁਨਸਨ ਬਰਨਰ ਜਲਾਓ ਅਤੇ ਭਿੰਨ ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੀ ਲਾਟ/ਧੂਆਂ ਪੈਦਾ ਕਰਨ ਲਈ ਉਸ ਦੇ ਆਧਾਰ ਤੇ ਸਥਿਤ ਹਵਾ ਛੋਕ ਨੂੰ ਬਦਲੋ।
- ਪੀਲੀ ਕੱਜਲ ਵਾਲੀ ਲਾਟ ਕਦੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ?
- ਨੀਲੀ ਲਾਟ ਕਦੋਂ ਪਾਪਤ ਹੁੰਦੀ ਹੈ?

ਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ ਆਮ ਕਰਕੇ ਸਾਫ ਲਾਟ ਦਿੰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਅਸੰਤ੍ਰਿਪ ਕਾਰਬਨ ਯੋਗਿਕ ਵਧੇਰੇ ਕਰਕੇ ਕਾਲੇ ਧੂੰਏਂ ਵਾਲੀ ਪੀਲੀ ਲਾਟ ਦਿੰਦੇ ਹਨ। ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕਿਰਿਆ 4.3 ਵਿੱਚ ਧਾਤ ਦੀ ਪੱਤਰੀ ਉੱਤੇ ਕੱਜਲਈ ਪਰਤ ਜਮ ਜਾਵੇਗੀ ਪਰ ਹਵਾ ਦੀ ਸਪਲਾਈ ਘਟਾਉਣ ਨਾਲ ਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨਾਂ ਤੋਂ ਵੀ ਕਜਲਈ ਲਾਟ ਨਿਕਲੇਗੀ। ਘਰਾਂ ਵਿੱਚ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਗੈਸ ਜਾਂ ਮਿੱਟੀ ਦੇ ਤੇਲ ਦੇ ਸਟੋਵ ਵਿੱਚ ਹਵਾ ਆਉਣ ਲਈ ਛੇਕ ਹੁੰਦੇ ਹਨ ਤਾਂ ਜੋ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ਆਕਸੀਜਨ ਭਰਪੂਰ ਮਿਸ਼ਰਨ ਬਲ ਕੇ ਸਾਫ ਨੀਲੀ ਲਾਟ ਦੇਵੇ।

ਜੇਕਰ ਕਦੀ ਖਾਣਾ ਪਕਾਉਣ ਵਾਲੇ ਬਰਤਨਾਂ ਦੇ ਥੱਲੇ ਕਾਲੇ ਹੋਏ ਵਿਖਾਈ ਦੇਣ ਤਾਂ ਸਮਝੋਂ ਕਿ ਹਵਾ ਦੇ ਛੇਕ ਰੁਕੇ ਹੋਏ ਹਨ ਅਤੇ ਬਾਲਣ ਬੇਅਰਥ ਜਾ ਰਿਹਾ ਹੈ। ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਜਿਹੇ ਬਾਲਣਾਂ ਵਿੱਚ ਕੁੱਝ ਮਾਤਰਾ ਵਿੱਚ ਨਾਈਟਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਯੌਗਿਕ ਅਸ਼ੁੱਧੀ ਵਜੋਂ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਦੇ ਜਲਣ ਦੇ ਫਲਸਰੂਪ ਸਲਫਰ ਅਤੇ ਨਾਈਟਰੋਜਨ ਦੇ ਆਕਸਾਈਡ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ ਜੋ ਵਾਤਾਵਰਨ ਵਿੱਚ ਮੁੱਖ ਪ੍ਰਦੂਸ਼ਕ ਹਨ।

ๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅๅ

ਵਸਤਾਂ ਲਾਟ ਨਾਲ ਜਾਂ ਲਾਟ ਤੋਂ ਬਿਨਾਂ ਕਿਉਂ ਜਲਦੀਆਂ ਹਨ?

ਕੀ ਤੁਸੀਂ ਕਦੇ ਕੋਲੇ ਜਾਂ ਲੱਕੜ ਦੀ ਅੱਗ ਨੂੰ ਵੇਖਿਆ ਹੈ? ਜੇਕਰ ਨਹੀਂ, ਜਾਂ ਅਗਲੀ ਵਾਰ ਜਦੋਂ ਮੌਕਾ ਮਿਲ੍ਹੇ ਤਾਂ ਧਿਆਨ ਨਾਲ ਵੇਖੋ ਕਿ ਕੋਲੇ ਜਾਂ ਲੱਕੜ ਦੇ ਜਲਣਾ ਆਰੰਭ ਹੋਣ ਤੇ ਕੀ ਹੁੰਦਾ ਹੈ? ਤੁਸੀਂ ਉੱਪਰ ਵੇਖਿਆ ਸੀ ਕਿ ਇੱਕ ਮੋਮਬੱਤੀ ਜਾਂ ਗੈਸ ਸਟੋਵ ਦੀ ਐਲ. ਪੀ. ਜੀ. ਬਲਦੇ ਸਮੇਂ ਲਾਟ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ। ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਅੰਗੀਠੀ ਵਿੱਚ ਜਲਣ ਜਲਣ ਵਾਲਾ ਕੋਲਾ ਜਾਂ ਲੱਕੜ ਦਾ ਕੋਲਾ ਕਦੇ ਕਦੇ ਲਾਲ ਰੰਗ ਨਾਲ ਚਮਕਦਾ ਹੈ ਅਤੇ ਲਾਟ ਬਿਨਾਂ ਤਾਪ ਊਰਜਾ ਦਿੰਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਕੇਵਲ ਗੈਸੀ ਵਸਤਾਂ ਜਲਣ ਨਾਲ ਹੀ ਲਾਟ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ। ਲੱਕੜ ਜਾਂ ਲੱਕੜ ਦੇ ਕੋਲੇ ਜਲਾਉਣ ਨਾਲ ਉਤਪੰਨ ਹੋਏ ਵਾਸ਼ਪਸ਼ੀਲ ਪਦਾਰਥ ਵਾਸ਼ਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਸ਼ੁਰੂ ਵਿੱਚ ਲਾਟ ਦੇ ਨਾਲ ਜਲਦੇ ਹਨ।

ਗੈਸੀ ਪਦਾਰਥਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਨੂੰ ਤਾਪ ਦੇਣ ਨਾਲ ਇੱਕ ਚਮਕਦੀ ਹੋਈ ਲਾਟ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ ਅਤੇ ਚਮਕਣ ਲੱਗਦੀ ਹੈ।ਹਰ ਇੱਕ ਤੱਤ ਦੁਆਰਾ ਉਤਪੰਨ ਕੀਤਾ ਰੇਗ ਉਸ ਤੱਤ ਦਾ ਖਾਸ ਗੁਣ ਹੁੰਦਾ ਹੈ।ਗੈਸ ਸਟੋਵ ਦੀ ਲਾਟ ਵਿੱਚ ਕਾਪਰ ਦੀ ਤਾਰ ਨੂੰ ਜਲਾਉਣ ਦਾ ਯਤਨ ਕਰੋ ਅਤੇ ਉਸ ਦੁਆਰਾ ਉਤਪੰਨ ਕੀਤੇ ਰੇਗ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।

ਤੁਸੀਂ ਵੇਖਿਆ ਸੀ ਕਿ ਅਪੂਰਨ ਬਲਣ ਨਾਲ ਕਾਲਖ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ ਜੋ ਕਾਰਬਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਆਧਾਰ ਪਰ ਤੇ ਤੁਸੀਂ ਮੌਮਬੱਤੀ ਦੀ ਪੀਲੇ ਰੇਗ ਦੀ ਲਾਟ ਦਾ ਕੀ ਕਾਰਨ ਦੱਸੋਗੇ?

999999999999999999999999

ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅ ਦੀ ਉਤਪਤੀ

ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਦੀ ਉਤਪਤੀ ਜੀਵ ਪੁੰਜ ਤੋਂ ਭਿੰਨ ਭਿੰਨ ਜੈਵਿਕ ਅਤੇ ਭੂ ਵਿਗਿਆਨਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਪ੍ਰਭਾਵ ਅਧੀਨ ਹੋਈ ਹੈ। ਕੋਲਾ ਲੱਖਾਂ ਸਾਲ ਪੁਰਾਣੇ ਦਰਖਤਾਂ, ਫਰਨ ਅਤੇ ਦੂਜੇ ਪੌਦਿਆਂ ਦਾ ਅਵਸ਼ੇਸ਼ ਹੈ। ਸੰਭਵ ਤੌਰ ਤੇ ਭੂਚਾਲਾਂ ਅਤੇ ਜਵਾਲਾ ਮੁਖੀਆਂ ਦੇ ਫਟਣ ਕਾਰਨ ਇਹ ਧਰਤੀ ਦੀਆਂ ਪਰਤਾਂ ਹੇਠ ਦਬੇ ਗਏ ਅਤੇ ਹੌਲੇ ਹੌਲੇ ਬੈਂ ਕਾਰਨ ਇਹ ਕੋਲੇ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਗਏ। ਤੇਲ ਅਤੇ ਗੈਸ ਲੱਖਾਂ ਸਾਲ ਪੁਰਾਣੇ ਛੋਟੇ ਸਮੁੰਦਰੀ ਪੌਦਿਆਂ ਅਤੇ ਜੀਵਾਂ ਦੇ ਅਵਸ਼ੇਸ਼ ਹਨ। ਇਹਨਾਂ ਦੇ ਮਰਨ ਉਪਰੰਤ ਇਹਨਾਂ ਦੇ ਸਰੀਰ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬ ਕੇ ਸਮੁੰਦਰੀ ਤਲ ਤੱਕ ਪਹੁੰਚ ਗਏ ਅਤੇ ਗਾਦ ਨਾਲ ਡਕੇ ਗਏ। ਉਹਨਾਂ ਮਰੇ ਅਵਸ਼ੇਸ਼ਾਂ ਉੱਤੇ ਬੈਕਟੀਰੀਆ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਅਤੇ ਉੱਚ ਦਾਬ ਕਾਰਨ ਤੇਲ ਅਤੇ ਗੈਸ ਦਾ ਨਿਰਮਾਣ ਹੋਇਆ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਗਾਦ ਹੌਲੇ ਹੌਲੇ ਦੱਬ ਕੇ ਚਟਾਨਾਂ ਦਾ ਰੂਪ ਧਾਰਨ ਕਰ ਗਈ। ਚਟਾਨਾਂ ਦੇ ਮੁਸਾਮਦਾਰ ਭਾਗਾਂ ਤੋਂ ਤੇਲ ਅਤੇ ਗੈਸ ਦਾ ਰਸਾਓ ਹੋਇਆ ਅਤੇ ਇਹ ਪਾਣੀ ਵਿੱਚ ਸਪੰਜ ਦੀ ਤਰ੍ਹਾਂ ਫਸ ਗਏ। ਕੀ ਤੁਸੀਂ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹੋ ਕਿ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਨੂੰ ਪਥਰਾਟ ਬਾਲਣ (Fossil fuel) ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ?

4.3.2 ਆਕਸੀਕਰਨ Oxidation

ਕਿਰਿਆ 4.5

- ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਲੱਗਭਗ 3 mL ਈਬੇਨੋਲ ਲਓ ਅਤੇ ਇਸ ਨੂੰ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਜਲ ਤਾਪਨ ਵਿੱਚ ਗਰਮ ਕਰੋ।
- ਇਸ ਗਰਮ ਈਬੇਨੋਲ ਵਿੱਚ ਖਾਰੀ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦਾ 5% ਘੋਲ ਇੱਕ ਇੱਕ ਭੂੰਦ ਕਰਕੇ ਪਾਓ।
- ਘੋਲ ਪਾਉਣ ਤੇ ਆਰੰਭ ਵਿੱਚ ਕੀ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦਾ ਰੰਗ ਬੁਝਿਆ ਰਹਿੰਦਾ ਹੈ?
- ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਪਾਉਣ ਨਾਲ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦਾ ਰੰਗ ਲੁਪਤ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦਾ?

ਪਹਿਲੇ ਅਧਿਆਇ ਵਿੱਚ ਤੁਸੀਂ ਆਕਸੀਕਰਨ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦਾ ਅਧਿਅਨ ਕੀਤਾ ਸੀ। ਜਲਾਉਣ ਨਾਲ ਕਾਰਬਨ ਯੌਗਿਕਾਂ ਨੂੰ ਸੌਖਿਆ ਹੀ ਆਕਸੀਕਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਪੂਰਨ ਆਕਸੀਕਰਨ ਤੋਂ ਇਲਾਵਾ ਉਹ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਵੀ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਅਲਕੋਹਲ ਕਾਰਬਾਕਸਲਿਕ ਐਸਿਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਕੁੱਝ ਪਦਾਰਥਾਂ ਵਿੱਚ ਦੂਜੇ ਪਦਾਰਥਾਂ ਨੂੰ ਆਕਸੀਜਨ ਦੇਣ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ।ਇਹਨਾਂ ਪਦਾਰਥਾਂ ਨੂੰ ਆਕਸੀਕਾਰਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਖਾਰੀ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈੱਗਨੇਟ ਅਤੇ ਤੇਜ਼ਾਬੀ ਪੋਟਾਸ਼ੀਅਮ ਡਾਈਕਰੋਮੈਂਟ ਅਲਕੋਹਲਾਂ ਨੂੰ ਐਸਿਡਾਂ ਵਿੱਚ ਆਕਸੀਕਰਿਤ ਕਰਦੇ ਹਨ ਭਾਵ ਇਹ ਅਰੰਭਿਕ ਪਦਾਰਥ ਵਿੱਚ ਆਕਸੀਜਨ ਜੋੜਦੇ ਹਨ।ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ ਆਕਸੀਕਾਰਕ ਕਹਿੰਦੇ ਹਨ।

4.3.3 ਜੋੜਾਤਮਕ ਪਤਿਕਿਰਿਆ (Addition Reaction)

ਅਸੈਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ, ਉਤਪ੍ਰੇਰਕ ਜਿਵੇਂ ਕਿ ਜਾਂ ਨਿਕਲ ਦੀ ਹੋਂਦ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਨਾਲ ਮਿਲਾ ਕੇ ਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ ਬਣਾਉਂਦੇ ਹਨ। ਉਤਪ੍ਰੇਰਕ ਉਹ ਪਦਾਰਥ ਹਨ ਜਿਨ੍ਹਾਂ ਕਾਰਨ ਕੋਈ ਪ੍ਤਿਕਿਰਿਆ ਵਾਪਰਦੀ ਹੈ ਜਾਂ ਉਸ ਦੀ ਦਰ ਬਦਲ ਜਾਂਦੀ ਹੈ ਪਰ ਉਹ ਆਪ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦੇ। ਨਿਕਲ ਉਤਪ੍ਰੇਰਕ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਆਮ ਕਰਕੇ ਬਨਸਪਤੀ ਤੇਲਾਂ ਦੇ ਹਾਈਡਰੋਜਨੀਕਰਨ ਵਿੱਚ ਇਸ ਪ੍ਰਤਿਕਿਰਿਆ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਬਨਸਪਤੀ ਤੇਲਾਂ ਵਿੱਚ ਆਮ ਕਰਕੇ ਲੰਬੀ ਅਸੰਤ੍ਰਿਪਤ ਕਾਰਬਨ ਲੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਜੰਤੂ ਚਰਬੀ (Fats) ਵਿੱਚ ਸੰਤ੍ਰਿਪਤ ਕਾਰਬਨ ਲੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

ਤੁਸੀਂ ਵਿਗਿਆਨ ਵਿੱਚ ਇਹ ਲਿਖਿਆ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਕੁੱਝ ਬਨਸਪਤੀ ਤੇਲ ਸਵਾਸਥ ਨੂੰ ਚੰਗਾ ਕਰਨ ਵਾਲੇ ਹਨ। ਆਮ ਕਰਕੇ ਜੰਤੂ ਫੈਟਸ ਦੀ ਬਣਤਰ ਵਿੱਚ ਸੰਤ੍ਰਿਪਤ ਫੈਟ ਐਸਿਡਾਂ ਦਾ ਅੰਸ਼ ਹੁੰਦਾ ਹੈ ਜੋ ਸਿਹਤ ਲਈ ਹਾਨੀਕਾਰਕ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਭੋਜਨ ਪਕਾਉਣ ਲਈ ਅਸੰਤ੍ਰਿਪਤ ਫੈਟੀ ਐਸਿਡਾਂ ਵਾਲੇ ਤੇਲਾਂ ਦਾ ਉਪਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

4.3.4 ਪ੍ਰਤਿਸਥਾਪਨ ਪ੍ਰਤਿਕਿਰਿਆ

ਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ ਕਾਫੀ ਹੱਦ ਤੱਕ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਪ੍ਤਿਕਰਮਕਾਂ ਦੀ ਉਪਸਥਿਤੀ ਵਿੱਚ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੇ ਹਨ। ਫਿਰ ਵੀ ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਦੀ ਹੋਂਦ ਵਿੱਚ ਕਲੋਰੀਨ ਅਤਿ ਤੇਜ਼ ਪ੍ਤਿਕਿਰਿਆ ਦੁਆਰਾ ਹਾਈਡਰੋਕਾਰਬਨ ਤੋਂ ਹਾਈਡਰੋਜਨ ਨੂੰ ਹਟਾ ਕੇ ਉਸ ਨਾਲ ਜੁੜ ਜਾਂਦੀ ਹੈ। ਕਲੋਰੀਨ ਇੱਕ ਇੱਕ ਕਰਕੇ ਹਾਈਡਰੋਜਨ ਨੂੰ ਹਟਾ ਕੇ ਉਸ ਨਾਲ ਜੁੜ ਜਾਂਦੀ ਹੈ। ਕਲੋਰੀਨ ਇੱਕ ਇੱਕ ਕਰਕੇ ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਪ੍ਤਿਸਥਾਪਤ ਕਰਦੀ ਹੈ। ਇਸ ਨੂੰ ਪ੍ਤਿਸਥਾਪਨ ਪ੍ਤਿਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇੱਕ ਪ੍ਕਾਰ ਦਾ ਪ੍ਰਮਾਣੂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂਹ ਦੂਜੇ ਦਾ ਸਥਾਨ ਲੈਂਦੇ ਹਨ। ਆਮ ਕਰਕੇ ਉੱਚੇ ਸਮਜਾਤੀ ਐਲਕੇਨਾਂ ਨਾਲ ਅਨੇਕ ਉਤਪਾਦਾਂ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ।

ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਹੋਂਦ ਵਿੱਚ > CH $_4$ + Cl $_2$ $→ CH<math>_3$ Cl + HCl

ਪ੍ਰਸ਼ਨ

- ਈਥੇਨੌਲ ਤੋਂ ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਆਕਸੀਕਰਨ ਪ੍ਰਤਿਕਿਰਿਆ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ।
- ਆਕਸੀਜਨ ਅਤੇ ਈਬਾਇਨ ਦੇ ਮਿਸ਼ਰਨ ਨੂੰ ਵੈਲਡਿੰਗ ਕਰਨ ਲਈ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਈਬਾਈਨ ਅਤੇ ਹਵਾ ਦੇ ਮਿਸ਼ਰਨ ਦਾ ਉਪਯੋਗ ਕਿਉਂ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ?

4.4 ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਕਾਰਬਨਯੋਗਿਕ : ਈਬੇਨੌਲ ਅਤੇ ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ

ਬਹੁਤ ਸਾਰੇ ਕਾਰਬਨ ਯੌਗਿਕ ਸਾਡੇ ਲਈ ਅਨਮੋਲ ਹਨ ਪਰ ਇੱਥੇ ਅਸੀਂ ਵਪਾਰਿਕ ਤੌਰ ਤੇ ਮਹੱਤਵਪੂਰਨ ਦੋ ਯੌਗਿਕਾਂ ਭਾਵ ਈਥੇਨੋਲ ਅਤੇ ਈਥੇਨੋਇਕ ਤੇਜ਼ਾਬ ਦਾ ਅਧਿਅਨ ਕਰਾਂਗੇ।

4.4.1 ਈਥੇਨੋਲ ਜਾਂ ਈਥਾਈਲ ਅਲਕੋਹਲ (C₂H₂OH) ਦੇ ਗੁਣ

ਈਥੇਨੌਲ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਈਥੇਨੌਲ ਦੇ ਪਿਘਲਣ ਅੰਕ ਅਤੇ ਉਬਾਲ ਅੰਕ ਲਈ ਸਾਰਨੀ 4.1 ਵੇਖੋ। ਆਮ ਭਾਸ਼ਾ ਵਿੱਚ ਈਥੇਨੌਲ ਨੂੰ ਅਲਕੋਹਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਸਾਰੇ ਪੀਣ ਵਾਲੇ ਅਲਕੋਹਲ ਪਦਾਰਥਾਂ ਦਾ ਮਹੱਤਵਪੂਰਨ ਕਿਰਿਆਸ਼ੀਲ ਅੰਸ਼ ਹੁੰਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ ਇਹ ਚੰਗਾ ਘੋਲਕ ਹੈ ਇਸ ਲਈ ਇਸ ਦੀ ਵਰਤੋਂ ਟਿੰਕਚਰ ਆਇਓਡੀਨ,

ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ?

ਖੰਘ ਸਿਰਪ, ਟਾੱਨਿਕ ਆਦਿ ਜਿਹੀਆਂ ਦੁਆਈਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਈਥੇਨੋਲ ਨੂੰ ਕਿਸੇ ਵੀ ਅਨੁਪਾਤ ਵਿੱਚ ਪਾਣੀ ਅੰਦਰ ਮਿਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਪਤਲੇ ਈਥੇਨੋਲ ਨੂੰ ਥੋੜ੍ਹੀ ਜਿਹੀ ਮਾਤਰਾ ਵਿੱਚ ਲੈਣ ਨਾਲ ਨਸ਼ਾ ਆ ਜਾਂਦਾ ਹੈ। ਭਾਵੇਂ ਅਲਕੋਹਲ ਪੀਣਾ ਨਿੰਦਣਯੋਗ ਹੈ ਪਰ ਫਿਰ ਵੀ ਇਸ ਦੀ ਵਰਤੋਂ ਸਮਾਜ ਵਿੱਚ ਵੱਡੇ ਪੱਧਰ ਤੇ ਹੁੰਦੀ ਹੈ। ਸ਼ੁੱਧ ਅਲਕੋਹਲ ਨੂੰ ਥੋੜ੍ਹੀ ਮਾਤਰਾ ਵਿੱਚ ਲੈਣਾ ਵੀ ਘਾਤਕ ਸਿੱਧ ਹੋ ਸਕਦਾ ਹੈ। ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਅਲਕੋਹਲ ਦੀ ਵਰਤੋਂ ਕਰਨ ਨਾਲ ਸਿਹਤ ਸੰਬੰਧੀ ਕਈ ਸਮੱਸਿਆਵਾਂ ਪੈਦਾ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।

ਕਿਰਿਆ 4.6

ਅਧਿਆਪਕ ਜੀ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਨ :

- ਲੱਗ ਭੱਗ ਦੋ ਚੌਲਾ ਦੇ ਆਕਾਰ ਦੇ ਬਰਾਬਰ ਸੋਡੀਅਮ ਦੇ ਇੱਕ ਛੋਟੇ ਟੁਕੜੇ ਨੂੰ ਸ਼ੁੱਧ ਈਥੋਨਾਲ ਵਿੱਚ ਪਾਓ।
- ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕਰਦੇ ਹੈ?
- ਬਾਹਰ ਨਿਕਲਦੀ ਗੈਸ ਦੀ ਤੁਸੀਂ ਕਿਵੇਂ ਜਾਂਚ ਕਰੇਗੇ?

ਈਥੇਨੋਲ ਦੀਆਂ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ

(і) ਸੋਡੀਅਮ ਦੇ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ

 $2Na + 2CH_3CH_2OH \rightarrow 2CH_3CH_2O-Na^+ + H_2$

(ਸੋਡੀਅ ਈਥਾਕਸਾਈਡ)

ਈਥੇਨੋਲ ਸੋਡੀਅਮ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡਰੋਜਨ ਗੈਸ ਬਾਹਰ ਕੱਢਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਉਤਪਾਦ ਸੋਡੀਅਮ ਈਥਾਕਸਾਈਡ ਹੁੰਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਯਾਦ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਕਿਹੜੀਆਂ ਦੂਜੀਆਂ ਵਸਤਾਂ ਧਾਤਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡਰੋਜਨ ਮੁਕਤ ਕਰਦੀਆਂ ਹਨ?

ਅਸੰਤ੍ਰਿਪਤ ਹਾਈਡਰੋਕਾਰਬਨ ਬਣਾਉਣ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ :

(ii) ਈਥੇਨੋਲ ਨੂੰ 443K ਤਾਪਮਾਨ ਤੇ ਅਧਿਕ ਮਾਤਰਾ ਵਿੱਚ ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਨਾਲ ਗਰਮ ਕਰਨ ਨਾਲ ਇਸ ਦਾ ਨਿਰਜਲੀਕਰਨ ਹੋ ਕੇ ਈਥੀਨ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।

$$CH_3 - CH_2OH \xrightarrow{\text{diah dirgr}} CH_2 = CH_2 + H_2O$$

ਇਸ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਨਿਰਜਲੀਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕੈਮ ਕਰਦਾ ਹੈ ਜੋ ਈਥੇਨੌਲ ਵਿੱਚੋਂ ਪਾਣੀ ਹਟਾ ਦਿੰਦਾ ਹੈ।

ਸਜੀਵ ਪ੍ਰਾਣੀਆਂ ਉੱਤੇ ਅਲਕੋਹਲ ਦਾ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ?

ਜਦੋਂ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਅਲਕੋਹਲ ਪੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਢਾਹੂ-ਉਸਾਰੂ ਪ੍ਤਿਕਿਰਆਵਾਂ ਹੌਲੀ ਕਰ ਦਿੰਦਾ ਹੈ ਅਤੇ ਕੇਂਦਰੀ ਤੰਤੂ ਪ੍ਣਾਲੀ (Nervous system) ਪ੍ਰਬੰਧ ਨੂੰ ਕਮਜ਼ੋਰ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇਵਜੋਂ ਤਾਲਮੇਲ ਦੀ ਕਮੀ, ਮਾਨਸਿਕ ਦੁਬਿਧਾ, ਉਨੀਂਦਰਾਪਣ, ਆਮ ਰੋਕਾਂ ਦੀ ਕਮੀ ਅਤੇ ਅੰਤ ਵਿੱਚ ਅਚੇਤਨਤਾ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ। ਫਿਰ ਵੀ ਵਿਅਕਤੀ ਰਾਹਤ ਅਨੁਭਵ ਕਰਦਾ ਹੈ ਪਰ ਉਸ ਨੂੰ ਪਤਾ ਨਹੀਂ ਲਗਦਾ ਕਿ ਉਸ ਦੀ ਫੈਸਲਾ ਕਰਨ ਦੀ ਸਮਰੱਥਾ, ਸਮੇਂ ਦੀ ਸਮਝ, ਪੱਠਿਆਂ ਦਾ ਤਾਲਮੇਲ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਬੁਰੀ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਹੋ ਗਈ ਹੈ। ਈਥੋਨਾਲ ਦੇ ਵਿਪਰੀਤ ਮੀਥੇਨਾਲ ਦੀ ਥੋੜ੍ਹੀ ਜਿਹੀ ਮਾਤਰਾ ਲੈਣ ਨਾਲ ਮੌਤ ਹੋ ਸਕਦੀ ਹੈ। ਲਿਵਰ ਵਿੱਚ ਮੀਥਾਨੌਲ (Methanol) ਆਕਸੀਕ੍ਰਿਤ ਹੋ ਕੇ ਮੀਥੇਨਲ ਥਣ ਜਾਂਦਾ ਹੈ। ਮੀਥੇਨਲ (Methanol) ਸੈੱਲਾਂ ਦੇ ਘਟਕਾਂ ਨਾਲ ਤੇਜ਼ੀ ਨਾਲ ਪ੍ਰਤਿਕਰਿਆ ਕਰਨ ਲੱਗਦਾ ਹੈ। ਇਸ ਨਾਲ ਪ੍ਰੋਟੋਪਲਾਜ਼ਮ ਉਸੇ ਪ੍ਰਕਾਰ ਜੰਮ (Coagulate)ਜਾਂਦਾ ਹੈ ਜਿਸ ਪ੍ਰਕਾਰ

ਗਰਮ ਕਰਨ ਨਾਲ ਅੰਡਾ ਜੰਮ ਜਾਂਦਾ ਹੈ। ਮੀਥੇਨੌਲ ਆਪਟਿਕ (Optic) ਨਰਵ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਕੇ ਵਿਅਕਤੀ ਨੂੰ ਅੰਨ੍ਹਾ ਕਰ ਦਿੰਦਾ ਹੈ।

ਈਥੇਨੌਲ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਉਦਯੋਗਿਕ ਘੋਲਕ ਹੈ। ਉਦਯੋਗਿਕ ਉਪਯੋਗ ਲਈ ਤਿਆਰ ਕੀਤੇ ਈਥੇਨੌਲ ਦਾ ਦੁਰਉਪਯੋਗ ਰੋਕਣ ਲਈ ਇਸ ਵਿੱਚ ਮੀਥੋਨੌਲ ਜਿਹਾ ਜ਼ਹਿਰੀਲਾ ਪਦਾਰਥ ਮਿਲਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਇਹ ਪੀਣਯੋਗ ਨਾ ਰਹਿ ਜਾਵੇ।ਅਲਕੋਹਲ ਦੀ ਪਹਿਚਾਣ ਕਰਨ ਲਈ ਇਸ ਵਿੱਚ ਰੰਗ ਮਿਲਾ ਕੇ ਨੀਲਾ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਇਹ ਸੌਖਿਆ ਪਹਿਚਾਣਿਆ ਜਾ ਸਕੇ। ਇਸ ਨੂੰ ਵਿਕ੍ਰਿਤ (denatured)ਅਲਕੋਹਲ ਕਹਿੰਦੇ ਹਨ।

ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਅਲਕੋਹਲ

ਗੋਨੇ ਦਾ ਪੌਦਾ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਰਸਾਇਣਿਕ ਊਰਜਾ ਵਿੱਚ ਬਦਲਣ ਦਾ ਪਰਿਵਰਤਕਾਂ ਵਿੱਚ ਇੱਕ ਸਭ ਤੋਂ ਵਧੀਆ ਪਰਿਵਰਤਕ ਹੈ। ਗੋਨੇ ਦੇ ਰਸ ਤੋਂ ਖੰਡ ਤਿਆਰ ਕਰਨ ਸਮੇਂ ਸੀਰਾ ਵੀ ਬਣਦਾ ਹੈ। ਜਿਸ ਦਾ ਖਮੀਰਨ ਕਰਕੇ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਅਲਕੋਹਲ (ਈਥੇਨੇਲ) ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਕੁੱਝ ਦੇਸ਼ਾਂ ਵਿੱਚ ਪੈਟਰੋਲ ਵਿੱਚ ਅਲਕੋਹਲ ਮਿਲਾ ਕੇ ਸਵੱਛ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਬਾਲਣ ਹਵਾ (ਆਕਸੀਜਨ) ਦੀ ਵੱਧ ਮਾਤਰਾ ਵਿੱਚ ਬਲਣ ਨਾਲ ਕੇਵਲ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਉਤਪੰਨ ਕਰਦਾ ਹੈ।

4.4.2 ਈਥੇਨੋਇਕ ਤੇਜ਼ਾਬ (Ethanoic Acid CH,COOH) ਦੇ ਗੁਣ

ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਨੂੰ ਸਾਧਾਰਨ ਭਾਸ਼ਾ ਵਿੱਚ ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਕਾਰਬਕਸਲਿਕ ਤੇਜ਼ਾਬ ਸਮੂਹ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ ਦੇ 3-4% ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਨੂੰ ਸਿਰਕਾ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਸ ਨੂੰ ਅਚਾਰ ਵਿੱਚ ਸੁਰੱਖਿਅਕ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਸ਼ੁੱਧ ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਦਾ ਪਿਘਲਣ ਅੰਕ 290k ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਲਈ ਠੰਢੀ ਜਲਵਾਯੂ ਵਿੱਚ ਸਰਦੀ ਦੇ ਦਿਨਾਂ ਵਿੱਚ ਇਹ ਜੰਮ ਜਾਂਦਾ ਹੈ। ਇਸ ਕਾਰਨ ਇਸ ਨੂੰ ਗਲੇਸ਼ੀਅਨ ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ ਕਹਾਉਣ ਵਾਲੇ ਕਾਰਬਨੀਯੋਗਕਾਂ ਦੇ ਸਮੂਹ ਦਾ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਇਸ ਦਾ ਖਾਸ ਤੇਜ਼ਾਬੀਪਨ ਹੈ। ਖਣਿਜੀ ਤੇਜ਼ਾਬਾਂ ਦੇ ਵਿਪਰੀਤ ਕਾਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ ਕਮਜ਼ੋਰ ਹੁੰਦੇ ਹਨ ਕਿਉਂਕਿ ਖਣਿਜੀ ਤੇਜ਼ਾਬ ਜਿਵੇਂ ਕਿ HCI ਪਾਣੀ ਵਿੱਚ ਪੂਰੀ ਤਰ੍ਹਾਂ ਆਇਨੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।

ਕਿਰਿਆ 4.8

- ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਗਾੜ੍ਹੇ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਦੀਆਂ ਕੁੱਝ ਬੂੰਦਾਂ, 1ml ਈਥੋਨੌਲ (ਸੁੱਧ ਅਲਕੋਹਲ) ਅਤੇ 1ml ਗਲੇਸ਼ੀਅਲ ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ ਲਓ।
- ਘੱਟ ਘੱਟ 5 ਮਿੰਟ ਤੱਕ ਇਸ ਨੂੰ ਜਲ-ਤਾਪ ਵਿੱਚ ਰੱਖ ਕੇ ਗਰਮ ਕਰੋ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 4.1 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।
- ਹੁਣ ਪਰਖ ਨਲੀ ਦੀ ਸਮੱਗਰੀ ਨੂੰ ਉਸ ਬੀਕਰ ਵਿੱਚ ਪਾ ਦਿਓ ਜਿਸ ਵਿੱਚ 20-50 ml ਪਾਣੀ ਹੋਵੇ ਅਤੇ ਇਸ ਮਿਸ਼ਰਣ ਨੂੰ ਸੁੰਘੋ।

ਕਿਰਿਆ 4.7

- ਲਿਟਮਸ ਪੱਤਰ ਅਤੇ ਵਿਸ਼ਵਵਿਆਪੀ ਸੂਚਕਾਦਾ (ਅੰਗਰ) ਕਰ ਪਤਲੇ ਐਸੀਟਿਕ ਤੇਜ਼ਾਬ ਅਤੇ ਹਾਈਡਰੋਕਲੋਰਿਕ ਤੇਜ਼ਾਬ ਦੇ 1911 ਮਾਨ ਦੀ ਤੁਲਨਾ ਕਰੋ।
- ਕੀ ਲਿਟਮਸ ਪਰਖ ਵਿੱਚ ਦੋਵੇਂ ਤੇਜ਼ਾਬਾਂ ਦੀ ਸੂਚਨਾ ਮਿਲਦੀ ਹੈ।
- ਕੀ ਵਿਸ਼ਵ ਵਿਆਪੀ ਸੂਚਕ ਨਾਲ ਦੋਵੇਂ ਤੇਜ਼ਾਬਾਂ ਦੇ ਬਰਾਬਰ ਸ਼ਕਤੀਬਾਲੀ ਹੋਣ ਦਾ ਪਤਾ ਲਗਦਾ ਹੈ ?

ਈਥੇਨੋਇਕ ਤੇਜ਼ਾਬ ਦੀਆਂ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ

(ii) ਐਸਟਰੀਕਰਨ ਪ੍ਰਤਿਕਿਰਿਆ : ਐੱਸਟਰ ਮੁੱਖ ਤੌਰ ਤੇ ਤੇਜ਼ਾਬ ਅਤੇ ਅਲਕੋਹਲ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਬਣਦਾ ਹੈ।ਈਥੇਨੋਇਕ ਤੇਜ਼ਾਬ ਕਿਸੇ ਤੇਜ਼ਾਬੀ ਉਤਪ੍ਰੇਰਕ ਦੀ ਮੌਜ਼ੂਦਗੀ ਵਿੱਚ ਸ਼ੁੱਧ ਅਲਕੋਹਲ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਐੱਸਟਰ ਬਣਾਉਂਦਾ ਹੈ।

$$CH_3 - COOH + CH_3 - CH_2OH \xrightarrow{\overrightarrow{\textbf{ਤ}}} CH_3 - C - O - CH_2 - CH_3 + H_2O$$
(ਇਬੇਨੋਇਕ ਤੇਜ਼ਾਬ) (ਈਬੇਨੋਲ) (ਐੱਸਟਰ)

ਐੱਸਟਰ ਮਿੱਠੀ ਗੰਧ ਦੇਣ ਵਾਲੀਆਂ ਵਸਤਾਂ ਹਨ। ਇਹਨਾਂ ਦੀ ਵਰਤੋਂ ਇੱਤਰ ਬਣਾਉਣ ਅਤੇ ਸੁਆਦ ਉਤਪੰਨ ਕਰਨ ਵਾਲੇ ਕਾਰਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਐਸਟਰ ਤੇਜ਼ਾਬ ਜਾਂ ਖਾਰ ਦੀ ਹੋਂਦ ਵਿੱਚ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਮੁੜ ਅਲਕੋਹਲ ਅਤੇ ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਪ੍ਤਿਕਿਰਿਆ ਨੂੰ ਸਾਬਨੀਕਰਨ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਸ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸਾਬਣ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 (ii) ਖਾਰ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ : ਖਣਿਜੀ ਤੇਜ਼ਾਬਾਂ ਦੀ ਤਰ੍ਹਾਂ ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਸੋਡੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ ਜਿਹੇ ਖਾਰਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਲੂਣ (ਸੋਡੀਅਮ ਈਥੇਨਾਏਟ ਜਾਂ ਸੋਡੀਅਮ ਐਸੀਟੇਟ) ਅਤੇ ਪਾਣੀ ਪੈਦਾ ਕਰਦਾ ਹੈ।

ਈਬੇਨੋਇਕ ਤੇਜ਼ਾਬ ਕਾਰਬੋਨੇਟਾਂ ਅਤੇ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟਾਂ ਨਾਲ ਕਿਵੇਂ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦਾ ਹੈ? ਇਹ ਪਤਾ ਕਰਨ ਲਈ ਆਓ ਅਸੀਂ ਇੱਕ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ 4.9

- ਅਧਿਆਇ 2 ਦੀ ਕਿਰਿਆ 2.5 ਅਨੁਸਾਰ ਉਪਕਰਣ ਤਿਆਰ ਕਰੋ।
- ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਸਪੈਚੁਲਾ ਭਰ ਕੇ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਲਓ ਅਤੇ ਉਸ ਵਿੱਚ 2 mL ਪਤਲਾ ਈਥੇਨਾਇਕ ਤੇਜ਼ਾਬ ਪਾਓ।
- ਭੂਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕਰਦੇ ਹੋ?
- 📭 ਚੂਨੇ ਦੇ ਤਾਜ਼ੇ ਪਾਣੀ ਵਿੱਚੋਂ ਇਸ ਗੈਸ ਨੂੰ ਲੰਘਾਓ। ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ?
- ਕੀ ਇਸ ਪਰਖ ਤੋਂ ਈਥੇਨੋਇਕ ਤੇਜ਼ਾਬ ਅਤੇ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਉਤਪੰਨ ਹੋਈ ਗੈਸ ਦਾ ਪਤਾ ਲੱਗ ਸਕਦਾ ਹੈ?
- ਹੁਣ ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦੀ ਥਾਂ ਸੋਡੀਅਮ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਨਾਲ ਇਹ ਕਿਰਿਆ ਦੁਹਰਾਓ।
 - (iii) ਕਾਰਬੋਨੇਟ ਅਤੇ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ : ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਕਾਰਬੋਨੇਟਾਂ ਅਤੇ ਹਾਈਡਰੋਜਨ ਕਾਰਬੋਨੇਟਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਲੂਣ, ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਉਤਪੰਨ ਲੂਣ ਨੂੰ ਸੋਡੀਅਮ ਐਸੀਟੇਟ ਕਹਿੰਦੇ ਹਨ।

$$\begin{aligned} &2\text{CH}_3\text{COOH} + \text{Na}_2\text{CO}_3 \longrightarrow 2\text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2 \\ &\text{CH}_3\text{COOH} + \text{NaHCO}_3 \longrightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2 \end{aligned}$$

ਪ੍ਰਸ਼ਨ

- ਪ੍ਯੋਗ ਦੁਆਰਾ ਤੁਸੀਂ ਆਲਾਹਲ ਅਤੇ ਕਾਰਬਾ ਜੋ: ਤੇਜ਼ਾਬ ਵਿੱਚ ਕਿਵੇਂ ਅੰਤਰ ਕਰ ਸਕਦੇ ਹੈ?
- 2. ਆਕਸੀਕਾਰਕ ਦੀ ਹੋਏ ਹਨ?

4.5 ਸਾਬਣ ਅਤੇ ਮੈਲ ਨਿਵਾਰਕ

ਕਿਰਿਆ 4.10

- ਦੋ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ 10-10 mL ਪਾਣੀ ਲਓ।
- ਦੋਵੇਂ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ ਇੱਕ ਇੱਕ ਬੂੰਦ ਤੇਲ (ਭੌਜਨ ਪਕਾਉਣ ਵਾਲਾ ਤੇਲ) ਪਾਓ ਅਤੇ ਇਹਨਾਂ ਨੂੰ 'A' ਅਤੇ 'B' ਦੇ ਨਾਂ ਦਿਓ।
- ਪਰਖ ਨਲੀ 'B' ਵਿੱਚ ਸਾਬਣ ਦੇ ਘੋਲ਼ ਦੀਆਂ ਕੁੱਝ ਬੁੰਦਾਂ ਪਾਓ।
- 👅 ਦੋਵੇਂ ਪਰਖ ਨਲੀਆਂ ਨੂੰ ਇੱਕੋ ਜਿਹੇ ਸਮੇਂ ਤੱਕ ਜ਼ੋਰ ਜ਼ੋਰ ਨਾਲ ਹਿਲਾਓ।
- ਕੀ ਹਿਲਾਉਣਾ ਬੰਦ ਕਰਨ ਦੇ ਪਿੱਛੋਂ ਦੋਵੇਂ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ ਤੁਸੀਂ ਤੇਲ ਅਤੇ ਪਾਣੀ ਦੀਆਂ ਪਰਤਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਵੇਖ ਸਕਦੇ ਹੋ?
- ਕੁੱਝ ਦੇਰ ਤੱਕ ਦੋਵੇਂ ਪਰਖ ਨਲੀਆ ਨੂੰ ਟਕਾਊ ਅਵਸਥਾ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫਿਰ ਇਹਨਾਂ ਨੂੰ ਵੇਖੋ। ਕੀ ਤੇਲ ਦੀ ਪਰਤ ਵੱਖ ਹੋ ਜਾਂਦੀ ਹੈ। ਅਜਿਹਾ ਕਿਸ ਪਰਖ ਨਲੀ ਵਿੱਚ ਪਹਿਲਾਂ ਹੁੰਦਾ ਹੈ?

ਚਿੱਤਰ 4.12 ਮਿਸੈੱਲ ਦਾ ਬਣਨਾ

ਇਸ ਕਿਰਿਆ ਤੋਂ ਸਫਾਈ ਵਿੱਚ ਸਾਬਣ ਦੇ ਪ੍ਰਭਾਵ ਦਾ ਪਤਾ ਲਗਦਾ ਹੈ। ਬਹੁਤ ਕਰਕੇ ਮੈਲ ਤੇਲ ਵਾਲ਼ੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਤੇਲ ਪਾਣੀ ਵਿੱਚ ਅਘੁਲਣਸ਼ੀਲ ਹੁੰਦੇ ਹਨ। ਸਾਬਣ ਦੇ ਅਣੂ ਲੰਬੀਆਂ ਲੜੀਆਂ ਵਾਲੇ ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ ਦੇ ਸੋਡੀਅਮ ਜਾਂ ਪੋਟਾਸ਼ੀਅਮ ਲੂਣ ਹੁੰਦੇ ਹਨ। ਸਾਬਣ ਦਾ ਆਇਨੀ ਭਾਗ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਕਿ ਕਾਰਬਨ ਲੜੀ ਤੇਲ ਵਿੱਚ ਘੁਲ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਸਾਬਣ ਦੇ ਅਣੂ ਮਿਸੈੱਲਈ ਰਚਨਾ ਤਿਆਰ ਕਰਦੇ ਹਨ (ਚਿੱਤਰ 4.12) ਜਿੱਥੇ ਅਣੂ ਦਾ ਇੱਕ ਸਿਰਾ ਤੇਲ ਕਣ ਦੇ ਵੱਲ ਅਤੇ ਆਇਨੀ ਸਿਰਾ ਬਾਹਰ ਵੱਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਇਮਲਸ਼ਨ (emulion) ਬਣਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਸਾਬਣ ਦਾ ਮਿਸੈੱਲ ਮੈਲ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ ਅਤੇ ਸਾਡੇ ਕੱਪੜੇ ਸਾਫ ਹੋ ਜਾਂਦੇ ਹਨ (ਚਿੱਤਰ 4.13)।

ਕੀ ਤੁਸੀਂ ਮਿਸੈੱਲ ਦੀ ਰਚਨਾ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਸਾਬਣ ਨੂੰ ਹਾਈਡਰੋਕਾਰਬਨ ਵਿੱਚ ਘੋਲਣ ਨਾਲ ਉਤਪੰਨ ਹੋਦਾ ਹੈ?

ਮਿਸੈੱਲ (Micelles)

ਸਾਬਣ ਦੇ ਅਣੂ ਅਜਿਹੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਦੇ ਗੁਣ ਵੱਖ ਵੱਖ ਹੁੰਦੇ ਹਨ। ਪਾਣੀ (ਜਲ) ਵਿੱਚ ਘੁਲਣਵਾਲੇ ਇੱਕ ਸਿਰੇ ਨੂੰ ਜਲ ਸਨੇਹੀ (Hydrophillic) ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਹਾਈਡਰੋਕਾਰਬਨ ਲੜੀ ਵਾਲੇ, ਚਿਕਨਾਈ (ਮੈਲ) ਵਿੱਚ ਘੁਲਣ ਵਾਲੇ ਦੂਜੇ ਸਿਰੇ ਨੂੰ ਜਲ ਵਿਰੋਧੀ (Hydrophobic) ਆਖਦੇ ਹਨ। ਜਦੋਂ ਸਾਬਣ ਪਾਣੀ ਦੀ ਸਤਹ

ਤੇ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਦੇ ਅਣੂ ਆਪਣੇ ਆਪ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸਥਾਪਿਤ ਕਰ ਲੈਂਦੇ ਹਨ ਕਿ ਇਹਨਾਂ ਦਾ ਆਇਨੀ ਸਿਰਾ ਪਾਣੀ ਦੇ ਅੰਦਰ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿ ਹਾਈਡਰੋਕਾਰਬਨ ਪੂਛ (ਦੂਜਾ ਸਿਰਾ) ਪਾਣੀ ਦੇ ਬਾਹਰ ਹੁੰਦਾ ਹੈ। ਪਾਣੀ ਦੇ ਅੰਦਰ ਇਹਨਾਂ ਅਣੂਆਂ ਦੀ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਅਵਸਥਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਇਹਨਾਂ ਦਾ ਹਾਈਡਰੋਕਾਬਨ ਸਿਰਾ ਪਾਣੀ ਤੋਂ ਬਾਹਰ ਰਹਿੰਦਾ ਹੈ। ਅਜਿਹਾ

ਅਣੂਆਂ ਦਾ ਗੁੱਛਾ ਬਣਨ ਕਰਕੇ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਜਲ ਵਿਰੋਧੀ ਪੂਛ ਗੁੱਛੇ ਦੇ ਅੰਤਰਿਕ ਅੰਦਰਲੇ ਹਿੱਸੇ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।ਜਦੋਂ ਕਿ ਇਸ ਦਾ ਆਇਨੀ ਸਿਰਾ ਗੁੱਛੇ ਦੀ ਸਤਹ ਤੇ ਹੁੰਦਾ ਹੈ।ਇਸ ਰਚਨਾ ਨੂੰ ਮਿਸੈੱਲ ਕਹਿੰਦੇ ਹਨ।

ਕਿਰਿਆ 4.11

- ਵੱਖ ਵੱਖ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ 10-10 mL ਕਸ਼ੀਦਿਆ ਪਾਣੀ (ਮੀਂਹ ਦਾ ਪਾਣੀ)
 ਅਤੇ ਭਾਰਾ ਪਾਣੀ (ਹੈਂਡ ਪੰਪ ਜਾਂ ਖੁਹ ਦਾ ਪਾਣੀ) ਲਓ।
- ਦੋਨਾਂ ਵਿੱਚ ਸਾਬਣ ਦੇ ਘੱਲ਼ ਦੀਆਂ ਕੁੱਝ ਬੁੰਦਾਂ ਪਾਓ।
- ਦੋਵੇਂ ਪਰਖ ਨਲੀਆਂ ਨੂੰ ਇੱਕ ਹੀ ਸਮੇਂ ਤੱਕ ਹਿਲਾਓ ਅਤੇ ਬਣਨ ਵਾਲੀ ਝੱਗ ਵੱਲ ਧਿਆਨ ਦਿਓ।
- ਕਿਸ ਪਰਖ ਨਲੀ ਵਿੱਚ ਵਧੇਰੇ ਝੱਗ ਬਣਦੀ ਹੈ?
- ਕਿਸ ਪਰਖ ਨਲੀ ਵਿੱਚ ਚਿੱਟੇ ਦਹੀਂ ਜਿਹਾ ਅਵਖੇਪ ਬਣਦਾ ਹੈ?
- ਅਧਿਆਪਕ ਜੀ ਲਈ ਨੌਟ : ਜੇ ਤੁਹਾਡੇ ਆਸਪਾਸ ਕਠੌਰ ਪਾਣੀ ਨਹੀਂ ਹੈ ਤਾਂ ਸਾਧਾਰਨ ਪਾਣੀ ਵਿੱਚ ਮੈਗਨੀਸ਼ੀਅਮ ਜਾਂ ਕੈਲਸ਼ੀਅਮ ਦੇ ਹਾਈਡਰੋਜਨ / ਕਾਰਬੋਨੇਟ / ਸਲਫੇਟ / ਕਲੌਰਾਈਡ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲ਼ ਕੇ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ।

ਕਿਰਿਆ 4.12

- ਦੋ ਪਰਖ ਨਲੀਆਂ ਲਓ। ਹਰ ਇੱਕ ਵਿੱਚ 10-10 mL ਭਾਰਾ ਪਾਣੀ ਪਾਓ।
- ਇੱਕ ਵਿੱਚ ਸਾਬਣ ਦੇ ਘੋਲ ਦੀਆਂ ਪੰਜ ਬੂੰਦਾਂ ਅਤੇ ਦੂਜੇ ਵਿੱਚ ਪੰਜ ਬੂੰਦਾਂ ਮੈਲ ਨਿਵਾਰਕ ਦੀਆਂ ਪਾਓ।
- ਦੋਵੇਂ ਪਰਖ ਨਲੀਆਂ ਨੂੰ ਇੱਕ ਸਮੇਂ ਲਈ ਹਿਲਾਓ।
- ਕੀ ਦੋਵੇਂ ਪਰਖ ਨਲੀਆ ਵਿੱਚ ਝੱਗ ਦੀ ਮਾਤਰਾ ਬਰਾਬਰ ਹੈ।
- ਕਿਸ ਪਰਖ਼,ਨਲੀ ਵਿੱਚ ਦਹੀਂ ਵਰਗਾ ਠੋਸ ਪਦਾਰਥ ਬਣਿਆ ਹੈ?

ਕੀ ਤੁਸੀਂ ਕਦੇ ਨਹਾਉਂਦੇ ਕਰਦੇ ਸਮੇਂ ਇਹ ਅਨੁਭਵ ਕੀਤਾ ਹੈ ਕਿ ਝੱਗ ਮੁਸ਼ਕਲ ਨਾਲ ਬਣ ਰਹੀ ਹੈ ਅਤੇ ਪਾਣੀ ਨਾਲ ਸਰੀਰ ਨੂੰ ਧੋ ਲੈਣ ਪਿੱਛੋਂ ਵੀ ਕੁੱਝ ਅਘੁਲਣਸ਼ੀਲ ਪਦਾਰਥ (ਸਕੰਮ) ਜੰਮਿਆ ਰਹਿੰਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਸਾਬਣ ਭਾਰੇ ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ ਕੈਲਸ਼ੀਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਲੂਣਾਂ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਤੁਹਾਨੂੰ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਸਾਬਣ ਦਾ ਉਪਯੋਗ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਇੱਕ ਹੋਰ ਪ੍ਰਕਾਰ ਦੇ ਯੌਗਿਕ ਭਾਵ ਮੈਲ ਨਿਵਾਰਕ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਇਸ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਮੈਲ ਨਿਵਾਰਕ ਕਾਰਬਨ ਲੰਬੀ ਲੜੀ ਵਾਲੇ ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬਾਂ ਦੇ ਗੁੱਟ ਦੇ ਆਮ ਕਰਕੇ ਅਮੋਨੀਅਮ ਅਤੇ ਸਲਫੋਨੇਟ ਲੂਣ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਯੋਗਿਕਾਂ ਦੇ ਚਾਰਜਿਤ ਸਿਰੇ ਕਠੌਰ ਪਾਣੀ ਵਿੱਚ ਮੌਜੂਦ ਕੈਲਸ਼ੀਅਮ ਅਤੇ ਮੈਗਨੀਸੀਅਮ ਆਇਨਾਂ ਨਾਲ ਅਘੁਲਣਸ਼ੀਲ ਪਦਾਰਥ ਨਹੀਂ ਬਣਾਉਂਦੇ। ਇਸ ਪ੍ਰਕਾਰ ਇਹ ਕਠੌਰ ਪਾਣੀ ਵਿੱਚ ਵੀ ਅਸਰਦਾਰ ਬਣੇ ਰਹਿੰਦੇ ਹਨ। ਆਮ ਕਰਕੇ ਮੈਲ ਨਿਵਾਰਕਾਂ ਦਾ ਉਪਯੋਗ ਸੈਂਪੂ ਅਤੇ ਕੱਪੜੇ ਧੋਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਦੀ ਤਿਆਰੀ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਕੀ ਤੁਸੀਂ ਮੈਲ-ਨਿਵਾਰਕ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਪਾਣੀ ਕਠੋਰ ਹੈ ਜਾਂ ਨਹੀਂ ਹੈ?
- 2. ਲੱਕੀ ਕਈ ਪ੍ਰਕਾਰ ਨਾਲ ਕੱਪੜੇ ਧੋਂਦੇ ਹਨ। ਆਮ ਕਰਕੇ ਸਾਬਣ ਲਗਾਉਣ ਪਿੱਛੋਂ ਲੱਕੀ ਕੱਪੜੇ ਨੂੰ ਪੱਥਰ ਉੱਤੇ ਪਟਕਦੇ ਹਨ ਜਾਂ ਮੋਗਰੀ (ਬਾਪੀ) ਨਾਲ ਕੁੱਟਦੇ ਹਨ। ਬਰੱਸ਼ ਨਾਲ ਰਗੜਦੇ ਹਨ ਜਾਂ ਕੱਪੜੇ ਧੋਣ ਦੀ ਮਸ਼ੀਨ ਵਿੱਚ ਤੇਜ਼ੀ ਨਾਲ ਹਿਲਾਉਂਦੇ ਹਨ। ਕੱਪੜਿਆਂ ਨੂੰ ਧੋਣ ਲਈ ਉਹਨਾਂ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ ਹਿਲਾਉਣਾ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਕਾਰਬਨ ਇੱਕ ਬਹੁਮੁਖੀ ਤੱਤ ਹੈ ਜੋ ਸਾਰਿਆਂ ਜੀਵਾਂ ਅਤੇ ਸਾਡੇ ਉਪਯੋਗ ਵਿੱਚ ਆਉਣ ਵਾਲੀਆਂ ਵਸਤਾਂ ਦਾ ਆਧਾਰ ਹੈ।
- 💌 ਕਾਰਬਨ ਦੀ ਚੌਂਹ ਸੰਯੋਜਕਤਾ ਅਤੇ ਲੜੀਬੰਧਨ ਕਾਰਨ ਕਾਰਬਨ ਬਹੁਭਾਂਤ ਦੇ ਯੌਗਿਕ ਬਣਾਉਂਦੀ ਹੈ।
- ਆਪੋ ਆਪਣੇ ਬਾਹਰੀ ਸੈੱਲਾਂ ਨੂੰ ਪੂਰਣ ਤੌਰ ਤੇ ਭਰਨ ਲਈ ਦੇ ਪ੍ਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਇਲੈੱਕਟਰਾਨਾਂ ਦੀ ਸਾਂਝ ਦੁਆਰਾ ਸਹਿਸੇਯੋਜਕ ਬੰਧਨ ਬਣਦਾ ਹੈ।
- ਕਾਰਬਨ ਆਪਣੇ ਜਾਂ ਦੂਜੇ ਤੱਤਾਂ ਜਿਵੇਂ ਕਿ ਹਾਈਡਰੋਜਨ, ਆਕਸੀਜਨ, ਨਾਈਟਰੋਜਨ ਅਤੇ ਕਲੋਰੀਨ ਨਾਲ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਬਣਾਉਂਦੀ ਹੈ।
- ਕਾਰਬਨ ਅਜਿਹੇ ਯੌਗਿਕ ਵੀ ਬਣਾਉਂਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿਚਕਾਰ ਦੂਹਰੇ ਜਾਂ ਤੀਹਰੇ ਬੰਧਨ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਾਰਬਨ ਲੜੀਆਂ ਸਿੱਧੀਆਂ ਲੜੀਆਂ ਜਾਂ ਸਖ਼ਿਤ ਛੱਲਿਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋ ਸਕਦੀਆ ਹਨ।
- ਕਾਰਬਨ ਦੀ ਲੜੀ ਬੰਧਨ ਦੀ ਸਮਰੱਥਾ ਦੇ ਕਾਰਨ ਯੋਗਿਕਾਂ ਦੀ ਇੱਕ ਸਮਜਾਤੀ ਸ਼੍ਰੇਣੀ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਵੱਖ ਵੱਖ ਲੰਬਾਈਆਂ ਵਾਲੀਆਂ ਕਾਰਬਨ ਲੜੀਆਂ ਨਾਲ ਇੱਕੋ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ।
- ਅਲਕੋਹਲ, ਐਲਡੀਹਾਈਡ, ਕੀਟੋਨ ਅਤੇ ਕਾਰਬਾਕਸਲਿਕ ਐਸਿਡ ਜਿਹੇ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਜਿਨ੍ਹਾਂ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਨਾਲ ਲੱਗੇ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।
- 🏮 ਕਾਰਬਨ ਅਤੇ ਇਸ ਦੇ ਯੋਗਿਕ ਬਾਲਣ ਦੇ ਸਾਡੇ ਕੁੱਝ ਮੁੱਖ ਸਰੋਤ ਹਨ।
- ਈਥੇਨੌਲ ਅਤੇ ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਸਾਡੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਕਾਰਬਨ ਯੋਗਿਕ ਹਨ।
- ਸਾਬਣ ਅਤੇ ਮੈਲ ਨਿਵਾਰਕ ਦੀ ਪ੍ਰਕਿਰਿਆ ਇਹਨਾਂ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਜਲ ਸਨੇਹੀ ਅਤੇ ਜਲ ਵਿਰੋਧੀ ਦੋਵੇਂ ਸਮੂਹਾਂ ਦੀ ਮੌਜ਼ੂਦਗੀ ਉੱਤੇ ਆਧਾਰਿਤ ਹੈ ਇਹਨਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਤੇਲ ਵਾਲ਼ੀ ਮੈਲ ਦਾ ਇਮਲਸ਼ਨ ਬਣਦਾ ਹੈ ਅਤੇ ਮੈਲ ਬਾਹਰ ਨਿਕਲਦੀ ਹੈ।

ਅਭਿਆਸ

- 1. ਈਥੇਨ ਦਾ ਅਣੂ ਵੀ ਸੂਤਰ C_2H_8 ਹੈ, ਇਸ ਵਿੱਚ :
 - (a) 6 ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਹਨ।
 - (b) 7 ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਹਨ।
 - (c) 8 ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਹਨ।
 - (d) 9 ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਹਨ।
- 2. ਬਿਊਟੇਨੋਨ ਚਾਰ ਕਾਰਬਨ ਯੋਗਿਕ ਹੈ ਜਿਸ ਦਾ ਕਿਰਿਆਤਮਕ ਸਮੂਹ ਹੈ :
 - (a) ਕਾਰਬਾਕਸਲਿਕ ਤੇਜ਼ਾਬ
- (b) ਐਲਡੀਹਾਈਡ

(c) बीटेंਨ

- (d) ਅਲਕੋਹਲ
- ਭੋਜਨ ਪਕਾਉਣ ਸਮੇਂ ਜੇਕਰ ਭਾਂਡਿਆਂ ਦਾ ਥੱਲਾ ਬਾਹਰੋਂ ਕਾਲਾ ਹੋ ਰਿਹਾ ਹੋਵੇ ਤਾਂ ਇਸ ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ :
 - (a) ਭੋਜਨ ਪੂਰੇ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਪੱਕਿਆ ਹੈ।
 - (b) ਬਾਲਣ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਹੀਂ ਜਲ ਰਿਹਾ ਹੈ।
 - (c) ਬਾਲਣ ਸਿੱਲ੍ਹਾ ਹੈ।
 - (d) ਬਾਲਣ ਪੂਰੀ ਤਰ੍ਹਾਂ ਜਲ ਰਿਹਾ ਹੈ।
- 4. CH,Cl ਵਿੱਚ ਬੰਧਨਾਂ ਦੀ ਉਤਪਤੀ ਦੇ ਆਧਾਰ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੀ ਪਕਿਰਤੀ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।

- 5. ਹੇਠਾਂ ਦਿੱਤਿਆਂ ਲਈ ਇਲੈੱਕਟਰਾਨ ਬਿੰਦੂ ਰਚਨਾ ਬਣਾਓ :
 - (a) ਈਥੇਨੋਇਕ ਤੇਜ਼ਾਬ
 - (b) H₂S
 - (c) ਪਰੋਪੇਨੋਨ
 - (d) F,
- ਸਮਜਾਤੀ ਲੜੀ ਕੀ ਹੁੰਦੀ ਹੈ? ਉਦਾਹਰਨ ਦੇ ਕੇ ਵਿਆਖਿਆ ਕਰੋ।
- 7. ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਈਥੇਨੌਲ ਅਤੇ ਈਥੇਨੌਇਕ ਤੇਜ਼ਾਬ ਵਿਚਕਾਰ ਤੁਸੀਂ ਕਿਵੇਂ ਅੰਤਰ ਕਰੋਗੇ?
- ਜਦੋਂ ਸਾਬਣ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਮਿਸੈੱਲ ਦਾ ਨਿਰਮਾਣ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਕੀ ਈਥੇਨੋਲ ਜਿਹੇ ਦੂਜੇ ਘੋਲਕਾਂ ਵਿੱਚ ਵੀ ਮਿਸੈੱਲ ਦਾ ਨਿਰਮਾਣ ਹੋਵੇਗਾ।
- 9. ਕਾਰਬਨ ਅਤੇ ਉਸ ਦੇ ਯੌਂਗਿਕਾਂ ਦਾ ਉਪਯੋਗ ਬਹੁਤ ਸਾਰੇ ਕੈਮਾਂ ਵਿੱਚ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
- 10. ਜਦੋਂ ਕਠੌਰ ਪਾਣੀ ਨੂੰ ਸਾਬਣ ਨਾਲ ਮਿਲਾਇਆ ਜਾਂਦਾ ਤਾਂ ਅਵਖੇਪ (Scum) ਦੇ ਬਣਨ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 11. ਜੇਕਰ ਤੁਸੀਂ ਲਿਟਮਸ ਪੱਤਰ (ਲਾਲ ਅਤੇ ਨੀਲੇ) ਨਾਲ ਸਾਬਣ ਦੇ ਘੋਲ ਦੀ ਪਰਖ ਕਰੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਤਬਦੀਲੀ ਵੇਖੋਗੇ?
- 12. ਹਾਈਡਰੋਜਨੀਕਰਨ ਤੋਂ ਕੀ ਭਾਵ ਹੈ? ਇਸ ਦਾ ਉਦਯੋਗ ਵਿੱਚ ਕੀ ਉਪਯੋਗ ਹੈ?
- 13. ਹੇਠ ਲਿਖੇ ਹਾਈਡਰੋਕਾਰਬਨ ਵਿੱਚ ਜੋੜਾਤਮਕ ਪ੍ਰਤਿਕਿਰਿਆ ਕਿਨ੍ਹਾਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ? $C_2H_6, C_3H_8, C_3H_6, C_2H_2$ ਅਤੇ CH_4
- 14. ਮੁੱਖਣ ਅਤੇ ਖਾਣਾ ਬਨਾਉਣ ਵਾਲੇ ਤੇਲ ਵਿੱਚ ਰਸਾਇਣਿਕ ਤੌਰ ਤੇ ਅੰਤਰ ਦਰਸਾਉਣ ਲਈ ਟੈਸਟ ਦਿਓ।
- 15. ਸਾਬਣ ਦੁਆਰਾ ਸਫਾਈਕਰਨ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।

ਗਰੁੱਪ ਕਿਰਿਆ

- 🛘 🏮 ਅਣਵੀ ਮਾਡਲ ਕਿਟ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਪੜ੍ਹੇ ਯੋਗਿਕਾਂ ਦੇ ਮਾਡਲ ਬਣਾਓ।
- II ► ਇੱਕ ਬੀਕਰ ਵਿੱਚ 20 mL ਕੈਸਟਰ ਤੇਲ/ਵੜੇਵਿਆਂ ਦਾ ਤੇਲ/ਸੋਇਆਬੀਨ ਦਾ ਤੇਲ ਲਓ। ਇਸ ਵਿੱਚ 20% ਸੋਡੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ ਦਾ 30 mL ਘੋਲ਼ ਪਾਓ। ਮਿਸ਼ਰਣ ਨੂੰ ਗਰਮ ਕਰਦੇ ਹੋਏ ਕੁੱਝ ਮਿੰਟਾਂ ਤੱਕ ਹਿਲਾਉਂਦੇ ਰਹੋ ਜਦ ਤੱਕ ਇਹ ਗਾੜ੍ਹਾ ਨਾ ਹੋ ਜਾਵੇ। ਇਸ ਵਿੱਚ 5-10 g ਸਾਧਾਰਨ ਲੂਣ ਮਿਲਾਓ। ਮਿਸ਼ਰਨ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਹਿਲਾਉਣ ਉਪਰੰਤ ਠੰਢਾ ਹੋਣ ਦਿਓ।
 - ਸਾਬਣ ਨੂੰ ਤੁਸੀਂ ਦਿਲਖਿੱਚਵੇਂ ਆਕਾਰ ਵਿੱਚ ਕੱਟ ਸਕਦੇ ਹੈ। ਉਕਤ ਕਿਰਿਆ ਦੌਰਾਨ ਸਾਬਣ ਦੇ ਜਮਣ ਤੋਂ ਪਹਿਲਾਂ ਤੁਸੀਂ ਇਸ ਵਿੱਚ ਇਤਰ ਮਿਲਾ ਸਕਦੇ ਹੈ।

ਅਧਿਆਇ5 ਤੱਤਾਂ ਦਾ ਆਵਰਤੀ ਵਰਗੀਕਰਨ

(Periodic Classification of Elements)

ਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਅਸੀਂ ਸਿੱਖਿਆ ਹੈ ਕਿ ਸਾਡੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਮਾਦਾ ਤੱਤਾਂ, ਮਿਸ਼ਰਣਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਦੇ ਰੂਪ ਵਿਚਰਦਾ ਹੈ ਅਤੇ ਤੱਤ ਇੱਕ ਹੀ ਪ੍ਰਕਾਰ ਦੇ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਕੀ ਤੁਹਾਨੂੰ ਪਤਾ ਹੈ ਹੁਣ ਤੱਕ ਕਿੰਨੇ ਤੱਤ ਪਤਾ ਹਨ? ਅੱਜ ਤੱਕ ਸਾਨੂੰ 116 ਤੱਤਾਂ ਦਾ ਪਤਾ ਹੈ।ਸੈਨ 1800 ਦੇ ਨੇੜੇ-ਤੇੜੇ ਸਿਰਫ 30 ਤੱਤਾਂ ਦੀ ਜਾਣਕਾਰੀ ਸੀ। ਇਹਨਾਂ ਸਾਰੇ ਤੱਤਾਂ ਦੀਆਂ ਵੱਖ ਵਿਸ਼ੇਸਤਾਵਾਂ ਹਨ।

ਜਿਵੇਂ ਜਿਵੇਂ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੀ ਖੋਜ ਹੁੰਦੀ ਗਈ, ਵਿਗਿਆਨੀਆਂ ਨੇ ਇਹਨਾਂ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਬਾਰੇ ਵੱਧ ਤੋਂ ਵੱਧ ਜਾਣਕਾਰੀ ਇਕੱਤਰ ਕੀਤੀ। ਉਹਨਾਂ ਨੂੰ ਤੱਤਾਂ ਬਾਰੇ ਜੋ ਕੁੱਝ ਪਤਾ ਸੀ ਉਸ ਨੂੰ ਸਿਲਸਿਲੇਵਾਰ ਕਰਨ ਵਿੱਚ ਕਠਿਨਾਈ ਆਈ। ਉਹਨਾਂ ਨੇ ਇਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਅਜਿਹਾ ਪ੍ਤਿਰੂਪ (Pattern) ਲੱਭਣਾ ਸ਼ੁਰੂ ਕੀਤਾ ਜਿਸ ਦੇ ਆਧਾਰ ਨੂੰ ਮੁੱਖ ਰੱਖ ਕੇ ਤੱਤਾਂ ਦੀ ਵੱਡੀ ਗਿਣਤੀ ਦਾ ਅਧਿਐਨ ਸੌਖਿਆਂ ਹੀ ਹੋ ਸਕੇ।

5.1 ਅਵਿਵਸਥਾ ਤੋਂ ਵਿਵਸਥਾ ਕਰਨਾ-ਤੱਤਾਂ ਦੇ ਵਰਗੀਕਰਨ ਦੇ ਮੁੱਢਲੇ ਯਤਨ

(MAKING ORDER OUT OF CHAOS-EARLY ATTEMPTS AT THE CLASSIFICATION OF ELEMENTS)

ਅਸੀਂ ਸਿੱਖਿਆ ਹੈ ਕਿ ਕਿਵੇਂ ਵਸਤੂਆਂ ਜਾਂ ਪ੍ਰਾਣੀਆਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵੱਖ - ਵੱਖ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵੀ ਸਾਨੂੰ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਤਰਤੀਬ ਵਿੱਚ ਹੋਣ ਦੇ ਪ੍ਰਮਾਣ ਮਿਲੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ, ਦੁਕਾਨਾਂ ਵਿੱਚ ਸਾਬਣਾਂ ਨੂੰ ਨਾਲ ਨਾਲ ਇੱਕ ਥਾਂ ਤੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਕਿ ਬਿਸਕੁਟਾਂ ਨੂੰ ਨਾਲ ਨਾਲ ਦੂਜੇ ਥਾਂ ਤੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਵਿਗਿਆਨੀਆਂ ਨੇ ਵੀ ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਵਰਗੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਕਈ ਯਤਨ ਕੀਤੇ ਤਾਂ ਜੋ ਬੇਤਰਤੀਬ ਤੋਂ ਤਰਤੀਬ ਵਾਲੀ ਸਥਿਤੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕੇ।

ਵਰਗੀਕਰਨ ਦੇ ਪਹਿਲੇ ਯਤਨਾਂ ਦੁਆਰਾ ਉਸ ਸਮੇਂ ਤੱਕ ਖੋਜੇ ਗਏ ਤੱਤਾਂ ਨੂੰ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਵੈਡਿਆ ਗਿਆ। ਜਿਵੇਂ ਜਿਵੇਂ ਤੱਤਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਗੁਣਾਂ ਬਾਰੇ ਸਾਡੀ ਜਾਣਕਾਰੀ ਵਧਦੀ ਗਈ ਤਿਵੇਂ ਤਿਵੇਂ ਉਹਨਾਂ ਨੂੰ ਅੱਗੇ ਵਰਗੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਯਤਨ ਕੀਤੇ ਗਏ।

5.1.1 ਡਾਬਰਨੀਅਰ ਦੀ ਤਿੱਕੜੀ (DOBEREINER'S TRIADS)

ਸੰਨ 1817 ਵਿੱਚ ਜਰਮਨ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਜਾਹਨ ਵੁਲਫਗਾਂਗ ਡਾਬਰਨੀਅਰ ਨੇ ਸਮਾਨ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਗੁੱਟਾਂ ਵਿੱਚ ਤਰਤੀਬ ਦੇਣ ਦਾ ਯਤਨ ਕੀਤਾ। ਉਸ ਨੇ ਤਿੰਨ ਤਿੰਨ ਤੱਤਾਂ ਵਾਲੇ ਕੁੱਝ ਗੁੱਟਾਂ ਨੂੰ ਚੁਣਿਆ ਅਤੇ ਇਹਨਾਂ ਗੁੱਟਾਂ ਨੂੰ ਤਿੱਕੜੀਆਂ ਦਾ ਨਾਂ ਦਿੱਤਾ।ਡਾਬਰਨੀਅਰ ਨੇ ਦੱਸਿਆ ਕਿ ਤਿੱਕੜੀ ਦੇ ਤਿੰਨਾਂ ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਰੱਖਣ ਨਾਲ ਵਿਚਕਾਰਲੇ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ ਦੂਜੇ ਦੋ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਦਾ ਲਗਭਗ ਮੱਧਮਾਨ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਨ ਵਜੋਂ ਲਿਥੀਅਮ (Li), ਸੋਡੀਅਮ (Na) ਪੋਟਾਸ਼ੀਅਮ (K) ਵਾਲੀ ਤਿੱਕੜੀ ਵੱਲ ਧਿਆਨ ਦਿਓ ਜਿਸ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਲੜੀਵਾਰ 6.9, 23.0 ਅਤੇ 39.0 ਹਨ। ਲਿਥੀਅਮ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਦਾ ਮੱਧਮਾਨ ਕੀ ਹੈ? ਸੋਡੀਅਮ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਨਾਲ ਇਸ ਦੀ ਤੁਲਨਾ ਕਿਵੇਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ?

ਹੇਠਲੀ ਸਾਰਨੀ 5.1 ਵਿੱਚ ਤਿੰਨ ਤੱਤਾਂ ਦੇ ਕੁੱਝ ਗੁੱਟ ਦਿੱਤੇ ਗਏ ਹਨ। ਇਹਨਾਂ ਤੱਤਾਂ ਨੂੰ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਨੂੰ ਤਰਤੀਬ ਦਿੱਤੀ ਗਈ ਹੈ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਕਿਹੜਾ ਗੁੱਟ ਡਾਬਰਨੀਅਰ ਤਿੱਕੜੀ ਬਣਾਉਂਦਾ ਹੈ?

ਸਾਰਨੀ 5.1

ਗੁੱਟ ∧ ਦੇ ਤੱਤ	ਪਰਮਾਣੂ ਪੁੰਜ	ਗੁੱਟ B ਦੇ ਤੱਤ	ਪਰਮਾਣੂ ਪੁੰਜ	ਗੁੱਟ ¢ ਦੇ ਤੱਤ	ਪਰਮਾਣੂ ਪੁੰਜ
N	14.0	Ca	40.1	Cl	35.5
P	31.0	Sr	87.6	Br	79.9
As	74.9	Ba	137.3	1	126.9

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਗੁੱਟ B ਅਤੇ ਗੁੱਟ C ਡਾਬਰਨੀਅਰ ਤਿੱਕੜੀ ਬਣਾਉਂਦੇ ਹਨ।ਡਾਬਰਨੀਅਰ ਉਸ ਸਮੇਂ ਤੱਕ ਗਿਆਤ ਤੱਤਾਂ ਵਿੱਚੋਂ ਕੇਵਲ ਤਿੰਨ ਤਿੱਕੜੀਆਂ ਹੀ ਬਣਾ ਸਕਿਆ(ਸਾਰਨੀ 5.2)।ਇਸ ਲਈ ਤਿੱਕੜੀਆਂ ਵਿੱਚ ਵਰਗੀਕਰਨ ਕਰਨ ਦਾ ਢੰਗ ਲਾਭਕਾਰੀ ਸਿੱਟਾ ਨਾ ਹੋਇਆ।

ਜੌਹਨ ਵਲਵਗਾਂਗ ਡਾਬਰਨੀਅਰ (1780-1849)

ਜੌਹਨ ਵੁਲਫਗਾਂਗ ਡਾਬਰਨੀਅਰ ਨੇ ਜਰਮਨੀ ਦੇ ਮਿਊਸ਼ਬਰਗ ਵਿੱਚ ਫਾਰਮੇਸੀ ਦੀ ਪੜ੍ਹਾਈ ਕੀਤੀ ਅਤੇ ਇਸ ਤੋਂ ਮਗਰੋਂ ਸਟਰੈਸਬਰਗ ਵਿੱਚ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਅਧਿਐਨ ਕੀਤਾ। ਫਿਰ ਉਹ ਜੇਨਾ ਵਿਸ਼ਵ ਵਿਦਿਆਲਾ ਵਿੱਚ ਰਸਾਇਣ ਅਤੇ ਫਾਰਮੇਸੀ ਦੇ ਪ੍ਰਫੈਸਰ ਬਣ ਗਏ। ਉਹਨਾਂ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਖਲਾਟੀਨਮ ਦੀ ਉਤਪ੍ਰੇਰਕ ਵਜੋਂ ਪਹਿਚਾਣ ਕੀਤੀ ਅਤੇ ਇੱਕੋ ਜਿਹੀਆਂ ਤਿੱਕੜੀਆਂ ਦੀ ਖੋਜ ਕੀਤੀ ਜਿਸ ਨਾਲ ਤੱਤਾਂ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦਾ ਵਿਕਾਸ ਹੋਇਆ।

5.1.2 ਨਿਉਲੈਂਡ ਦਾ ਅਸ਼ਟਕ ਸਿਧਾਂਤ (Newland's Octaves)

ਡਾਬਰਨੀਅਰ ਦੇ ਯਤਨਾਂ ਨੇ ਦੂਜੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਦਾ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਨਾਲ ਸੰਬੰਧ ਸਥਾਪਿਤ ਕਰਨ ਲਈ ਉਤਸ਼ਾਹਿਤ ਕੀਤਾ। ਸੰਨ 1866 ਵਿੱਚ ਅੰਗਰੇਜ਼ ਵਿਗਿਆਨੀ ਜਾਹਨ ਨਿਊਲੈਂਡ ਨੇ ਉਸ ਸਮੇਂ ਤੱਕ ਖੋਜੇ ਤੱਤਾਂ ਨੂੰ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਤਰਤੀਬ ਦਿੱਤੀ। ਉਹਨਾਂ ਨੇ ਸਭ ਤੋਂ ਘੱਟ ਪਰਮਾਣੂ ਪੁੰਜ ਵਾਲ਼ੇ ਤੱਤ ਹਾਈਡਰੋਜਨ ਤੋਂ ਸ਼ੁਰੂ ਕੀਤਾ ਅਤੇ 56ਵੇਂ ਤੱਤ ਥੋਰੀਅਮ ਤੇ ਸਮਾਪਤ ਕੀਤਾ। ਉਹਨਾਂ ਨੇ ਵੇਖਿਆ ਕਿ ਹਰ ਅੱਠਵੇਂ ਤੱਤ ਦੇ ਗੁਣ ਪਹਿਲੇ ਤੱਤ ਦੇ ਗੁਣਾਂ ਵਰਗੇ ਹਨ। ਉਹਨਾਂ ਨੇ ਇਸ ਦੀ ਤੁਲਨਾ ਸੰਗੀਤ ਦੇ ਅਸ਼ਟਕ ਨਾਲ

ਚਿੱਤਰ 5.1
ਕਲਪਨਾ ਕਰੋ ਕਿ ਤੁਹਾਨੂੰ ਅਤੇ ਤੁਹਾਡੇ ਮਿੱਤਰ ਨੂੰ ਟੁਕੜਿਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਇਕ ਪੁਰਾਣਾ ਨਕਸ਼ਾ ਮਿਲਿਆ ਹੈ। ਕੀ ਇਸ ਦੀ ਮੱਦਦ ਨਾਲ ਇੱਕ ਖ਼ਜਾਨੇ ਤੱਕ ਪਹੁੰਚਣ ਦਾ ਰਸਤਾ ਲੱਭਣਾ ਆਸਾਨ ਹੋਵੇਗਾ ਜਾਂ ਮੁਸ਼ਕਿਲ ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਵੀ ਅਜਿਹੀ ਹੀ ਬੇਤਰਤੀਬੀ ਸੀ ਕਿਉਂਕਿ ਤੱਤ ਤਾਂ ਗਿਆਤ ਸਨ ਪਰ ਉਹਨਾਂ ਦਾ ਵਰਗੀਕਰਨ ਅਤੇ ਅਧਿਐਨ ਕਿਵੇਂ ਕੀਤਾ ਜਾਵੇ ਇਸ ਦੀ ਜਾਣਕਾਰੀ ਨਹੀਂ ਸੀ।

ਸਾਰਨੀ 5.2 ਡਾਬਰਨੀਅਰ ਦੀਆਂ ਤਿੱਕੜੀਆਂ

Li	Ca	Cl
Na	Sr	Br
К	Ba	1

ਕੀਤੀ ਅਤੇ ਇਸ ਨੂੰ 'ਅਸ਼ਟਕ ਦਾ ਸਿਧਾਂਤ' ਦਾ ਨਾਂ ਦਿੱਤਾ। ਇਸ ਨੂੰ ਹੁਣ 'ਨਿਊਲੈਂਡ ਦੇ ਅਸ਼ਟਕ ਸਿਧਾਂਤ ਵਜੋਂ' ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਨਿਊਲੈਂਡ ਦੇ ਅਸ਼ਟਕ ਵਿੱਚ ਲਿੱਥੀਅਮ ਅਤੇ ਸੋਡੀਅਮ ਦੇ ਗੁਣ ਇੱਕੋ ਜਿਹੇ ਸਨ। ਸੋਡੀਅਮ ਲਿਥੀਅਮ ਤੋਂ ਮਗਰੋਂ ਅੱਠਵਾਂ ਤੱਤ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਬੈਰਿਲੀਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਆਪਸ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਨਿਊਲੈਂਡ ਦੇ ਅਸ਼ਟਕਾਂ ਦੇ ਮੂਲ ਰੂਪ ਦਾ ਇੱਕ ਭਾਗ ਸਾਰਨੀ 5.3 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਸਾਰਨੀ 5.3 ਨਿਉਲੈਂਡ ਦੇ ਅਸ਼ਟਕ

ਸੰਗੀਤ ਦੇ ਸੂਰ

मा (डी)	वे (व)	ਗਾ (ਮੀ)	ਮਾ (ਫਾ)	धा (म)	ਧਾ (ਲ)	ਨੀ (ਟੀ)
н	Li	W Be	В	C	N	0
- Pulled	Na	Mg	Al	Si	P	S
CI	K	Ca	Cr	TI	Mn	Fe
Co ਅਤੇ Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce ਅਤੇ La	Zr	=	

^^^^

ਕੀ ਤੁਸੀਂ ਸੰਗੀਤ ਦੇ ਸੂਰਾਂ ਨੂੰ ਜਾਣਦੇ ਹੋ?

ਭਾਰਤੀ ਸੰਗੀਤ ਪ੍ਰਣਾਲੀ ਵਿੱਚ ਸੰਗੀਤ ਦੇ ਸੱਤ ਸ਼ੁਰ ਹੁੰਦੇ ਹਨ : ਸਾ, ਰੇ, ਗਾ ਮਾ ਪਾ ਧਾ ਨੀ। ਪੱਛਮੀ ਸੰਗੀਤ ਵਿੱਚ ਲੋਕੀ ਇਹਨਾਂ ਸੁਰਾਂ ਦਾ ਪ੍ਰਯੋਗ ਇਸ ਤਰ੍ਹਾਂ ਕਰਦੇ ਹਨ : ਡੀ, ਰੇ, ਮੀ ਫਾ, ਸ, ਲ, ਟੀ। ਸੁਰ ਦੇ ਸਕੇਲ ਟੋਨ ਅਤੇ ਸੈਮੀਟੋਨ ਦੀ ਪੂਰੀ ਜਾਂ ਅੱਧੀ ਆਵ੍ਤਿਤੀ ਤੋਂ ਵੱਖ ਕੀਤੇ ਗਏ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਸੁਰਾਂ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਕੋਈ ਸੰਗੀਤਕਾਰ ਗੀਤ ਦੇ ਸੰਗੀਤ ਦੀ ਰਚਨਾ ਕਰਦਾ ਹੈ। ਸੁਭਾਵਕ ਹੈ ਕਿ ਕੁੱਝ ਸੁਰ ਬਾਰ ਬਾਰ ਦੁਹਰਾਏ ਜਾਂਦੇ ਹਨ। ਹਰ ਇੱਕ ਅੱਠਵਾਂ ਸੁਰ ਪਹਿਲੇ ਸੁਰ ਜਿਹਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅਗਲੀ ਪੰਕਤੀ ਦਾ ਪਹਿਲਾ ਸਰ ਹੁੰਦਾ ਹੈ।

- ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਅਸ਼ਟਕ ਦਾ ਸਿਧਾਂਤ ਕੇਵਲ ਕੈਲਸ਼ੀਅਮ ਤੱਕ ਹੀ ਲਾਗੂ ਹੁੰਦਾ ਸੀ ਕਿਉਂਕਿ ਕੈਲਸ਼ੀਅਮ ਤੋਂ ਮਗਰੋਂ ਹਰ ਅੱਠਵੇਂ ਤੱਤ ਦੇ ਗੁਣ ਪਹਿਲੇ ਤੱਤ ਨਾਲ ਨਹੀਂ ਮਿਲਦੇ ਸਨ।
- ਨਿਊਲੈਂਡ ਨੇ ਇਹ ਕਲਪਨਾ ਕੀਤੀ ਕਿ ਕੁਦਰਤ ਵਿੱਚ ਕੇਵਲ 56 ਤੱਤ ਹੀ ਹਨ ਅਤੇ ਭਵਿੱਖ ਵਿੱਚ ਕੋਈ ਹੋਰ ਤੱਤ ਨਹੀਂ ਲੱਭੇਗਾ।ਪਰ ਸਮਾਂ ਲੰਘਣ ਨਾਲ ਕਈ ਨਵੇਂ ਤੱਤ ਖੋਜੇ ਗਏ ਜਿਨ੍ਹਾਂ ਦੇ ਗੁਣ ਅਸ਼ਟਕ ਸਿਧਾਂਤ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦੇ ਸਨ।
- ਆਪਣੀ ਸਾਰਨੀ ਵਿੱਚ ਕੁੱਝ ਤੱਤਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਲਈ ਨਿਊਲੈਂਡ ਦੋ ਤੁੱਤਾਂ ਨੂੰ ਇੱਕ ਸਥਾਨ ਤੇ ਰੱਖ ਦਿੱਤਾ ਅਤੇ ਕੁੱਝ ਅਸਮਾਨ ਤੱਤਾਂ ਨੂੰ ਇੱਕ ਸਥਾਨ ਦੇ ਦਿੱਤਾ।ਕੀ ਤੁਸੀਂ ਸਾਰਨੀ 5.3 ਵਿੱਚ ਅਜਿਹੇ ਉਦਾਹਰਨ ਲੱਭ ਸਕਦੇ ਹੋ? ਨੋਟ ਕਰੋ ਕਿ ਕੋਬਾਲਟ ਅਤੇ ਨਿੱਕਲ ਇੱਕ ਥਾਂ ਇਕੱਠੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਉਸ ਹੀ ਟੋਲੀ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਕਲੋਰੀਨ ਅਤੇ ਬਰੋਮੀਨ ਹਨ ਭਾਵੇਂ ਕਿ ਇਨ੍ਹਾਂ ਦੇ ਗੁਣ ਦੂਜਿਆਂ ਨਾਲੋਂ ਭਿੰਨ ਹਨ।ਆਇਰਨ ਨੂੰ ਕੋਬਾਲਟ ਅਤੇ ਨਿਕਲ ਤੋਂ ਦੂਰ ਰੱਖਿਆ ਗਿਆ ਹੈ ਜਦੋਂ ਕਿ ਇਹਨਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਹੈ।
- ਇਸ ਪ੍ਰਕਾਰ ਨਿਊਲੈਂਡ ਦਾ ਅਸ਼ਟਕ ਸਿਧਾਂਤ ਕੇਵਲ ਹਲਕੇ ਤੱਤਾਂ ਲਈ ਹੀ ਠੀਕ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਕੀ ਡਾਬਰਨੀਅਰ ਦੀਆਂ ਤਿੱਕੜੀਆਂ ਨਿਊਲੈਂਡ ਦੇ ਅਸ਼ਟਕਾ ਵਿੱਚ ਵੀ ਮਿਲਦੀਆਂ ਹਨ? ਤੁਲਨਾ ਕਰਕੇ ਪਤਾ ਕਰੋ।
- ਡਾਬਰਨੀਅਰ ਦੇ ਵਰਗੀਕਰਨ ਦੀਆਂ ਕੀ ਸੀਮਾਵਾਂ ਹਨ?
- 3. ਨਿਉਲੈਂਡ ਸਿਧਾਂਤ ਦੀਆਂ ਕੀ ਸੀਮਾਵਾਂ ਹਨ?

5.2 ਅਵਿਵਸਥਾ ਤੋਂ ਵਿਵਸਥਾ ਕਰਨੀ-ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ (MAKING ORDER OUT OF CHAOS-MENDELEEV'S PERIODIC TABLE)

ਨਿਊਲੈਂਡ ਦੇ ਅਸ਼ਟਕ ਸਿਧਾਂਤ ਦੇ ਅਸਫ਼ਲ ਹੋਣ ਤੋਂ ਪਿੱਛੋਂ ਵੀ ਕਈ ਵਿਗਿਆਨੀਆਂ ਨੇ ਅਜਿਹੇ ਪ੍ਤਿਰੂਪਾਂ ਦੀ ਖੋਜ ਜਾਰੀ ਰੱਖੀ ਜਿਸ ਨਾਲ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਦਾ ਉਹਨਾਂ ਦੇ ਪਮਰਾਣੂ ਪੁੰਜ ਨਾਲ ਸੰਬੰਧ ਸਥਾਪਿਤ ਹੋ ਸਕੇ।

ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਨ ਦਾ ਮੁੱਖ ਸਿਹਰਾ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਡਮਿਤਰੀ ਇਵਾਨੋਵਿਚ ਮੈਂਡਲੀਵ ਨੂੰ ਜਾਂਦਾ ਹੈ। ਤੱਤਾਂ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਆਰੰਭਿਕ ਵਿਕਾਸ ਵਿੱਚ ਉਹਨਾਂ ਦਾ ਪ੍ਰਮੁੱਖ ਯੋਗਦਾਨ ਰਿਹਾ ਹੈ। ਉਹਨਾਂ ਨੇ ਆਪਣੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਮੂਲ ਗੁਣ ਪਰਮਾਣੂ ਪੁੰਜ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਦੇ ਆਧਾਰ ਤੇ ਤਰਤੀਬ ਦਿੱਤੀ।

ਡਮਿਤਰੀ ਈਵਾਨੌਵਿਚ ਮੈਂਡਲੀਵ (1834-1907)

ਮੈਂਡਲੀਵ ਦਾ ਜਨਮ 8 ਫਰਵਰੀ 1834 ਨੂੰ ਰੂਸ ਦੇ ਪੱਛਮੀ ਸਾਇਬੇਰੀਆ ਦੇ ਟੋਬੋਲਸਕ ਸਥਾਨ ਤੇ ਹੋਇਆ ਸੀ। ਆਪਣੀ ਮੁਢਲੀ ਸਿੱਖਿਆ ਤੋਂ ਮਗਰੋਂ ਮੈਂਡਲੀਵ ਆਪਣੀ ਮਾਤਾ ਜੀ ਦੇ ਯਤਨਾਂ ਸਦਕਾ ਵਿਸ਼ਵ ਵਿਦਿਆਲੇ ਵਿੱਚ ਦਾਖਲ ਹੋ ਸਕੇ। ਆਪਣੀਆਂ ਖੋਜਾਂ ਨੂੰ ਉਹਨਾਂ ਨੇ ਆਪਣੀ ਮਾਂ ਨੂੰ ਸਮਰਪਿਤ ਕਰਦੇ ਹੋਏ ਉਨ੍ਹਾਂ ਨੇ ਲਿਖਿਆ, "ਉਹਨਾਂ ਨੇ ਮੈਨੂੰ ਉਦਾਹਰਨ ਦੇ ਕੇ ਸਮਝਾਇਆ; ਪਿਆਰ ਨਾਲ ਸਮਝਾਇਆ ਅਤੇ ਆਪਣੇ ਅੰਤਲੇ ਸਾਧਨ ਅਤੇ ਸ਼ਕਤੀ ਖਰਚ ਕਰਕੇ ਮੇਰੇ ਨਾਲ ਭਿੰਨ ਭਿੰਨ ਸਥਾਨਾਂ ਤੇ ਗਏ। ਉਹ ਜਾਣਦੀ ਸੀ ਕਿ ਵਿਗਿਆਨ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਬਿਨਾਂ

ਹਿੰਸਾ ਤੋਂ, ਪਰ ਪਿਆਰ ਅਤੇ ਦ੍ੜ੍ਹਿਤਾ ਨਾਲ ਅੰਧਵਿਸ਼ਵਾਸ, ਝੂਠ ਅਸੱਤ ਅਤੇ ਗਲਤੀਆਂ ਨੂੰ ਦੂਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।" ਉਹਨਾਂ ਦੁਆਰਾ ਸੁਝਾਏ ਤੱਤਾਂ ਦੀ ਤਰਤੀਬ ਨੂੰ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਆਵਰਤੀ ਸਾਰਨੀ ਰਾਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਏਕੀਕਰਨ ਸਿਧਾਂਤ (Unifying Principle) ਸਿੱਧ ਹੋਇਆ। ਇਸ ਤੋਂ ਨਵੇਂ ਤੱਤਾਂ ਦੀ ਖੋਜ ਲਈ ਉਤਸ਼ਾਹ ਪ੍ਰਾਪਤ ਹੋਇਆ।

ਜਦੋਂ ਮੈਂਡਲੀਵ ਨੇ ਆਪਣਾ ਕੰਮ ਸ਼ੁਰੂ ਕੀਤਾ ਤਾਂ 63 ਤੱਤ ਪਤਾ ਸਨ। ਉਹਨਾਂ ਨੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣ ਪੰਜ ਅਤੇ ਉਹਨਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿਚਕਾਰ ਸੰਬੰਧ ਦਾ ਅਧਿਐਨ ਕੀਤਾ। ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਮੈਂਡਲੀਵ ਨੇ ਤੱਤਾਂ ਦੇ ਆਕਸੀਜਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਨਾਲ ਬਣਨ ਵਾਲ਼ੇ ਇਲੈਕਟ੍ਰਾਨ ਯੋਗਿਕਾਂ ਉੱਪਰ ਆਪਣਾ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕੀਤਾ। ਉਹਨਾਂ ਆਕਸੀਜਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਦੀ ਚੋਣ ਇਸ ਲਈ ਕੀਤੀ ਕਿਉਂਕਿ ਇਹ ਬਹੁਤ ਕਿਰਿਆਸ਼ੀਲ ਹਨ ਅਤੇ ਇਹ ਬਹੁਤ ਸਾਰੇ ਤੱਤਾਂ ਨਾਲ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਤੱਤ ਤੋਂ ਬਣਨ ਵਾਲੇ ਹਾਈਡਰਾਈਡ ਅਤੇ ਆਕਸਾਈਡ ਦੇ ਸੂਤਰ ਨੂੰ ਤੱਤਾਂ ਦੇ ਵਰਗੀਕਰਨ ਲਈ ਤੱਤ ਦੀ ਮੂਲ ਵਿਸ਼ੇਸ਼ਤਾ ਮੰਨੀ ਗਈ। ਉਹਨਾਂ ਨੇ 63 ਕਾਰਡ ਲਏ ਅਤੇ ਇਕੱਲੇ ਇਕੱਲੇ ਕਾਰਡ ਉੱਤੇ ਇੱਕ ਇੱਕ ਤੱਤ ਦੇ ਗੁਣ ਲਿਖੇ। ਉਹਨਾਂ ਨੇ ਸਮਾਨ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਕਾਰਡਾਂ ਨੂੰ ਵੱਖ ਕਰ ਲਿਆ ਅਤੇ ਇਹਨਾਂ ਦੇ ਕਾਰਡਾਂ ਨੂੰ ਪਿੰਨ ਲਗਾ ਕੇ ਦੀਵਾਰ ਤੇ ਲਗਾ ਦਿੱਤਾ। ਉਹਨਾਂ ਨੇ ਵੇਖਿਆ ਕਿ ਬਹੁਤ ਸਾਰੇ ਤੱਤਾਂ ਨੂੰ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਥਾਂ ਮਿਲ ਗਈ ਅਤੇ ਉਹਨਾਂ ਨੇ ਆਪਣੇ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਚੜ੍ਹਦੇ ਕ੍ਰਮ ਵਿੱਚ ਸਥਾਨ ਪ੍ਰਾਪਤ ਕੀਤਾ। ਇਹ ਵੀ ਵੇਖਿਆ ਗਿਆ ਕਿ ਇੱਕੋ ਜਿਹੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਾਲ਼ੇ ਭਿੰਨ-ਭਿੰਨ ਤੱਤ ਇੱਕ ਨਿਸ਼ਚਿਤ ਪੀਰੀਅਡ ਪਿੱਛੋਂ ਮੁੜ ਆ ਜਾਂਦੇ ਹਨ। ਇਸੇ ਆਧਾਰ ਨੂੰ ਮੁੱਖ ਰੱਖ ਕੇ ਮੈਂਡਲੀਵ ਨੇ ਆਵਰਤੀ ਸਾਰਨੀ ਬਣਾਈ ਜਿਸ ਦਾ ਸਿਧਾਂਤ ਹੈ:

ਤੱਤਾਂ ਦੇ ਗੁਣ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਆਵਰਤੀ ਫੈਕਸ਼ਨ (ਫਲਨ) ਹੁੰਦੇ ਹਨ। ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਲੰਬਾਤਮਕ ਕਾਲਮ ਨੂੰ ਗਰੁੱਪ (ਸਮੂਹ) ਅਤੇ ਖਿਤਿਜੀ ਕਤਾਰਾਂ ਨੂੰ ਪੀਰੀਅਡ (ਆਵਰਤ) ਕਹਿੰਦੇ ਹਨ (ਸਾਰਨੀ 5.4)।

ਸਾਰਨੀ 5,4 ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ

ਗਰੁੱਪ	1	П	III	IV	V	VI	VII	viii
ਅਕਾਈਡ ਹਾਈਡਗਈਡ	R,O RH	RO RH ₂	R ₂ O ₃ RH ₄	RO ₂ RH ₄	R ₂ O ₃	RO _s RH _s	R _s O, RH	RO.
ਪੀਰੀਅਡ	А В	А В	А В	А В	A B	A B	A B	ਟਰਾਂਜੀਸ਼ਨ ਲੜੀ
Ť	H 1.008							Market II
2	Li 6.939	Be 9.012	B 10.81	C 12.011	N 14.007	O 15.999	F 18.998	
3	Na 22.99	Mg 24.31	Al 29.98	Si 28.09	P 30.974	S 32.06	Ct 35,453	
4 ਪਹਿਲੀ ਲੜੀ	K 39.102	Ca 40.08	Sc 44.96	T1 47.90	V 50.94	Cr 50.20	Mn 54.94	Fe Co Ni 55.85 58.93 58.71
ਦੂਜੀ ਲੜੀ	Cu 63.54	Zn 65.37	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.909	
5 ਪਹਿਲੀ ਲੜੀ	Rb 85.47	Sr 87.62	88.91	2r 91.22	Nb 92.91	Mo 95.94	Tc 99	Ru Rh Pd 101.07 102.91 106.4
ਦੂਜੀ ਲੜੀ	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	Sb 121.75		1 126.90	
6 ਪਹਿਲੀ ਲੜੀ	Cs 132.90	Ba 137,34	La 138.91	Hf 178,49	Ta 180.95	W 183.85		Os Ir Pt 190.2 192.2 195.09
ਦੂਜੀ ਲੜੀ	Au 196.97	Hg 200.59	Ti 204.37	Pb 207.19	Bí 208.98			1-11-1,00

ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ 1872 ਵਿੱਚ ਜਰਮਨ ਪੱਤਰਿਕਾ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ਿਤ ਹੋਈ ਸੀ। ਕਾਲਮ ਦੇ ਸਿਖਰ ਤੇ ਆਕਸਾਈਡ ਅਤੇ ਹਾਈਡਰਾਈਡ ਦੇ ਸੂਤਰ ਵਿੱਚ ਅੰਗਰੇਜ਼ੀ ਅੱਖਰ R ਕਾਲਮ ਦੇ ਕਿਸੀ ਵੀ ਤੱਤ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਸੂਤਰ ਨੂੰ ਲਿਖਣ ਦੇ ਢੰਗ ਵੱਲ ਧਿਆਨ ਦਿਓ। ਉਦਾਹਰਣ ਲਈ ਕਾਰਬਨ ਦੇ ਹਾਈਡਰਾਈਡ CH₄ ਨੂੰ RH₄ ਅਤੇ ਉਸ ਦੇ ਆਕਸਾਈਡ CO₂ ਨੂੰ RO₂ ਲਿਖਿਆ ਗਿਆ ਹੈ।

5.2.1 ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੀਆਂ ਪ੍ਰਾਪਤੀਆਂ

(ACHIEVEMENTS OF MENDELEEV'S PERIODIC TABLE)

ਆਵਰਤੀ ਸਾਰਨੀ ਦੀ ਸਿਰਜਣਾ ਕਰਦੇ ਸਮੇਂ ਮੈਂਡਲੀਵ ਨੂੰ ਸਾਰਨੀ ਵਿੱਚ ਕਦੇ ਕਦੇ ਕੁੱਝ ਕੁ ਵੱਧ ਪੁੰਜ ਵਾਲ਼ੇ ਤੱਤਾਂ ਨੂੰ ਕੁੱਝ ਕੁ ਘੱਟ ਪੁੰਜ ਵਾਲ਼ੇ ਤੱਤਾਂ ਤੋਂ ਪਹਿਲਾਂ ਰੱਖਣਾ ਪਿਆ। ਇਹ ਕ੍ਮ ਇਸ ਲਈ ਉਲਟਾਉਣਾ ਪਿਆ ਤਾਂ ਜੋ ਇੱਕੋ ਜਿਹੇ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਇੱਕ ਹੀ ਗਰੁੱਪ ਵਿੱਚ ਰੱਖਿਆ ਜਾ ਸਕੇ। ਉਦਾਹਰਨ ਵਜੋਂ ਕੋਬਾਲਟ (ਪਰਮਾਣੂ ਪੁੰਜ 58.9) ਸਾਰਨੀ ਵਿੱਚ ਨਿੱਕਲ (ਪਰਮਾਣੂ ਪੁੰਜ 58.7) ਤੋਂ ਪਹਿਲਾਂ ਹੈ। ਸਾਰਨੀ 5.4 ਨੂੰ ਦੇਖ ਕੇ ਕੀ ਤੁਸੀਂ ਅਜਿਹੀ ਇੱਕ ਹੋਰ ਅਸੰਗਤੀ ਲੱਭ ਸਕਦੇ ਹੋ?

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਮੈਂਡਲੀਵ ਨੇ ਆਪਣੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਕੁਝ ਖਾਲੀ ਥਾਂ ਛੱਡ ਦਿੱਤੇ। ਇਹਨਾਂ ਖਾਲੀ ਥਾਵਾਂ ਨੂੰ ਦੋਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਵੇਖਣ ਦੀ ਬਜਾਏ ਮੈਂਡਲੀਵ ਨੇ ਦ੍ਰਿੜ੍ਹਤਾ ਨਾਲ ਕੁੱਝ ਅਜਿਹੇ ਤੱਤਾਂ ਦੀ ਹੋਂਦ ਦਾ ਅਨੁਮਾਨ ਲਗਾਇਆ ਜੋ ਉਸ ਸਮੇਂ ਤੱਕ ਪਤਾ ਨਹੀਂ ਸਨ। ਉਹਨਾਂ ਦਾ ਨਾਮਕਰਨ ਮੈਂਡਲੀਵ ਨੇ ਉਸੇ ਗਰੁੱਪ ਵਿੱਚ ਉਸ ਤੋਂ ਪਹਿਲਾਂ ਆਉਣ ਵਾਲੇ ਤੱਤ ਦੇ ਨਾਂ ਨਾਲ 'ਏਕਾ' (ਸੰਸਕ੍ਰਿਤ ਸ਼ਬਦ) ਅਗੇਤਰ ਲਗਾ ਕੇ ਕੀਤਾ।ਪ੍ਰਮਾਣ ਵਜੋਂ ਬਾਅਦ ਵਿੱਚ ਗਿਆਤ ਹੋਏ ਸਕੈਂਡੀਅਮ, ਗੈਲੀਅਮ, ਜਰਮੇਨੀਅਮ ਦੇ ਗੁਣ ਕ੍ਰਮਵਾਰ ਏਕਾ-ਬੋਰਾਨ, ਏਕਾ-ਐਲੂਮਿਨੀਅਮ ਅਤੇ ਏਕਾ-ਸਿਲੀਕਾਨ ਵਰਗੇ ਸਨ। ਮੈਂਡਲੀਵ ਦੁਆਰਾ ਅਨੁਮਾਨਿਤ ਏਕਾ ਐਲੂਮਿਨੀਅਮ ਭਾਵ ਬਾਅਦ ਵਿੱਚ ਗਿਆਤ ਗੈਲੀਅਮ ਦੇ ਗੁਣ ਨੂੰ ਸਾਰਨੀ 5.5 ਵਿੱਚ ਸੂਚੀਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ:

ਸਾਰਨੀ 5.5 ਏਕਾ-ਐਲੂਮਿਨੀਅਮ ਅਤੇ ਗੈਲੀਅਮ ਦੇ ਗੁਣ

ਗੁਣ	ਏਕਾ-ਐਲੂਮਿਨੀਅਮ	ਗੈਲੀਅਮ
ਪਰਮਾਣੂ ਪੁੰਜ	68	69.7
ਆਕਸਾਈਡ ਦਾ ਸੂਤਰ	E ₂ O ₃	Ga ₂ O ₃
ਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ	ECL,	GaCl.

ਇਸ ਤੋਂ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਠੀਕ ਅਤੇ ਉਪਯੋਗੀ ਹੋਣ ਦੇ ਠੱਸ ਸਬੂਤ ਮਿਲ ਗਏ। ਇਸ ਤੋਂ ਬਿਨਾਂ ਮੈਂਡਲੀਵ ਦੇ ਅਨੁਮਾਨ ਦੀ ਅਸਾਧਾਰਨ ਸਫਲਤਾ ਕਾਰਨ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੇ ਉਹਨਾਂ ਦੀ ਅਵਰਤੀ ਸਾਰਨੀ ਨੂੰ ਨਾ ਕੇਵਲ ਸਵੀਕਾਰ ਕੀਤਾ ਸਗੋਂ ਇਸ ਦੇ ਨਾਲ ਹੀ ਉਹਨਾਂ ਨੂੰ ਇਸ ਸਿਧਾਂਤ ਦਾ ਸਿਰਜਕ ਵੀ ਮੰਨਿਆ ਜਿਸ ਉੱਤੇ ਇਹ ਆਧਾਰਿਤ ਹੈ। ਨੋਬਲ ਗੈਸਾਂ ਜਿਵੇਂ ਹੀਲੀਅਮ (He), ਨੀਆਨ (Ne) ਅਤੇ ਆਰਗਨ (Ar) ਦਾ ਪਹਿਲਾਂ ਵੀ ਕਈ ਪ੍ਸੰਗਾਂ ਵਿੱਚ ਜ਼ਿਕਰ ਆ ਚੁੱਕਿਆ ਹੈ। ਇਹਨਾਂ ਗੈਸਾਂ ਦਾ ਪਤਾ ਕਾਫੀ ਦੇਰ ਨਾਲ ਲੱਗਿਆ ਕਿਉਂਕਿ ਇਹ ਬਹੁਤ ਅਕਿਰਿਆਸ਼ੀਲ ਹਨ ਅਤੇ ਇਹਨਾਂ ਦੀ ਵਾਯੂ ਮੰਡਲਾਂ ਵਿੱਚ ਮਾਤਰਾ ਵੀ ਘੱਟ ਹੈ। ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੀ ਇੱਕ ਵਿਸ਼ੇਸ਼ਤਾ ਇਹ ਵੀ ਸੀ ਜਦੋਂ ਇਹਨਾਂ ਗੈਸਾਂ ਦਾ ਪਤਾ ਲੱਗਿਆ ਤਾਂ ਪਹਿਲੀ ਤਰਤੀਬ ਨੂੰ ਛੇੜੇ ਬਿਨਾਂ ਹੀ ਉਹਨਾਂ ਨੂੰ ਨਵੇਂ ਗਰੁੱਪ ਵਿੱਚ ਰੱਖਿਆ ਜਾ ਸਕਿਆ।

5.2.3 ਮੈਂਡਲੀਵ ਦੇ ਵਰਗੀਕਰਨ ਦੀਆਂ ਸੀਮਾਵਾਂ

(LIMITATIONS OF MENDELEEV'S CLASSIFICATION)

ਹਾਈਡਰੋਜਨ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ ਐੱਲਕਲੀ ਧਾਤਾਂ ਨਾਲ ਮਿਲਦੀ ਹੈ।ਐੱਲਕਲੀ ਧਾਤਾਂ ਦੀ ਤਰ੍ਹਾਂ ਹਾਈਡਰੋਜਨ ਵੀ ਹੈਲੋਜਨ, ਆਕਸੀਜਨ ਅਤੇ ਸਲਫਰ ਨਾਲ ਉਸੇ ਤਰ੍ਹਾਂ ਦੇ ਸੂਤਰਾਂ ਵਾਲ਼ੇ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਇੱਥੇ ਦਿੱਤੀ ਉਦਾਹਰਣ ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ :

ਦੂਜੇ ਪਾਸੇ, ਹਾਈਡਰੋਜਨ ਵੀ ਹੈਲੋਜਨ ਦੀ ਤਰ੍ਹਾਂ ਦੋ ਪਰਮਾਣਵੀ ਅਣੂ ਬਣਾਉਂਦੀ ਹੈ ਅਤੇ ਧਾਤਾਂ ਨਾਲ ਆਇਨੀ ਅਤੇ ਅਧਾਤਾਂ ਨਾਲ ਸਹਿਸੰਯੋਜਕ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ।

ਹਾਈਡਰੋਜਨ ਦੇ ਯੋਗਿਕ	ਸੋਡੀਅਮ ਦੇ ਯੋਗਿਕ
HCl	NaCl
H ₂ O	Na ₂ O
H,S	Na ₂ S

ਕਿਰਿਆ 5.1

 ਐਲਕਲੀ ਧਾਤਾਂ ਅਤੇ ਹੈਲੋਜਨ ਪਰਿਵਾਰ ਦੀ ਹਾਈਡਰੋਜਨ ਨਾਲ ਸਮਾਨਤਾ (ਇਕਸਾਰਤਾ) ਨੂੰ ਮੁੱਖ ਰੱਖ ਕੇ ਹਾਈਡਰੋਜਨ ਨੂੰ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਢੁਕਵੀਂ ਥਾਂ ਤੇ ਰੱਖੋ।
 ਹਾਈਡਰੋਜਨ ਨੂੰ ਕਿਸ ਗਰੱਪ ਅਤੇ ਪੀਰੀਅਡ ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ?

ਯਕੀਨੀ ਤੌਰ ਤੇ ਹਾਈਡਰੋਜਨ ਨੂੰ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਥਾਂ ਨਹੀਂ ਦਿੱਤੀ ਜਾ ਸਕਦੀ। ਇਹ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੀ ਪਹਿਲੀ ਕਮੀ ਹੈ। ਉਹ ਆਪਣੀ ਸਾਰਨੀ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਨੂੰ ਢੁਕਵੀਂ ਥਾਂ ਨਹੀਂ ਦੇ ਸਕਿਆ।

ਮੈਂਡਲੀਵ ਦੁਆਰਾ ਤੱਤਾਂ ਦੇ ਆਵਰਤੀ ਵਰਗੀਕਰਨ ਤਿਆਰ ਕਰਨ ਤੋਂ ਕਾਫੀ ਸਮੇਂ ਪਿੱਛੋਂ ਤੱਤਾਂ ਦੇ ਸਮਸਥਾਨਕਾਂ ਦੀ ਖੋਜ ਹੋਈ। ਆਓ ਮੁੜ ਯਾਦ ਕਰੀਏ ਕਿ ਸਮਸਥਾਨਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਸਮਾਨ ਹੁੰਦੇ ਹਨ ਪਰ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਪੂੰਜ ਭਿੰਨ ਹੁੰਦੇ ਹਨ।

ਕਿਰਿਆ 5.2

- = ਕਲੋਰੀਨ ਦੇ ਸਮਸਥਾਨਕ CI-35 ਅਤੇ CI-37 ਤੇ ਵਿਚਾਰ ਕਰੋ।
- ਇਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਭਿੰਨ ਭਿੰਨ ਹੋਣ ਕਾਰਨ ਕੀ ਤੁਸੀਂ ਇਹਨਾਂ ਨੂੰ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਵੱਖ ਵੱਖ ਸਥਾਨਾਂ ਤੇ ਰੱਖੋਗੇ?
- ਜਾਂ ਇਹਨਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਸਮਾਨ ਹੋਣ ਕਰਕੇ ਕੀ ਤੁਸੀਂ ਦੋਹਾਂ ਨੂੰ ਇੱਕ ਹੀ ਸਥਾਨ ਤੇ ਰੱਖੋਗੇ।

ਇਸ ਤਰ੍ਹਾਂ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਸਮਸਥਾਨਕ ਮੈਂਡਲੀਵ ਦੇ ਆਵਰਤੀ ਨਿਯਮ ਲਈ ਇੱਕ ਚੁਣੌਤੀ ਸਨ। ਦੂਜੀ ਸਮੱਸਿਆ ਇਹ ਸੀ ਕਿ ਇੱਕ ਤੱਤ ਤੋਂ ਦੂਜੇ ਤੱਤ ਵੱਲ ਅੱਗੇ ਵਧਣ ਨਾਲ ਪਰਮਾਣੂ ਪੁੰਜ ਨਿਯਮਤ ਰੂਪ ਨਾਲ ਨਹੀਂ ਵਧਦੇ। ਇਸ ਲਈ ਇਹ ਅਨੁਮਾਨ ਲਗਾਉਣਾ ਔਖਾ ਹੋ ਗਿਆ ਕਿ ਦੋ ਤੱਤਾਂ ਵਿਚਕਾਰ ਕਿੰਨੇ ਤੱਤ ਲੱਭੇ ਜਾ ਸਕਦੇ ਹਨ, ਖਾਸ ਕਰਕੇ ਜਦੋਂ ਅਸੀਂ ਭਾਰੀ ਤੱਤਾਂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਤਾਂ ਔਕੜ ਹੋਰ ਵੱਧ ਜਾਂਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੇਠ ਲਿਖੇ ਤੱਤਾਂ ਦੇ ਆਕਸਾਈਡਾਂ ਦੇ ਸੂਤਰਾਂ ਦਾ ਅਨੁਮਾਨ ਲਗਾਓ: K, C, Al, Si, Ba
- ਗੈਲੀਅਮ ਤੋਂ ਇਲਾਵਾ ਕਿਹੜੇ ਕਿਹੜੇ ਤੱਤਾਂ ਦੀ ਖੋਜ ਕੀਤੀ ਜਾ ਚੁੱਕੀ ਹੈ ਜਿਨ੍ਹਾਂ ਲਈ ਮੈਂਡਲੀਵ ਨੇ ਆਪਣੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਖਾਲੀ ਥਾਵਾਂ ਛੱਡ ਦਿੱਤੀਆਂ ਸਨ (ਕੋਈ ਦੋ)?
- 3. ਮੈਂਡਲੀਵ ਨੇ ਆਪਣੀ ਆਵਰਤੀ ਸਾਰਨੀ ਤਿਆਰ ਕਰਨ ਲਈ ਕਿਰੜਾ ਮਾਪਦੰਡ ਅਪਣਾਇਆ?
- 4. ਤੁਹਾਡੇ ਵਿਚਾਰ ਅਨੁਸਾਰ ਨੌਬਲ ਗੈਸਾਂ ਨੂੰ ਵੱਖਰੇ ਗਰੁੱਪ ਵਿੱਚ ਕਿਉਂ ਰੱਖਿਆ ਗਿਆ?

5.3 ਅਵਿਵਸਥਾ ਤੋਂ ਵਿਵਸਥਾ ਕਰਨਾ–ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ MAKING ORDER OUT OF CHAOS: THE MODERN PERIODIC TABLE

ਸੰਨ 1913 ਵਿੱਚ ਹੈਨਰੀ ਮੋਸਲੇ ਨੇ ਵਿਖਾਇਆ ਕਿ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉਸ ਦਾ ਪਰਮਾਣੂ ਅੰਕ (ਜਾਂ ਸੰਖਿਆ) ਵਧੇਰੇ ਆਧਾਰ ਪੂਰਨ ਗੁਣ ਹੈ ਜਿਵੇਂ ਕਿ ਹੇਠਾਂ ਵਰਣਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਅਨੁਸਾਰ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕੀਤਾ ਗਿਆ ਅਤੇ ਪਰਮਾਣੂ ਅੰਕ ਨੂੰ ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਦਾ ਆਧਾਰ ਮੰਨਿਆ ਗਿਆ **ਆਧੁਨਿਕ ਆਵਰਤੀ** ਨਿਯਮ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਵਰਣਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ :

'ਤੱਤਾਂ ਦੇ ਗੁਣ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਅੰਕਾਂ ਦੇ ਆਵਰਤੀ ਫੈਕਸ਼ਨ ਜਾਂ ਫਲਨ ਹੁੰਦੇ ਹਨ।'

ਤੁਹਾਨੂੰ ਪਤਾ ਹੀ ਹੈ ਕਿ ਪਰਮਾਣੂ ਅੰਕ ਤੋਂ ਸਾਨੂੰ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਪਤਾ ਲਗਦਾ ਹੈ ਅਤੇ ਇੱਕ ਤੱਤ ਤੋਂ ਦੂਜੇ ਤੱਤ ਤੱਕ ਵਧਣ ਲਈ ਇਸ ਸੰਖਿਆ ਵਿੱਚ ਇੱਕ ਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਅੰਕ (Z) ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਸਿਲਸਿਲੇਵਾਰ ਕਰਨ ਨਾਲ ਜੋ ਵਰਗੀਕਰਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਉਸ ਨੂੰ ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ (ਸਾਰਨੀ 5.6)। ਤੱਤਾਂ ਨੂੰ ਪਰਮਾਣੂ ਅੰਕ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਉਂਤਣ ਨਾਲ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਦਾ ਵਧੇਰੇ ਠੀਕ ਤਰ੍ਹਾਂ ਅਨੁਮਾਨ ਲਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਅਸੀਂ ਵੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੀਆਂ ਤਿੰਨੇ ਕਮੀਆਂ ਨੂੰ ਸੁਧਾਰਿਆ ਗਿਆ ਹੈ। ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤਾਂ ਦਾ ਸਥਾਨ ਕਿਸ ਆਧਾਰ ਤੋਂ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਬਾਰੇ ਜਾਣ ਲੈਣ ਪਿੱਛੋਂ ਹਾਈਡਰੋਜਨ ਦੀ ਅਸੰਗਤ

ਸਥਿਤੀ ਬਾਰੇ ਵਿਚਾਰ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਲੌਬਨਾਈਡ	8	66 1	3	5	62	9	Ŧ.	8	8	19	80	\$,	2	
		1	ᆲ	Eļ:	şj.	ej:	g =	eļ:	5 † 2	eļ:	sla	Eļi	<u>e</u>]:	1
	96	16	92	93	94	56	96	26	86	66	100	101	102	E
वदार हाड	el		=	21		NA NA	51	쵦	허	al	티	Md	윍	H

ਸਾਰਨੀ 5.6 ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ

ਕਿਰਿਆ 5.3

- ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਕੋਬਾਲਟ ਅਤੇ ਨਿਕਲ ਦੇ ਸਥਾਨ ਕਿਵੇਂ ਨਿਰਧਾਰਿਤ ਕੀਤੇ ਗਏ ਹਨ?
- ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਸਮਸਥਾਨਕਾਂ ਦਾ ਸਥਾਨ ਕਿਵੇਂ ਨਿਸ਼ਚਿਤ ਕੀਤਾ ਗਿਆ ਹੈ?
- ਕੀ 1.5 ਪਰਮਾਣੂ ਅੰਕ ਵਾਲੇ ਕਿਸੇ ਤੱਤ ਨੂੰ ਹਾਈਡਰੋਜਨ ਅਤੇ ਹੀਲੀਅਮ ਦੇ ਮੱਧ ਵਿੱਚ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ?
- ਤੁਹਾਡੇ ਵਿਚਾਰ ਅਨੁਸਾਰ ਹਾਈਡਰੋਜਨ ਨੂੰ ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਕਿੱਥੇ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ?

5.3.1 ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸਥਿਤੀ

POSITION OF ELEMENTS IN THE MODERN PERIODIC TABLE

ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚਾਂ 18 ਲੰਬਾਤਮਕ ਕਾਲਮ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਗਰੁੱਪਂ (ਸਮੂਹ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ 7 ਖਤਿਜੀ ਕਤਾਰਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਪੀਰੀਅਡ (ਆਵਰਤ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਆਓ ਵੇਖੀਏ ਕਿ ਕਿਸੇ ਤੱਤ ਦਾ ਵਿਸ਼ੇਸ਼ ਗਰੁੱਪ ਅਤੇ ਪੀਰੀਅਡ ਵਿੱਚ ਸਥਾਨ ਕਿਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ?

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਇਹਨਾਂ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਕਿਸੇ ਇੱਕ ਗਰੁੱਪ ਦੇ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਗਿਣਤੀ ਸਮਾਨ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਫਲੋਰੀਨ (F) ਅਤੇ ਕਲੋਰੀਨ (Cl) ਗਰੁੱਪ 17 ਦੇ ਤੱਤ ਹਨ। ਫਲੋਰੀਨ ਅਤੇ ਕਲੋਰੀਨ ਦੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਕਿੰਨੇ ਕਿੰਨੇ ਇਲੈੱਕਟ੍ਰਾਨ ਹਨ?

ਕਿਰਿਆ 5.4

- 💌 ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਗਰੁੱਪ ਇੱਕ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਨਾਂ ਦੱਸੋ।
- 🛾 ਗਰੁੱਪ ਇੱਕ ਦੇ ਪਹਿਲੇ ਤਿੰਨ ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟਾਨੀ ਤਰਤੀਬ ਲਿਖੋ।
- ਇਹਨਾਂ ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟਾਨੀ ਤਰਤੀਬ ਵਿੱਚ ਕੀ ਸਮਾਨਤਾ ਹੈ?
- ਇਹਨਾਂ ਤਿੰਨਾਂ ਤੱਤਾਂ ਵਿੱਚ ਕਿੰਨੇ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨ ਹਨ?

ਇਸ ਲਈ ਇਸ ਤੋਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਦਾ ਗਰੁੱਪ ਬਾਹਰੀ ਸ਼ੈੱਲ ਦੀ ਸਮਾਨ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਫਿਰ ਵੀ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਨੂੰ ਜਾਣ ਨਾਲ ਸ਼ੈੱਲਾਂ ਦੀ ਸੰਖਿਆ ਵਧਦੀ ਜਾਂਦੀ ਹੈ।

ਹਾਈਡਰੋਜਨ ਦੀ ਸਥਿਤੀ ਅਨਿਸ਼ਚਿਤ ਰਹਿੰਦੀ ਹੈ ਕਿਉਂਕਿ ਇਸ ਨੂੰ ਪਹਿਲੇ ਪੀਰੀਅਡ ਦੇ ਗਰੁੱਪ 1 ਜਾਂ 17 ਕਿਸੇ ਵਿੱਚ ਵੀ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਕਿਉਂ?

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਇਹਨਾਂ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਤਾਂ ਵੱਖ ਵੱਖ ਹੈ ਪਰ ਇਨ੍ਹਾਂ ਦੇ ਸ਼ੈੱਲਾਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੈ। ਤੁਸੀਂ ਇਹ ਵੀ ਵੇਖੋਗੇ ਕਿ ਕਿਸੇ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਨਾਲ ਜੇਕਰ ਪਰਮਾਣੂ ਸੰਖਿਆ ਵਿੱਚ ਇਕਾਈ ਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਵੀ ਇਕਾਈ ਦਾ ਹੀ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।

ਤੁਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਭਰੇ ਹੋਏ ਸ਼ੈੱਲਾਂ ਦੀ ਸਮਾਨ ਸੰਖਿਆ ਰੱਖਣ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਇੱਕ ਹੀ ਪੀਰੀਅਡ ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ। Na, Mg, Al, Si, P, S, Cl ਅਤੇ Ar ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਤੀਜੇ ਪੀਰੀਅਡ ਵਿੱਚ ਸਥਿਤ ਹਨ ਕਿਉਂਕਿ ਇਹਨਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇਲੈੱਕਟ੍ਰਾਨ K, L ਅਤੇ M ਸੈੱਲਾਂ ਵਿੱਚ ਸਥਿਤ ਹਨ। ਇਹਨਾਂ ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ ਲਿਖ ਕੇ ਇਸ ਕਥਨ ਦੀ ਪੁਸ਼ਟੀ ਕਰੋ।ਹਰ ਇੱਕ ਪੀਰੀਅਡ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇੱਕ ਨਵਾਂ ਇਲੈੱਕਟ੍ਰਾਨੀ ਸ਼ੈੱਲ ਭਰਿਆ ਜਾ ਰਿਹਾ ਹੈ। ਪਹਿਲੇ, ਦੂਜੇ, ਤੀਜੇ ਅਤੇ ਚੌਥੇ ਪੀਰੀਅਡ ਵਿੱਚ ਕਿੰਨੇ-ਕਿੰਨੇ ਤੱਤ ਹਨ?

ਭਿੰਨ-ਭਿੰਨ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਭਰੇ ਜਾਣ ਵਾਲ਼ੇ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਇਹਨਾਂ ਪੀਰੀਅਡਾਂ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸ ਸਕਦੇ ਹਾਂ।ਅਗਲੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਇਸ ਬਾਰੇ ਤੁਸੀਂ ਵਧੇਰੇ ਵਿਸਥਾਰ ਸਹਿਤ ਅਧਿਐਨ ਕਰੋਗੇ।ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਿਸੇ ਸ਼ੈਲ ਵਿੱਚ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਖਿਆ ਇੱਕ ਸੂਤਰ 2n² ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਜਿੱਥੇ n. ਨਿਊਕਲੀਅਸ ਤੋਂ ਨਿਸ਼ਚਿਤ ਸ਼ੈੱਲ ਦੀ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।ਉਦਾਹਰਨ ਵਜੋਂ: ਜਿਵੇਂ:

K ਸ਼ੈੱਲ $-2 \times (1)^2 = 2$. ਇਸ ਲਈ ਪਹਿਲੇ ਪੀਰੀਅਡ ਵਿੱਚ 2 ਤੱਤ ਹਨ।

L ਸ਼ੈੱਲ $-2(2)^2 = 8$, ਇਸ ਲਈ ਦੂਜੇ ਪੀਰੀਅਡ ਵਿੱਚ 8 ਤੱਤ ਹਨ।

M ਸ਼ੈੱਲ $-2 \times (3)^2 = 18$, ਪ੍ਰੰਤੂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ 8 ਤੋਂ ਵੱਧ ਇਲੈੱਕਟਾਨ ਨਹੀਂ ਹੋ ਸਕਦੇ, ਇਸ

ਕਿਰਿਆ 5.5

- ਜੇਕਰ ਤੁਸੀਂ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਲੰਬੇ ਰੂਪ ਨੂੰ ਵੇਖੇ ਤਾਂ ਤੁਹਾਨੂੰ ਪਤਾ ਲੱਗੇਗਾ ਕਿ Li, Be, B, C, N, O, F ਅਤੇ Ne ਦੂਜੇ ਆਵਰਤ (ਪੀਰੀਅਡ) ਦੇ ਤੱਤ ਹਨ। ਇਹਨਾਂ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ ਲਿਖੋ।
- ਕੀ ਇਹਨਾਂ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਕ ਇਲੈੱਕਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੈ?
- 🐞 ਕੀ ਇਹਨਾਂ ਦੇ ਸ਼ਿੱਲਾਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੈ।

ਲਈ ਤੀਜੇ ਸ਼ੈਲ ਵਿੱਚ ਵੀ 8 ਤੱਤ ਹੋਣਗੇ।

ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸਥਿਤੀ ਤੋਂ ਉਹਨਾਂ ਦੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਾ ਪਤਾ ਲੱਗ ਜਾਂਦਾ ਹੈ। ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਿਸੇ ਤੱਤ ਦੁਆਰਾ ਬਣਾਏ ਜਾਣ ਵਾਲੇ ਬੰਧਨਾਂ ਦੀ ਕਿਸਮ ਅਤੇ ਉਹਨਾਂ ਦੀ ਸੰਖਿਆ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਹੁਣ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਮੈਂਡਲੀਵ ਦਾ ਆਪਣੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸਥਿਤੀ ਨਿਸ਼ਚਿਤ ਕਰਨ ਲਈ ਯੋਗਿਕਾਂ ਦਾ ਸੂਤਰਾਂ ਨੂੰ ਆਧਾਰ ਬਣਾਉਣਾ ਕਿਉਂ ਠੀਕ ਸੀ? ਇਸ ਨਾਲ ਸਮਾਨ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਕਿਵੇਂ ਇੱਕ ਹੀ ਗਰੁੱਪ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ?

5.3.2 ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਰੁਝਾਨ (TRENDS IN MODERN PERIODIC TABLE)

ਸੰਯੋਜਕਤਾ : ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਿਸੇ ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ ਉਸ ਦੇ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜ਼ੂਦ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਹੁੰਦੀ ਹੈ। ਪਰਮਾਣੁ ਸਾਈਜ਼ :

ਕਿਰਿਆ 5.6

- ਕਿਸੇ ਤੱਤ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਸ਼ ਤੋਂ ਤੁਸੀਂ ਉਸ ਦੀ ਸੰਯੋਜਕਤਾ ਦੀ ਗਣਨਾ ਕਿਵੇਂ ਕਰੋਗੇ?
- ਪਰਮਾਣੂ ਅੰਕ 12 ਵਾਲ਼ੇ ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਪਰਮਾਣੂ ਅੰਕ 16 ਵਾਲ਼ੇ ਸਲਫ਼ਰ ਦੀ ਸੰਯੋਜਕਤਾ ਕੀ ਹੈ?
- 🔳 ਇਸੇ ਤਰ੍ਹਾਂ ਪਹਿਲੇ 20 ਤੱਤਾਂ ਦੀਆਂ ਸੰਯੋਜਕਤਾਵਾਂ ਪਤਾ ਕਰੋ।
- ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਨਾਲ ਸੰਯੋਜਕਤਾ ਕਿਸ ਪਕਾਰ ਬਦਲਦੀ ਹੈ?
- ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਨਾਲ ਸੰਯੋਜਕਤਾ ਕਿਸ ਪ੍ਰਕਾਰ ਬਦਲਦੀ ਹੈ?

ਪਰਮਾਣੂ ਆਕਾਰ (Size) ਦਾ ਸੰਬੰਧ ਪਰਮਾਣੂ ਦੇ ਅਰਧ ਵਿਆਸ ਨਾਲ ਹੈ। ਇੱਕ ਸੁਤੰਤਰ ਪਰਮਾਣੂ ਦੇ ਕੇਂਦਰ ਤੋਂ ਉਸ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਦੀ ਦੂਰੀ ਹੀ ਪਰਮਾਣੂ ਦੇ ਆਕਾਰ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਹਾਈਡਰੋਜਨ ਪਰਮਾਣੂ ਦਾ ਅਰਧ ਵਿਆਸ 37 pm (ਪੀਕੋਮੀਟਰ, 1 pm = 10⁻¹² m) ਹੈ।

ਆਓ ਅਸੀਂ ਗਰੁੱਪ ਅਤੇ ਪੀਰੀਅਡ ਵਿੱਚ ਪਰਮਾਣੂ ਦੇ ਆਕਾਰ (Size)ਦੇ ਬਦਲਣ ਦਾ ਅਧਿਐਨ ਕਰੀਏ: ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਪਾਸੇ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਜਾਣ ਨਾਲ ਪਰਮਾਣੂ ਦਾ

ਕਿਰਿਆ 5.7

- ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਹੋਠ ਦਿੱਤੇ ਗਏ ਹਨ : ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤ Be O N Li G ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ (pm) 88 111 66 74 152 77
- 🏿 ਇਹਨਾਂ ਨੂੰ ਪਰਮਾਣ ਅਰਧ ਵਿਆਸ ਦੇ ਵਧਦੇ ਕੁਮ ਵਿੱਚ ਤਰਤੀਬ ਦਿਓ।
- 💌 ਕੀ ਇਹ ਤੱਤ ਹੁਣ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਪੀਰੀਅਡ ਦੀ ਤਰ੍ਹਾਂ ਤਰਤੀਬ ਵਿੱਚ ਹਨ।
- ਕਿਸ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਸਭ ਤੋਂ ਵੱਡਾ ਅਤੇ ਕਿਸ ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਹੈ?
- ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਜਾਣ ਨਾਲ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਕਿਸ ਤਰ੍ਹਾਂ ਬਦਲਦਾ ਹੈ?

ਅਰਧ ਵਿਆਸ ਘਟਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਨਿਊਕਲੀਅਸ ਦਾ ਚਾਰਜ ਵਧਣ ਨਾਲ ਇਲੈੱਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਵੱਲ ਖਿੱਚੇ ਜਾਂਦੇ ਹਨ ਜਿਸ ਕਰਕੇ, ਪਰਮਾਣੂ ਦਾ ਆਕਾਰ ਘੱਟ ਜਾਂਦਾ ਹੈ। ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਨਾਲ ਪਰਮਾਣੂ ਦਾ ਸਾਈਜ਼ ਵਧਦਾ

ਤੁਸੀਂ ਵਖਗ ਕਿ ਗਰੂਪ ਵਿਚ ਉੱਪਰ ਤੋਂ ਹਠਾ ਵੱਲ ਜਾਣ ਨਾਲ ਪਰਮਾਣੂ ਦਾ ਸਾਈਜ਼ ਵਧਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਹੇਠਾਂ ਜਾਣ ਨਾਲ ਇੱਕ ਨਵਾਂ ਸ਼ੈੱਲ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਇਸ

ਕਿਰਿਆ 5.8

- ਪਹਿਲੇ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਹੇਨਾਂ ਦਿੱਤੇ ਅਰਧ ਵਿਆਸਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਵਧਦੇ ਕਮ ਵਿੱਚ ਤਰਤੀਬ ਦਿਓ। ਪਹਿਲੇ ਗਰੁੱਪ ਦੇ ਤੱਤ : Na Li Rb Cs K ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ (pm) : 186 152 244 262 231
- ਕਿਸ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਸਭ ਤੋਂ ਛੋਟਾ ਅਤੇ ਕਿਸ ਦਾ ਸਭ ਤੋਂ ਵੱਡਾ ਹੈ?
- ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਨਾਲ ਪਰਮਾਣੂ ਆਕਾਰ ਵਿੱਚ ਕਿਹੋ ਜਿਹਾ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ?

ਨਾਲ ਨਿਊਕਲੀਅਸ ਅਤੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ ਵੱਧ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸ ਦੇ ਕਾਰਨ ਨਿਊਕਲੀਅਸ ਦਾ ਚਾਰਜ ਵਧਣ ਦੇ ਬਾਵਜੂਦ ਵੀ ਪਰਮਾਣੂ ਦਾ ਆਕਾਰ ਵੱਧ ਜਾਂਦਾ ਹੈ।

ਧਾਤਵੀ ਅਤੇ ਅਧਾਤਵੀ ਗੁਣ (METALLIC AND NON-METALLIC PROPERTIES)

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ Na ਅਤੇ Mg ਜਿਹੀਆਂ ਧਾਤਾਂ ਸਾਰਨੀ ਦੇ ਖੱਬੇ ਪਾਸੇ ਅਤੇ ਸਲਫਰ ਅਤੇ

ਕਿਰਿਆ 5,9

- ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੀ ਜਾਂਚ ਕਰੋ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਧਾਤਾਂ ਅਤੇ ਆਧਾਤਾਂ ਵਜੋਂ ਵਰਗੀਕ੍ਰਿਤ ਕਰ।
- ਸਾਰਨੀ ਦੇ ਕਿਸ ਪਾਸੇ ਵੱਲ ਧਾਤਾਂ ਸਥਿਤ ਹਨ?
- ਸਾਰਨੀ ਦੇ ਕਿਸ ਪਾਸੇ ਵੱਲ ਅਧਾਤਾਂ ਸਥਿਤ ਹਨ?

ਕਲੋਰੀਨ ਜਿਹੀਆਂ ਅਧਾਤਾਂ ਸੱਜੇ ਪਾਸੇ ਸਥਿਤ ਹਨ।ਮੱਧ ਵਿੱਚ ਸਿਲੀਕਾਨ ਸਥਿਤ ਹੈ ਜਿਸ ਨੂੰ ਉੱਪ ਧਾਤ ਜਾਂ ਮੈਟਾਲਾਇਡ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਹ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੋਵਾਂ ਦੇ ਗੁਣ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।

ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਇੱਕ ਟੇਢੀ ਮੇਢੀ ਰੇਖਾ ਧਾਤਾਂ ਨੂੰ ਅਧਾਤਾਂ ਤੋਂ ਵੱਖ ਕਰਦੀ ਹੈ।ਇਸ ਰੇਖਾ ਉੱਤੇ ਆਉਣ ਵਾਲੇ ਤੱਤ ਬੋਰਾਨ, ਸਿਲੀਕਾਨ, ਜਰਮੇਨੀਅਮ, ਆਰਸੈਨਿਕ, ਐਂਟੀਮਨੀ, ਟੈਲੂਰੀਅਮ ਅਤੇ ਪੋਲੋਨੀਅਮ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੋਵਾਂ ਦੇ ਗੁਣ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ ਮੈਟਾਲਾਇਡ ਜਾਂ ਉੱਪਧਾਤ ਕਹਿੰਦੇ ਹਨ।

ਤੀਜੇ ਅਧਿਆਇ ਵਿੱਚ ਤੁਸੀਂ ਵੇਖਿਆ ਸੀ ਕਿ ਬੈਧਨ ਬਣਾਉਣ ਸਮੇਂ ਧਾਤਾਂ ਵਿੱਚ ਇਲੈੱਕਟ੍ਰਾਨ ਦੇਣ ਦਾ ਸੁਭਾਅ ਹੁੰਦਾ ਹੈ ਭਾਵ ਇਹ ਧਨ ਬਿਜਲਈ (ਇਲੈੱਕਟੋਪਾਜ਼ੇਟਿਵ) ਹੁੰਦੀਆਂ ਹਨ।

ਕਿਰਿਆ 5.10

- ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਗਰੁੱਪ ਅੰਦਰ ਇਲੈੱਕਟ੍ਰਾਨ ਛੱਡਣ ਦਾ ਰੁਝਾਨ ਕਿਸ ਤਰ੍ਹਾਂ ਬਦਲਦਾ ਹੈ?
- ਪੀਰੀਅਡ ਵਿੱਚ ਇਹ ਰੁਝਾਨ ਕਿਵੇਂ ਬਦਲਦਾ ਹੈ?

ਪੀਰੀਅਡ ਵਿੱਚ ਜਿਵੇਂ ਜਿਵੇਂ ਸੰਯੋਜਕ ਸ਼ੈਲ ਦੇ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਉੱਤੇ ਨਿਊਕਲੀਅਸ ਦਾ ਪ੍ਰਭਾਵੀ ਚਾਰਜ ਵਧਦਾ ਹੈ ਤਿਵੇਂ ਤਿਵੇਂ ਇਲੈੱਕਟ੍ਰਾਨ ਛੱਡਣ ਦਾ ਰੁਝਾਨ ਘੱਟ ਜਾਂਦਾ ਹੈ। ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਂਦਿਆਂ ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਉੱਤੇ ਕਿਰਿਆ ਕਰਨ ਵਾਲਾ ਪ੍ਰਭਾਵੀ ਨਿਊਕਲੀਅਸ ਚਾਰਜ ਘਟਦਾ ਹੈ ਕਿਉਂਕਿ ਸਭ ਤੋਂ ਬਾਹਰ ਵਾਲੇ ਇਲੈੱਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਤੋਂ ਦੂਰ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਇਲੈੱਕਟ੍ਰਾਨ ਸੌਖਿਆਂ ਹੀ ਛੱਡੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਸ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਪੀਰੀਅਡ ਵਿੱਚ ਸੱਜੇ ਨੂੰ ਜਾਂਦਿਆਂ ਤੱਤਾਂ ਦਾ ਧਾਤਵੀ ਸੁਭਾਅ ਘਟਦਾ ਹੈ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਂਦਿਆਂ ਧਾਤਵੀ ਸਭਾਅ ਵਧਦਾ ਹੈ।

ਦੂਜੇ ਪਾਸੇ ਅਧਾਤਾਂ ਰਿਣ ਬਿਜਲਈ (ਇਲੈੱਕਟ੍ਰੋਨੈਗੇਟਿਵ) ਹਨ। ਉਹਨਾਂ ਵਿੱਚ ਇਲੈੱਕਟ੍ਰਾਨ ਪ੍ਰਾਪਤ ਕਰਕੇ ਬੈਧਨ ਬਣਾਉਣ ਦਾ ਰੁਝਾਨ ਹੁੰਦਾ ਹੈ। ਆਓ ਇਸ ਗੁਣ ਦੇ ਬਦਲਣ ਦੇ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੀਏ:

ਇਲੈੱਕਟਰੋਨੈਗੇਟਿਵਿਟੀ ਦੇ ਸਭਾਅ ਅਨੁਸਾਰ ਅਧਾਤਾਂ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਸੱਜੇ ਅਤੇ ਉੱਪਰ

ਕਿਰਿਆ 5.11

- ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਨਾਲ ਤੱਤਾਂ ਦੁਆਰਾ ਇਲੈੱਕਟ੍ਰਾਨ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਰੁਝਾਨ ਵਿੱਚ ਕਿਵੇਂ ਪਰਿਵਰਤਨ ਆਵੇਗਾ।
- ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਨਾਲ ਤੱਤਾਂ ਦੁਆਰਾ ਇਲੈੱਕਟ੍ਰਾਨ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਰੁਝਾਨ ਵਿੱਚ ਕਿਵੇਂ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ?

ਵੱਲ ਸਥਿਤ ਹਨ।

ਇਹਨਾਂ ਗੁਣਾਂ ਤੋਂ ਸਾਨੂੰ ਇਹਨਾਂ ਤੱਤਾਂ ਤੋਂ ਬਣੇ ਆਕਸਾਈਡਾਂ ਦੇ ਸੁਭਾਅ ਦਾ ਵੀ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿਉਂਕਿ ਆਮ ਕਰਕੇ ਧਾਤਾਂ ਦੇ ਆਕਸਾਈਡ ਖ਼ਾਰੀ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਆਕਸਾਈਡ ਤੇਜ਼ਾਬੀ ਹੁੰਦੇ ਹਨ।

35.00

ਪ੍ਰਸ਼ਨ

- ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਦੁਆਰਾ ਕਿਸ ਤਰ੍ਹਾਂ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਖਾਮੀਆਂ ਨੂੰ ਦੂਰ ਕੀਤਾ ਗਿਆ?
- ਮੈਗਨੀਸ਼ੀਅਮ ਦੀ ਤਰ੍ਹਾਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਿਖਾਉਣ ਵਾਲੇ ਦੋ ਤੱਤਾਂ ਦੇ ਨਾਂ ਦੱਸੋ। ਤੁਹਾਡੀ ਚੋਣ ਦਾ ਕੀ ਅਧਾਰ ਹੈ?
- 3. ਨਾਂ ਦੱਸੋ :
 - (a) ਤਿੰਨ ਤੱਤ ਜਿਨ੍ਹਾਂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਇੱਕ ਇੱਕ ਇਲੈੱਕਟ੍ਰਾਨ ਮੌਜੂਦ ਹੈ।
 - (b) ਦੋ ਤੱਤ ਜਿਨ੍ਹਾਂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਦੋ ਇਲੈੱਕਟ੍ਰਾਨ ਮੌਜ਼ੂਦ ਹਨ।
 - (c) ਤਿੰਨ ਤੱਤ ਜਿਨ੍ਹਾਂ ਦਾ ਬਾਹਰੀ ਸ਼ੈੱਲ ਪੂਰਾ ਹੈ।
- 4. (a) ਲਿਥੀਅਮ, ਸੋਡੀਅਮ, ਪੋਟਾਸ਼ੀਅਮ ਸਾਰੀਆਂ ਹੀ ਧਾਤਾਂ ਹਨ ਜੋ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡਰੋਜਨ ਗੈਸ ਮੁਕਤ ਕਰਦੀਆਂ ਹਨ। ਕੀ ਇਹਨਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਕੋਈ ਸਮਾਨਤਾ ਹੈ?
 - (b) ਹੀਲੀਅਮ ਇੱਕ ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸ ਹੈ ਅਤੇ ਨੀਆਨ ਇੱਕ ਬਹੁਤ ਹੀ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਗੈਸ ਹੈ। ਇਹਨਾਂ ਦੋਹਾਂ ਦੇ ਪ੍ਰਮਾਣੂਆਂ ਵਿੱਚ ਕੀ ਸਮਾਨਤਾ ਹੈ?
- 5. ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਪਹਿਲੇ 10 ਤੱਤਾਂ ਵਿੱਚ ਕਿਹੜੀਆਂ ਧਾਤਾਂ ਹਨ?
- 6. ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਇਹਨਾਂ ਦੇ ਸਥਾਨ ਦੇ ਆਧਾਰ ਤੇ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਸ ਤੱਤ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਧਾਤਵੀ ਗੁਣ ਹੈ?
 - Ga Ge As Se Be

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ਹੈ?

- 🔹 ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਗੁਣਾਂ ਦੀ ਸਮਾਨਤਾ ਦੇ ਆਧਾਰ ਤੇ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂ ਸਕਦਾ ਹੈ।
- 🔹 ਡਾਬਰਨੀਅਰ ਨੇ ਤੱਤਾਂ ਨੂੰ ਤਿੱਕੜੀਆਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਅਤੇ ਨਿਊਲੈਂਡ ਨੇ ਅਸ਼ਟਕ ਦਾ ਸਿਧਾਂਤ ਦਿੱਤਾ।
- ਮੈਂਡਲੀਵ ਨੇ ਤੱਤਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ।
- ਮੈਂਡਲੀਵ ਨੇ ਆਪਣੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਖਾਲੀ ਸਥਾਨਾਂ ਦੇ ਆਧਾਰ ਤੇ ਨਵੇਂ ਤੱਤਾਂ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕੀਤੀ।
- ਤੱਤਾਂ ਨੂੰ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਤਰਤੀਬ ਦੇਣ ਨਾਲ ਹੋਣ ਵਾਲੀਆ ਖ਼ਾਮੀਆਂ ਪਰਮਾਣੂ ਅੰਕ ਦੇ ਵਧਦੇ ਕ੍ਰਮ ਅਨੁਸਾਰ ਤਰਤੀਬ ਦੇਣ ਨਾਲ ਦੂਰ ਹੋ ਗਈਆਂ। ਤੱਤਾਂ ਦੇ ਇਸ ਆਧਾਰਪੂਰਨ ਗੁਣ ਭਾਵ ਪਰਮਾਣੂ ਅੰਕ ਦੀ ਖੋਜ ਮੋਸਲੇ ਨੇ ਕੀਤੀ।
- ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ 18 ਲੰਬਾਤਮਕ ਕਾਲਮ ਜਿਹਨਾਂ ਨੂੰ ਗਰੁੱਪ (ਸਮੂਹ) ਕਹਿੰਦੇ ਹਨ ਅਤੇ 7 ਖਤਿਜੀ ਕਤਾਰਾਂ ਜਿਨ੍ਹਾਂ ਨੂੰ ਪੀਰੀਅਡ (ਆਵਰਤ) ਕਹਿੰਦੇ ਹਨ ਵਿੱਚ ਤਰਤੀਬ ਦਿੱਤੀ ਗਈ ਹੈ।
- ਇਸ ਪ੍ਰਕਾਰ ਵਿਵਸਥਾ ਕੀਤੇ ਤੱਤ ਪਰਮਾਣੂ ਸਾਈਜ਼, ਸੰਯੋਜਕਤਾ, ਧਾਤਵੀਂ ਅਤੇ ਅਧਾਤਵੀਂ ਲੱਛਣਾਂ ਜਿਹੇ ਗੁਣਾਂ ਦੀ ਅਵਰਤੀ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।

ਅਭਿਆਸ

1.	ਆਵਰਤੀ ਸਾਰਨੀ	ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ	ਪਾਸੇ ਵੱਲ ਜ	ਜਾਣ ਨਾਲ ਤਰਤੀਬ	ਬਾਰੇ ਕਿਹੜਾ ਨ	ਕਥਨ ਸੱਚ ਨਹੀਂ:
----	-------------	--------------------	------------	---------------	--------------	---------------

- (a) ਤੱਤਾਂ ਦਾ ਧਾਤਵੀਂ ਸੁਭਾਅ ਘਟਦਾ ਹੈ।
- (b) ਸੰਯੋਜਕ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਵੱਧ ਜਾਂਦੀ ਹੈ।
- (c) ਪਰਮਾਣੂ ਸੌਖ ਨਾਲ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਨੂੰ ਗੁਆ ਦਿੰਦੇ ਹਨ।
- (d) ਇਹਨਾਂ ਦੇ ਆਕਸਾਈਡ ਵਧੇਰੇ ਤੇਜ਼ਾਬੀ ਹੋ ਜਾਂਦੇ ਹਨ।
- ਤੱਤ X, XCl, ਸੂਤਰ ਵਾਲਾ ਇੱਕ ਕਲੋਰਾਈਡ ਬਣਾਉਂਦਾ ਹੈ ਜੋ ਕਿ ਇੱਕ ਉੱਚ ਪਿਘਲਣ ਅੰਕ ਦਾ ਠੋਸ ਹੈ। ਇਹ ਤੱਤ X ਸੰਭਵ ਤੌਰ ਤੇ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਉਸ ਗਰੁੱਪ ਵਿੱਚ ਹੋਵੇਗਾ ਜਿਸ ਵਿੱਚ ਹੈ:
 - (a) Na
- (b) Mg
- (c) Al
- (d) Si

- 3. ਕਿਸ ਤੱਤ ਵਿੱਚ :
 - (a) ਦੋ ਸ਼ੈੱਲ ਹਨ ਅਤੇ ਦੋਵੇਂ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਨਾਲ ਪੂਰੇ ਭਰੇ ਹਨ।
 - (b) ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ 2, 8, 2 ਹੈ?
 - (c) ਕੁੱਲ ਤਿੰਨ ਸ਼ੈੱਲ ਹਨ ਅਤੇ ਸੰਯੋਜਕ ਸ਼ੈੱਲ ਵਿੱਚ ਚਾਰ ਇਲੈੱਕਟ੍ਰਾਨ ਹਨ।
 - (d) ਦੂਜੇ ਸ਼ੈੱਲ ਵਿੱਚ ਪਹਿਲੇ ਸ਼ੈੱਲ ਨਾਲੋਂ ਦੁੱਗਣੇ ਇਲੈੱਕਟ੍ਰਾਨ ਹਨ।
 - (e) ਕੁੱਲ ਦੋ ਸ਼ੈੱਲ ਹਨ ਅਤੇ ਸੰਯੋਜਨ ਸ਼ੈੱਲ ਵਿੱਚ ਤਿੰਨ ਇਲੈੱਕਟ੍ਰਾਨ ਹਨ।
- 4. (a) ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਬੋਰਾਨ ਕਾਲਮ ਦੇ ਸਾਰੇ ਤੱਤਾਂ ਦਾ ਸਾਂਝਾ ਗੁਣ ਕੀ ਹੈ?
 - (b) ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਫਲੌਰੀਨ ਕਾਲਮ ਦੇ ਸਾਰੇ ਤੱਤਾਂ ਦਾ ਸਾਂਝਾ ਗਣ ਕੀ ਹੈ?

(201t)

- 5. ਇੱਕ ਪਰਮਾਣੂ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ 2, 8, 7 ਹੈ।
 - (a) ਇਸ ਤੱਤ ਦਾ ਪਰਮਾਣ ਅੰਕ ਕੀ ਹੈ?

The Con-

(b) ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸ ਨਾਲ ਇਸ ਦੀ ਰਸਾਇਣਿਕ ਸਮਾਨਤਾ ਹੋਵੇਗੀ? (ਪਰਮਾਣੂ ਅੰਕ ਬ੍ਰੈਕਟ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ)।

N(7) F(9) P(15) Ar(18)

6. ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਤਿੰਨ ਤੱਤਾਂ A. B ਅਤੇ C ਦੀ ਸਥਿਤੀ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹੈ :

ਗਰੁੱਧ 16 ਗਰੁੱਧ 17 - - A - - C

ਦੱਸੋ :

- (a) A ਧਾਤ ਹੈ ਜਾਂ ਅਧਾਤ ਹੈ?
- (b) ਦੱਸ A ਦੇ ਟਾਕਰੇ ਵਿੱਚ C ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੈ ਜਾਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੈ?
- (c) ਕੀ B ਨਾਲੋਂ C ਸਾਈਜ਼ ਵਿੱਚ ਵੱਡਾ ਹੈ ਜਾਂ ਛੋਟਾ?
- (d) ਤੱਤ A, ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਆਇਨ ਕੈਟਾਾਇਨ ਜਾਂ ਐਨਾਇਨ ਬਣਾਏਗਾ?
- 7. ਨਾਈਟਰੋਜਨ (ਪਰਮਾਣੂ-ਅੰਕ 7) ਅਤੇ ਫਾਸਫੋਰਸ (ਪਰਮਾਣੂ-ਅੰਕ 15) ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਗਰੁੱਪ 15 ਦੇ ਤੱਤ ਹਨ।ਇਹਨਾਂ ਦੋਵੇਂ ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ ਲਿਖੇ।ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਤੱਤ ਵਧੇਰੇ ਰਿਣ ਬਿਜਲਈ ਹੈ ਅਤੇ ਕਿਉਂ?
- 8. ਤੱਤਾਂ ਦੀ ਇਲੈੱਕਟ੍ਰਾਨੀ ਤਰਤੀਬ ਦਾ ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤ ਦੀ ਸਥਿਤੀ ਨਾਲ ਕੀ ਸੰਬੰਧ ਹੈ?
- 9. ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਕੈਲਸ਼ੀਅਮ (ਪਰਮਾਣੂ-ਅੰਕ 20) ਦੇ ਚਾਰੇ ਪਾਸੇ 12, 19, 21 ਅਤੇ 38 ਪਰਮਾਣੂ-ਅੰਕਾਂ ਵਾਲੇ ਤੱਤ ਮੌਜੂਦ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਕੈਲਸ਼ੀਅਮ ਵਰਗੇ ਹਨ?
- 10. ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਨੀ ਅਤੇ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਨੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਤਰਤੀਵ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਗਰੁੱਪ ਕਿਰਿਆਵਾਂ

- ਅਸੀਂ ਤੱਤਾਂ ਦੇ ਵਰਗੀਕਰਨ ਲਈ ਕੀਤੇ ਗਏ ਕੁੱਝ ਪ੍ਰਮੁੱਖ ਯਤਨਾਂ ਦੀ ਚਰਚਾ ਕੀਤੀ। (ਇੰਟਰਨੈੱਟ ਜਾਂ ਲਾਇਬਰੇਰੀ ਤੋਂ) ਇਸ ਵਰਗੀਕਰਨ ਲਈ ਹੋਰ ਯਤਨਾਂ ਦਾ ਪਤਾ ਕਰੋ।
- 2. ਅਸੀਂ ਆਵਰਤੀ ਸਾਰਨੀ ਦੇ ਲੰਬੇ ਰੂਪ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਆਧੁਨਿਕ ਆਵਰਤੀ ਨਿਯਮ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਤੱਤਾਂ ਨੂੰ ਹੋਰ ਕਈ ਤਰ੍ਹਾਂ ਵੀ ਤਰਤੀਬ ਦਿੱਤੀ ਗਈ ਹੈ। ਪਤਾ ਕਰੋ ਇਹ ਕੀ ਹਨ?

775

ਅਧਿਆਇ 6 ਜੈਵਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ (Life Processes)

ਸੀਂ ਸਜੀਵ ਅਤੇ ਨਿਰਜੀਵ ਵਿੱਚ ਕਿਵੇਂ ਅੰਤਰ ਸਪਸ਼ਟ ਕਰਦੇ ਹਾਂ? ਜੇਕਰ ਅਸੀਂ ਕੁੱਤੇ ਨੂੰ ਦੌੜਦਿਆਂ, ਗਾਂ ਨੂੰ ਜੁਗਾਲ਼ੀ ਕਰਦਿਆਂ ਜਾਂ ਗਲੀ ਵਿੱਚ ਇੱਕ ਮਨੁੱਖ ਨੂੰ ਜ਼ੋਰ ਨਾਲ ਚੀਖਦਿਆਂ ਵੇਖਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਸਮਝ ਲੈਂਦੇ ਹਾਂ ਕਿ ਇਹ ਸਜੀਵ ਹਨ। ਜੇਕਰ ਕੁੱਤਾ, ਗਾਂ ਜਾਂ ਮਨੁੱਖ ਸੌਂ ਰਹੇ ਹੋਣ ਤਾਂ ਕੀ ਅਸੀਂ ਫਿਰ ਵੀ ਇਹੋ ਸਮਝਾਂਗੇ ਕਿ ਇਹ ਸਜੀਵ ਹਨ ਪਰ ਇਹ ਅਸੀਂ ਕਿਵੇਂ ਜਾਣਾਂਗੇ? ਅਸੀਂ ਉਹਨਾਂ ਨੂੰ ਸਾਹ ਲੈਂਦੇ ਵੇਖਦੇ ਹਾਂ ਅਤੇ ਜਾਣ ਜਾਂਦੇ ਹਾਂ ਕਿ ਇਹ ਸਜੀਵ ਹਨ। ਪੌਦਿਆਂ ਬਾਰੇ ਅਸੀਂ ਕਿਵੇਂ ਜਾਣਾਂਗੇ ਕਿ ਉਹ ਸਜੀਵ ਹਨ? ਸਾਡੇ ਵਿੱਚੋਂ ਕੁੱਝ ਕਹਿਣਗੇ ਕਿ ਉਹ ਹਰੇ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ ਪ੍ਰੰਤੂ ਉਹਨਾਂ ਪੌਦਿਆਂ ਬਾਰੇ ਕੀ ਕਹਾਂਗੇ ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਪੱਤੀਆਂ ਹਰੀਆਂ ਨਾ ਹੋ ਕੇ ਕਿਸੇ ਹੋਰ ਰੰਗ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ? ਉਹ ਸਮੇਂ ਦੇ ਨਾਲ ਵਧਦੇ ਹਨ ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਉਹ ਸਜੀਵ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਅਸੀਂ ਸਜੀਵ ਦੇ ਆਮ ਪਰਮਾਣ ਵਜੋਂ ਕੁੱਝ ਗਤੀਆਂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਜੋ ਵਾਧਾ ਜਾਂ ਆਮ ਗਤੀ ਹੋ ਸਕਦੀ ਹੈ। ਪਰ ਉਹ ਪੌਦਾ ਵੀ ਸਜੀਵ ਹੈ ਜਿਸ ਦਾ ਵਾਧਾ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦਾ। ਕੁੱਝ ਜੰਤੂ ਸਾਹ ਤਾਂ ਲੈਂਦੇ ਹਨ ਪਰ ਉਨ੍ਹਾਂ ਵਿੱਚ ਗਤੀ ਸਪਸ਼ਟ ਰੂਪ ਵਿੱਚ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦੀ, ਉਹ ਵੀ ਸਜੀਵ ਹਨ। ਇਸ ਲਈ ਦਿਖਾਈ ਦੇਣ ਵਾਲੀ ਗਤੀ ਜੀਵਨ ਦੇ ਪਰਿਭਾਸ਼ਿਤ ਲੱਛਣ ਲਈ ਕਾਫੀ ਨਹੀਂ ਹੈ।

ਅਤਿ ਸੂਖ਼ਮ ਸਕੇਲ ਤੇ ਹੋਣ ਵਾਲੀਆਂ ਗਤੀਆਂ ਅੱਖਾਂ ਨਾਲ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦੀਆਂ, ਉਦਾਹਰਣ ਵਜੋਂ ਅਣੂਆਂ ਦੀਆਂ ਗਤੀਆਂ।ਕੀ ਇਹ ਅਦਿੱਖ ਅਣਵੀਂ ਗਤੀਆਂ ਜੀਵਨ ਲਈ ਜ਼ਰੂਰੀ ਹਨ? ਜੇਕਰ ਅਸੀਂ ਇਹ ਪ੍ਰਸ਼ਨ ਕਿਸੇ ਜੀਵ ਵਿਗਿਆਨੀ ਤੋਂ ਪੁੱਛੀਏ ਤਾਂ ਉਹਨਾਂ ਦਾ ਉੱਤਰ ਹਾਂ ਵਿੱਚ ਹੋਵੇਗਾ।ਅਸਲ ਵਿੱਚ ਵਿਸ਼ਾਣੂ ਦੇ ਅੰਦਰ ਕੋਈ ਅਣਵੀ ਗਤੀ ਨਹੀਂ ਹੁੰਦੀ (ਜਦੋਂ ਤੱਕ ਉਹ ਕਿਸੇ ਸੈੱਲ ਤੇ ਹਮਲਾ ਨਹੀਂ ਕਰਦਾ)। ਇਸ ਲਈ ਇਹ ਵਿਵਾਦ ਹੈ ਕਿ ਉਹ ਸਜੀਵ ਹੈ ਜਾਂ ਨਹੀਂ।

ਜੀਵਨ ਲਈ ਅਣਵੀਂ ਗਤੀਆਂ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹਨ? ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਸਜੀਵਾਂ ਦੀ ਰਚਨਾ ਸੰਗਠਿਤ ਹੁੰਦੀ ਹੈ।ਉਹਨਾਂ ਵਿੱਚ ਟਿਸ਼ੂ ਹੋ ਸਕਦੇ ਹਨ, ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਸੈੱਲ ਹੁੰਦੇ ਹਨ, ਸੈੱਲਾਂ ਵਿੱਚ ਛੋਟੇ ਘਟਕ ਹੁੰਦੇ ਹਨ, ਆਦਿ। ਸਜੀਵ ਦੀ ਇਹ ਸੰਗਠਿਤ ਅਤੇ ਨਿਯਮਤ ਰਚਨਾ ਸਮੇਂ ਦੇ ਨਾਲ ਨਾਲ ਵਾਤਾਵਰਣ ਦੇ ਪ੍ਰਭਾਵ ਕਾਰਨ ਵਿਘਟਤ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਜੇਕਰ ਇਹ ਨਿਯਮਤ ਵਿਵਸਥਾ ਟੁੱਟ ਜਾਂਦੀ ਹੈ ਤਾਂ ਜੀਵ ਜੀਵਤ ਨਹੀਂ ਰਹਿ ਸਕਦਾ।ਇਸ ਲਈ ਜੀਵਾਂ ਦੇ ਸਗੋਰ ਨੂੰ ਮੁਰੰਮਤ ਅਤੇ ਰੱਖਿਆ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਸਾਰੀਆਂ ਰਚਨਾਵਾਂ ਅਣੂਆਂ ਤੋਂ ਬਣੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਇਸ ਲਈ ਉਹਨਾਂ ਨੂੰ ਅਣੂਆਂ ਦੀ ਗਤੀਸ਼ੀਲਤਾ ਬਣਾਈ ਰੱਖਣੀ ਚਾਹੀਦੀ ਹੈ। ਸਜੀਵਾਂ ਵਿੱਚ ਰੱਖਿਅਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਕਿਹੜੀਆਂ ਕਿਹੜੀਆਂ ਹਨ? ਆਓ, ਲੱਭਦੇ ਹਾਂ।

(T)(1)(\$)

6.1 ਜੈਵਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਕੀ ਹਨ? (What are life processes)

ਜੀਵਾਂ ਦੀ ਰੱਖਿਆ (ਦੇਖ ਭਾਲ) ਦਾ ਕੰਮ ਨਿਰੰਤਰ ਚੱਲਦਾ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ ਭਾਵੇਂ ਉਹ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਨਾ ਕਰਦੇ ਹੋਣ। ਜਦੋਂ ਅਸੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਕੇਵਲ ਬੈਠੇ ਹੁੰਦੇ ਹਾਂ ਜਾਂ ਫਿਰ ਸੌਂ ਰਹੇ ਹੁੰਦੇ ਹਾਂ ਉਸ ਸਮੇਂ ਵੀ ਇਹ ਰੱਖਿਆ ਦਾ ਕੰਮ ਚੱਲਦਾ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਉਹ ਸਾਰੇ ਕਾਰਜ ਜੋ ਸਾਂਝੇ ਰੂਪ ਵਿੱਚ ਜੀਵਾਂ ਦੀ ਰੱਖਿਆ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਜੈਵਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਆਖਦੇ ਹਨ। ਨੁਕਸਾਨ ਅਤੇ ਟੁੱਟ ਭੱਜ ਨੂੰ ਰੋਕਣ ਲਈ ਰੱਖਿਆ ਕੰਮਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ਜਿਸ ਲਈ ਉਹਨਾਂ ਨੂੰ ਊਰਜਾ ਦੀ ਲੌੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਊਰਜਾ ਸੰਬੰਧਿਤ ਜੀਵ ਦੇ ਸਰੀਰ ਵਿੱਚ ਬਾਹਰੋਂ ਆਉਂਦੀ ਹੈ। ਇਸ ਲਈ ਊਰਜਾ ਦੇ ਸਰੋਤ ਦਾ ਬਾਹਰ ਤੋਂ ਜੀਵ ਦੇ ਸਰੀਰ ਵਿੱਚ ਸਥਾਨਾਂਤਰਣ ਹੋਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਜਰੂਰੀ ਹੈ। ਇਸ ਊਰਜਾ ਦੇ ਸਰੋਤ ਜਿਸ ਨੂੰ ਅਸੀਂ ਭੋਜਨ ਕਹਿੰਦੇ ਹਾਂ, ਨੂੰ ਸਰੀਰ ਦੇ ਅੰਦਰ ਲੈ ਜਾਣ ਦੇ ਕਿਰਿਆ ਨੂੰ ਆਮ ਕਰਕੇ ਪੋਸ਼ਣ (Nutrition) ਆਖਦੇ ਹਨ। ਜੇਕਰ ਜੀਵ ਦੇ ਸਰੀਰ ਵਿੱਚ ਵਿ੍ਧੀ ਹੋਣੀ ਹੈ ਤਾਂ ਉਸ ਲਈ ਉਸ ਨੂੰ ਬਾਹਰੋਂ ਹੋਰ ਕੱਚੀ ਸਮੱਗਰੀ ਦੀ ਵੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ। ਕਿਉਂਕਿ ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਜੀਵਨ ਕਾਰਬਨ ਆਧਾਰਿਤ ਅਣੂਆਂ ਉੱਤੇ ਨਿਰਭਰ ਹੈ ਇਸ ਲਈ ਵਧੇਰੇ ਕਰਕੇ ਖਾਣ ਯੋਗ ਪਦਾਰਥ ਵੀ ਕਾਰਬਨ ਆਧਾਰਿਤ ਹਨ। ਇਹਨਾਂ ਕਾਰਬਨ ਸਰੋਤਾਂ ਦੀ ਜਟਿਲਤਾ ਦੇ ਅਨੁਸਾਰ ਵੱਖ-ਵੱਖ ਜੀਵ ਭਿੰਨ ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੀਆਂ ਪੋਸ਼ਣ ਕਿਰਿਆਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ।

ਕਿਉਂਕਿ ਵਾਤਾਵਰਨ ਕਿਸੇ ਇੱਕ ਜੀਵ ਦੇ ਨਿਯੰਤਰਨ ਵਿੱਚ ਨਹੀਂ ਹੈ ਇਸ ਲਈ ਊਰਜਾ ਦੇ ਇਹ ਬਾਹਰੀ ਸਰੋਤ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਹੋ ਸਕਦੇ ਹਨ। ਸਰੀਰ ਦੇ ਅੰਦਰ ਊਰਜਾ ਦੇ ਇਹਨਾਂ ਸਰੋਤਾਂ ਦੇ ਵਿਘਟਨ ਜਾਂ ਨਿਰਮਾਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਜਿਸ ਨਾਲ ਅੰਤ ਵਿੱਚ ਇਹ ਊਰਜਾ ਦੇ ਇੱਕ ਸਮਾਨ ਸਰੋਤ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਣਗੇ। ਇਹ ਊਰਜਾ ਸਰੋਤ ਭਿੰਨ-ਭਿੰਨ ਅਣਵੀਂ ਗਤੀਆਂ ਲਈ ਅਤੇ ਵੱਖ-ਵੱਖ ਜੀਵਾਂ ਦੇ ਸਰੀਰ ਦੀ ਰੱਖਿਆ ਅਤੇ ਸਰੀਰ ਦੇ ਵਾਧੇ ਲਈ ਜ਼ਰੂਰੀ ਅਣੂਆਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਉਪਯੋਗੀ ਹਨ। ਇਸ ਮੰਤਵ ਦੀ ਪੂਰਤੀ ਲਈ ਸਰੀਰ ਦੇ ਅੰਦਰ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਦੀ ਇੱਕ ਲੜੀ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਆਕਸੀਕਰਨ, ਲਘੂਕਰਨ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਅਣੂਆਂ ਦੇ ਵਿਘਟਨ ਦੇ ਕੁੱਝ ਆਮ ਰਸਾਇਣਿਕ ਸਾਧਨ ਹਨ। ਇਸ ਲਈ ਬਹੁਤ ਸਾਰੇ ਜੀਵ ਸਰੀਰ ਤੋਂ ਬਾਹਰਲੇ ਸਰੋਤਾਂ ਤੋਂ ਆਕਸੀਜਨ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਸਰੀਰ ਦੇ ਬਾਹਰ ਤੋਂ ਆਕਸੀਜਨ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨਾ ਅਤੇ ਸੈੱਲਾਂ ਦੀ ਜ਼ਰੂਰਤ ਅਨੁਸਾਰ ਭੋਜਨ ਸਰੋਤਾਂ ਦੇ ਵਿਘਟਨ ਵਿੱਚ ਉਸ ਦੀ ਵਰਤੋਂ ਕਰਨ ਨੂੰ ਸਾਰ ਕਿਰਿਆ (Respiration) ਆਖਦੇ ਹਨ।

ਇੱਕ ਸੈੱਲੀ ਜੀਵਾਂ ਦੀ ਪੂਰੀ ਸਤ੍ਹਾ ਵਾਤਾਵਰਨ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਲਈ ਉਹਨਾਂ ਨੂੰ ਭੋਜਨ ਪ੍ਰਾਪਤੀ ਲਈ, ਗੈਸਾਂ ਦੀ ਅਦਲਾ ਬਦਲੀ ਕਰਨ ਲਈ ਜਾਂ ਵਾਧੂ ਪਦਾਰਥ ਨੂੰ ਬਾਹਰ ਕੱਢਣ ਲਈ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਅੰਗ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ ਹੈ। ਪਰ ਜਦੋਂ ਜੀਵ ਦੇ ਸਰੀਰ ਦਾ ਆਕਾਰ ਵਧਦਾ ਹੈ ਅਤੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਵਧੇਰੇ ਗੁੰਝਲਦਾਰ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ? ਬਹੁ ਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸਾਰੇ ਸੈੱਲ ਆਪਣੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਵਾਤਵਰਨ ਨਾਲ ਸਿੱਧਾ ਸੰਪਰਕ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ। ਇਸ ਲਈ ਸਾਧਾਰਨ ਵਿਸਰਣ ਸਾਰੇ ਸੈੱਲਾਂ ਦੀਆਂ ਲੋੜਾਂ ਪਰੀਆਂ ਨਹੀਂ ਕਰ ਸਕਦਾ।

ਅਸੀਂ ਪਹਿਲਾਂ ਵੀ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਵੱਖ ਵੱਖ ਕਾਰਜਾਂ ਨੂੰ ਕਰਨ ਲਈ ਭਿੰਨ ਭਿੰਨ ਅੰਗ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।ਅਸੀਂ ਇਹਨਾਂ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਟਿਸ਼ੂਆਂ ਅਤੇ ਸਰੀਰ ਵਿੱਚ ਉਹਨਾਂ ਦੇ ਸੰਗਠਨ ਬਾਰੇ ਜਾਣੂ ਹਾਂ। ਇਸ ਲਈ ਇਹ ਕੋਈ ਅਸਚਰਜ ਨਹੀਂ ਹੈ ਕਿ ਭੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਅੰਦਰ ਲੈ ਜਾਣਾ ਵੀ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਟਿਸ਼ੂਆਂ ਦਾ ਕੰਮ ਹੈ।ਪਰ ਇਸ ਤੋਂ ਇੱਕ ਸਮੱਸਿਆ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।ਭਾਵੇਂ ਭੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਦਾ ਅੰਦਰ ਲੈ ਜਾਣਾ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਅੰਗਾਂ ਦੁਆਰਾ ਹੀ ਹੁੰਦਾ ਹੈ ਪ੍ਰੰਤੂ ਸਰੀਰ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਨੂੰ ਇਨ੍ਹਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਭੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਨੂੰ ਸਰੀਰ ਵਿੱਚ ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੇ ਸਥਾਨ ਤੱਕ ਲੈ ਕੇ ਜਾਣ ਲਈ ਸਥਾਨਾਂਤਰਣ ਪਣਾਲੀ ਦੀ ਲੋੜ ਹੈ।

ਜਦੋਂ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਵਿੱਚ ਕਾਰਬਨ ਸਰੋਤ ਅਤੇ ਆਕਸੀਜਨ ਦਾ ਉਪਯੋਗ ਊਰਜਾ ਪ੍ਰਾਪਤੀ ਲਈ ਹੁੰਦਾ ਹੈ ਤਾਂ ਅਜਿਹੇ ਸਹਿ-ਉਤਪਾਦ ਵੀ ਬਣਦੇ ਹਨ ਜੋ ਸਰੀਰ ਦੇ ਸੈੱਲਾਂ ਲਈ ਨਾ ਕੇਵਲ ਅਣਉਪਯੋਗੀ ਹੁੰਦੇ ਹਨ ਸਗੋਂ ਹਾਨੀਕਾਰਕ ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਇਹ ਫਾਲਤੂ ਸਹਿ-ਉਤਪਾਦਾਂ ਨੂੰ ਸਰੀਰ ਤੋਂ ਬਾਹਰ ਕੱਢਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਅਸੀਂ ਮਲ-ਤਿਆਗ ਕਹਿੰਦੇ ਹਾਂ ਜੇਕਰ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸਰੀਰਕ ਬਣਤਰ ਦੇ ਮੂਲ ਨਿਯਮ ਦੀ ਪਾਲਣਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਮਲ-ਤਿਆਗ ਲਈ ਵਿਸ਼ੇਸ਼ ਟਿਸ਼ੂ ਵਿਕਸਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਫੋਕਟ ਪਦਾਰਥਾਂ ਨੂੰ ਸੈੱਲਾਂ ਤੋਂ ਮਲ-ਤਿਆਗ ਟਿਸ਼ੂਆਂ ਤੱਕ ਲਿਆਉਣ ਲਈ ਸਥਾਨਾਂਤਰਣ ਪਣਾਲੀ ਦੀ ਲੋੜ ਹੋਵੇਗੀ।

ਆਓ ਅਸੀਂ ਜੀਵਨ ਦੀ ਰੱਖਿਆ ਕਰਨ ਵਾਲੀਆਂ ਜ਼ਰੂਰੀ ਪ੍ਕਿਰਿਆਵਾਂ ਬਾਰੇ ਇੱਕ ਇੱਕ ਕਰਕੇ ਵਿਚਾਰ ਕਰੀਏ।

ਪ੍ਰਸ਼ਨ

- ਮਨੁੱਖਾਂ ਜਿਹੇ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਨੂੰ ਆਕਸੀਜਨ ਦੀ ਲੋੜ ਪੂਰੀ ਕਰਨ ਵਿੱਚ ਵਿਸਰਣ ਕਿਉਂ ਕਾਫੀ ਨਹੀਂ?
- ਕੋਈ ਵਸਤੂ ਜੀਵਤ ਹੈ, ਇਸ ਦਾ ਨਿਰਣਾ ਕਰਨ ਲਈ ਅਸੀਂ ਕਿਹੜੇ ਮਾਪਦੈਂਡ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ?
- 3. ਕਿਸੇ ਜੀਵ ਦੁਆਰਾ ਕਿਹੜੀ ਬਾਹਰਲੀ ਕੱਚੀ ਸਮੱਗਰੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ?
- 4. ਜੀਵਨ ਦੀ ਰੱਖਿਆ ਲਈ ਤੁਸੀਂ ਕਿਹੜੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਜ਼ਰੂਰੀ ਸਮਝਦੇ ਹੋ।

6.2 ਪੇਸ਼ਣ (Nutrition)

ਜਦੋਂ ਅਸੀਂ ਚੱਲਦੇ ਹਾਂ ਜਾਂ ਸਾਈਕਲ ਚਲਾਉਂਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਊਰਜਾ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ।ਉਸ ਸਥਿਤੀ ਵਿੱਚ ਵੀ ਜਦੋਂ ਅਸੀਂ ਵਿਖਾਈ ਦੇਣ ਵਾਲਾ ਕਾਰਜ ਨਹੀਂ ਕਰ ਰਹੇ ਹੁੰਦੇ ਤਾਂ ਵੀ ਸਰੀਰ ਵਿੱਚ ਕੰਮ ਦੀ ਸਥਿਤੀ ਦੀ ਰੱਖਿਆ ਲਈ ਸਾਨੂੰ ਬਾਹਰੋਂ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।ਵਾਧੇ, ਵਿਕਾਸ, ਪ੍ਰੋਟੀਨ ਅਤੇ ਸਰੀਰ ਨੂੰ ਦੂਜੀਆਂ ਹੋਰ ਲੋੜੀਂਦੀਆਂ ਵਸਤੂਆਂ ਦੇ ਸੰਸਲੇਸ਼ਨ ਲਈ ਵੀ ਸਾਨੂੰ ਬਾਹਰੋਂ ਪਦਾਰਥਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਸਜੀਵ ਆਪਣਾ ਭੋਜਨ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ?

ਸਾਰੇ ਜੀਵਾਂ ਨੂੰ ਊਰਜਾ ਅਤੇ ਪਦਾਰਥਾਂ ਦੀ ਆਮ ਲੋੜ ਹੈ ਪਰ ਇਹਨਾਂ ਦੀ ਪੂਰਤੀ ਵੱਖ ਵੱਖ ਵਿਧੀਆਂ ਦੁਆਰਾ ਹੁੰਦੀ ਹੈ। ਕੁੱਝ ਜੀਵ ਅਕਾਰਬਨੀ ਸਰੋਤਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਸਧਾਰਨ ਭੋਜਨ ਪਦਾਰਥ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਦੇ ਹਨ। ਇਹ ਜੀਵ ਸਵੈ ਪੋਸ਼ੀ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਾਰੇ ਹਰੇ ਪੌਦੇ ਅਤੇ ਕੁੱਝ ਬੈਕਟੀਰੀਆ (ਜੀਵਾਣੂ) ਸ਼ਾਮਿਲ ਹਨ। ਦੂਜੇ ਜੀਵ ਜਟਿਲ ਪਦਾਰਥਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਜਟਿਲ ਪਦਾਰਥਾਂ ਨੂੰ ਸਰਲ ਪਦਾਰਥਾਂ ਵਿੱਚ ਤੋੜਨਾ ਜ਼ਰੂਰੀ ਹੈ ਤਾਂ ਜੋ ਇਹ ਜੀਵਾਂ ਦੀ ਦੇਖਭਾਲ ਅਤੇ ਵਾਧੇ ਲਈ ਵਰਤੇ ਜਾ ਸਕਣ। ਇਹ ਕੁੱਝ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਜੀਵ ਜੀਵ-ਉੱਤਪ੍ਰੇਰਕ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ਜਿਸ ਨੂੰ ਐਨਜ਼ਾਇਮ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਲਈ ਪਰਪੋਸ਼ੀ ਜੀਵਤ ਰਹਿਣ ਲਈ ਸਿੱਧੇ ਜਾਂ ਅਸਿੱਧੇ ਰੂਪ ਵਿੱਚ ਸਵੈ ਪੋਸ਼ੀਆਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਜੰਤੂ ਅਤੇ ਫੰਗਸ ਉਸੇ ਪ੍ਰਕਾਰ ਦੇ ਪਰਪੋਸ਼ੀਆਂ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹਨ।

6.2.1 ਸਵੈ ਪੋਸ਼ੀ ਪੋਸ਼ਣ (Autotrophic Nutrition)

ਸਵੈਪੋਸ਼ੀ ਜੀਵਾਂ ਦੀਆਂ ਕਾਰਬਨ ਅਤੇ ਊਰਜਾ ਦੀਆਂ ਲੋੜਾਂ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੁਆਰਾ ਪੂਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਉਹ ਪ੍ਰਕਿਰਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਸਵੈਪੋਸ਼ੀ ਬਾਹਰ ਤੋਂ ਲਏ ਪਦਾਰਥਾਂ ਨੂੰ ਊਰਜਾ ਭਰਪੂਰ ਪਦਾਰਥਾਂ ਵਿੱਚ ਬਦਲ ਦਿੰਦਾ ਹੈ। ਇਹ ਪਦਾਰਥ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ

ਚਿੱਤਰ 6.1 ਪੱਤੇ ਦਾ ਕਰਾਸ ਸੈਕਸ਼ਨ ਦੇ ਰੂਪ ਵਿੱਚ ਲਏ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਹ ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਅਤੇ ਕਲੌਰੋਫਿਲ ਦੀ ਹੋਂਦ ਵਿੱਚ ਕਾਰਬੋਹਾਈਡਰੇਟ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਕਾਰਬੋਹਾਈਡਰੇਟ ਪੌਦਿਆਂ ਨੂੰ ਊਰਜਾ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਅਗਲੇ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਅਧਿਐਨ ਕਰਾਂਗੇ ਕਿ ਇਹ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ। ਜੋ ਕਾਰਬੋਹਾਈਡਰੇਟ ਤੁਰੰਤ ਨਹੀਂ ਵਰਤੇ ਜਾਂਦੇ ਉਹਨਾਂ ਨੂੰ ਸਟਾਰਚ ਦੇ ਰੂਪ ਵਿੱਚ ਸਟੌਰ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਟਾਰਚ ਅੰਦਰੂਨੀ ਊਰਜਾ ਸਟੌਰ ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਅਤੇ ਜਦੋਂ ਵੀ ਲੜ ਹੋਵੇ ਪੌਦੇ ਦੁਆਰਾ ਵਰਤ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਕੁੱਝ ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਸਾਡੇ ਅੰਦਰ ਵੀ ਵੇਖੀ ਜਾਂਦੀ ਹੈ, ਸਾਡੇ ਦੁਆਰਾ ਖਾਧੇ ਗਏ ਭੋਜਨ ਤੋਂ ਉਤਪੰਨ ਊਰਜਾ ਦਾ ਕੁੱਝ ਭਾਗ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਗਲਾਈਕੋਜਨ ਦੇ ਰੂਪ ਵਿੱਚ ਜਮ੍ਹਾਂ ਹੋ ਜਾਂਦਾ ਹੈ।

$$6{\rm CO}_2 + 12{\rm H}_2{\rm O} - \frac{$$
ਕਲੋਰੋਫਿਲ $}{$ ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ $}$ - ${\rm C}_6{\rm H}_{12}{\rm O}_6 + 6{\rm O}_2 + 6{\rm H}_2{\rm O}_6$ ਰਾਰਬਨਫਾਈਆਕਸਾਈਡ ਹਾਲੂਕੇਜ਼ ਆਕਸੀਜਨ ਪਾਣੀ

ਆਉ ਅਸੀਂ ਵੇਖੀਏ ਕਿ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਅਸਲ ਵਿੱਚ ਕੀ ਹੁੰਦਾ ਹੈ? ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਹੇਠ ਲਿਖੀਆਂ ਘਟਨਾਵਾਂ ਵਾਪਰਦੀਆਂ ਹਨ -

- (i) ਕਲੋਰੋਫਿਲ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਉਰਜਾ ਨੂੰ ਸੋਖਿਤ ਕਰਨਾ।
- (ii) ਪ੍ਰਕਾਸ਼ ਊਰਜਾ ਨੂੰ ਰਸਾਇਣਿਕ ਊਰਜਾ ਵਿੱਚ ਬਦਲਣਾ ਅਤੇ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਨੂੰ ਹਾਈਡਰੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਵਿੱਚ ਅਪਘਟਿਤ ਕਰਨਾ।
- (iii) ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦਾ ਕਾਰਬੋਹਾਈਡਰੇਟਾਂ ਵਿੱਚ ਲਘੁਕਰਨ ਕਰਨਾ।

ਇਹ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ ਕਿ ਇਹ ਕਿਰਿਆਵਾਂ ਤੁਰੰਤ ਹੋਣ ਅਤੇ ਇੱਕ ਤੋਂ ਪਿੱਛੋਂ ਦੂਜੀ ਹੋਵੇ। ਉਦਾਹਰਨ ਲਈ ਰੇਗਿਸਤਾਨੀ ਪੌਦੇ ਰਾਤ ਨੂੰ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਲੈਂਦੇ ਹਨ ਅਤੇ ਇੱਕ ਮੱਧ ਉਤਪਾਦ ਬਣਾਉਂਦੇ ਹਨ। ਦਿਨ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਊਰਜਾ ਸੋਖ ਕੇ ਮੱਧ-ਉਤਪਾਦ ਤੋਂ ਅੰਤਿਮ ਉਤਪਾਦ ਬਣਾਉਂਦਾ ਹੈ।

ਕਿਰਿਆ 6.1

- ਗਮਲੇ ਵਿੱਚ ਲੱਗਾ ਇੱਕ ਰੇਗ ਬਰੰਗੇ ਪੱਤਿਆਂ ਵਾਲਾ ਪੈਂਦਾ ਲਓ (ਉਦਾਹਰਨ ਲਈ ਮਨੀ ਪਲਾਟ, ਕਰੋਟਨ ਦਾ ਪੈਂਦਾ)।
- 🔹 ਪੌਦੇ ਨੂੰ ਤਿੰਨ ਦਿਨ ਹਨੇਰੇ ਕਮਰੇ ਵਿੱਚ ਰੱਖੇ ਤਾਂ ਜੋ ਪੂਰਨ ਤੌਰ ਤੇ ਸਟਾਰਚ ਰਹਿਤ ਹੋ ਜਾਵੇ।
- 🔹 ਹੁਣ ਪੌਦੇ ਨੂੰ ਲਗਭਗ ਛੇ ਘੰਟੇ ਲਈ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਰੱਖੋ।
- ਪੈਦੇ ਤੋਂ ਇੱਕ ਪੱਤਾ ਤੋੜ ਲਓ। ਇਸ ਵਿੱਚ ਹਰੇ ਭਾਗਾਂ ਨੂੰ ਅੰਕਿਤ ਕਰੋ ਭਾਵ ਉਨ੍ਹਾਂ ਨੂੰ ਇੱਕ ਕਾਗਜ਼ ਉੱਤੇ ਉਲੀਕ ਲਓ।
- ਕੁੱਝ ਮਿੰਟਾਂ ਲਈ ਇਸ ਪੱਤੇ ਨੂੰ ਉਬਲਦੇ ਪਾਣੀ ਵਿੱਚ ਪਾ ਦਿਓ।
- 💌 ਇਸ ਤੋਂ ਪਿੱਛੋਂ ਇਸ ਨੂੰ ਉਸ ਬੀਕਰ ਵਿੱਚ ਡੁਬੇ ਦਿਓ ਜਿਸ ਵਿੱਚ ਅਲਕੋਹਲ ਹੋਵੇ।
- ਇਸ ਬੀਕਰ ਨੂੰ ਸਾਵਧਾਨੀ ਨਾਲ ਵਾਟਰ ਬਾਥ ਵਿੱਚ ਰੱਖੋਂ ਅਤੇ ਅਲਕੋਰਲ ਨੂੰ ਉਬਾਲਣ ਲਈ ਗਰਮ ਕਰੋ।
- ਪੱਤੀ ਦੇ ਰੰਗ ਨੂੰ ਕੀ ਹੋਇਆ? ਘੋਲ ਦਾ ਰੰਗ ਕਿਹੋ ਜਿਹਾ ਹੋ ਗਿਆ?
- ਹੁਣ ਇਸ ਪੱਤੇ ਨੂੰ ਕੁੱਝ ਮਿੰਟਾਂ ਲਈ ਆਇਓਡੀਨ ਦੇ ਘੋਲ ਵਿੱਚ ਪਾ ਦਿਓ।
- ਪੱਤੇ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ ਉਸ ਨੂੰ ਲੱਗੀ ਆਇਓਡੀਨ ਨੂੰ ਧੋ ਦਿਓ।
- ਪੱਤੇ ਦੇ ਰੰਗ ਦਾ ਅਵਲੋਕਨ ਕਰੋ। ਆਰੰਭ ਵਿੱਚ ਪੱਤੇ ਦਾ ਜੋ ਰੇਖਾ ਚਿੱਤਰ ਤਿਆਰ ਕੀਤਾ ਸੀ ਉਸ ਨਾਲ ਇਸ ਦੀ ਤੁਲਨਾ ਕਰੋ (ਚਿੱਤਰ 6.2)।
- ਪੱਤੇ ਦੇ ਵੱਖ ਵੱਖ ਭਾਗਾਂ ਵਿੱਚ ਸਟਾਰਚ ਦੀ ਉਪਸਥਿਤੀ ਦੇ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਨਤੀਜਾ ਕੱਢਦੇ ਹੈ?

ਆਉ ਅਸੀਂ ਵੇਖੀਏ ਕਿ ਉਪਰ ਦਰਸਾਈ ਪ੍ਰਕਿਰਿਆ ਦਾ ਹਰ ਇੱਕ ਘਟਕ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਲਈ ਕਿਸ ਪ੍ਰਕਾਰ ਜ਼ਰੂਰੀ ਹੈ।

ਹਣ ਅਸੀਂ ਅਧਿਐਨ ਕਰਦੇ ਹਾਂ ਕਿ ਪੌਦੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਕਿਵੇਂ ਪਾਪਤ ਕਰਦੇ ਹਨ।ਅਸੀਂ ਨੌਵੀਂ ਸ਼ੇਣੀ ਵਿੱਚ ਸਟੋਮੈਟਾ ਬਾਰੇ ਚਰਚਾ ਕੀਤੀ ਸੀ। (ਚਿੱਤਰ 6.3) ਇਹ ਪੱਤੇ ਦੀ ਸਤਹ ਉੱਪਰ ਸੂਖਮ ਛੋਕ ਹੋਂਦੇ ਹਨ। ਪਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਲਈ ਗੈਸਾਂ ਦਾ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਆਦਾਨ ਪਦਾਨ ਇਹਨਾਂ ਹੀ ਛੇਕਾਂ ਦੁਆਰਾ ਹੋਦਾ ਹੈ ਪਰ ਇੱਥੇ ਇਹ ਵੀ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਗੈਸਾਂ ਦੀ ਆਵਾਜਾਈ ਤਣੇ. ਜੜਾਂ ਅਤੇ ਪੱਤਿਆਂ ਦੇ ਤਲ ਤੋਂ ਵੀ ਹੁੰਦੀ ਹੈ।ਕਿਉਂਕਿ ਇਹਨਾਂ ਸਟੋਮੈਟਾ ਰਾਹੀਂ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਨਿਕਲ ਜਾਂਦਾ ਹੈ ਇਸ ਲਈ ਜਦੋਂ ਪਕਾਸ਼-ਸੰਸਲੇਸ਼ਣ ਲਈ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਲੋੜ ਨਹੀਂ ਹੋਦੀ ਤਾਂ ਪੌਦਾ ਇਹਨਾਂ ਛੇਕਾਂ ਨੂੰ ਬੈਦ ਕਰ ਲੈਂਦਾ ਹੈ। ਇਹਨਾਂ ਛੇਕਾਂ ਨੂੰ ਬੰਦ ਕਰਨਾ ਗਾਰਡ ਸੈੱਲਾਂ ਦਾ ਕੰਮ ਹੈ। ਗਾਰਡ ਸੈੱਲਾਂ ਵਿੱਚ ਜਦੋਂ ਪਾਣੀ ਭਰ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਖੱਲ ਜਾਂਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਦੋਂ ਗਾਰਡ ਸੈੱਲਾਂ ਵਿੱਚੋਂ ਪਾਣੀ ਨਿਕਲ ਜਾਂਦਾ ਹੈ ਤਾਂ ਗਾਰਡ ਸੈੱਲ ਬੰਦ ਹੋ ਜਾਂਦੇ ਹਨ।

ਚਿੱਤਰ 6.2 ਰੰਗ ਬਿਰੰਗਾ ਪੱਤਾ (a) ਸਟਾਰਚ ਪ੍ਰੀਖਣ ਤੋਂ ਪਹਿਲਾਂ (b) ਸਟਾਰਚ ਪ੍ਰੀਖਣ ਤੋਂ ਬਾਅਦ।

(a) (b) ਚਿੱਤਰ 6.3 (a) ਖੁੱਲ੍ਹਾ, ਸਟੋਮੈਟੀ ਛੇਕ (b) ਬੰਦ ਸਟੋਮੈਟੀ ਛੇਕ ਪੈਟਾਸ਼ੀਅਮ ਹਾਈਡਰਾਕਸਾਈਡ ਵਾਚ ਗਲਾਸ

ਚਿੱਤਰ 6,4 ਪ੍ਰਯੋਗਿਕ ਅਵਸਥਾ (a) ਪੋਟਾਸ਼ੀਅਮ ਹਾਈਡਰੋਕਸਾਈਡ ਦੇ ਨਾਲ (b) ਪੋਟਾਸ਼ੀਅਮ ਹਾਈਡਰੋਆਕਸਾਈਡ ਤੋਂ ਬਿਨਾਂ

ਕਿਰਿਆ 6.2

- ਗਮਲਿਆਂ ਵਿੱਚ ਲੱਗੇ ਲਗਭਗ ਬਰਾਬਰ ਅਕਾਰ ਦੇ ਦੋ ਪੈਦੇ ਲਉ।
- ਤਿੰਨ ਦਿਨ ਤੱਕ ਉਹਨਾਂ ਨੂੰ ਹਨੇਰੇ ਕਮਰੇ ਵਿੱਚ ਰੱਖੋ।
- ਹੁਣ ਹਰ ਪੌਦੇ ਨੂੰ ਵੱਖ ਵੱਖ ਕੱਚ ਦੀਆਂ ਪਲੇਟਾਂ ਉੱਤੇ ਰੱਖੋ। ਇੱਕ ਪੌਦੇ ਕੋਲ ਵਾਚ ਗਲਾਸ ਵਿੱਚ ਪੋਟਾਸ਼ੀਅਮ ਹਾਈਡਰੋਆਕਸਾਈਡ ਰੱਖੋ। ਪੋਟਾਸ਼ੀਅਮ ਹਾਈਡਰੋਆਕਸਾਈਡ ਦਾ ਉਪਯੋਗ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਨੂੰ ਜਜ਼ਬ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਚਿੱਤਰ 6.4 ਦੇ ਅਨੁਸਾਰ ਦੋਵੇਂ ਪੈਂਦਿਆਂ ਨੂੰ ਵੱਖ ਵੱਖ ਬੈਲਜਾਰਾਂ ਨਾਲ ਢੱਕ ਦਿਉ।
- ਜਾਰ ਦੇ ਤਲੇ ਨੂੰ ਪਲੇਟ ਨਾਲ ਬੰਦ ਕਰਨ ਲਈ ਵੈਸਲੀਨ ਦੀ ਵਰਤੋਂ ਕਰੋ ਤਾਂ ਜੋ ਉਪਕਰਨਾਂ ਦਾ ਪ੍ਰਬੰਧ ਵਾਯੂ ਰੋਧਕ ਹੋ ਜਾਵੇ।
- ਪੌਦਿਆਂ ਨੂੰ ਲਗਭਗ ਦੇ ਘੰਟੇ ਲਈ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਰੱਖੋ।
- ਹਰ ਇੱਕ ਪੌਦੇ ਦਾ ਇੱਕ ਇੱਕ ਪੱਤਾ ਤੌੜੇ ਅਤੇ ਉਪਰੋਕਤ ਕਿਰਿਆ ਦੀ ਤਰ੍ਹਾਂ ਹਰ ਇੱਕ ਵਿੱਚ ਸਟਾਰਚ ਦੀ ਹੋਂਦ ਦੀ ਜਾਂਚ ਕਰੋ।
- ਕੀ ਦੋਵੇਂ ਪੱਤੇ ਸਟਾਰਚ ਦੀ ਬਰਾਬਰ ਮਾਤਰਾ ਵਿੱਚ ਹੋਂਦ ਦਰਸਾਉਂਦੇ ਹਨ?
- ਇਸ ਕਿਰਿਆ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢਦੇ ਹੈ?

ਉਪਰੋਕਤ ਦੋਵੇਂ ਕਿਰਿਆਵਾਂ ਦੇ ਆਧਾਰ ਤੇ ਕੀ ਅਸੀਂ ਅਜਿਹਾ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਸ ਤੋਂ ਪ੍ਦਰਸ਼ਿਤ ਹੋਵੇਂ ਕਿ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੇ ਲਈ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਹੁਣ ਤੱਕ ਅਸੀਂ ਇਹ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਸਵੈਪੇਸ਼ੀ ਆਪਣੀਆਂ ਊਰਜਾ ਲੋੜਾਂ ਦੀ ਪੂਰਤੀ ਕਿਵੇਂ ਕਰਦੇ ਹਨ ਪ੍ਰੰਤੂ ਉਹਨਾਂ ਨੂੰ ਵੀ ਆਪਣੇ ਸਰੀਰ ਦੇ ਨਿਰਮਾਣ ਦੇ ਲਈ ਹੋਰ ਕੱਚੀ ਸਮੱਗਰੀ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਧਰਤੀ ਉੱਤੇ ਉੱਗਣ ਵਾਲੇ ਪੈਦੇ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਪਾਣੀ ਜੜ੍ਹਾਂ ਦੁਆਰਾ ਮਿੱਟੀ ਵਿੱਚ ਮੌਜ਼ੂਦ ਪਾਣੀ ਨੂੰ ਚੂਸ ਕੇ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਹੋਰ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਨਾਈਟਰੋਜਨ, ਫਾਸਫੋਰਸ, ਆਇਰਨ ਅਤੇ ਮੈਗਨੀਸ਼ੀਅਮ ਵੀ ਮਿੱਟੀ ਤੋਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਨਾਈਟਰੋਜਨ ਇੱਕ ਜ਼ਰੂਰੀ ਤੱਤ ਹੈ ਜਿਸ ਦਾ ਉਪਯੋਗ ਪ੍ਰੋਟੀਨ ਅਤੇ ਹੋਰ ਯੋਗਿਕਾਂ ਦੇ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਇਸ ਨੂੰ ਅਕਾਰਬਨਿਕ ਨਾਈਟਰੇਟਾਂ ਜਾਂ ਨਾਈਟਰਾਈਟ ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਂ ਬੈਕਟੀਰੀਆ ਦੁਆਰਾ ਵਾਯੂਮੰਡਲੀ ਨਾਈਟਰੋਜਨ ਤੋਂ ਬਣਾ ਕੇ ਹੀ ਕਾਰਬਨ ਯੋਗਿਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਲੈਂਦੇ ਹਨ।

6.2.2 ਪਰਪੋਸ਼ੀ ਪੋਸ਼ਣ (Hetrotrophic Nutrition)

ਹਰ ਇੱਕ ਜੀਵ ਆਪਣੇ ਵਾਤਾਵਰਨ ਲਈ ਅਨੁਕੂਲਿਤ ਹੈ। ਭੋਜਨ ਦੀ ਕਿਸਮ ਅਤੇ ਉਪਲਭਤਾ ਦੇ ਆਧਾਰ ਤੇ ਪੋਸ਼ਣ ਦੀ ਵਿਧੀ ਵੱਖ ਵੱਖ ਪ੍ਕਾਰ ਦੀ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਇਹ ਜੀਵ ਦੇ ਭੋਜਨ ਗ੍ਰਹਿਣ ਕਰਨ ਦੇ ਢੰਗ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਜੇਕਰ ਭੋਜਨ ਸਰੋਤ ਅਚੱਲ ਹੈ (ਜਿਵੇਂ ਘਾਹ) ਜਾਂ ਗਤੀਸ਼ੀਲ ਹੈ (ਜਿਵੇਂ ਕਿ ਹਿਰਨ) ਦੋਵੇਂ ਪ੍ਕਾਰ ਦੇ ਭੋਜਨ ਤੱਕ ਪਹੁੰਚਣ ਦਾ ਤਰੀਕਾ ਵੱਖ-ਵੱਖ ਹੈ ਅਤੇ ਗਾਂ ਅਤੇ ਸ਼ੇਰ ਕਿਸ ਪੋਸ਼ਣ ਉਪਕਰਨ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਨ। ਜੀਵਾਂ ਦੁਆਰਾ ਭੋਜਨ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਉਪਯੋਗ ਕਰਨ ਦੇ ਅਨੌਕ ਢੰਗ ਹਨ। ਕੁੱਝ ਜੀਵ ਭੋਜਨ ਪਦਾਰਥਾਂ ਦਾ ਵਿਘਟਨ ਸਰੀਰ ਦੇ ਬਾਹਰ ਹੀ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਫਿਰ ਉਸ ਨੂੰ ਸਮਾ ਲੈਂਦੇ ਹਨ। ਇਸ ਦਾ ਉਦਾਹਰਨ ਉੱਲੀ (ਫੈਗਸ) ਜਿਵੇਂ ਕਿ ਫਫੂੰਦੀ (ਮੌਲਡ), ਖਮੀਰ (ਯੀਸਟ) ਅਤੇ ਮਸ਼ਰੂਮ ਹਨ। ਦੂਜੇ ਜੀਵ ਪੂਰੇ ਭੋਜਨ ਪਦਾਰਥ ਨੂੰ ਅੰਦਰ ਲੈ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਸ ਦਾ ਪਾਚਨ ਸਰੀਰ ਦੇ ਅੰਦਰ ਕਰਦੇ ਹਨ। ਜੀਵ ਦੁਆਰਾ ਕਿਹੋ ਜਿਹੇ ਭੋਜਨ ਨੂੰ ਅੰਦਰ ਲੈ ਜਾਇਆ ਜਾਵੇ ਜਾਂ ਉਸ ਪਦਾਰਥ ਦੇ ਪਾਚਨ ਦੀ ਵਿਧੀ ਜੀਵ ਦੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਅਤੇ ਕਾਰਜ ਪ੍ਣਾਲੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਕੁੱਝ ਹੋਰ ਜੀਵ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਨੂੰ ਬਿਨਾਂ ਮਾਰੇ ਉਹਨਾਂ ਤੋਂ ਭੋਜਨ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਇਹ ਪਰਜੀਵੀ ਵਿਧੀ ਬਹੁਤ ਸਾਰੇ ਜੀਵਾਂ ਜਿਵੇਂ ਕਿ ਅਮਰਬੋਲ, ਜੂੰ, ਲੀਚ, ਫੀਤਾ ਕਿਰਮ, ਆਰਕਿਡਜ਼ (orchids) ਦੁਆਰਾ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।

6.2.3 ਜੀਵ ਆਪਣਾ ਪੋਸ਼ਣ ਕਿਵੇਂ ਕਰਦੇ ਹਨ?

ਭੋਜਨ ਅਤੇ ਇਸ ਦੀ ਪ੍ਰਾਪਤੀ ਦੇ ਢੰਗ ਭਿੰਨ ਭਿੰਨ ਹਨ ਇਸ ਲਈ ਵੱਖ ਵੱਖ ਜੀਵਾਂ ਵਿੱਚ ਪਾਚਨ ਸਿਸਟਮ ਵੀ ਅੱਡੇ ਅੱਡ ਹਨ। ਇੱਕ ਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਭੋਜਨ ਉਹਨਾਂ ਦੀ ਸਾਰੀ ਸਤਹ ਤੋਂ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੰਤੂ ਜੀਵ ਦੀ ਜਟਿਲਤਾ ਵਧਣ ਦੇ ਨਾਲ ਨਾਲ ਵੱਖ ਵੱਖ ਕੰਮ ਕਰਨ ਵਾਲੇ ਅੰਗ ਵਿਸ਼ਿਸ਼ਟ ਹੋ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਨ ਵਜੋਂ ਅਮੀਬਾ ਸੈੱਲ ਦੀ ਸਤਹ ਤੋਂ ਉਤਪੰਨ ਹੋਏ ਉਂਗਲੀ ਜਿਹੇ ਅਸਥਾਈ ਵਾਧਰੇ ਜਾਂ

ਪੈਰ ਦੀ ਮਦਦ ਨਾਲ ਭੋਜਨ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਇਹ ਵਾਧਰਾ ਭੋਜਨ ਦੇ ਕਣਾਂ ਨੂੰ ਘੇਰ ਲੈਂਦਾ ਹੈ ਅਤੇ ਅੰਦਰ ਲੈ ਜਾ ਕੇ ਭੋਜਨ ਰਸਧਾਨੀ ਬਣਾਉਂਦਾ ਹੈ (ਚਿੱਤਰ 6.5)। ਭੋਜਨ ਰਸਧਾਨੀ ਦੇ ਅੰਦਰ ਜਟਿਲ ਪਦਾਰਥਾਂ ਦਾ ਵਿਘਟਨ ਸਰਲ ਪਦਾਰਥਾਂ ਵਿੱਚ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਹ ਸੈੱਲ ਪਦਾਰਥਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋ ਜਾਂਦੇ ਹਨ। ਬਚਿਆ ਹੋਇਆ ਅਣਪਚਿਆ ਪਦਾਰਥ ਕੋਸ਼ਿਕਾ ਦੀ ਸਤਿਹ ਵੱਲ ਚਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸੈੱਲ ਤੋਂ ਬਾਹਰ ਕੱਢ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।ਪੈਰਾਮੀਸ਼ੀਅਮ ਵੀ ਇੱਕ ਸੈੱਲੀ ਜੀਵ ਹੈ। ਇਸ ਦੇ ਸੈੱਲ ਦਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਆਕਾਰ ਹੈ ਅਤੇ ਇਹ ਆਪਣਾ ਭੋਜਨ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸਥਾਨ ਤੋਂ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ।ਭੋਜਨ ਇਸ ਸਥਾਨ ਤੱਕ ਸਿਲੀਆ (ਲੂੱ) ਦੀ ਗਤੀ ਦੁਆਰਾ ਪਹੁੰਚਦਾ ਹੈ। ਇਸ ਸੈੱਲ ਦੀ ਸਾਰੀ ਸਤਿਹ ਸਿਲੀਆ ਦੁਆਰਾ ਢਕੀ ਹੁੰਦੀ ਹੈ।

6.2.4 ਮਨੁੱਖਾਂ ਵਿੱਚ ਪੋਸ਼ਣ

ਮਨੁੱਖ ਦੀ ਭੌਜਨ ਨਲੀ ਮੂਲ ਰੂਪ ਵਿੱਚ ਮੂੰਹ ਤੋਂ ਗੁਦਾ ਤੱਕ ਇੱਕ ਲੰਬੀ ਨਲੀ ਹੈ। ਚਿੱਤਰ 6.6 ਵਿੱਚ ਅਸੀਂ ਇਸ ਦੇ ਵੱਖ ਵੱਖ ਭਾਗਾਂ ਨੂੰ ਵੇਖ ਸਕਦੇ ਹਾਂ। ਇਸ ਦੇ ਵੱਖ ਵੱਖ ਭਾਗ ਭਿੰਨ ਭਿੰਨ ਪਰੰਤੂ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਕਰਨ ਯੋਗ ਹਨ। ਜੋ ਭੌਜਨ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਇੱਕ ਵਾਰ ਚਲਿਆ ਜਾਂਦਾ ਹੈ ਉਸ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ? ਅਸੀਂ ਇੱਥੇ ਇਸ ਪ੍ਕਿਰਿਆ ਬਾਰੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ।

ਕਿਰਿਆ 6.3

- ਇੱਕ ਇੱਕ mL ਸਟਾਰਚ ਦਾ ਘੋਲ (1%) ਦੇ ਪਰਖ ਨਲੀਆਂ 'A' ਅਤੇ 'B' ਵਿੱਚ ਲਓ।
- ਪਰਖ਼ ਨਲੀ 'A' ਵਿੱਚ । mL ਲਾਰ ਪਾਓ ਅਤੇ ਫਿਰ ਦੋਵੇਂ ਪਰਖ਼ ਨਲੀਆਂ ਨੂੰ 20-30 ਮਿੰਟ ਤੱਕ ਅਡੋਲ ਪਿਆ ਰਹਿਣ ਦਿਓ।
- 🚽 ਹੁਣ ਹਰ ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਕੁੱਝ ਬੂੰਦਾਂ ਪਤਲੇ ਆਇਓਡੀਨ ਘੋਲ ਦੀਆਂ ਪਾਓ।
- ਕਿਹੜੀ ਪਰਖ ਨਲੀ ਵਿੱਚ ਤੁਹਾਨੂੰ ਰੰਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਵਿਖਾਈ ਦੇ ਰਿਹਾ ਹੈ?
- ਦੌਵੇਂ ਪਰਖ ਨਲੀਆਂ ਵਿੱਚ ਸਟਾਰਚ ਦੀ ਹੋਂਦ ਬਾਰੇ ਇਹ ਕੀ ਸੈਕੇਤ ਕਰਦਾ ਹੈ?
- ਇਹ ਲਾਰ ਦੀ ਸਟਾਰਚ ਉੱਤੇ ਕਿਰਿਆ ਬਾਰੇ ਕੀ ਦਰਸਾਉਂਦਾ ਹੈ?

ਚਿੱਤਰ 6.5 ਅਮੀਬਾ ਵਿੱਚ ਪੋਸ਼ਣ

ਚਿੱਤਰ 6,6 ਮਨੁੱਖੀ ਆਹਾਰ ਨਲੀ

ਅਸੀਂ ਕਈ ਪਕਾਰ ਦਾ ਭੋਜਨ ਖਾਂਦੇ ਹਾਂ ਜਿਸ ਨੂੰ ਇੱਕ ਪਾਚਨ ਨਲੀ ਵਿੱਚੋਂ ਲੰਘਣਾ ਪੈਂਦਾ ਹੈ।ਕਦਰਤੀ ਤੌਰ ਤੇ ਭੋਜਨ ਨੂੰ ਅਜਿਹੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚੋਂ ਲੰਘਣਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਇਹ ਇੱਕੋਂ ਪਕਾਰ ਦੇ ਛੋਟੇ ਛੋਟੇ ਕਣਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਅਜਿਹਾ ਇਸ ਨੂੰ ਦੰਦਾਂ ਨਾਲ ਚਿੱਥ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਆਹਾਰ ਨਲੀ ਦੀ ਅੰਦਰਲੀ ਪਰਤ ਬਹੁਤ ਕੋਮਲ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਭੋਜਨ ਨੂੰ ਗਿੱਲਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਇਸ ਦਾ ਰਸ਼ਤਾ ਆਸਾਨ ਹੋ ਜਾਵੇ। ਜਦੋਂ ਅਸੀਂ ਪਸੰਦ ਦੀ ਵਸਤ ਖਾਂਦੇ ਹਾਂ ਤਾਂ ਸਾਡੇ ਮੋਹ ਵਿੱਚ ਪਾਣੀ ਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਅਸਲ ਵਿੱਚ ਕੇਵਲ ਪਾਣੀ ਹੀ ਨਹੀਂ ਹੁੰਦਾ ਸਗੋਂ ਲਾਰ ਗ੍ਰੰਥੀ ਵਿੱਚੋਂ ਨਿਕਲਣ ਵਾਲਾ ਇੱਕ ਤਰਲ ਹੈ ਜਿਸ ਨੂੰ ਲਾਰ ਕਹਿੰਦੇ ਹਨ। ਜੋ ਭੋਜਨ ਅਸੀਂ ਖਾਂਦੇ ਹਾਂ ਉਸ ਦੀ ਰਚਨਾ ਜਟਿਲ ਹੈ। ਜੇਕਰ ਇਸ ਨੂੰ ਆਹਾਰ ਨਲੀ ਦੁਆਰਾ ਸੋਖਿਆ ਜਾਣਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਛੋਟੇ ਅਣਆਂ ਵਿੱਚ ਅਪਘਟਨ ਕਰਨਾ ਹੋਵੇਗਾ। ਇਹ ਕੰਮ ਜੈਵ ਉੱਤਪੇਰਕਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਐਨਜ਼ਾਇਮ ਆਖਦੇ ਹਾਂ। ਲਾਰ ਵਿੱਚ ਵੀ ਇੱਕ ਐਨਜ਼ਾਈਮ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਲਾਰ

ਅਮਾਈਲੇਜ਼ ਕਹਿੰਦੇ ਹਨ ਜੋ ਸਟਾਰਚ ਦੇ ਜਟਿਲ ਅਣੂਆਂ ਨੂੰ ਅਪਘਟਿਤ ਕਰਕੇ ਸ਼ੂਗਰ ਵਿੰਚ ਬਦਲ ਦਿੰਦਾ ਹੈ। ਭੋਜਨ ਨੂੰ ਚਬਾਉਣ ਸਮੇਂ ਪੇਸ਼ੀਦਾਰ ਜੀਭ ਭੋਜਨ ਨੂੰ ਲਾਰ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਮਿਲਾ ਦਿੰਦੀ ਹੈ। ਭੋਜਨ ਨਲੀ ਦੇ ਹਰ ਭਾਗ ਵਿੱਚ ਭੋਜਨ ਦੀ ਨਿਯਮਤ ਰੂਪ ਵਿੱਚ ਗਤੀ ਉਸ ਦੇ ਸਹੀ ਢੰਗ ਨਾਲ ਹਰ ਪ੍ਕਿਰਿਆ ਕਰਨ ਲਈ ਜ਼ਰੂਰੀ ਹੈ। ਭੋਜਨ ਨਲੀ ਦੀ ਅੰਦਰਲੀ ਪਰਤ ਵਿੱਚ ਪੇਸ਼ੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਇਕਸਾਰਤਾ ਨਾਲ ਸੁੰਗੜਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ ਤਾਂ ਜੋ ਭੋਜਨ ਨੂੰ ਅੱਗੇ ਧੱਕਿਆ ਜਾ ਸਕੇ। ਇਹ ਆਂਦਰ ਸੁੰਗੜਨ ਕਿਰਿਆ ਸਾਰੀ ਭੋਜਨ ਨਲੀ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਮੂੰਹ ਤੋਂ ਮਿਹਦੇ ਤੱਕ ਭੋਜਨ, ਭੋਜਨ ਨਲੀ ਜਾਂ ਈਸਫੇਗਸ ਰਾਹੀਂ ਲੈ ਜਾਇਆ ਜਾਂਦਾ ਹੈ। ਮਿਹਦਾ ਇੱਕ ਵੱਡਾ ਅੰਗ ਹੈ ਜੋ ਭੋਜਨ ਆਉਣ ਤੇ ਫੈਲ ਜਾਂਦਾ ਹੈ। ਮਿਹਦੇ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਅੰਦਰਲੇ ਭੋਜਨ ਨੂੰ ਹੋਰ ਪਾਚਕ ਰਸਾਂ ਨਾਲ ਮਿਲਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ ਹਨ।

ਪਾਚਨ ਕਾਰਜ ਮਿਹਦੇ ਦੀ ਕੰਧ ਵਿੱਚ ਮੌਜੂਦ ਮਿਹਦਾ ਗ੍ਰੰਥੀਆਂ ਦੁਆਰਾ ਪੂਰਨ ਹੁੰਦੇ ਹਨ। ਇਹ ਹਾਈਡਰੋਕਲੌਰਿਕ ਐਸਿਡ, ਇੱਕ ਪ੍ਰੋਟੀਨ ਪਾਚਕ ਐਨਜ਼ਾਇਮ ਪੈਪਸਿਨ ਅਤੇ ਮਿਊਕਸ ਛੱਡਦੀਆਂ ਹਨ। ਹਾਈਡਰੋਕਲੌਰਿਕ ਐਸਿਡ ਇੱਕ ਤੇਜ਼ਾਬੀ ਮਾਧਿਅਮ ਤਿਆਰ ਕਰਦਾ ਹੈ ਜਿਹੜਾ ਪੈਪਸਿਨ ਐਨਜ਼ਾਇਮ ਦੀ ਕਿਰਿਆ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਤੇਜ਼ਾਬ ਹੋਰ ਕਿਹੜੇ ਕਿਹੜੇ ਕਾਰਜ ਕਰਦਾ ਹੈ।ਸਾਧਾਰਨ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਮਿਊਕਸ ਮਿਹਦੇ ਦੀ ਅੰਦਰਲੀ ਸਤਹ ਦੀ ਤੇਜ਼ਾਬ ਤੋਂ ਰੱਖਿਆ ਕਰਦਾ ਹੈ।ਅਸੀਂ ਬਹੁਤ ਸਾਰੇ ਵਿਅਕਤੀਆਂ ਨੂੰ ਐਸਿਡਟੀ ਜਾਂ ਤੇਜ਼ਾਬੀਪਣ ਦੀ ਸ਼ਿਕਾਇਤ ਕਰਦਿਆਂ ਸੁਣਿਆ ਹੈ। ਕੀ ਇਸ ਦਾ ਸੰਬੰਧ ਉਪਰੋਕਤ ਵਰਨਣ ਕੀਤੇ ਵਿਸ਼ੇ ਨਾਲ ਤਾਂ ਨਹੀਂ ਹੈ?

ਮਿਹਦੇ ਤੋਂ ਭੋਜਨ ਛੋਟੀ ਆਂਦਰ ਵਿੱਚ ਪ੍ਵੇਸ਼ ਕਰਦਾ ਹੈ। ਭੋਜਨ ਦਾ ਥੋੜ੍ਹੀ ਥੋੜ੍ਹੀ ਮਾਤਰਾ ਵਿੱਚ ਆਂਦਰ ਅੰਦਰ ਪ੍ਵੇਸ਼ ਅਪਰੋਧਨੀ (Stophies) ਨਾਂ ਦੀ ਮਾਸਪੇਸ਼ੀ ਦੁਆਰਾ ਨਿਯੰਤ੍ਰਿਤ ਹੁੰਦਾ ਹੈ। ਛੋਟੀ ਆਂਦਰ ਭੋਜਨ ਨਲੀ ਦਾ ਸਭ ਤੋਂ ਲੰਬਾ ਭਾਗ ਹੈ ਪਰ ਬਹੁਤ ਕੁੰਡਲਦਾਰ ਹੋਣ ਕਰਕੇ ਇਹ ਥੋੜ੍ਹੀ ਥਾਂ ਵਿੱਚ ਸਥਿਤ ਹੈ। ਵੱਖ ਵੱਖ ਜੰਤੂਆਂ ਵਿੱਚ ਛੋਟੀ ਆਂਦਰ ਦੀ ਲੰਬਾਈ ਉਹਨਾਂ ਦੀ ਭੋਜਨ ਦੀ ਕਿਸਮ ਅਨੁਸਾਰ ਅਲੱਗ ਅਲੱਗ ਹੁੰਦੀ ਹੈ। ਘਾਹ ਖਾਣ ਵਾਲੇ ਸ਼ਾਕਾਹਾਰੀਆਂ ਨੂੰ ਸੈਲੂਲੋਜ਼ ਪਚਾਉਣ ਲਈ ਲੰਬੀ ਛੋਟੀ ਆਂਦਰ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਮਾਸ ਦਾ ਪਾਚਨ ਸਰਲ ਹੈ ਇਸ ਲਈ ਸ਼ੇਰ ਜਿਹੇ ਮਾਸਾਹਾਰੀਆਂ ਵਿੱਚ ਛੋਟੀ ਆਂਦਰ ਦੀ ਲੰਬਾਈ ਘੱਟ ਹੁੰਦੀ ਹੈ।

ਛੋਟੀ ਆਂਦਰ ਕਾਰਬੋਹਾਈਡਰੇਟ, ਪ੍ਰੋਟੀਨ ਅਤੇ ਚਰਬੀ ਦੇ ਪੂਰਨ ਪਾਚਣ ਦਾ ਸਥਾਨ ਹੈ। ਇਸ ਕਾਰਜ ਲਈ ਇਹ ਜਿਗਰ ਅਤੇ ਲੁੱਬਾ ਤੋਂ ਰਿਸਾਓ ਪ੍ਰਾਪਤ ਕਰਦੀ ਹੈ। ਮਿਹਦੇ ਤੋਂ ਆਉਣ ਵਾਲਾ ਭੋਜਨ ਤੇਜ਼ਾਬੀ ਹੁੰਦਾ ਹੈ ਅਤੇ ਲੁੱਬਾ ਦੇ ਐਨਜ਼ਾਈਮ ਦੀ ਕਿਰਿਆ ਲਈ ਇਸ ਨੂੰ ਖਾਰੀ ਬਣਾਇਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਿਗਰ ਤੋਂ ਆਉਣ ਵਾਲਾ ਪਿੱਤਾ ਰਸ ਇਸ ਕਾਰਜ ਨੂੰ ਕਰਦਾ ਹੈ ਅਤੇ ਨਾਲ ਨਾਲ ਇਹ ਚਰਬੀ ਉਪਰ ਵੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਛੋਟੀ ਆਂਦਰ ਵਿੱਚ ਚਰਬੀ ਵੱਡੀਆਂ ਗੋਲੀਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਜਿਸ ਕਾਰਨ ਉਹਨਾਂ ਉੱਤੇ ਐਨਜ਼ਾਈਮਾਂ ਵਲੋਂ ਕਿਰਿਆ ਕਰਨੀ ਕਠਿਨ ਹੁੰਦੀ ਹੈ। ਪਿੱਤਾ ਰਸ ਉਹਨਾਂ ਨੂੰ ਤੋੜ ਕੇ ਛੋਟੀਆਂ ਗੋਲੀਆਂ ਵਿੱਚ ਪਰਵਰਤਿਤ ਕਰ ਦਿੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਐਨਜ਼ਾਈਮ ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਇਹ ਮੈਲ ਉੱਤੇ ਸਾਬਣ ਦੇ ਇਮਲਸੀਕਰਨ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਹੈ ਜਿਸ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਸੀਂ ਅਧਿਆਇ 4 ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਲੁੱਬਾ ਗ੍ਰੰਥੀ ਲੁੱਬਾਰਸ ਛੱਡਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਪ੍ਰੋਟੀਨਾਂ ਦੇ ਪਾਚਨ ਲਈ ਟ੍ਰਿਪਸਨ ਐਨਜ਼ਾਈਮ ਹੁੰਦਾ ਹੈ ਚਰਬੀ ਦੇ ਪਾਚਣ ਲਈ ਲਾਈਪੇਜ਼ ਐਨਜ਼ਾਈਮ ਹੁੰਦਾ ਹੈ। ਛੋਟੀ ਆਂਦਰ ਦੀਆਂ ਕੋਧਾਂ ਵਿੱਚ ਗ੍ਰੰਥੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਆਂਦਰ ਰਸ ਛੱਡਦੀਆਂ ਹਨ। ਇਸ ਵਿੱਚ ਮੌਜੂਦ ਐਨਜ਼ਾਈਮ ਅੰਤ ਵਿੱਚ ਪ੍ਰੋਟੀਨਾਂ ਨੂੰ ਅਮੀਨੇ ਤੇਜ਼ਾਬ, ਜਟਿਲ ਕਾਰਬੋਹਾਈਡਰੇਟਾਂ ਨੂੰ ਗੁਲੂਕੋਜ਼ ਵਿੱਚ, ਫੈਟਸ ਨੂੰ ਫੈਟੀ ਤੇਜ਼ਾਬਾਂ ਅਤੇ ਗਲਿਸਰਾਲ ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ।

ਪਚੇ ਭੋਜਨ ਨੂੰ ਆਂਦਰ ਦੀਆਂ ਕੰਧਾਂ ਜਜ਼ਬ ਕਰ ਲੈਂਦੀਆਂ ਹਨ। ਛੋਟੀ ਆਂਦਰ ਦੀ ਅੰਦਰਲੀ ਸਤਹ ਉਪਰ ਉਂਗਲੀਆਂ ਵਰਗੇ ਅਨੇਕਾਂ ਵਾਧਰੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਵਿਲਾਈ (Villi) ਆਖਦੇ ਹਨ। ਇਹ ਜਜ਼ਬ ਕਰਨ ਵਾਲੀ ਸਤਹ ਦਾ ਖੇਤਰ ਵਧਾ ਦਿੰਦੇ ਹਨ। ਵਿਲਾਈ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਖੂਨ ਦੀਆਂ ਵਹਿਣੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਪਚੇ ਭੋਜਨ ਨੂੰ ਜਜ਼ਬ ਕਰਕੇ ਸਰੀਰ ਦੇ ਹਰ ਇੱਕ ਸੈੱਲ ਤੱਕ ਪਹੁੰਚਾਉਂਦੀਆਂ ਹਨ। ਇੱਥੇ ਇਸ ਦਾ ਉਪਯੋਗ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ, ਨਵੇਂ ਟਿਸ਼ੂ ਬਣਾਉਣ ਅਤੇ ਪਰਾਣੇ ਟਿਸ਼ਆਂ ਦੀ ਮੁਰੰਮਤ ਲਈ ਹੁੰਦਾ ਹੈ।

ਅਣ ਪਰਿਆ ਭੌਜਨ ਵੱਡੀ ਆਂਦਰ ਵਿੱਚ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਿੱਥੇ ਇਸ ਵਿੱਚੋਂ ਪਾਣੀ ਜਜ਼ਬ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਬਾਕੀ ਪਦਾਰਥ ਗੁਦਾ ਦੁਆਰ ਰਾਹੀਂ ਸ਼ਰੀਰ ਤੋਂ ਬਾਹਰ ਕੱਢ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਫੋਕਟ ਪਦਾਰਥ ਦਾ ਬਾਹਰ ਕੱਢਣਾ ਗੁਦਾ ਅਪਰੋਧਨੀ ਦੁਆਰਾ ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ध्य ची माटे

ਦੰਦ ਸੜਨ ਜਾਂ ਦੰਦਾਂ ਦਾ ਖੋੜ ਇਨੈਮਲ ਅਤੇ ਡੈਂਟੀਨ ਦੇ ਹੌਲੀ-ਹੌਲੀ ਨਰਮ ਹੋਣ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਆਰੰਭ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਜੀਵਾਣੂ ਖੰਡ ਉੱਤੇ ਕਿਰਿਆ ਕਰਕੇ ਤੇਜ਼ਾਬ ਬਣਾਉਂਦੇ ਹਨ ਜੋ ਇਨੈਮਲ ਨੂੰ ਨਰਮ ਜਾਂ ਬੇਖੜੀਜੈਕਰਿਤ ਕਰ ਦਿੰਦੇ ਹਨ। ਅਨੇਕਾਂ ਜੀਵਾਣੂ ਸੈੱਲ ਖੁਰਾਕ ਦੇ ਕਣਾਂ ਨਾਲ ਮਿਲ ਕੇ ਦੰਦਾਂ ਉੱਤੇ ਚਿਪਕ ਕੇ ਦੰਦ ਪਲਾਕ ਬਣਾਉਂਦੇ ਹਨ। ਪਲਾਕ ਦੰਦਾਂ ਨੂੰ ਢੱਕ ਲੈਂਦਾ ਹੈ ਇਸ ਲਈ ਲਾਰ ਤੇਜ਼ਾਬਾਂ ਨੂੰ ਉਦਾਸੀਨ ਕਰਨ ਲਈ ਦੰਦ ਸਤਹ ਤੱਕ ਨਹੀਂ ਪਹੁੰਚ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਕਿ ਜੀਵਾਣੂ ਤੇਜ਼ਾਬ ਪੈਦਾ ਕਰਨ। ਭੋਜਨ ਕਰਨ ਮਗਰੋਂ ਬੁਰਸ਼ ਕਰਕੇ ਪਲਾਕ ਨੂੰ ਹਟਾਇਆ ਜਾਂ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਇਲਾਜ ਨਾ ਕੀਤਾ ਜਾਵ ਤਾਂ ਜੀਵਾਣੂ ਪਲਪ ਤੇ ਹਮਲਾ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਸੋਜਸ਼ ਅਤੇ ਇਨਫੈਕਸ਼ਨ ਦਾ ਕਾਰਨ ਬਣਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- ਸਵੈਪੋਸ਼ੀ ਪੋਸ਼ਣ ਅਤੇ ਪਰਪੋਸ਼ੀ ਪੋਸ਼ਣ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ?
- 2. ਪੌਦਾ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਲਈ ਜ਼ਰੂਰੀ ਕੱਚੀ ਸਮੱਗਰੀ ਕਿੱਥੋਂ ਲੈਂਦਾ ਹੈ?
- ਸਾਡੇ ਮਿਹਦੇ ਵਿੱਚ ਤੇਜ਼ਾਬ ਦੀ ਕੀ ਮਹੱਤਤਾ ਹੈ?
- 4. ਪਾਚਕ, ਐਨਜ਼ਾਈਮਾਂ ਦਾ ਕੀ ਕਾਰਜ ਹੈ?
- 5. ਪਚੇ ਹੋਏ ਭੋਜਨ ਜਜ਼ਬ ਕਰਨ ਲਈ ਛੋਟੀ ਆਂਦਰ ਨੂੰ ਕਿਵੇਂ ਡਿਜ਼ਾਇਨ ਕੀਤਾ ਗਿਆ ਹੈ?

6.3 ਸਾਹ ਕਿਰਿਆ (Respiration)

ਚਿੱਤਰ 6.7 (a) ਚੂਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚੋਂ ਸਾਹ ਦੁਆਰਾ ਬਾਹਰ ਕੱਢੀ ਹਵਾ ਲੰਘਾਈ ਜਾ ਰਹੀ ਹੈ। (b) ਚੂਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚੋਂ ਪਿਚਕਾਰੀ ਰਾਹੀਂ ਹਵਾ ਲੰਘਾਈ ਜਾ ਰਹੀ ਹੈ।

ਕਿਰਿਆ 6.4

- ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਤਾਜ਼ਾ ਤਿਆਰ ਕੀਤਾ ਚੂਨੇ ਦਾ ਪਾਣੀ ਲਓ।
- ਇਸ ਚੂਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚ ਕੱਚ ਦੀ ਨਲੀ ਰਾਹੀਂ ਫੂਕਾਂ ਮਾਰੇ [ਚਿੱਤਰ 6.7 (a)]।
- ਨੋਟ ਕਰੋ ਕਿ ਚੂਨੇ ਦੇ ਪਾਣੀ ਨੂੰ ਦੂਧੀਆ ਹੋਣ ਵਿੱਚ ਕਿੰਨਾ ਸਮਾਂ ਲਗਦਾ ਹੈ।
- ਇੱਕ ਦੂਜੀ ਪਰਖ ਨਲੀ ਵਿੱਚ ਤਾਜ਼ਾ ਤਿਆਰ ਕੀਤਾ ਚੂਨੇ ਦਾ ਪਾਣੀ ਲੈ ਕੇ ਇੱਕ ਸਰਿੰਜ ਜਾਂ ਪਿਚਕਾਰੀ ਦੁਆਰਾ ਹਵਾ ਲੰਘਾਓ। [ਚਿੱਤਰ 6.7 (b)]।
- ਨੋਟ ਕਰੋ ਕਿ ਇਸ ਵਾਰ ਚੂਨੇ ਦੇ ਪਾਣੀ ਨੂੰ ਦੁੱਧੀਆ ਹੋਣ ਨੂੰ ਕਿੰਨਾ ਸਮਾਂ ਲੱਗਿਆ।
- ਸਾਹ ਰਾਹੀਂ ਨਿਕਲੀ ਹਵਾ ਵਿੱਚ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ CO₂ ਦੀ ਮਾਤਰਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਇਹ ਸਾਨੂੰ ਕੀ ਦਰਸਾਉਂਦਾ ਹੈ?

ਕਿਰਿਆ 6.5

- ਕਿਸੇ ਫਲ ਦਾ ਰਸ ਜਾਂ ਚੀਨੀ ਦਾ ਘੋਲ਼ ਲੈ ਕੇ ਉਸ ਵਿੱਚ ਕੁੱਝ ਖਮੀਰ (Yeast) ਪਾਓ। ਇਸ ਨੂੰ ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਪਾਓ ਜਿਸ ਦੇ ਮੂਹ ਵਿੱਚ ਇੱਕ ਛੇਕ ਵਾਲਾ ਕਾਰਕ ਫਿੱਟ ਹੋਵੇ।
- ਕਾਰਕ ਵਿੱਚ ਮੁੜੀ ਹੋਈ ਕੱਚ ਦੀ ਨਲੀ ਲਗਾਓ। ਕੱਚ ਦੀ ਨਲੀ ਦੇ ਸੁਤੰਤਰ ਸਿਰੇ ਨੂੰ ਪਰਖ ਨਲੀ ਵਿੱਚ ਲਏ ਤਾਜ਼ਾ ਤਿਆਰ ਕੀਤੇ ਚੁਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚੋਂ ਲੰਘਾਓ।
- ਚੂਨੇ ਦੇ ਪਾਣੀ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨ ਨੂੰ ਅਤੇ ਇਸ ਪਰਿਵਰਤਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲੇ ਸਮੇਂ ਨੂੰ ਨੋਟ ਕਰੋ।
- ਖਮੀਰਨ ਦੇ ਉਤਪਾਦ ਦੇ ਬਾਰੇ ਵਿੱਚ ਇਹ ਸਾਨੂੰ ਕੀ ਦਰਸਾਉਂਦਾ ਹੈ?

ਪਿਛਲੇ ਸੈਕਸ਼ਨ (ਭਾਗ) ਵਿੱਚ ਅਸੀਂ ਜੀਵਾਂ ਅੰਦਰ ਪੋਸ਼ਣ ਬਾਰੇ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਜਿਹੜੇ ਖਾਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਨੂੰ ਅੰਦਰ ਲੈ ਜਾਇਆ ਜਾਂਦਾ ਹੈ ਸੈੱਲ ਉਹਨਾਂ ਦਾ ਉਪਯੋਗ ਵੱਖ ਵੱਖ ਜੈਵ ਪ੍ਰਕਿਰਿਆਵਾਂ ਲਈ ਊਰਜਾ ਉਤਪੰਨ ਕਰਨ ਲਈ ਕਰਦੇ ਹਨ। ਵੱਖ ਵੱਖ ਜੀਵ ਭਿੰਨ ਭਿੰਨ ਵਿਧੀਆਂ ਦੁਆਰਾ ਕਰਦੇ ਹਨ:

ਕੁੱਝ ਜੀਵ ਆਕਸੀਜਨ ਦਾ ਉਪਯੋਗ ਗੁਲੂਕੋਜ਼ ਨੂੰ ਪੂਰਨ ਤੌਰ ਤੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਵਿਘਟਿਤ ਕਰਨ ਲਈ ਕਰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਕੁੱਝ ਹੋਰ ਜੀਵ ਦੂਜੇ ਰਾਹ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ਜਿਸ ਵਿੱਚ ਆਕਸੀਜਨ ਨਹੀਂ ਵਰਤੀ ਜਾਂਦੀ (6.8)। ਇਹਨਾਂ ਸਾਰੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਪਹਿਲਾ ਚਰਨ ਗੁਲੂਕੋਜ਼, ਜੋ ਛੇ ਕਾਰਬਨਾਂ ਵਾਲਾ ਅਣੂ ਹੈ, ਨੂੰ ਤਿੰਨ ਕਾਰਬਨਾਂ ਵਾਲੇ ਅਣੂ, ਪਾਇਰੂਵੇਟ ਵਿੱਚ ਵਿਖੰਡਿਨ ਹੈ। ਇਹ ਪ੍ਰਕਿਰਿਆ (ਸੈੱਲ ਪਦਾਰਥ) ਸਾਈਟੋਪਲਾਜ਼ਮ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸ ਤੋਂ ਬਾਅਦ ਪਾਇਰੂਵੇਟ (Pyruvate) ਈਥੇਨਾਲ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦਾ ਹੈ। ਇਹ ਪ੍ਰਕਿਰਿਆ ਖਮੀਰਨ ਸਮੇਂ ਖਮੀਰ (Yeast) ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਕਿਉਂਕਿ ਇਹ ਪ੍ਰਕਿਰਿਆ ਆਕਸੀਜਨ ਦੀ ਅਣਹੋਂਦ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਇਸ ਨੂੰ ਅਣ-ਆਕਸੀ ਸਾਹ ਕਿਰਿਆ (Anaerobic Respiration) ਆਖਦੇ ਹਨ। ਆਕਸੀ ਸਾਹ ਕਿਰਿਆ ਵਿੱਚ ਉਰਜਾ ਦੀ ਉਤਪਤੀ ਅਣਆਕਸੀ ਸਾਹ ਕਿਰਿਆ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਬਹੁਤ ਵੱਧ ਹੁੰਦੀ ਹੈ। ਕਦੇ ਕਦੇ ਜਦੋਂ ਸਾਡੇ ਪੇਸ਼ੀ ਸੈੱਲਾਂ ਵਿੱਚ ਆਕਸੀਜਨ ਦੀ ਘਾਟ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਪਾਇਰੁਵੇਟ ਦੇ ਵਿਖੰਡਨ ਲਈ ਇੱਕ ਹੋਰ ਰਾਹ ਅਪਣਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਪਾਇਰੂਵੇਟ ਇੱਕ ਤਿੰਨ ਕਾਰਬਨਾਂ ਵਾਲੇ ਅਣੂ ਲੈੱਕਟਿਕ ਤੇਜ਼ਾਬ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਚਨਚੇਤ ਕਿਸੇ ਕਿਰਿਆ ਦੇ ਹੋਣ ਨਾਲ ਸਾਡੀਆਂ ਪੇਸ਼ੀਆਂ ਵਿੱਚ ਲੈਕਟਿਕ ਤੇਜ਼ਾਬ ਦਾ ਬਣਨਾ ਅਕੜਾਅ (Cramps) ਦਾ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ।

ਚਿੱਤਰ 6.8 ਵੱਖ ਵੱਖ ਰਾਹਾਂ ਦੁਆਰਾ ਗੁਲੁਕੋਜ਼ ਦਾ ਵਿਖੰਡਨ

ਸੈੱਲਾਂ ਦੀ ਸਾਹ ਕਿਰਿਆ ਵਿੱਚ ਉਤਪੰਨ ਹੋਈ ਉਰਜਾ ਤੁਰੰਤ ਹੀ ਏ. ਟੀ. ਪੀ. (ATP) ਨਾਂ ਦੇ ਅਣੂ ਦੇ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਵਰਤੀ ਜਾਂਦੀ ਹੈ ਜੋ ਸੈੱਲਾਂ ਦੀਆਂ ਹੋਰ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਬਾਲਣ ਦੀ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦੀ ਹੈ। ਏ. ਟੀ. ਪੀ. ਦੇ ਵਿਖੰਡਨ ਨਾਲ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਉਰਜਾ ਪਾਪਤ ਹੁੰਦੀ ਹੈ ਜੋ ਸੈੱਲਾਂ ਅੰਦਰ ਹੋਣ ਵਾਲੀਆਂ ਤਾਪ ਸੋਖੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਚਲਾਉਂਦੀ ਹੈ।

हे. टी. थी.

ਬਹੁਤ ਸਾਰੀਆਂ ਸੈੱਲਾਂ ਦੀਆਂ ਪ੍ਕਿਰਿਆਵਾਂ ਲਈ ਏ. ਟੀ. ਪੀ. ਉਰਜਾ ਜਰੂਰੀ ਹੈ। ਸੁਆਸ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਨਿਕਲੀ ਉਰਜਾ ਦਾ ਉਪਯੋਗ ਏ. ਡੀ. ਪੀ. (ADP) ਅਤੇ ਅਕਾਰਬਨਿੱਕ ਫਾਸਫੇਟ ਤੋਂ ਏ. ਟੀ. ਪੀ. (ATP) ਬਣਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

P: ਵਾਸਵੇਟ

ਸੈੱਲਾਂ ਅੰਦਰ ਹੁੰਦੀਆਂ ਤਾਪ ਸੋਖੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਇਸੇ ਏ. ਟੀ. ਪੀ. ਦਾ ਉਪਯੋਗ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਚਲਾਉਣ ਲਈ ਕਰਦੀਆਂ ਹਨ। ਪਾਣੀ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਏ. ਟੀ. ਪੀ. ਦਾ ਅੰਤਲਾ ਫਾਸਫੇਟ ਬੰਧਨ ਖੰਡਿਤ ਹੋਣ ਨਾਲ ਸੈੱਲਾਂ ਅੰਦਰ 30.5 kJ/mol ਦੇ ਬਰਾਬਰ ਉਰਜਾ ਨਿਕਲਦੀ ਹੈ।

ਸੋਚੋਂ ਕਿ ਇੱਕ ਬੈਟਰੀ ਵੱਖ ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਉਪਯੋਗਾਂ ਲਈ ਕਿਵੇਂ ਉਰਜਾ ਪਦਾਨ ਕਰਦੀ ਹੈ। ਇਹ ਯੰਤਿਕ ਉਰਜਾ, ਪ੍ਰਕਾਸ਼ ਉਰਜਾ, ਬਿਜਲਈ ਉਰਜਾ ਅਤੇ ਇਸੀ ਪ੍ਰਕਾਰ ਦੇ ਹੋਰ ਕੰਮਾਂ ਲਈ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆਂਦੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਸੈੱਲਾਂ ਵਿੱਚ ਏ. ਟੀ. ਪੀ. ਦਾ ਉਪਯੋਗ ਪੇਸ਼ੀਆਂ ਦੇ ਸੁੰਗੜਨ, ਪ੍ਰੋਟੀਨ ਦੇ ਸੈਸਲੇਸ਼ਣ, ਨਾੜੀ ਆਵੇਸ਼ ਚਲਾਉਣ ਅਤੇ ਹੋਰ ਬਹੁਤ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਉਂਕਿ ਆਕਸੀ ਸਾਹ ਕਿਰਿਆ ਪੱਥ ਆਕਸੀਜਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਇਸ ਲਈ ਆਕਸੀ ਸਾਹ ਕਿਰਿਆ ਉੱਤੇ ਨਿਰਭਰ ਜੀਵਾਂ ਨੂੰ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਕਿ ਉਹ ਲੋੜੀਂਦੀ ਮਾਤਰਾ ਵਿੱਚ ਆਕਸੀਜਨ ਪ੍ਰਾਪਤ ਕਰ ਰਹੇ ਹਨ। ਅਸੀਂ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪੌਦੇ ਗੈਸਾਂ ਦਾ ਆਦਾਨ ਪ੍ਰਦਾਨ ਸਟੋਮੈਂਟਾ ਰਾਹੀਂ ਕਰਦੇ ਹਨ ਅਤੇ ਸੈੱਲਾਂ ਦੇ ਵਿਚਕਾਰ ਖਾਲੀ ਥਾਵਾਂ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀਆਂ ਹਨ ਕਿ ਸਾਰੇ ਸੈੱਲ ਹਵਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹਨ। ਇੱਥੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਆਕਸੀਜਨ ਦਾ ਆਦਾਨ ਪ੍ਰਦਾਨ ਪ੍ਰਸਰਣ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਸੈੱਲਾਂ ਦੇ ਅੰਦਰ ਜਾਂ ਉਹਨਾਂ ਤੋਂ ਬਾਹਰ ਅਤੇ ਦੂਰ ਹਵਾ ਵਿੱਚ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਪ੍ਰਸਰਣ ਦੀ ਦਿਸ਼ਾ ਵਾਤਾਵਰਨ ਦੀ ਸਥਿਤੀ ਅਤੇ ਪੌਦੇ ਦੀਆਂ ਜਰੂਰਤ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਰਾਤ ਨੂੰ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੀ ਕਿਰਿਆ ਨਹੀਂ ਹੋ ਰਹੀ ਹੁੰਦੀ ਹੈ ਤਾਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੇ ਨਿਕਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੀ ਮੁੱਖ ਆਦਾਨ ਪਦਾਨ ਕਿਰਿਆ ਹੈ। ਦਿਨ ਵੇਲੇ, ਸਾਹ ਦੌਰਾਨ ਉਤਪੰਨ ਹੋਈ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਵਰਤੀ ਜਾਂਦੀ ਹੈ ਇਸ ਲਈ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਉਤਪੰਨ ਨਹੀਂ ਹੁੰਦੀ।ਇਸ ਸਮੇਂ ਆਕਸੀਜਨ ਉਤਪੰਨ ਹੋਣਾ ਮੁੱਖ ਘਟਨਾ ਹੈ। ਜੰਤੂਆਂ ਵਿੱਚ ਵਾਤਾਵਰਨ ਤੋਂ ਆਕਸੀਜਨ ਲੈਣ ਅਤੇ ਉਤਪੰਨ ਹੋਈ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਤੋਂ ਛਟਕਾਰਾ ਪਾਉਣ ਲਈ ਭਿੰਨ ਭਿੰਨ ਪ੍ਕਾਰ ਦੇ ਅੰਗਾਂ ਦਾ ਵਿਕਾਸ ਹੋਇਆ ਹੈ। ਸਥਲੀ ਜੰਤੂ ਵਾਯੂ ਮੰਡਲ ਤੋਂ ਆਕਸੀਜਨ ਲੈਂਦੇ ਹਨ ਪ੍ਰੰਤੂ ਜੋ ਜੰਤੂ ਜਲ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਜਲ ਵਿੱਚ ਘਲੀ ਆਕਸੀਜਨ ਦਾ ਉਪਯੋਗ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ 6.6

- ਇੱਕ ਐਕੁਏਰੀਅਮ (ਜਲ ਜੀਵ ਸ਼ਾਲਾ) ਵਿੱਚ ਮੱਛੀ ਨੂੰ ਵੇਖੋ। ਉਹ ਆਪਣਾ ਮੂੰਹ ਖੋਲ੍ਹਦੀ ਅਤੇ ਬੰਦ ਕਰਦੀ ਰਹਿੰਦੀ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਅੱਖਾਂ ਦੇ ਪਿੱਛੇ ਗਲਫੜਾ ਚੀਰ ਜਾਂ ਓਪਰਕਲਮ (ਜੋ ਗਲਫੜਾ ਚੀਰਾਂ ਨੂੰ ਢੱਕਦੇ ਹਨ) ਖੁੱਲਦੇ ਵੀ ਅਤੇ ਬੰਦ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ। ਕੀ ਮੂੰਹ ਅਤੇ ਗਲਫੜਾ ਚੀਰ ਦੇ ਖੁੱਲ੍ਹਣ ਅਤੇ ਬੰਦ ਹੋਣ ਦੇ ਸਮੇਂ ਵਿੱਚ ਕਿਸੇ ਪ੍ਕਾਰ ਦਾ ਸੰਬੰਧ ਹੈ?
- 👅 ਗਿਣਤੀ ਕਰੋ ਕਿ ਮੱਛੀ ਇੱਕ ਮਿੰਟ ਵਿੱਚ ਕਿੰਨੀ ਵਾਰ ਮੂੰਹ ਖੋਲ੍ਹਦੀ ਅਤੇ ਬੈਦ ਕਰਦੀ ਹੈ।
- 🔳 ਇਸ ਦੀ ਤੁਲਨਾ ਤੁਸੀਂ ਆਪਣੇ ਸਾਹ ਨੂੰ ਇੱਕ ਮਿੰਟ ਵਿੱਚ ਅੰਦਰ ਬਾਹਰ ਕਰਨ ਨਾਲ ਕਰੇ।

ਜੋ ਜੀਵ ਜਲ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ ਉਹ ਜਲ ਵਿੱਚ ਘੁਲੀ ਆਕਸੀਜਨ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਕਿਉਂਕਿ ਜਲ ਵਿੱਚ ਘੁਲੀ ਆਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਹਵਾ ਵਿੱਚ ਮੌਜ਼ੂਦ ਆਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਨਾਲੋਂ ਬਹੁਤ ਹੀ ਘੱਟ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਜਲੀ ਜੀਵਾਂ ਦੀ ਸਾਹ ਦਰ ਥਲੀ ਜੀਵਾਂ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਬਹੁਤ ਤੇਜ਼ ਹੁੰਦੀ ਹੈ।ਮੱਛੀ ਆਪਣੇ ਮੂੰਹ ਦੁਆਰਾ ਜਲ ਲੈਂਦੀ ਹੈ, ਗਲਫੜਿਆਂ ਉੱਪਰੋਂ ਵੀ ਲੰਘਾਉਂਦੀ ਹੈ ਜਿੱਥੇ ਖੂਨ, ਘੁਲੀ ਹੋਈ ਆਕਸੀਜਨ ਲੈਂ ਲੈਂਦਾ ਹੈ।ਵੱਖ ਵੱਖ ਜੀਵ ਇਹ ਆਕਸੀਜਨ ਭਿੰਨ ਭਿੰਨ ਅੰਗਾਂ ਦੁਆਰਾ ਸੰਚਿਤ ਕਰਦੇ ਹਨ।ਸਾਰੇ ਅੰਗਾਂ ਦੀ ਰਚਨਾ ਅਜਿਹੀ ਹੁੰਦੀ ਹੈ ਜੋ ਉਸ ਸਤਹ ਦੇ ਖੇਤਰ ਨੂੰ ਵਧਾਉਂਦੀ ਹੈ ਜੋ ਆਕਸੀਜਨ ਭਰਪੂਰ ਵਾਯੂ ਮੰਡਲ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।ਕਿਉਂਕਿ ਆਕਸੀਜਨ ਅਤੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਦੀ ਅਦਲਾ ਬਦਲੀ ਇਸ ਸਤਹ ਦੇ ਆਰ ਪਾਰ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਇਹ ਸਤਹ ਬਹੁਤ ਪਤਲੀ ਅਤੇ ਕੌਮਲ ਹੁੰਦੀ ਹੈ ਅਤੇ ਰੱਖਿਆ ਲਈ ਇਹ ਸਰੀਰ ਦੇ ਅੰਦਰ ਸਥਿਤ ਹੁੰਦੀ ਹੈ।ਇਸ ਲਈ ਇਸ ਦੇ ਖੇਤਰ ਵਿੱਚ ਹਵਾ ਆਉਣ ਲਈ ਕੋਈ ਰਸਤਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਦੇ ਬਾਵਜੂਦ ਜਿੱਥੇ ਆਕਸੀਜਨ ਸੋਖੀ ਜਾਂਦੀ ਹੈ ਉਸ ਖੇਤਰ ਤੋਂ ਹਵਾ ਅੰਦਰ ਬਾਹਰ ਜਾਣ ਲਈ ਰਚਨਾ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।

ਮਨੁੱਖਾਂ ਵਿੱਚ (ਚਿੱਤਰ 6.9) ਹਵਾ ਸਰੀਰ ਦੇ ਅੰਦਰ ਨਾਸਾਂ ਰਾਹੀਂ ਜਾਂਦੀ ਹੈ। ਨਾਸਾਂ ਦੁਆਰਾ ਜਾਣ ਵਾਲੀ ਹਵਾ ਮਾਰਗ ਵਿੱਚ ਉਪਸਥਿਤ ਬਾਰੀਕ ਵਾਲਾਂ ਦੁਆਰਾ ਪੁਣੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਸਰੀਰ ਵਿੱਚ ਜਾਣ ਵਾਲੀ ਹਵਾ ਧੂੜ ਅਤੇ ਹੋਰ ਅਸ਼ੁੱਧੀਆਂ ਤੋਂ ਮੁਕਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਮਾਰਗ ਵਿੱਚ ਮਿਊਕਸ ਦੀ ਪਰਤ ਹੁੰਦੀ ਹੈ ਜੋ ਇਸ ਪ੍ਕਿਰਿਆ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦੀ ਹੈ। ਇੱਥੋਂ ਹਵਾ ਗਲੇ ਵਿੱਚੋਂ ਲੰਘ ਕੇ ਫੇਫੜਿਆਂ ਵਿੱਚ ਪਹੁੰਚਦੀ ਹੈ। ਕੈਠ ਵਿੱਚ ਕਾਰਟੀਲੇਜ ਦੇ ਛੱਲੇ ਹੁੰਦੇ ਹਨ, ਜੋ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹਨ ਕਿ ਹਵਾ ਦਾ ਮਾਰਗ ਪਿਚਕ ਕੇ ਬੰਦ ਨਾ ਹੋ ਜਾਵੇ।

ਫੇਫੜਿਆਂ ਅੰਦਰ ਇਹ ਮਾਰਗ ਛੋਟਾ ਅਤੇ ਹੋਰ ਛੋਟਾ ਹੁੰਦਾ ਹੋਇਆ ਨਲੀਆਂ ਵਿੱਚ ਵੈਡਿਆ

ਜਾਂਦਾ ਹੈ ਜੋ ਅੰਤ ਵਿੱਚ ਗੁਬਾਰੇ ਜਿਹੀਆਂ ਰਚਨਾਵਾਂ ਵਿੱਚ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਐਲਵਿਓਲਾਈ ਹਵਾ ਬੈਲੀਆਂ ਕਹਿੰਦੇ ਹਨ। ਐਲਵਿਓਲਾਈ ਇੱਕ ਸਤਹ ਉਪਲਬਧ ਕਰਾਉਂਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਗੈਸਾਂ ਦੀ ਅਦਲਾ ਬਦਲੀ ਹੋ ਸਕਦੀ ਹੈ। ਐਲਵਿਓਲਾਈ ਦੀਆਂ ਕੰਧਾਂ ਵਿੱਚ ਲਹੂ ਵਹਿਣੀਆਂ ਦਾ ਵਿਸਤ੍ਰਿਤ ਜਾਲ ਫੈਲਿਆ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲੇ ਸਾਲਾਂ ਵਿੱਚ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਜਦੋਂ ਅਸੀਂ ਸਾਹ ਅੰਦਰ ਲੈ ਜਾਂਦੇ ਹਾਂ ਤਾਂ ਸਾਡੀਆਂ ਪੱਸਲੀਆਂ ਉੱਪਰ ਉੱਠਦੀਆਂ ਹਨ ਅਤੇ ਸਾਡਾ ਡਾਇਆਫਰਾਮ ਚਪਟਾ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਛਾਤੀ ਖੋੜ ਵੱਡੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਕਾਰਨ ਹਵਾ ਫੇਫੜਿਆਂ ਦੇ ਅੰਦਰ ਚਲੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਫੈਲੀ ਹੋਈ ਐਲਵਿਓਲਾਈ ਨੂੰ ਭਰ ਦਿੰਦੀ ਹੈ। ਲਹੂ ਬਾਕੀ ਦੇ ਸਰੀਰ ਵਿੱਚੋਂ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਐਲਵਿਓਲਾਈ ਵਿੱਚ ਛੱਡਣ ਲਈ ਲਿਆਉਂਦਾ ਹੈ ਅਤੇ ਲਹੂ ਐਲਵਿਓਲਾਈ ਵਿਚਲੀ ਹਵਾ ਵਿੱਚੋਂ ਆਕਸੀਜਨ ਨੂੰ ਐਲਵਿਓਲਾਈ ਦੀਆਂ ਲਹੂ ਵਹਿਣੀਆਂ ਵਿੱਚ ਲੈ ਜਾਂਦਾ ਹੈ ਜਿਹੜੀ ਕਿ ਸਰੀਰ ਦੇ ਸਾਰੇ ਸੈੱਲਾਂ ਤੱਕ ਭੇਜੀ ਜਾਂਦੀ ਹੈ। ਸਾਹ ਚੱਕਰ ਸਮੇਂ ਜਦੋਂ ਹਵਾ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਲੈ ਜਾਈ ਜਾਂਦੀ ਹੈ ਤਾਂ ਸਦਾ ਹੀ ਫੇਫੜਿਆਂ ਵਿੱਚ ਕੁੱਝ ਹਵਾ ਬਚੀ ਰਹਿ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਆਕਸੀਜਨ ਦੇ ਜਜ਼ਬ ਹੋਣ ਅਤੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਦੇ ਬਾਹਰ ਨਿਕਲਣ ਲਈ ਕਾਫੀ ਸਮਾਂ ਮਿਲ ਜਾਂਦਾ ਹੈ।

ਜਿਵੇਂ ਜਿਵੇਂ ਜੰਤੂਆਂ ਦੇ ਸਰੀਰ ਦਾ ਆਕਾਰ ਵਧਦਾ ਜਾਂਦਾ ਹੈ ਤਿਵੇਂ ਤਿਵੇਂ ਇਕੱਲਾ ਪ੍ਰਸਰਣ ਦਬਾਓ ਸਰੀਰ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਨੂੰ ਆਕਸੀਜਨ ਪਹੁੰਚਾਉਣ ਲਈ ਕਾਫੀ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਇਸ ਦੀ ਥਾਂ ਸਾਹ ਵਰਣਕ (Pigment) ਫੇਫੜਿਆਂ ਦੀ ਹਵਾ ਤੋਂ ਆਕਸੀਜਨ ਲੈ ਕੇ ਉਹਨਾਂ ਸਾਰੇ ਟਿਸ਼ੂਆਂ ਨੂੰ ਪਹੁੰਚਾਉਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਆਕਸੀਜਨ ਦੀ ਕਮੀ ਹੁੰਦੀ ਹੈ। ਮਨੁੱਖਾਂ ਵਿੱਚ ਸਾਹ ਵਰਣਕ ਹੀਮੋਗਲੋਬਿਨ ਹੈ ਜਿਸ ਦੀ ਆਕਸੀਜਨ ਲਈ ਬਹੁਤ ਜ਼ਿਆਦਾ ਖਿੱਚ ਹੈ। ਇਹ ਵਰਣਕ ਲਹੂ ਦੇ ਲਾਲ ਰਕਤਾਣੂਆਂ (Corpuscles) ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਆਕਸੀਜਨ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਪਾਣੀ ਵਿੱਚ ਵਧੇਰੇ ਘੁਲਣਸ਼ੀਲ ਹੈ, ਇਸ ਲਈ ਲਹੂ ਵਿੱਚ ਵਧੇਰੇ ਕਰਕੇ ਇਸ ਦਾ ਪਰਿਵਰਤਨ ਘੋਲ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

- ਜੇਕਰ ਐਲਵਿਓਲਾਈ ਦੀ ਸਤਹ ਨੂੰ ਫੈਲਾ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਇਹ ਲਗਭਗ 80 ਵਰਗ ਮੀਟਰ ਖੇਤਰ ਢੱਕ ਲਵੇਗੀ। ਕੀ ਤੁਸੀਂ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਆਪਣੇ ਸਰੀਰ ਦੀ ਸਤਹ ਦਾ ਖੇਤਰਫਲ ਕਿੰਨਾ ਹੋਵੇਗਾ? ਵਿਚਾਰ ਕਰੋ ਕਿ ਅਦਲਾ ਬਦਲੀ ਲਈ ਵਧੇਰੇ ਸਤਹ ਉਪਲਬਧ ਹੋਣ ਨਾਲ ਗੈਸਾਂ ਦੀ ਅਦਲਾ ਬਦਲੀ ਕਿੰਨੀ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੈ ਜਾਵੇਗੀ।
- ਜੇਕਰ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਆਕਸੀਜਨ ਪ੍ਰਸਰਣ ਦੁਆਰਾ ਗਤੀ ਕਰਦੀ ਤਾਂ ਸਾਡੇ ਫੇਫੜਿਆਂ ਤੋਂ ਇੱਕ ਅਣੂ ਨੂੰ ਪੈਰ ਦੇ ਅੰਗੂਠੇ ਤੱਕ ਪਹੁੰਚਣ ਵਿੱਚ ਇੱਕ ਅਨੁਮਾਨ ਅਨੁਸਾਰ 3 ਸਾਲ ਦਾ ਸਮਾਂ ਲੱਗੇਗਾ। ਕੀ ਤੁਹਾਨੂੰ ਇਸ ਤੋਂ ਪ੍ਰਸੰਨਤਾ ਨਹੀਂ ਹੋਈ ਕਿ ਸਾਡੇ ਕੋਲ ਹੀਮੋਗਲੋਬਿਨ ਹੈ?

ਪ੍ਰਸ਼ਨ

- ਸਾਹ ਕਿਰਿਆ ਲਈ ਆਕਸੀਜਨ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਪੱਖ ਤੋਂ ਇੱਕ ਜਲੀ ਜੀਵ ਦੇ ਟਾਕਰੇ ਇੱਕ ਸਥਲੀ ਜੀਵ ਕਿਸ ਪ੍ਰਕਾਰ ਲਾਭ ਵਿੱਚ ਹੈ?
- ਜੀਵਾਂ ਵਿੱਚ ਗੁਲੂਕੋਜ਼ ਦੇ ਆਕਸੀਕਰਨ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਭਿੰਨ ਭਿੰਨ ਪੱਥ ਕੀ ਹਨ?
- ਮਨੁੱਖਾਂ ਵਿੱਚ ਆਕਸੀਜਨ ਅਤੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਦਾ ਪਰਿਵਹਿਨ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ?
- 4. ਗੈਂਸਾਂ ਦੇ ਵਟਾਂਦਰੇ ਲਈ ਵਧੇਰੇ ਖੇਤਰਫਲ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਮਨੁੱਖੀ ਫੇਫੜਿਆਂ ਦੀ ਬਣਤਰ ਵਿੱਚ ਕੀ ਖਾਸ ਗੁਣ ਹੈ? ਕਿਵੇਂ ਡਿਜ਼ਾਇਨ ਕੀਤਾ ਗਿਆ ਹੈ?

6.4 ਪਰਿਵਹਿਨ (Transportation)

6.4.1 ਮਨੁੱਖ ਵਿੱਚ ਪਰਿਵਹਿਨ (Transporatation in Human Beings)

ਕਿਰਿਆ 6.7

- ਆਪਣੇ ਨੇੜੇ ਦੇ ਇੱਕ ਸਿਹਤ ਕੇਂਦਰ ਦੀ ਫੇਰੀ ਪਾਓ ਅਤੇ ਪਤਾ ਕਰੋ ਕਿ ਮਨੁੱਖਾਂ ਵਿੱਚ ਹੀਮੋਗਲੋਬਿਨ ਦਾ ਸਾਧਾਰਨ ਸਤਰ ਕੀ ਹੁੰਦਾ ਹੈ?
- 🎳 ਕੀ ਇਹ ਬੱਚਿਆਂ ਅਤੇ ਬਾਲਗਾਂ ਲਈ ਇੱਕੋ ਜਿਹਾ ਹੈ।
- 🍙 ਕੀ ਮਰਦਾਂ ਅਤੇ ਇਸਤਰੀਆਂ ਅੰਦਰ ਹੀਮੋਗਲਬਿਨ ਦੇ ਪੱਧਰ ਵਿੱਚ ਅੰਤਰ ਹੈ?
- ਆਪਣੇ ਨੇੜੇਦੇ ਪਸ਼ੂ ਕਲੀਨਿਕ ਦੀ ਫੋਰੀ ਪਾਓ। ਪਤਾ ਕਰੋ ਕਿ ਪਸ਼ੂਆਂ ਜਿਵੇਂ ਕਿ ਮੁੱਝ ਜਾਂ ਗਾਂ ਵਿੱਚ ਹੀਮੋਗਲੋਬਿਨ ਦੀ ਆਮ ਮਾਤਰਾ ਦਾ ਪੱਧਰ ਕੀ ਹੈ?

- ਕੀ ਇਹ ਮਾਤਰਾ ਬਛੜੇ, ਨਰ ਅਤੇ ਮਾਦਾ ਪਸ਼ੂਆਂ ਵਿੱਚ ਸਮਾਨ ਹੈ?
- ਨਰ ਅਤੇ ਮਾਦਾ ਮਾਨਵ ਵਿੱਚ ਅਤੇ ਜੰਤੂਆਂ ਵਿੱਚ ਵਿਖਾਈ ਦੇਣ ਵਾਲੇ ਅੰਤਰ ਦੀ ਤੁਲਨਾ ਕਰੋ।
- ਜੇਕਰ ਕੋਈ ਅੰਤਰ ਹੈ ਤਾਂ ਉਸ ਦੀ ਵਿਆਖਿਆ ਕਿਵੇਂ ਕਰੋਗੇ?

ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਲਹੂ (ਖੂਨ) ਸਾਡੇ ਸ਼ਹੀਰ ਵਿੱਚ ਭੋਜਨ, ਆਕਸੀਜਨ ਅਤੇ ਵਾਧੂ ਪਦਾਰਥਾਂ ਦਾ ਪਰਿਵਹਿਨ ਜਾਂ ਢੋਆ ਢੁਆਈ ਕਰਦਾ ਹੈ। ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਅਸੀਂ ਸਿੱਖਿਆ ਸੀ ਕਿ ਲਹੂ ਇੱਕ ਤਰਲ ਸੰਯੋਜਕ ਟਿਸ਼ੂ ਹੈ। ਲਹੂ ਵਿੱਚ ਇੱਕ ਤਰਲ ਮਾਧਿਅਮ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਪਲਾਜ਼ਮਾ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸੈੱਲ ਲਟਕੇ ਹੋਏ ਹਨ। ਪਲਾਜ਼ਮਾ ਭੋਜਨ, ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਨਾਈਟਰੋਜਨੀ ਫਾਲਤੂ ਪਦਾਰਥਾਂ ਦਾ ਘੋਲ਼ ਰੂਪ ਵਿੱਚ ਪਰਿਵਹਿਨ ਕਰਦਾ ਹੈ। ਆਕਸੀਜਨ ਨੂੰ ਲਾਲ ਲਹੂ ਸੈੱਲ ਲੈ ਜਾਂਦੇ ਹਨ। ਬਹੁਤ ਸਾਰੇ ਹੋਰ ਪਦਾਰਥਾਂ ਜਿਵੇਂ ਕਿ ਲੂਣਾਂ ਦਾ ਪਰਿਵਹਿਨ ਵੀ ਲਹੂ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਸਾਨੂੰ ਜ਼ਰੂਰਤ ਹੈ ਇੱਕ ਪੰਪ ਯੰਤਰ ਦੀ ਜੋ ਲਹੂ ਨੂੰ ਅੰਗਾਂ ਦੇ ਆਲੇ ਦੁਆਲੇ ਧਕੇਲ ਸਕੇ, ਨਾਲੀਆਂ ਦੇ ਜਾਲ ਪ੍ਰਬੰਧ ਦੀ ਜੋ ਲਹੂ ਨੂੰ ਸਾਰੇ ਟਿਸ਼ੂਆਂ ਤੱਕ ਭੇਜ ਸਕੇ ਅਤੇ ਇੱਕ ਯੰਤਰ ਦੀ ਜੋ ਇਹ ਯਕੀਨੀ ਬਣਾਵੇ ਕਿ ਜੇਕਰ ਇਸ ਪ੍ਰਬੰਧ ਵਿੱਚ ਕੋਈ ਨੁਕਸ ਪੈ ਜਾਵੇ ਤਾਂ ਉਸਦੀ ਮੁਰੰਮਤ ਹੋ ਸਕੇ।

ਸਾਡਾ ਪੰਪ

ਦਿਲ ਪੇਸ਼ੀਆਂ ਦਾ ਬਣਿਆ ਇੱਕ ਅੰਗ ਹੈ ਜੋ ਮੁੱਠੀ ਦੇ ਆਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ (ਚਿੱਤਰ 6.10) ਲਹੂ ਨੇ ਆਕਸੀਜਨ ਅਤੇ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਦੋਵੇਂ ਹੀ ਲੈ ਜਾਣੇ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਆਕਸੀਜਨ ਯੁਕਤ ਲਹੂ ਨੂੰ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਵਾਲੇ ਲਹੂ ਵਿੱਚ ਰਲਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਦਿਲ ਵੱਖ ਵੱਖ ਖਾਨਿਆਂ ਵਿੱਚ ਵੰਡਿਆ ਹੋਇਆ ਹੈ। ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਸੰਚਿਤ ਲਹੂ ਨੂੰ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਛੱਡਣ ਵਾਸਤੇ ਫੇਫੜਿਆਂ ਵਿੱਚ ਜਾਣਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਫੇਫੜਿਆਂ ਤੋਂ ਆਕਸੀਜਨ ਯੁਕਤ ਲਹੂ ਦਿਲ ਵਿੱਚ ਲਿਆਉਣਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਆਕਸੀਜਨ ਯੁਕਤ ਲਹੂ ਫਿਰ ਸਰੀਰ ਦੇ ਬਾਕੀ ਭਾਗਾਂ ਨੂੰ ਪੰਪ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਅਸੀਂ ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਵੱਖ ਵੱਖ ਚਰਨਾਂ ਵਿੱਚ ਸਮਝ ਸਕਦੇ ਹਾਂ (ਚਿੱਤਰ 6.11), ਆਕਸੀਜਨ ਯੁਕਤ ਲਹੂ ਫੇਫੜਿਆਂ ਤੋਂ ਦਿਲ ਦੇ ਪਤਲੀਆਂ ਕੰਧਾਂ ਵਾਲੇ ਖੱਬੇ

ਚਿੱਤਰ 6.10 ਮਨੁੱਖੀ ਦਿਲ ਦਾ ਕਾਟ ਦਿਸ਼

ਖਾਨੇ ਭਾਵ ਖੱਬੇ ਆਰੀਕਲ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਇਹ ਲਹੂ ਇਕੱਠਾ ਕਰਨ ਸਮੇਂ ਖੱਬਾ ਆਰੀਕਲ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ। ਫਿਰ ਇਹ ਸੁੰਗੜਦਾ ਹੈ ਤਾਂ ਅਗਲਾ ਖਾਨਾ ਜਾਂ ਖੱਬਾ ਵੈਂਟਰੀਕਲ ਫੈਲਦਾ ਹੈ ਅਤੇ ਲਹੂ ਉਸ ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਆਪਣੀ ਵਾਰੀ 'ਤੇ ਜਦੋਂ ਬੈਸੀਦਾਰ ਖੱਬਾ ਵੈਂਟਰੀਕਲ ਸੁੰਗੜਦਾ ਹੈ ਤਾਂ ਲਹੂ ਸਰੀਰ ਵਿੱਚ ਪੰਪ ਹੋ ਜਾਂਦਾ ਹੈ। ਉੱਪਰ ਵਾਲਾ ਸੱਜਾ ਖਾਨਾ ਭਾਵ ਸੱਜਾ ਆਰੀਕਲ ਜਦੋਂ ਫੈਲਦਾ ਹੈ ਤਾਂ ਸਰੀਰ ਤੋਂ ਆਕਸੀਜਨ ਰਹਿਤ ਲਹੂ ਇਸ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਸੱਜਾ ਆਰੀਕਲ ਸੁੰਗੜਦਾ ਹੈ ਤਾਂ ਹੇਠਾਂ ਵਾਲਾ ਸੰਗਤ ਖਾਨਾਂ ਭਾਵ ਸੱਜਾ ਵੈਂਟਰੀਕਲ ਫੈਲ ਜਾਂਦਾ ਹੈ। ਇਸ ਨਾਲ ਲਹੂ ਸੱਜੇ ਵੈਂਟਰੀਕਲ ਵਿੱਚ ਚਲਿਆ ਜਾਂਦਾ ਹੈ। ਸੱਜਾ ਵੈਂਟਰੀਕਲ ਆਪਣੀ ਵਾਰੀ ਅਨੁਸਾਰ ਲਹੂ ਨੂੰ ਆਕਸੀਜਨ ਲੈਣ ਲਈ ਫੇਫੜਿਆਂ ਵਿੱਚ ਪੰਪ ਕਰ ਦਿੰਦਾ ਹੈ ਕਿਉਂਕਿ ਵੈਂਟਰੀਕਲ ਨੇ ਪੂਰੇ ਸਰੀਰ ਵਿੱਚ ਲਹੂ ਭੇਜਣਾ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਆਰੀਕਲ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਪੇਸ਼ੀਦਾਰ ਵੈਂਟਰੀਕਲ ਦੀਆਂ ਕੰਧਾਂ ਮੋਟੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਜਦੋਂ ਆਰੀਕਲ ਜਾਂ ਵੈਂਟਰੀਕਲ ਸੁੰਗੜਦੇ ਹਨ ਤਾਂ ਵਾਲਵ ਲਹੂ ਦੇ ਪ੍ਵਾਹ ਨੂੰ ਉਲਟੀ ਦਿਸ਼ਾ ਵਿੱਚ ਵਹਿਣ ਤੋਂ ਰੋਕਣਾ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹਨ।

ਫੇਫੜਿਆਂ ਅੰਦਰ ਆਕਸੀਜਨ ਲਹੂ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੀ ਹੈ :

ਦਿਲ ਦੀ ਸੱਜੇ ਭਾਗ ਅਤੇ ਖੱਬੇ ਭਾਗ ਵਿੱਚ ਵੈਡ ਆਕਸੀਜਨ ਯੁਕਤ ਲਹੂ <mark>ਅਤੇ ਆਕਸੀਜਨ ਰ</mark>ਹਿਤ ਲਹੂ ਨੂੰ, ਆਪੋ ਵਿੱਚ ਮਿਲਣ ਤੋਂ ਰੋਕਣ ਲਈ ਲਾਭਦਾਇਕ ਹੈ। ਇਸ <mark>ਵੈਡ</mark> ਨਾਲ ਸਰੀਰ ਨੂੰ ਆਕਸੀਜਨ ਦੀ ਪੂਰਤੀ ਵਧੇਰੇ ਕਾਰਜਕੁਸ਼ਲ ਢੰਗ ਨਾਲ ਹੋਵੇਗੀ। ਪੰਛੀ ਅਤੇ <mark>ਥਣਧਾਰੀ</mark> ਜਿਹੇ ਜੰਤੂਆਂ

ਚਿੱਤਰ 6.11 ਆਕਸੀਜਨ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਪਰਿਵਹਿਨ ਅਤੇ ਅਦਲਾ ਬਦਲੀ ਦਾ ਰੇਖਾ ਚਿੱਤਰ

ਲਈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਇਹ ਬਹੁਤ ਲਾਭਦਾਇਕ ਹੈ ਕਿਉਂਕਿ ਉਹਨਾਂ ਨੂੰ ਆਪਣੇ ਸ਼ਰੀਰ ਦਾ ਤਾਪਮਾਨ ਬਣਾਈ ਰੱਖਣ ਲਈ ਲਗਾਤਾਰ ਉਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਉਹ ਜੰਤੂ ਜਿਨ੍ਹਾਂ ਨੇ ਇਸ ਕਾਰਜ ਲਈ ਉਰਜਾ ਦਾ ਉਪਯੋਗ ਨਹੀਂ ਕਰਨਾ ਹੁੰਦਾ ਹੈ ਉਹਨਾਂ ਦੇ ਸਰੀਰ ਦਾ ਤਾਪਮਾਨ ਵਾਤਾਵਰਨ ਦੇ ਤਾਪਮਾਨ ਉੱਪਰ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਅਜਿਹੇ ਜੰਤੂ ਜਿਵੇਂ ਕਿ ਜਲਬਲੀ ਜੰਤ ਬਹੁਤ ਸਾਰੇ ਗੈਂਗਣ ਵਾਲੇ ਜੰਤੂਆਂ ਵਿੱਚ ਤਿੰਨ ਖਾਨਿਆਂ ਵਾਲਾ ਦਿਲ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਆਕਸੀਜਨ ਯੁਕਤ ਅਤੇ ਆਕਸੀਜਨ ਰਹਿਤ ਲਹੂ ਦੀ ਧਾਰਾ ਦਾ ਕੁੱਝ ਹੱਦ ਤੱਕ ਮਿਲਣਾ ਵੀ ਸਹਿਨ ਕਰ ਲੈਂਦੇ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਮੱਛੀ ਦੇ ਦਿਲ ਵਿੱਚ ਕੇਵਲ ਦੋ ਖਾਨੇ ਹੁੰਦੇ ਹਨ। ਇੱਥੋਂ ਲਹੂ ਗਣਜ ਨੂੰ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ ਜਿੱਥੇ ਇਹ ਆਕਸੀਜਨ ਸਥਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸਿੱਧਾ ਹੀ ਸਰੀਰ ਵਿੱਚ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮੱਛੀਆਂ ਦੇ ਸਰੀਰ ਵਿੱਚ ਇੱਕ ਚੱਕਰ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਵਾਰ ਹੀ ਲਹੂ ਦਿਲ ਵਿੱਚ ਆਉਂਦਾ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਅਨੇਕ ਰੀੜ੍ਹਧਾਰੀਆਂ ਵਿੱਚ ਹਰ ਚੱਕਰ ਵਿੱਚ ਲਹੂ ਦੋ ਵਾਰ ਦਿਲ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਦੂਹਰਾ ਚੱਕਰ ਕਹਿੰਦੇ ਹਨ।

ๅๅๅๅๅๅๅๅๅๅๅๅๅๅ

ਲਹੂ ਦਬਾਓ (Blood Pressure)

ਲਹੂ ਜੋ ਵਹਿਣੀ ਦੀ ਦੀਵਾਰ ਦੇ ਵਿਰੁੱਧ ਜੋ ਬਲ ਲਗਾਉਂਦਾ ਹੈ ਉਸ ਨੂੰ ਲਹੂ ਦਬਾਓ ਕਹਿੰਦੇ ਹਨ।ਇਹ ਦਬਾਓ ਸ਼ਿਰਾਵਾਂ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਧਮਣੀਆਂ ਵਿੱਚ ਬਹੁਤ ਵੱਧ ਹੁੰਦਾ ਹੈ।ਧਮਣੀ ਦੇ ਸੁੰਗੜਨ ਸਮੇਂ ਦਾ ਦਬਾਅ ਸਿਸਟੋਲਿਕ ਦਬਾਓ ਅਖਵਾਉਂਦਾ ਹੈ ਅਤੇ ਧਮਣੀ ਦੇ ਸਥਿਰ ਹੋਣ ਸਮੇਂ ਧਮਣੀ ਦੇ ਅੰਦਰ ਦਾ ਲਹੂ ਦਬਾਓ ਡਾਇਆਸਟੋਲਿਕ ਦਬਾਓ ਹੁੰਦਾ ਹੈ। ਆਮ ਸਿਸਟੋਲਿਕ ਦਬਾਓ 120 mm (ਪਾਰਾ) ਅਤੇ ਡਾਇਆਸਿਟੋਲਿਕ ਦਬਾਓ 80 mm ਹੁੰਦਾ ਹੈ।

ਲਹੂ ਦਬਾਓ ਸਫਈਗਮੌਮੈਨੋਮੀਟਰ ਨਾਂ ਦੇ ਯੰਤਰ ਦੁਆਰਾ ਮਿਣਿਆ ਜਾਂਦਾ ਹੈ ਉੱਚ ਲਹੂ ਦਬਾਓ ਨੂੰ ਅਤਿ ਦਬਾਓ ਵੀ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਸ ਦਾ ਕਾਰਨ ਧਮਣੀਆਂ ਦਾ ਸੁੰਗੜਨਾ ਹੈ ਜਿਸ ਨਾਲ ਲਹੂ ਦੇ ਵਹਾਓ ਵਿੱਚ ਰੋਕ ਪੈਦਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨਾਲ ਧਮਣੀ ਫਟ ਸਕਦੀ ਹੈ ਅਤੇ ਸਰੀਰ ਦੇ ਅੰਦਰ ਲਹੂ ਵਗਣ ਲੱਗਦਾ ਹੈ।

ਨਲੀਆਂ-ਲਹੂ ਵਹਿਣੀਆਂ

ਧਮਣੀ ਉਹ ਵਹਿਣੀ ਹੈ ਜੋ ਲਹੂ ਨੂੰ ਦਿਲ ਤੋਂ ਸਰੀਰ ਦੇ ਭਿੰਨ ਭਿੰਨ ਅੰਗਾਂ ਤੱਕ ਲੈ ਕੇ ਜਾਂਦੀ ਹੈ। ਲਹੂ ਦਿਲ ਵਿੱਚੋਂ ਉੱਚ ਦਬਾਓ ਅਧੀਨ ਨਿਕਲਦਾ ਹੈ ਇਸ ਲਈ ਧਮਣੀ ਦੀਆਂ ਕੰਧਾਂ ਮੋਟੀਆਂ ਅਤੇ ਲਚਕੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਸਿਰਾਵਾਂ ਵੱਖ ਵੱਖ ਅੰਗਾਂ ਤੋਂ ਲਹੂ ਇਕੱਠਾ ਕਰਕੇ ਵਾਪਸ ਦਿਲ ਵਿੱਚ ਲਿਆਉਂਦੀਆਂ ਹਨ ਉਹਨਾਂ ਨੂੰ ਮੋਟੀ ਦੀਵਾਰ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਇਹਨਾਂ ਵਿੱਚ ਲਹੂ ਦਬਾਓ ਅਧੀਨ ਨਹੀਂ ਹੁੰਦਾ ਸਗੋਂ ਇਹਨਾਂ ਵਿੱਚ ਲਹੂ ਨੂੰ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਚਲਾਉਣ ਲਈ ਵਾਲਵ ਲੱਗੇ ਹੁੰਦੇ ਹਨ।

ਕਿਸੇ ਅੰਗ ਜਾਂ ਟਿਸ਼ੂ ਤੱਕ ਪਹੁੰਚ ਕੇ ਧਮਣੀ ਅੱਗੇ ਬਰੀਕ-ਬਰੀਕ ਵਹਿਣੀਆਂ ਵਿੱਚ ਵੰਡੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਸਾਰੇ ਸੈੱਲਾਂ ਨਾਲ ਲਹੂ ਦਾ ਸਿੱਧਾ ਸੰਪਰਕ ਹੋ ਜਾਂਦਾ ਹੈ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਲਹੂ ਦੀਆਂ ਵਹਿਣੀਆਂ ਦੀ ਦੀਵਾਰ ਦੀ ਮੋਟਾਈ ਇੱਕ ਸੈੱਲ ਦੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਕੇਸ਼ਕਾਵਾਂ ਕਹਿੰਦੇ ਹਨ। ਲਹੂ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਸੈੱਲਾਂ ਵਿਚਕਾਰ ਪਦਾਰਥਾਂ ਦੀ ਅਦਲਾ ਬਦਲੀ ਕੇਸ਼ਕਾਵਾਂ ਦੀ ਪਤਲੀ ਦੀਵਾਰ ਰਾਹੀਂ ਹੁੰਦੀ ਹੈ। ਫਿਰ ਕੇਸ਼ਕਾਵਾਂ ਆਪੋ ਵਿੱਚ ਮਿਲ ਕੇ ਸ਼ਿਰਾਵਾਂ ਬਣਾਉਂਦੀਆਂ ਹਨ ਜੋ ਲਹੂ ਨੂੰ ਅੰਗਾਂ ਜਾਂ ਟਿਸ਼ੂਆਂ ਤੋਂ ਪਰੇ ਲੈ ਜਾਂਦੀਆਂ ਹਨ।

ਪਲੇਟਲੈਟਸ ਦੁਆਰਾ ਰੱਖਿਆ

ਇਹਨਾਂ ਨਲੀਆਂ ਦੇ ਯੰਤਰ ਵਿੱਚ ਲਹੂ ਦਾ ਰਿਸਾਓ ਆਰੰਭ ਹੋ ਜਾਵੇ ਤਾਂ ਕੀ ਹੋਵੇਗਾ? ਉਸ ਸਥਿਤੀ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਦੋਂ ਸਾਨੂੰ ਸੱਟ ਲੱਗ ਜਾਵੇ ਅਤੇ ਲਹੂ ਵਗਣਾ ਸ਼ੁਰੂ ਹੋ ਜਾਵੇ। ਸੁਭਾਵਕ ਹੈ ਕਿ ਤੰਤਰ ਤੋਂ ਲਹੂ ਦਾ ਨੁਕਸਾਨ ਘੱਟ ਤੋਂ ਘੱਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਲਹੂ ਵਗਣ ਨਾਲ ਦਬਾਓ ਵਿੱਚ ਵੀ ਕਮੀ ਆ ਜਾਵੇਗੀ। ਜਿਸ ਨਾਲ ਪੰਪ ਪ੍ਣਾਲੀ ਦੀ ਕਾਰਜਕੁਸ਼ਲਤਾ ਵਿੱਚ ਕਮੀ ਆ ਜਾਵੇਗੀ। ਇਸ ਤੋਂ ਬਚਣ ਲਈ ਲਹੂ ਵਿੱਚ ਪਲੇਟਲੈਂਟ ਸੈੱਲ ਹੁੰਦੇ ਹਨ ਜੋ ਸਾਰੇ ਸਰੀਰ ਵਿੱਚ ਘੁੰਮਦੇ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਸੱਟ ਵਾਲੀ ਥਾਂ ਉੱਤੇ ਲਹੂ ਨੂੰ ਜਮਾ ਕੇ ਲਹੂ ਦਾ ਰਿਸਣਾ ਬੰਦ ਕਰ ਦਿੰਦੇ ਹਨ।

ਲਸੀਕਾ

ਇੱਕ ਹੋਰ ਪ੍ਕਾਰ ਦਾ ਦ੍ਵ ਵੀ ਹੈ ਜੋ ਪਰਿਵਰਤਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਇਸ ਨੂੰ ਲਸੀਕਾ ਆਖਦੇ ਹਨ। ਕੇਸ਼ਕਾਵਾਂ ਦੀਆਂ ਦੀਵਾਰਾਂ ਵਿੱਚ ਉਪਸਥਿਤ ਬਰੀਕ ਛੇਕਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਪਲਾਜ਼ਮਾ, ਪ੍ਰੋਟੀਨ ਅਤੇ ਲਹੂ ਸੈੱਲ ਬਾਹਰ ਨਿਕਲਕੇ ਟਿਸ਼ੂਆਂ /ਸੈੱਲਾਂ ਵਿਚਕਾਰ ਖਾਲੀ ਥਾਂ ਵਿੱਚ ਟਿਸ਼ੂ ਤਰਲ ਜਾਂ ਲਸੀਕਾ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਲਹੂ ਦੇ ਪਲਾਜ਼ਮਾ ਵਰਗੀ ਹੀ ਹੈ ਪਰ ਇਹ ਰੰਗਹੀਣ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਅੰਦਰ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਪ੍ਰੋਟੀਨ ਹੁੰਦੇ ਹਨ। ਸੈੱਲਾਂ ਦੇ ਵਿਚਕਾਰਲੀ ਥਾਂ ਤੋਂ ਇਹ ਲਸੀਕਾ ਕੇਸ਼ਕਾਵਾਂ ਵਿੱਚ ਚਲਿਆ ਜਾਂਦਾ ਹੈ ਜੋ ਆਪਸ ਵਿੱਚ ਮਿਲ ਕੇ ਵੱਡੀ ਲਸੀਕਾ ਵਹਿਣੀ ਬਣਾਉਂਦੀ ਹੈ ਅਤੇ ਅੰਤ ਵਿੱਚ ਮਹਾਂ ਸ਼ਿਰਾ ਵਿੱਚ ਖੁੱਲ੍ਹਦੀ ਹੈ। ਪਚਿਆ ਹੋਇਆ ਅਤੇ ਛੋਟੀ ਆਂਦਰ ਦੁਆਰਾ ਜਜ਼ਬ ਕੀਤਾ ਫੈਟਸ ਦਾ ਵਹਿਨ ਲਸੀਕਾ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਸੈੱਲ ਵਿਚਕਾਰਲੀ ਥਾਂ ਵਿਚਲਾ ਵਾਧੂ ਤਰਲ ਮੁੜ ਲਹੂ ਵਿੱਚ ਲੈ ਜਾਂਦਾ ਹੈ।

6.4.2 ਪੌਦਿਆਂ ਵਿੱਚ ਪਰਿਵਹਿਨ

ਅਸੀਂ ਪਹਿਲਾਂ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪੌਦੇ ਕਿਵੇਂ CO₂ਜਿਹਾ ਸਾਦਾ ਯੋਗਿਕ ਲੈ ਕੇ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਨ ਕਰਕੇ ਕਲੋਰੋਫਿਲ ਯੁਕਤ ਅੰਗਾਂ ਭਾਵ ਪੱਤਿਆ ਵਿੱਚ ਊਰਜਾ ਦਾ ਭੰਡਾਰਨ ਕਰਦੇ ਹਨ।ਪੌਦੇ ਦੇ ਸਰੀਰ ਦੇ ਨਿਰਮਾਣ ਲਈ ਹੋਰ ਕਿਸਮਾਂ ਦੇ ਲੋੜੀਂਦੇ ਕੱਚੇ ਪਦਾਰਥਾਂ ਬਾਰੇ ਵਰਨਣ ਵੱਖਰੇ ਤੌਰ ਤੇ ਕੀਤਾ ਜਾਵੇਗਾ। ਪੌਦਿਆਂ ਲਈ ਮਿੱਟੀ, ਕੱਚੇ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਨਾਈਟਰੋਜਨ, ਫਾਸਫੋਰਸ ਅਤੇ ਹੋਰ ਖਣਿਜਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਸਭ ਤੋਂ ਨੇੜੇ ਦਾ ਅਤੇ ਉਪਯੋਗੀ ਸੋਮਾ ਹੈ। ਇਹ ਪਦਾਰਥ ਜੜ੍ਹਾਂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹੋਣ ਕਰਕੇ ਇਹਨਾਂ ਰਾਹੀਂ ਹੀ ਜਜ਼ਬ ਹੁੰਦੇ ਹਨ। ਜੇਕਰ ਮਿੱਟੀ ਨਾਲ ਸੰਪਰਕ ਵਾਲੇ ਅੰਗਾਂ ਅਤੇ ਕਲੋਰੋਫਿਲ ਯੁਕਤ ਅੰਗਾਂ ਵਿਚਕਾਰ ਫਾਸਲਾ ਘੱਟ ਹੈ ਤਾਂ ਊਰਜਾ ਅਤੇ ਕੱਚੇ ਪਦਾਰਥ ਸੌਖਿਆਂ ਹੀ ਪੌਦੇ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਨੂੰ ਪਹੁੰਚ ਸਕਦੇ ਹਨ। ਜੇਕਰ ਪੌਦੇ ਦੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਕਾਰਨ ਇਹ ਦੂਰੀ ਵੱਧ ਜਾਂਦੀ ਹੈ ਤਾਂ ਪੱਤਿਆਂ ਨੂੰ ਕੱਚੇ ਪਦਾਰਥ ਅਤੇ ਜੜ੍ਹਾਂ ਨੂੰ ਊਰਜਾ ਉਪਲਬਧ ਕਰਾਉਣ ਲਈ ਪ੍ਰਸਰਣ ਪ੍ਰਕਿਰਿਆ ਢੁੱਕਵੀਂ ਨਹੀਂ ਹੋਵੇਗੀ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਪਰਿਵਹਿਨ ਲਈ ਇੱਕ ਦ੍ਰਿੜ ਪ੍ਰਣਾਲੀ ਦੀ ਜ਼ਰੂਰਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਸਰੀਰ ਦੀ ਵੱਖ ਵੱਖ ਬਣਤਰ ਲਈ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਵੀ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੀ ਹੈ।ਪੌਦੇ ਚਲਦੇ ਨਹੀਂ ਹਨ ਅਤੇ ਪੌਦੇ ਦੇ ਸਰੀਰ ਦੇ ਅਨੇਕ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਬਹੁਤਾਤ ਮੁਰਦਾ ਸੈੱਲਾਂ ਦੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਪੌਦਿਆਂ ਨੂੰ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਘੱਟ ਹੁੰਦੀ ਹੈ ਅਤੇ ਉਹ ਧੀਮੀ ਪਰਿਵਹਿਨ ਪ੍ਰਣਾਲੀ ਦਾ ਉਪਯੋਗ ਵੀ ਕਰ ਸਕਦੇ ਹਨ। ਪਰਿਵਹਿਨ ਪ੍ਰਣਾਲੀ ਦਾ ਚਾਲਣ ਵੱਡੇ ਦਰੱਖਤਾਂ ਵਿੱਚ ਬਹੁਤ ਲੰਮੀ ਦੂਰੀ ਤੱਕ ਹੋ ਸਕਦਾ ਹੈ।

ਪੌਦੇ ਦੀ ਪਰਿਵਹਿਨ ਪ੍ਣਾਲੀ ਭੰਡਾਰਨ ਕੀਤੀ ਊਰਜਾ ਪੱਤਿਆਂ ਤੋਂ ਅਤੇ ਕੱਚੇ ਪਦਾਰਥ ਜੜ੍ਹਾਂ ਤੋਂ ਪਰਿਵਹਿਨ ਕਰੇਗੀ। ਇਹ ਦੋਵੇਂ ਪੱਥ ਸੁਤੰਤਰ ਪ੍ਰੰਤੂ ਨਿਯਮਿਤ ਚਾਲਨ ਨਾਲੀਆਂ ਦੁਆਰਾ ਨਿਰਮਿਤ ਹਨ। ਇੱਕ ਜ਼ਾਇਲਮ ਹੈ ਜੋ ਮਿੱਟੀ ਤੋਂ ਪ੍ਰਾਪਤ ਪਾਣੀ ਅਤੇ ਖਣਿਜੀ ਲੂਣਾਂ ਨੂੰ ਲੈ ਜਾਂਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਫਲੋਇਮ ਜੋ ਪੱਤਿਆਂ ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੇ ਉਤਪਾਦਾਂ ਨੂੰ ਪੌਦੇ ਦੇ ਦੂਜੇ ਭਾਗਾਂ ਤੱਕ ਪਹੁੰਚਾਉਂਦਾ ਹੈ। ਅਸੀਂ ਇਹਨਾਂ ਟਿਸ਼ੂਆਂ ਦੀ ਰਚਨਾ ਬਾਰੇ ਵਿਸਤਾਰ ਸਹਿਤ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ।

ਪਾਣੀ ਦਾ ਪਰਿਵਹਿਨ

ਜ਼ਾਇਲਮ ਟਿਸ਼ੂ ਵਿੱਚ ਜੜ੍ਹਾਂ, ਤਣੇ ਅਤੇ ਪੱਤਿਆਂ ਦੀਆਂ ਵਹਿਣੀਆਂ ਅਤੇ ਟ੍ਰੇਕੀਇਡ (Trachieds) ਆਪੋ ਵਿੱਚ ਜੁੜ ਕੇ ਪਾਣੀ ਲੈ ਜਾਣ ਵਾਲੀਆਂ ਨਾਲੀਆਂ ਦਾ ਜਾਲ ਬਣਾਉਂਦੇ ਹਨ ਜੋ ਪੌਦੇ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਤੱਕ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ। ਜੜ੍ਹਾਂ ਵਿੱਚ ਮਿੱਟੀ ਨਾਲ ਜੁੜੇ ਸੈੱਲ ਆਇਨ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਇਸ ਨਾਲ ਜੜ੍ਹ ਅਤੇ ਮਿੱਟੀ ਵਿਚਕਾਰ ਆਇਨ ਦੇ ਗਾੜ੍ਹੇਪਨ ਵਿੱਚ ਅੰਤਰ ਉਤਪੰਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਅੰਤਰ ਨੂੰ ਸਮਾਪਤ ਕਰਨ ਲਈ ਪਾਣੀ ਮਿੱਟੀ ਵਿੱਚੋਂ ਜੜ੍ਹਾਂ ਵਿੱਚ ਪ੍ਵੇਸ਼ ਕਰ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਹੈ ਕਿ ਪਾਣੀ ਸਥਿਰ ਗਤੀ ਨਾਲ ਜ਼ਾਇਲਮ ਵਿੱਚ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪਾਣੀ ਦੇ ਸਤੰਭ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ ਜੋ ਸਥਿਰਤਾ ਨਾਲ ਉੱਪਰ ਨੂੰ ਧੱਕਿਆ ਜਾਂਦਾ ਹੈ।

ਪੌਦਿਆਂ ਦੀ ਜੋ ਉਚਾਈ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ, ਇਹ ਦਬਾਓ ਪਾਣੀ ਨੂੰ ਉੱਥੇ ਤੱਕ ਪਹੁੰਚਾਉਣ ਲਈ ਆਪਣੇ ਆਪ ਵਿੱਚ ਕਾਫੀ ਨਹੀਂ ਹੈ। ਇਸ ਲਈ ਪੌਦੇ ਜ਼ਾਇਲਮ ਦੁਆਰਾ ਆਪਣੇ ਸਭ ਤੋਂ ਉੱਚੇ ਬਿੰਦੂ ਤੱਕ ਪਾਣੀ ਪਹੁੰਚਾਉਣ ਲਈ ਕੋਈ ਹੋਰ ਜੁਗਤ ਅਪਨਾਉਂਦੇ ਹਨ।

ਕਿਰਿਆ 6.8

- ਲਗਭਗ ਇੱਕ ਹੀ ਆਕਾਰ ਦੇ ਅਤੇ ਬਰਾਬਰ ਮਿੱਟੀ ਵਾਲੇ ਦੋ ਗਮਲੇ ਲਓ। ਇੱਕ ਗਮਲੇ ਵਿੱਚ ਪੌਦਾ ਲਗਾ ਦਿਓ ਅਤੇ ਦੂਜੇ ਗਮਲੇ ਵਿੱਚ ਪੌਦੇ ਦੀ ਉਚਾਈ ਦੇ ਬਰਾਬਰ ਦੀ ਛੜੀ ਲਗਾ ਦਿਓ।
- ਦੋਵੇਂ ਪੌਦਿਆਂ ਵਿੱਚ ਮਿੱਟੀ ਨੂੰ ਪਲਾਸਟਿਕ ਦੀ ਸ਼ੀਟ ਨਾਲ ਢੱਕ ਦਿਓ ਜਿਸ ਨਾਲ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪਨ ਨਾ ਹੋ ਸਕੇ।

- ਦੋਵੇਂ ਸੈੱਟਾਂ ਨੂੰ, ਪੌਦੇ ਵਾਲੇ ਅਤੇ ਦੂਜਾ ਛੜੀ ਵਾਲੇ ਨੂੰ, ਇੱਕ ਇੱਕ ਪਾਰਦਰਸ਼ੀ ਪਲਾਸਟਿਕ ਸ਼ੀਟ ਨਾਲ ਢੱਕ ਦਿਓ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਅੱਧੇ ਘੰਟੇ ਲਈ ਚਮਕਦੀ ਧੁੱਪ ਵਿੱਚ ਰੱਖ ਦਿਓ।
- ਕੀ ਤੁਸੀਂ ਦੋਵਾਂ ਹਾਲਤਾਂ ਵਿੱਚ ਅੰਤਰ ਵੇਖਦੇ ਹੈ?

ਜੇ ਪੌਦੇ ਨੂੰ ਲੋੜੀਂਦੀ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਮਿਲਿਆ ਹੈ ਤਾਂ ਜਿਸ ਪਾਣੀ ਦੀ ਹਾਨੀ ਸਟੋਮੈਟਾ ਰਾਹੀਂ ਹੋਈ ਹੈ ਉਸ ਦੀ ਪੂਰਤੀ ਪੱਤਿਆਂ ਵਿਚਲੀਆਂ ਜ਼ਾਇਲਮ ਵਹਿਣੀਆਂ ਦੁਆਰਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਪੱਤਿਆਂ ਦੇ ਸੈੱਲਾਂ ਤੋਂ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦਾ ਵਾਸ਼ਪਨ ਇੱਕ ਖਿੱਚ ਉਤਪੰਨ ਕਰਦਾ ਹੈ ਜੋ ਪਾਣੀ

ਨੂੰ ਜੜ੍ਹਾਂ ਵਿੱਚ ਮੌਜ਼ੂਦ ਜ਼ਾਇਲਮ ਸੈੱਲਾਂ ਦੁਆਰਾ ਖਿੱਚਦਾ ਹੈ। ਪੌਦੇ ਦੇ ਹਵਾਈ ਭਾਗਾਂ ਦੁਆਰਾ ਵਾਸ਼ਪਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਣੀ ਦੀ ਹਾਨੀ ਨੂੰ ਵਾਸ਼ਪ ਉਤਸਰਜਨ (transpiration) ਆਖਦੇ ਹਨ।

ਇਸ ਲਈ ਵਾਸ਼ਪ ਉਤਸਰਜਨ ਪਾਣੀ ਨੂੰ ਜਜ਼ਬ ਹੋਣ ਅਤੇ ਜੜ੍ਹ ਤੋਂ ਪੱਤਿਆਂ ਤੱਕ ਪਾਣੀ ਅਤੇ ਉਸ ਵਿੱਚ ਘੁਲੇ ਖਣਿਜੀ ਲੂਣਾਂ ਦੀ ਉੱਪਰ ਤੱਕ ਦੀ ਗਤੀ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ।

ਇਹ ਤਾਪਮਾਨ ਨੂੰ ਨੀਵਾਂ ਰੱਖਣ ਵਿੱਚ ਵੀ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਪਾਣੀ ਦੇ ਪਰਿਵਹਿਨ ਵਿੱਚ ਜੜ੍ਹ ਦਬਾਓ ਰਾਤ ਦੇ ਸਮੇਂ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਮਹੱਤਵ ਰੱਖਦਾ ਹੈ। ਦਿਨ ਦੌਰਾਨ ਜਦੋਂ ਸਟੋਮੈਟਾ ਖੁੱਲ੍ਹੇ ਹੁੰਦੇ ਹਨ ਵਾਸ਼ਪ ਉਤਸਰਜਨ ਜ਼ਾਇਲਮ ਵਿੱਚ ਪਾਣੀ ਦੀ ਗਤੀ ਲਈ ਮੁੱਖ ਪ੍ਰੇਰਕ ਬਲ ਹੁੰਦਾ ਹੈ।

ਭੋਜਨ ਅਤੇ ਦੂਜੇ ਪਦਾਰਥਾਂ ਦਾ ਸਥਾਨਾਂਤਰਣ

ਹੁਣ ਤੱਕ ਅਸੀਂ ਪੌਦਿਆਂ ਵਿੱਚ ਪਾਣੀ ਅਤੇ ਖਣਿਜੀ ਲੂਣਾਂ ਦੇ ਪਰਿਵਹਿਨ ਬਾਰੇ ਵਿਚਾਰ ਕੀਤੀ ਹੈ। ਆਓ ਹੁਣ ਅਸੀਂ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਕਿ ਢਾਹ ਉਸਾਰੂ ਕਿਰਿਆਵਾਂ ਦੇ ਉਤਪਾਦਾਂ, ਵਿਸ਼ੇਸ਼ ਤੌਰ

ਚਿੱਤਰ 6.12 ਦਰੱਖਤ ਤੋਂ ਵਾਸ਼ਪ ਉਤਸਰਜਨ ਦੌਰਾਨ ਪਾਣੀ ਗਤੀ

ਤੇ ਪ੍ਕਾਸ਼ਸੰਸਲੇਸ਼ਣ ਜੋ ਪੱਤਿਆਂ ਵਿੱਚ ਵਾਪਰਦਾ ਹੈ, ਨੂੰ ਪੱਤਿਆਂ ਤੋਂ ਪੌਦੇ ਦੇ ਹੋਰ ਭਾਗਾਂ ਤੱਕ ਕਿਵੇਂ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ। ਪ੍ਕਾਸ਼ ਸੰਸਲੇਸ਼ਨ ਦੇ ਘੁਲਣਸ਼ੀਲ ਉਤਪਾਦਾਂ ਦਾ ਪਰਿਵਹਿਨ ਸਥਾਨਾਂਤਰਣ ਅਖਵਾਉਂਦਾ ਹੈ ਅਤੇ ਇਹ ਵਹਿਣੀ ਟਿਸ਼ੂ ਦੇ ਫਲੋਇਮ ਨਾਂ ਦੇ ਭਾਗ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਪ੍ਕਾਸ਼ ਸੰਸਲੇਸ਼ਨ ਦੇ ਉਤਪਾਦਾਂ ਤੋਂ ਇਲਾਵਾ ਫਲੋਇਮ ਅਮਾਇਨੋ ਤੇਜ਼ਾਬ ਅਤੇ ਹੋਰ ਪਦਾਰਥਾਂ ਦਾ ਪਰਿਵਹਿਨ ਵੀ ਕਰਦਾ ਹੈ। ਇਹ ਪਦਾਰਥ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਭੋਂ ਜੜ੍ਹ ਦੇ ਭੰਡਾਰਨ ਅੰਗਾਂ, ਫਲਾਂ, ਬੀਜਾਂ ਅਤੇ ਵਾਧੇ ਵਾਲੇ ਅੰਗਾਂ ਵਿੱਚ ਲੈ ਜਾਏ ਜਾਂਦੇ ਹਨ। ਭੋਜਨ ਅਤੇ ਹੋਰ ਪਦਾਰਥ ਦਾ ਸਥਾਨਾਂਤਰਣ ਗੁਆਂਢੀ ਸਹਿ ਸ਼ੈੱਲਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਛਾਲਣੀ ਨਲੀਆਂ ਵਿੱਚ ਉੱਪਰ ਅਤੇ ਹੇਠਾਂ ਦੋਵੇਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਜ਼ਾਇਲਮ ਰਾਹੀਂ ਪਰਿਵਹਿਨ ਸਾਧਾਰਨ ਭੌਤਿਕ ਬਲਾਂ ਦੁਆਰਾ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ ਪਰ ਇਸ ਦੇ ਵਿਪਰੀਤ ਫਲੋਇਮ ਦੁਆਰਾ ਸਥਾਨਾਂਤਰਣ ਊਰਜਾ ਦੇ ਉਪਯੋਗ ਦੁਆਰਾ ਪੂਰਾ ਹੁੰਦਾ ਹੈ। ਸੁਕਰੋਜ਼ ਜਿਹੇ ਪਦਾਰਥ ਫਲੋਇਮ ਟਿਸ਼ੂ ਵਿੱਚ ਏ. ਟੀ. ਪੀ. ਤੋਂ ਪ੍ਰਾਪਤ ਊਰਜਾ ਨਾਲ ਹੀ ਸਥਾਨਾਂਤਰਿਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਟਿਸ਼ੂ ਦਾ ਪ੍ਰਸਰਣ ਦਬਾਓ ਵਧਾ ਦਿੰਦੇ ਹਨ ਜਿਸ ਕਾਰਨ ਪਾਣੀ ਇਸ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰ ਜਾਂਦਾ ਹੈ। ਇਹ ਦਬਾਓ ਪਦਾਰਥਾਂ ਨੂੰ ਫਲੋਇਮ ਤੋਂ ਉਸ ਟਿਸ਼ੂ ਤੱਕ ਲੈ ਜਾਂਦੇ ਹਨ ਜਿੱਥੇ ਕਿ ਦਬਾਓ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇਸ ਨਾਲ ਪੌਦੇ ਦੀਆਂ ਲੋੜਾਂ ਅਨੁਸਾਰ ਫਲੋਇਮ ਤੋਂ ਪਦਾਰਥਾਂ ਦਾ ਸਥਾਨਾਂਤਰਣ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਬਸੰਤ ਵਿੱਚ ਜੜ੍ਹ ਅਤੇ ਤਣੇ ਦੇ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਭੰਡਾਰ ਹੋਈ ਸ਼ੂਗਰ ਦਾ ਸਥਾਨਾਂਤਰਣ ਕਲੀਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਜਿਨ੍ਹਾਂ ਨੂੰ ਵਾਧੇ ਲਈ ਉਰਜਾ ਦੀ ਜ਼ਰਰਤ ਹੁੰਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਮਨੁੱਖ ਵਿੱਚ ਪਰਿਵਹਿਨ ਪ੍ਰਣਾਲੀ ਦੇ ਘਟਕ ਕਿਹੜੇ ਹਨ? ਇਹਨਾਂ ਘਟਕਾਂ ਦੇ ਕੀ ਕਾਰਜ ਹਨ?
- ਬਣਬਾਰੀਆਂ ਅਤੇ ਪੰਛੀਆਂ ਵਿੱਚ ਆਕਸੀਜਨ ਯੁਕਤ ਅਤੇ ਆਕਸੀਜਨ ਰਹਿਤ ਲਹੂ ਨੂੰ ਵੱਖ ਰੱਖਣਾ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ?
- 3. ਉੱਚ ਸੰਗਠਿਤ ਪੌਦਿਆਂ ਵਿੱਚ ਪਰਿਵਹਿਨ ਪ੍ਰਣਾਲੀ ਦੇ ਕਿਹੜੇ ਘਟਕ ਹਨ?
- ਪੈਂਦਿਆਂ ਵਿੱਚ ਪਾਣੀ ਅਤੇ ਖਣਿਜੀ ਲੁਣਾਂ ਦਾ ਵਹਿਨ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ?
- ਪੌਦਿਆਂ ਵਿੱਚ ਖੁਰਾਕ ਦਾ ਸਥਾਨਾਂਤਰਣ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ?

6.5 ਮਲ ਤਿਆਗ (Excretion)

ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਜੀਵ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਨ ਅਤੇ ਸਾਹ ਕਿਰਿਆ ਵਿੱਚ ਉਤਪੰਨ ਗੈਸਾਂ ਤੋਂ ਕਿਵੇਂ ਛੁਟਕਾਰਾ ਪਾਉਂਦਾ ਹੈ।ਹੋਰ ਢਾਹ ਉਸਾਰ ਕਿਰਿਆਵਾਂ ਨਾਈਟਰੋਜਨ ਯੁਕਤ ਪਦਾਰਥ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਦਾ ਨਿਕਾਸ ਜ਼ਰੂਰੀ ਹੈ।ਉਹ ਜੈਵਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਾਨੀਕਾਰਕ ਢਾਹ ਉਸਾਰ ਵਾਧੂ ਪਦਾਰਥਾਂ ਨੂੰ ਸਰੀਰ ਤੋਂ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ ਉਨ੍ਹਾਂ ਨੂੰ ਮਲ ਤਿਆਗ ਆਖਦੇ ਹਨ।ਭਿੰਨ ਭਿੰਨ ਜੀਵ ਇਸ ਲਈ ਵੱਖ ਵੱਖ ਜੁਗਤਾਂ ਵਰਤਦੇ ਹਨ।ਬਹੁਤ ਸਾਰੇ ਇੱਕ ਸੈੱਲੀ ਜੀਵ ਇਹਨਾਂ ਫਾਲਤੂ ਪਦਾਰਥਾਂ ਨੂੰ ਸਰੀਰ ਦੀ ਸਤਹ ਤੋਂ ਪਾਣੀ ਵਿੱਚ ਪਸਰਿਤ ਕਰ ਦਿੰਦੇ ਹਨ।ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਬਹੁਤ ਸਾਰੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਜਟਿਲ ਬਹੁਸੈੱਲੀ ਜੀਵ ਇਸ ਕੰਮ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਵਿਸ਼ਿਸ਼ਟ ਅੰਗਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ।

ਚਿੱਤਰ 6.13 ਮਾਨਵ ਵਿੱਚ ਮਲ ਤਿਆਗ ਸਿਸਟਮ

6.5.1 ਮਨੁੱਖ ਵਿੱਚ ਮਲ ਤਿਆਗ (Excretion in Human Beings)

ਮਨੁੱਖ ਦੇ ਮਲ-ਤਿਆਗ ਪ੍ਣਾਲੀ (ਚਿੱਤਰ 6.13) ਵਿੱਚ ਇੱਕ ਜੋੜਾ ਗੁਰਦੇ, ਇੱਕ ਜੋੜਾ ਮੂਤਰ ਵਹਿਣੀ, ਇੱਕ ਮੂਤਰ ਮਸਾਨਾ, ਇੱਕ ਮੂਤਰ ਮਾਰਗ ਹੁੰਦਾ ਹੈ। ਪੇਟ ਵਿੱਚ ਰੀੜ ਦੀ ਹੱਡੀ ਦੇ ਦੋਵੇਂ ਪਾਸੇ ਇੱਕ ਇੱਕ ਗੁਰਦਾ ਸਥਿਤ ਹੁੰਦਾ ਹੈ। ਗੁਰਦਿਆਂ ਵਿੱਚ ਮੂਤਰ ਬਣਨ ਉਪਰੰਤ ਇਹ ਮੂਤਰ ਵਹਿਣੀ ਤੋਂ ਹੁੰਦਾ ਹੋਇਆ ਮੂਤਰ ਮਸਾਨੇ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇੱਥੇ ਓਦੋਂ ਤੱਕ ਇਕੱਤਰ ਰਹਿੰਦਾ ਹੈ? ਜਦੋਂ ਤੱਕ ਇਹ ਮੂਤਰ ਮਾਰਗ ਤੋਂ ਬਾਹਰ ਨਹੀਂ ਨਿਕਲ ਜਾਂਦਾ।

ਮੂਤਰ ਕਿਵੇਂ ਬਣਦਾ ਹੈ? ਮੂਤਰ ਬਣਨ ਦਾ ਉਦੇਸ਼ ਲਹੂ ਵਿੱਚੋਂ ਵਾਧੂ ਪਦਾਰਥਾਂ ਨੂੰ ਛਾਣ ਕੇ ਬਾਹਰ ਕੱਢਣਾ ਹੈ। ਫੇਫੜਿਆਂ ਵਿੱਚ CO_2 ਲਹੂ ਤੋਂ ਵੱਖ ਹੋ ਜਾਂਦੀ ਹੈ ਜਦੋਂ ਕਿ ਨਾਈਟਰੋਜਨੀ ਵਾਧੂ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਯੂਰੀਆ ਜਾਂ ਯੂਰਿਕ ਐਸਿਡ ਖੂਨ ਵਿੱਚੋਂ ਗੁਰਦਿਆਂ ਰਾਹੀਂ ਵੱਖ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਫਿਲਟਰੀਕਰਨ ਇਕਾਈ ਫੇਫੜਿਆਂ ਵਰਗੀ ਹੀ ਬਹੁਤ ਪਤਲੀ ਕੰਧ ਵਾਲੀਆਂ ਲਹੂ ਦੀਆਂ ਕੇਸ਼ਕਾਵਾਂ ਦਾ ਗੁੱਛਾ ਹੁੰਦੀ ਹੈ।ਗੁਰਦੇ ਵਿੱਚ ਹਰ ਇੱਕ ਕੇਸ਼ਕਾ ਗੁੱਛਾ ਇੱਕ ਨਾਲੀ ਦੇ ਕੱਪ ਦੇ ਆਕਾਰ ਦੇ ਸਿਰੇ ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ ਜੋ ਫਿਲਟਰ ਕੀਤੇ ਮੂਤਰ ਨੂੰ ਇਕੱਠਾ ਕਰਦਾ ਹੈ।

(ਚਿੱਤਰ 6.14)। ਹਰ ਗੁਰਦੇ ਵਿੱਚ ਅਜਿਹੀਆਂ ਅਨੇਕ ਫਿਲਟਰੀਕਰਨ ਇਕਾਈਆਂ ਜਿਨ੍ਹਾਂ ਨੂੰ (ਨੇਫਰਾਨ) Nephron ਕਹਿੰਦੇ ਹਨ, ਨੇੜੇ ਨੇੜੇ ਜੁੜੀਆ ਹੋਈਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਜਿਵੇਂ ਮੂਤਰ ਨਾਲੀ ਵਿੱਚ ਅੱਗੇ ਜਾਂਦਾ ਹੈ ਤਾਂ ਆਰੰਭਿਕ ਫਿਲਟ੍ਰੇਟ ਤੋਂ ਕੁੱਝ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਗੁਲੂਕੋਜ਼, ਅਮਾਇਨੋਂ ਤੇਜ਼ਾਬ, ਲੂਣ ਅਤੇ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਚੁਗਣ ਚੂਸਣ ਆਧਾਰ ਤੇ ਮੁੜ ਜਜ਼ਬ ਕਰ ਲਏ ਜਾਂਦੇ ਹਨ। ਮੁੜ ਜਜ਼ਬ ਕੀਤੇ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਕਿ ਸਰੀਰ ਵਿੱਚ ਕਿੰਨਾ ਵੱਧ ਪਾਣੀ ਹੈ ਅਤੇ ਕਿੰਨਾ ਘੁਲਣਸ਼ੀਲ ਵਾਧੂ ਪਦਾਰਥ ਸਰੀਰ ਤੋਂ ਬਾਹਰ ਕੱਢਿਆ ਜਾਣਾ ਹੈ। ਹਰ ਇੱਕ ਗੁਰਦੇ ਵਿੱਚ ਬਣਨ ਵਾਲਾ ਮੂਤਰ ਅੰਤ ਵਿੱਚ ਇੱਕ ਲੰਬੀ ਨਾਲੀ, ਮੂਤਰ ਵਹਿਣੀ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ ਜੋ ਗੁਰਦੇ ਨੂੰ ਮੂਤਰ ਮਸਾਨੇ ਨਾਲ ਜੋੜਦੀ ਹੈ। ਮੂਤਰ ਮਸਾਨੇ ਵਿੱਚ ਮੂਤਰ ਭੰਡਾਰਿਤ ਰਹਿੰਦਾ ਹੈ ਜਦੋਂ ਤਕ ਕਿ ਫੈਲੇ ਹੋਏ ਮੂਤਰ ਮਸਾਨੇ ਦਾ ਦਬਾਓ ਮੂਤਰ ਨੂੰ ਮੂਤਰ ਮਾਰਗ ਦੁਆਰਾ ਬਾਹਰ ਨਾ ਕੱਢ ਦੇਵੇ। ਮੂਤਰ ਮਸਾਨਾ ਪੇਸ਼ੀਦਾਰ ਹੈ ਇਸ ਲਈ ਇਹ ਨਾੜੀ ਨਿਯੰਤਰਨ ਅਧੀਨ ਹੈ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਕਿਸੇ ਹੋਰ ਥਾਂ ਵੀ ਇਸ ਦੀ ਚਰਚਾ ਕੀਤੀ ਹੈ। ਸਿੱਟੇ ਵਜੋਂ ਆਮ ਕਰਕੇ ਅਸੀਂ ਮੁਤਰ ਨਿਕਾਸੀ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰ ਸਕਦੇ ਹਾਂ।

ਬਣਾਉਣੀ ਗੁਰਦਾ (Hemodialysis)

ਜੀਵਤ ਰਹਿਣ ਲਈ ਗੁਰਦੇ ਇੱਕ ਜ਼ਰੂਰੀ ਅੰਗ ਹਨ।ਕਈ ਕਾਰਨ ਜਿਵੇਂ ਕਿ ਇਨਫੈਕਸ਼ਨ, ਸੱਟ ਜਾਂ ਗੁਰਦਿਆਂ ਨੂੰ ਲਹੂ ਦਾ ਰੁੱਕ ਜਾਣਾ ਗੁਰਦਿਆਂ ਦੀ ਕਿਰਿਆ ਨੂੰ ਘਟਾ ਦਿੰਦੇ ਹਨ। ਇਸ ਨਾਲ ਸਰੀਰ ਵਿੱਚ ਜ਼ਹਿਰੀਲੇ ਵਾਧ ਪਦਾਰਥਾਂ ਦੀ ਮਾਤਰਾ ਵਧ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਮੌਤ ਵੀ ਹੋ ਸਕਦੀ ਹੈ। ਗੁਰਦੇ ਦੇ ਫੇਲ ਹੋਣ ਦੀ ਅਵੱਸਥਾ ਵਿੱਚ ਬਣਾਉਟੀ ਗਰਦੇ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਬਨਾਵਟੀ ਗਰਦਾ ਉਹ ਯੰਤਰ ਹੈ ਜੋ ਡਾਇਆਲਿਸਿਸ (dialysis) ਨਾਈਟਰੋਜਨੀ ਫਾਲਤੂ ਪਦਾਰਥ ਲਹੂ ਵਿੱਚੋਂ ਕੱਢਣ ਦਾ ਇੱਕ ਤਰੀਕਾ ਹੈ। ਬਣਾਉਟੀ ਗਰਦਿਆਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਨਾਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਕੰਧ ਚੋਣਵੀਂ ਪਾਰਗਮਨ ਝਿੱਲੀ (Semi-permeable) ਨਾਲ ਢਕੀ ਹੁੰਦੀ ਹੈ ਨੂੰ ਡਾਇਲਾਇਜਿੰਗ ਘੋਲ ਨਾਲ ਭਰੇ ਟੈਂਕ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਇਸ ਘੋਲ ਦਾ (osmotic pressure) ਲਹੂ ਦੇ ਪਰਾਸਰਣ ਦਬਾਓ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।ਕੇਵਲ

ਇਸ ਵਿੱਚ ਫਾਲਤੂ ਨਾਈਟ੍ਰੋਜਨੀ ਪਦਾਰਥ ਨਹੀਂ ਹੁੰਦੇ।ਮਰੀਜ਼ ਦਾ ਲਹੂ ਇਹਨਾਂ ਟਿਊਬਾਂ ਵਿੱਚੋਂ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨਾਲ ਰੋਗੀ ਦੇ ਸਰੀਰ ਵਿਚਲੇ ਲਹੂ ਦੇ ਫਾਲਤੂ ਪਦਾਰਥ ਪ੍ਰਸਰਣ ਦੁਆਰਾ ਡਾਇਲਾਇਜਿੰਗ ਘੋਲ ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਨ। ਸ਼ੁੱਧ ਲਹੂ ਨੂੰ ਮੁੜ ਰੋਗੀ ਦੇ ਸਰੀਰ ਵਿੱਚ ਪੰਪ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਗੁਰਦੇ ਦੇ ਕਾਰਜ ਦੇ ਸਮਾਨ ਹੀ ਹੈ ਪ੍ਰੰਤੂ ਇੱਕ ਅੰਤਰ ਇਹ ਹੈ ਕਿ ਇਸ ਵਿੱਚ ਮੁੜ ਜਜ਼ਬ ਕਰਨ ਦੀ ਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀਂ।ਆਮ ਕਰਕੇ ਇੱਕ ਤੰਦਰੁਸਤ ਵਿਅਕਤੀ ਦੇ ਗੁਰਦਿਆਂ ਵਿੱਚ ਪ੍ਰਤਿਦਿਨ 180 ਮਿਲੀਲੀਟਰ ਆਰੰਭਿਕ ਫਿਲਟ੍ਰੇਟ ਹੁੰਦਾ ਹੈ ਪਰ ਇੱਕ ਦਿਨ ਵਿੱਚ ਤਿਆਗਿਆ ਮੂਤਰ ਅਸਲ ਵਿੱਚ ਇੱਕ ਜਾਂ ਦੋ ਲਿਟਰ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਬਾਕੀ ਦਾ ਫਿਲਟ੍ਰੇਟ ਗੁਰਦੇ ਦੀਆਂ ਨਾਲੀਆਂ ਵਿੱਚ ਮੁੜ ਜਜ਼ਬ ਹੋ ਜਾਂਦਾ ਹੈ।

6.5.2 ਪੌਦਿਆਂ ਵਿੱਚ ਮਲ ਤਿਆਗ

ਪੌਦੇ ਮਲ ਤਿਆਗ ਲਈ ਜੰਤੂਆਂ ਤੋਂ ਬਿਲਕੁੱਲ ਭਿੰਨ ਜੁਗਤਾਂ ਵਰਤਦੇ ਹਨ।ਪ੍ਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦੌਰਾਨ ਉਤਪੰਨ ਹੋਈ ਆਕਸੀਜਨ ਨੂੰ ਫਾਲਤੂ ਉਪਜ ਸਮਝਿਆ ਜਾਂਦਾ ਹੈ।ਅਸੀਂ ਪਹਿਲਾਂ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪੌਦੇ ਆਕਸੀਜਨ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦਾ ਕਿਵੇਂ ਨਿਪਟਾਰਾ ਕਰਦੇ ਹਨ।ਉਹ ਵਾਧੂ ਪਾਣੀ ਤੋਂ ਵਾਸ਼ਪੀਕਰਨ ਦੁਆਰਾ ਛੁਟਕਾਰਾ ਪਾ ਸਕਦੇ ਹਨ।ਪੌਦਿਆਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਟਿਸ਼ੂ ਮੁਰਦਾ ਸੈੱਲਾਂ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹ ਆਪਣੇ ਕੁੱਝ ਭਾਗਾਂ ਜਿਵੇਂ ਕਿ ਪੱਤਿਆਂ ਨੂੰ ਗੁਆ ਸਕਦੇ ਹਨ।ਪੌਦੇ ਦੇ ਬਹੁਤ ਸਾਰੇ ਫਾਲਤੂ ਉਤਪਾਦ ਸੈੱਲਾਂ ਦੇ ਵੈਕਿਓਲ ਵਿੱਚ ਸਮਾਏ ਰਹਿੰਦੇ ਹਨ।ਪੌਦਿਆਂ ਤੋਂ ਗਿਰਨ ਵਾਲੇ ਪੱਤਿਆਂ ਵਿੱਚ ਵੀ ਫਾਲਤੂ ਉਤਪਾਦ ਸਮਾਏ ਹੁੰਦੇ ਹਨ।ਦੂਜੇ ਹੋਰ ਫਾਲਤੂ ਉਤਪਾਦ ਰੇਜ਼ਿਨ ਅਤੇ ਗੂੰਦ ਦੇ ਰੂਪ ਵਿੱਚ ਖਾਸ ਕਰ ਪੁਰਾਣੇ ਜ਼ਾਇਲਮ ਵਿੱਚ ਰਚੇ ਰਹਿੰਦੇ ਹਨ।ਪੌਦੇ ਕੁੱਝ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਨੂੰ ਆਪਣੇ ਆਲੇ ਦੁਆਲੇ ਦੀ ਮਿੱਟੀ ਵਿੱਚ ਵੀ ਛੱਡਦੇ ਰਹਿੰਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- ।. ਨੈਫਰਾਨ ਦੀ ਰਚਨਾ ਅਤੇ ਕਾਰਜ ਵਿਧੀ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 2. ਮਲ ਉਤਪਾਦਾਂ ਤੋਂ ਛੁਟਕਾਰਾ ਪਾਉਣ ਲਈ ਪੌਦੇ ਕਿਹੜੀਆਂ ਵਿਧੀਆਂ ਵਰਤਦੇ ਹਨ?
- 3. ਮੂਤਰ ਬਣਨ ਦੀ ਮਾਤਰਾ ਕਿਵੇਂ ਨਿਯਮਿਤ ਹੁੰਦੀ ਹੈ?

?

ਤਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੀਆਂ ਗਤੀਆਂ ਨੂੰ ਜੀਵਨ ਸੂਚਕ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਜੀਵਨ ਦੀ ਰੱਖਿਆ ਲਈ ਪੋਸ਼ਣ, ਸਾਹ ਪ੍ਕਿਰਿਆ, ਸਰੀਰ ਦੇ ਅੰਦਰ ਪਦਾਰਥ ਦਾ ਪਰਿਵਹਿਨ ਅਤੇ ਵਿਅਰਥ ਉਤਪਾਦਾਂ ਦਾ ਤਿਆਗਣ ਆਦਿ ਪ੍ਕਿਰਿਆਵਾਂ ਜ਼ਰੂਰੀ ਹਨ।
- ਸਵੈਪੋਸ਼ੀ ਪੋਸ਼ਣ ਵਿੱਚ ਵਾਤਾਵਰਨ ਤੋਂ ਸਰਲ ਅਕਾਰਬਨਿਕ ਪਦਾਰਥ ਲੈ ਕੇ ਅਤੇ ਬਾਹਰੀ ਊਰਜਾ ਸਰੋਤ ਜਿਵੇਂ ਕਿ ਸਰਜ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਉੱਚ ਉਰਜਾ ਵਾਲੇ ਜਟਿਲ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦਾ ਸੰਸਲੇਸ਼ਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਬਿਖਮ ਪੋਸ਼ੀ ਪੋਸ਼ਣ ਵਿੱਚ ਦੂਜੇ ਜੀਵਾਂ ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੇ ਜਟਿਲ ਪਦਾਰਥਾਂ ਦਾ ਅੰਤਰ ਗ੍ਰਹਿਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਮਨੁੱਖ ਅੰਦਰ, ਉਸ ਦੁਆਰਾ ਖਾਏ ਗਏ ਭੋਜਨ ਦਾ ਵਿਖੰਡਨ ਭੋਜਨ ਨਲੀ ਦੇ ਅੰਦਰ ਕਈ ਚਰਨਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਪਚਿਆ ਭੋਜਨ ਛੋਟੀ ਆਂਦਰ ਵਿੱਚ ਸੋਖ ਕੇ ਸਾਰੇ ਸੈੱਲਾਂ ਨੂੰ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।
- ਸਾਹ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਗੁਲੂਕੋਜ਼ ਜਿਹੇ ਜਟਿਲ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦਾ ਵਿਖੰਡਨ ਏ. ਟੀ. ਪੀ. ਰੂਪ ਵਿੱਚ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਏ. ਟੀ. ਪੀ. ਦਾ ਉਪਯੋਗ ਸੈੱਲਾਂ ਵਿੱਚ ਹੋਣ ਵਾਲੀਆਂ ਹੋਰ ਕਿਰਿਆਵਾਂ ਨੂੰ ਉਰਜਾ ਦੇਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਸਾਹ ਕਿਰਿਆ ਆਕਸੀ ਸੁਆਸ ਕਿਰਿਆ ਜਾਂ ਅਣ ਅਕਾਸੀ ਸੁਆਸ ਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈ। ਆਕਸੀ ਸੁਆਸ ਕਿਰਿਆ ਵਿੱਚ ਜੀਵ ਨੂੰ ਵਧੇਰੇ ਉਰਜਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।
- ਮਨੁੱਖ ਵਿੱਚ ਪਦਾਰਥਾਂ ਜਿਵੇਂ ਕਿ ਆਕਸੀਜਨ, ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ, ਭੋਜਨ ਅਤੇ ਵਾਧੂ ਮਲ ਤਿਆਗ ਦੀਆਂ ਉਪਜਾਂ ਦਾ ਪਰਿਵਰਿਨ ਸਰਕੂਲੇਟਰੀ ਸਿਸਟਮ ਦਾ ਕਰਤੱਵ ਹੈ।ਸਰਕੂਲੇਟਰੀ ਸਿਸਟਮ ਵਿੱਚ ਦਿਲ, ਲਹੂ ਅਤੇ ਲਹੂ ਵਹਿਣੀਆਂ ਸ਼ਾਮਿਲ ਹਨ।
- ਉੱਚ ਵਿਭੇਦਿਤ ਪੌਦਿਆਂ ਵਿੱਚ ਪਾਣੀ, ਖਣਿਜੀ ਲੂਣ, ਭੋਜਨ ਅਤੇ ਹੋਰ ਪਦਾਰਥਾਂ ਦਾ ਪਰਿਵਹਿਨ ਵਹਿਣੀ ਟਿਸ਼ੂ ਦਾ ਕੰਮ ਹੈ ਜਿਸ ਵਿੱਚ ਜ਼ਾਇਲਮ ਅਤੇ ਫਲੋਇਮ ਸਮਿਲਤ ਹਨ।
- ਮਨੁੱਖ ਵਿੱਚ ਮਲ ਉਤਪਾਦਾਂ ਨੂੰ ਘੁਲਣਸ਼ੀਲ ਨਾਈਟਰੋਜਨੀ ਯੋਗਿਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਗੁਰਦਿਆਂ ਵਿੱਚ ਸਥਿਤ ਨੇਫਰਾਨ ਦੁਆਰਾ ਬਾਹਰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ।

ਪੌਦੇ ਆਪਣੇ ਵਾਧੂ ਪਦਾਰਥਾਂ ਤੋਂ ਛੁਟਕਾਰਾ ਪਾਉਣ ਹਿਤ ਕਈ ਤਕਨੀਕਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ ਫਾਲਤੂ ਪਦਾਰਥਾਂ ਨੂੰ ਸੈੱਲ ਵੈਕਿਯੂਓਲ ਵਿੱਚ ਜਾਂ ਗੁੰਦ ਅਤੇ ਰੇਜ਼ਿਨ (Resin) ਦੇ ਰੂਪ ਵਿੱਚ ਸਟੋਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਵਾਧੂ ਪਦਾਰਥਾਂ ਨੂੰ ਡਿੱਗਦੇ ਪੱਤਿਆਂ ਵਿੱਚੋਂ ਬਾਹਰ ਕੱਢ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਾਂ ਆਲੇ ਦੁਆਲੇ ਦੀ ਮਿੱਟੀ ਵਿੱਚ ਤਿਆਗ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।

ਅਭਿਆਸ

- ਮਨੁੱਖ ਵਿੱਚ ਗਰਦੇ ਇੱਕ ਤੰਤਰ ਦਾ ਭਾਗ ਹਨ ਜੋ ਸੰਬੰਧਿਤ ਹੈ :
 - (a) ਪੇਸ਼ਣ
- (b) ਸਾਹ ਕਿਰਿਆ
- (c) ਮਲ ਤਿਆਗ
- (d) ਪਰਿਵਹਿਨ
- ਪੌਦਿਆਂ ਵਿੱਚ ਜ਼ਾਇਲਮ ਦਾ ਕੰਮ ਹੈ :
 - (a) ਪਾਣੀ ਦਾ ਪਰਿਵਹਿਨ
- ਭੋਜਨ ਦਾ ਪਰਿਵਹਿਨ (b)
- (c) ਅਮੀਨੋ ਤੇਜ਼ਾਬ ਦਾ ਪਰਿਵਹਿਨ
- ਆਕਸੀਜਨ ਦਾ ਪਰਿਵਹਿਨ (d)
- ਸਵੈਪੋਸ਼ੀ ਪੋਸ਼ਣ ਲਈ ਜ਼ਰਗੀ ਹੈ :
 - (a) ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਅਤੇ ਪਾਣੀ (b) ਕਲੋਰੋਫਿਲ

(c) ਸਰਜ ਦਾ ਪਕਾਸ਼

- (d) ਉਪਰੋਕਤ ਸਾਰੇ
- ਪਾਇਰੁਵੇਟ ਦੇ ਵਿਖੰਡਨ ਨਾਲ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ, ਪਾਣੀ ਅਤੇ ਤਾਪ ਉਰਜਾ ਦੇਣ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਵਾਪਰਦੀ ਹੈ:
 - (a) ਸਾਈਟੋਪਲਾਜ਼ਮ ਵਿੱਚ
- ਮਾਈਟੋਕਾਨਡਰੀਆਂ ਵਿੱਚ (b)
- (c) ਕਲੋਰੋਪਲਾਸਟ ਵਿੱਚ
- ਨਿਊਕਲੀਅਸ ਵਿੱਚ (d)
- ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਫੈਟਸ (ਚਰਬੀ) ਦਾ ਪਾਚਨ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ? ਇਹ ਪ੍ਰਕਿਰਿਆ ਕਿੱਥੇ ਹੁੰਦੀ ਹੈ? 5.
- ਭੋਜਨ ਦੇ ਪਾਚਨ ਵਿੱਚ ਲਾਰ ਦੀ ਕੀ ਮਹੱਤਤਾ ਹੈ? 6.
- ਸਵੈਪੇਸ਼ੀ ਪੋਸ਼ਣ ਲਈ ਜ਼ਰੂਰੀ ਪਰਿਸਥਿਤੀਆਂ ਕਿਹੜੀਆਂ ਹਨ ਅਤੇ ਇਸ ਦੇ ਸਹਿਊਪਜ ਕੀ ਹਨ? 7.
- ਆਕਸੀ ਸੁਆਸ ਕਿਰਿਆ ਅਤੇ ਅਣ ਆਕਸੀ ਸੁਆਸ ਕਿਰਿਆ ਵਿਚਕਾਰ ਕੀ ਅੰਤਰ ਹਨ? 8.
- ਗੈਸਾਂ ਦੇ ਵਧੇਰੇ ਵਟਾਂਦਰੇ ਲਈ ਐਲਵਿਓਲਾਈ ਦੀ ਬਣਤਰ ਕਿਵੇਂ ਹੈ? 9.
- ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਹੀਮੋਗਲੋਬਿਨ ਦੀ ਘਾਟ ਦੇ ਕੀ ਸਿੱਟੇ ਹੋ ਸਕਦੇ ਹਨ? 10.
- ਮਨੁੱਖ ਵਿੱਚ ਲਹੂ ਗੇੜ ਪਣਾਲੀ ਵਿੱਚ ਦੂਹਰੇ ਚੱਕਰ ਦੀ ਵਿਆਖਿਆ ਕਰੋ। ਇਹ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ? 11.
- ਜਾਇਲਮ ਅਤੇ ਫਲੋਇਮ ਵਿੱਚ ਪਦਾਰਥਾਂ ਦੇ ਪਰਿਵਹਿਨ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ? 12.
- ਫੇਫਿੜਆਂ ਵਿੱਚ ਐਲਵਿਓਲਾਈ ਅਤੇ ਗੁਰਦਿਆਂ ਵਿੱਚ ਨੈਫ੍ਰਾਨਜ਼ ਦੇ ਕੰਮ ਦੀ ਤੁਲਨਾ ਬਣਤਰ ਅਤੇ ਕਾਰਜ ਦੇ 13. ਅਧਾਰ ਤੇ ਕਰੋ।

_{ਅਧਿਆਇ}7 ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ

Control and Coordination

ਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਜੈਵਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਜੀਵਾਂ ਦੀ ਰੱਖਿਆ ਬਾਰੇ ਪੜ੍ਹਿਆ ਸੀ। ਅਸੀਂ ਇਹ ਵਿਚਾਰ ਕੀਤਾ ਸੀ ਕਿ ਜੇਕਰ ਕੋਈ ਵਸਤੂ ਗਤੀਸ਼ੀਲ ਹੈ ਤਾਂ ਉਹ ਸਜੀਵ ਹੈ। ਪੌਦਿਆਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕੁੱਝ ਗਤੀਆਂ ਅਸਲ ਵਿੱਚ ਵਾਧੇ ਦਾ ਸਿੱਟਾ ਹਨ। ਇੱਕ ਬੀਜ ਪੁੰਗਰਦਾ ਹੈ ਅਤੇ ਵਧਦਾ ਹੈ ਅਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਪੌਦਾ ਕੁੱਝ ਦਿਨਾਂ ਵਿੱਚ ਗਤੀ ਕਰਦਾ ਹੋਇਆ ਮਿੱਟੀ ਨੂੰ ਇੱਕ ਪਾਸੇ ਧੱਕ ਕੇ ਬਾਹਰ ਆ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਇਸ ਦਾ ਵਾਧਾ ਰੁਕ ਗਿਆ ਹੁੰਦਾ ਤਾਂ ਇਹ ਗਤੀਆਂ ਨਾ ਹੁੰਦੀਆਂ। ਜੰਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਵਿੱਚ ਹੋਣ ਵਾਲੀਆਂ ਕੁੱਝ ਗਤੀਆਂ ਵਾਧੇ ਨਾਲ ਸੰਬੰਧਿਤ ਨਹੀਂ ਹਨ। ਇੱਕ ਦੌੜਦੀ ਬਿੱਲੀ, ਝੂਲੇ ਉੱਤੇ ਖੇਡਦੇ ਬੱਚੇ, ਜੁਗਾਲੀ ਕਰਦੀ ਮੱਝ ਦੀਆਂ ਗਤੀਆਂ ਵਾਧੇ ਕਰਕੇ ਨਹੀਂ ਹਨ।

ਦਿਖਾਈ ਦੇਣ ਵਾਲੀਆਂ ਅਜਿਹੀਆਂ ਗਤੀਆਂ ਨੂੰ ਅਸੀਂ ਜੀਵਨ ਨਾਲ ਕਿਉਂ ਜੋੜਦੇ ਹਾਂ? ਇਸ ਦਾ ਇੱਕ ਸੁਭਾਵਕ ਉੱਤਰ ਇਹ ਹੈ ਕਿ ਅਸੀਂ ਗਤੀ ਨੂੰ ਜੀਵ ਦੇ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਆਏ ਪਰਿਵਰਤਨ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਸੋਚਦੇ ਹਾਂ। ਬਿੱਲੀ ਇਸ ਲਈ ਦੌੜੀ ਹੋਵੇਗੀ ਕਿਉਂਕਿ ਉਸ ਨੇ ਚੂਹਾ ਵੇਖਿਆ ਹੋਵੇਗਾ। ਕੇਵਲ ਇਹੋ ਹੀ ਨਹੀਂ ਸਗੋਂ ਸਜੀਵਾਂ ਵਲੋਂ ਆਪਣੇ ਆਸ ਪਾਸ ਦੇ ਵਾਤਾਵਰਨ ਵਿੱਚ ਆਏ ਬਦਲਾਅ ਨੂੰ ਆਪਣੇ ਲਾਭ ਲਈ ਵਰਤਣ ਦੇ ਉਪਰਾਲੇ ਨੂੰ ਵੀ ਗਤੀ ਕਹਿ ਸਕਦੇ ਹਾਂ। ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਪੌਦੇ ਵਧਦੇ ਹਨ। ਬੱਚੇ ਝੂਲੇ ਤੋਂ ਆਨੰਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦੇ ਹਨ। ਮੁੱਝ ਜੁਗਾਲੀ ਕਰਦੀ ਹੈ ਤਾਂ ਕਿ ਸਖ਼ਤ ਭੋਜਨ ਛੋਟੇ ਟੁਕੜਿਆਂ ਵਿੱਚ ਟੁੱਟ ਜਾਵੇਂ ਅਤੇ ਉਸ ਦਾ ਪਾਚਣ ਸੌਖਿਆਂ ਹੈ ਸਕੇ। ਜਦੋਂ ਤੇਜ਼ ਰੋਸ਼ਨੀ ਸਾਡੀਆਂ ਅੱਖਾਂ ਉੱਤੇ ਫੋਕਸ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜਾਂ ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਗਰਮ ਵਸਤੂ ਨੂੰ ਛੋਂਹਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਪਰਿਵਰਤਨ ਦਾ ਪਤਾ ਲੱਗ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਆਪਣੇ ਆਪ ਨੂੰ ਬਚਾਉਣ ਲਈ ਗਤੀ ਕਰਦੇ ਹਾਂ।

ਜੇਕਰ ਅਸੀਂ ਇਸ ਦੇ ਬਾਰੇ ਗੰਭੀਰਤਾ ਨਾਲ ਵਿਚਾਰ ਕਰੀਏ ਤਾਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਵਾਤਾਵਰਨ ਇਹ ਗਤੀਆਂ ਵਾਤਾਵਰਨ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਅਨੁਸਾਰ ਸਾਵਧਾਨੀ ਨਾਲ ਨਿਯੰਤਰਿਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਵਾਤਾਵਰਨ ਵਿੱਚ ਹਰ ਪਰਿਵਰਤਨ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਇੱਕ ਗਤੀ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਗੱਲ ਕਰਨੀ ਚਾਹੁੰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਚੀਕਣ ਦੀ ਬਜਾਏ ਕੰਨ ਵਿੱਚ ਕਹਿੰਦੇ ਹਾਂ। ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ ਕੋਈ ਵੀ ਗਤੀ ਉਸ ਘਟਨਾ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜੋ ਉਸ ਨੂੰ ਪ੍ਰੇਰਤ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਨਿਯੰਤਰਿਤ ਗਤੀ ਨੂੰ ਵਾਤਾਵਰਨ ਵਿੱਚ ਭਿੰਨ ਘਟਨਾਵਾਂ ਦੇ ਗਿਆਨ ਨਾਲ ਜੋੜਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ ਜੋ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਅਨੁਰੂਪ ਗਤੀ ਕਰਨ। ਬਦਲਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਸਜੀਵਾਂ ਨੂੰ ਉਹਨਾਂ ਯੰਤਰਾਂ ਦਾ ਉਪਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਜੋ ਨਿਯੰਤਰਨ ਅਤੇ ਤਾਲਮੇਲ ਦਾ ਕੰਮ ਕਰਦੇ ਹੋਣ। ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸਰੀਰ ਸੰਗਠਨ ਦੇ ਆਮ ਸਿਧਾਤਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਇਹ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਵਾਲੇ ਟਿਸ਼ੂਆਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

7.1 ਜੰਤੂ - ਨਾੜੀ ਪ੍ਰਣਾਲੀ (Animal-Nervous System)

ਜੰਤੂਆਂ ਵਿੱਚ ਅਜਿਹਾ ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ ਪੇਸ਼ੀ ਅਤੇ ਨਾੜੀ ਟਿਸ਼ੂਆਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਬਾਰੇ ਅਸੀਂ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਇੱਕ ਗਰਮ ਵਸਤੂ ਨੂੰ ਅਚਾਨਕ ਛੂਹਣਾ ਸਾਡੇ ਲਈ ਖਤਰਨਾਕ ਸਥਿਤੀ ਹੈ। ਸਾਨੂੰ ਇਸ ਨੂੰ ਪਹਿਚਾਨਣ ਅਤੇ ਉਸ ਅਨੁਸਾਰ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਅਸੀਂ ਕਿਵੇਂ ਪਤਾ ਕਰੀਏ ਕਿ ਅਸੀਂ ਗਰਮ ਵਸਤੂ ਨੂੰ ਛੋਹ ਰਹੇ ਹਾਂ। ਸਾਡੇ ਵਾਤਾਵਰਨ ਵਿੱਚ ਸਾਰੀਆ ਸੂਚਨਾਵਾਂ ਦਾ ਪਤਾ ਕੁੱਝ ਨਾੜੀ ਸੈੱਲਾਂ ਵਿਚਲੇ ਵਿਸ਼ੇਸ਼ ਸਿਰਿਆਂ ਦੁਆਰਾ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਗ੍ਰਾਹੀ ਸਾਡੀਆਂ ਗਿਆਨ ਇੰਦਰੀਆਂ ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਅੰਦਰਲਾ ਕੰਨ, ਨੱਕ, ਜੀਭ ਆਦਿ। ਸੁਆਦ ਸੰਵੇਦ ਗ੍ਰਾਹੀ ਸੁਆਦ ਦਾ ਪਤਾ ਲਗਾਉਂਦੀ ਹੈ ਜਦੋਂ ਕਿ ਨੱਕ ਗ੍ਰਾਹੀ ਗੰਧ ਦਾ ਪਤਾ ਕਰਦੀ ਹੈ।

ਇਹ ਸੂਚਨਾ ਇੱਕ ਨਾੜੀ ਸੈੱਲ ਦੇ ਡੈਂਡਰਾਈਟ ਸਿਰੇ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। (ਚਿੱਤਰ?. la), ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਦੁਆਰਾ ਇੱਕ ਬਿਜਲਈ ਆਵੇਗ ਪੈਂਦਾ ਕਰਦੀ ਹੈ। ਇਹ ਆਵੇਗ ਡੈਂਡਰਾਈਡ ਤੋਂ ਸੈੱਲ ਬਾਡੀ ਤੱਕ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫਿਰ ਐਕਸਾਨ ਰਾਹੀਂ ਉਸ ਦੇ ਅੰਤਮ ਸਿਰੇ ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ।ਐਕਸਾਨ ਦੇ ਅੰਤ ਵਿੱਚ ਬਿਜਲਈ ਆਵੇਗ ਕੁੱਝ ਰਸਾਇਣ ਛੱਡਦਾ ਹੈ। ਇਹ ਰਸਾਇਣ ਖਾਲੀ ਸਥਾਨ ਜਾਂ ਸਿਨੈਪਸ ਨੂੰ ਪਾਰ ਕਰਕੇ ਅਗਲੇ ਨਾੜੀ ਸੈੱਲ ਦੀ ਡੈਂਡਰਾਈਟ ਉੱਤੇ ਉਸੇ ਤਰ੍ਹਾਂ ਦਾ ਬਿਜਲਈ ਆਵੇਗ ਆਰੰਭ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਸਰੀਰ ਵਿੱਚ ਨਾੜੀ ਆਵੇਗ ਦੀ ਯਾਤਰਾ ਦਾ ਸਾਧਾਰਨ ਪ੍ਰਬੰਧ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਦਾ ਇੱਕ ਸਿਨੈਪਸ ਅਜਿਹੇ ਆਵੇਗਾਂ ਨੂੰ ਨਿਊਰਾਨਾਂ ਤੋਂ ਦੂਜੇ ਸੈੱਲਾਂ ਜਿਵੇਂ ਕਿ ਪੇਸ਼ੀ ਸੈੱਲ ਜਾਂ ਗ੍ਰੰਥੀਆਂ ਤੱਕ (ਚਿੱਤਰ 7.1 b) ਪਹੁੰਚਾਉਂਦਾ ਹੈ।

ਇਹ ਕੋਈ ਹੈਰਾਨੀ ਵਾਲੀ ਗੱਲ ਨਹੀਂ ਕਿ ਨਾੜੀ ਟਿਸ਼ੂ ਨਾੜੀ ਸੈੱਲਾਂ ਜਾਂ ਨਿਊਰਾਨ ਦੇ ਇੱਕ ਸੰਗਠਿਤ ਜਾਲ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਸੂਚਨਾਵਾਂ ਨੂੰ ਬਿਜਲਈ ਆਵੇਗ ਦੁਆਰਾ ਸਰੀਰ ਦੇ ਇੱਕ ਭਾਗ ਤੋਂ ਦੂਜੇ ਭਾਗ ਤੱਕ ਪਹੁੰਚਾਉਣ ਲਈ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਹੈ।

ਚਿੱਤਰ 7.1 (a) ਨਿਊਰਾਨ ਦੀ ਬਣਤਰ (b) ਨਾੜੀ ਪੇਸ਼ੀ ਜੈਕਸ਼ਨ

ਚਿੱਤਰ 7.1 (a) ਨੂੰ ਵੇਖੋ ਅਤੇ ਇਸ ਵਿੱਚ ਨਾੜੀ ਸੈੱਲ ਦੇ ਭਾਗਾਂ ਨੂੰ ਪਹਿਚਾਣੋ। (i) ਜਿੱਥੇ ਸੂਚਨਾਵਾਂ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। (ii) ਜਿਸ ਵਿੱਚੋਂ ਲੰਘ ਕੇ ਸੂਚਨਾਵਾਂ ਬਿਜਲਈ ਆਵੇਗ ਦੀ ਤਰ੍ਹਾਂ ਯਾਤਰਾ ਕਰਦੀਆਂ ਹਨ। (iii) ਜਿੱਥੇ ਇਸ ਆਵੇਗ ਦਾ ਪਰਿਵਰਤਨ ਰਸਾਇਣਿਕ ਸੈਕੇਤ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਅੱਗੇ ਇਸਦਾ ਸੰਚਾਰ ਹੋ ਸਕੇ।

ਕਿਰਿਆ 7.1

ੂ ਤੁਸੀਂ ਕੁੱਝ ਖੰਡ ਆਪਣੇ ਮੂੰਹ ਵਿੱਚ ਰੱਖੋ। ਉਸ ਦਾ ਸੁਆਦ ਕਿਹੋ ਜਿਹਾ ਹੈ?

ੂ ਤੁਸੀਂ ਨੱਕ ਨੂੰ ਅੰਗੂਠੇ ਅਤੇ ਪਹਿਲੀ ਉਂਗਲੀ ਨਾਲ ਬੈਦ ਕਰੋ। ਹੁਣ ਫੇਰ ਖੰਡ ਖਾਓ। ਕੀ ਇਸ ਦੇ ਸਆਦ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਹੈ?

ੂ ਭੋਜਨ ਖਾਣ ਸਮੇਂ ਇਸੇ ਤਰ੍ਹਾਂ ਤੁਸੀਂ ਨੱਕ ਬੈਦ ਕਰ ਲਓ ਅਤੇ ਧਿਆਨ ਦਿਓ ਕਿ ਜਿਸ ਭੋਜਨ ਨੂੰ ਤੁਸੀਂ ਖਾ ਰਹੇ ਹੋ ਕੀ ਤੁਸੀਂ ਉਸ ਦਾ ਸੁਆਦ ਲੈ ਰਹੇ ਹੋ?

ਜਦੋਂ ਨੱਕ ਬੈਦ ਹੁੰਦਾ ਹੈ ਤਾਂ ਕੀ ਤੁਸੀਂ ਖੰਡ ਅਤੇ ਭੋਜਨ ਦੇ ਸੁਆਦ ਵਿੱਚ ਅੰਤਰ ਅਨੁਭਵ ਕਰਦੇ ਹੋ? ਜੇਕਰ ਹਾਂ, ਤਾਂ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋਵੇਗੇ ਕਿ ਇਹ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅੰਤਰ ਜਾਨਣ ਲਈ ਅਤੇ ਉਹਨਾਂ ਦੀ ਸੰਭਵ ਵਿਆਖਿਆ ਲੱਭਣ ਲਈ ਪੜ੍ਹੋ ਅਤੇ ਚਰਚਾ ਕਰੋ। ਜਦੋਂ ਤੁਹਾਨੂੰ ਜ਼ੁਕਾਮ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕੀ ਉਸ ਸਮੇਂ ਵੀ ਤੁਸੀਂ ਇਹੋ ਜਿਹੀ ਸਥਿਤੀ ਦਾ ਸਾਹਮਣਾ ਕਰਦੇ ਹੋ?

7.1.1 ਪ੍ਰਤਿਵਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਕੀ ਹੁੰਦਾ ਹੈ? What happens in Reflex action?

ਜਦੋਂ ਅਸੀਂ ਵਾਤਾਵਰਨ ਵਿੱਚ ਕਿਸੀ ਘਟਨਾ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਅਚਾਨਕ ਹੋਈ ਕਿਰਿਆ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਆਮ ਕਰਕੇ ਪ੍ਰਤਿਵਰਤ ਸ਼ਬਦ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਾਂ।ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ, 'ਮੈਂ ਪ੍ਰਤਿਵਰਤ ਸਰੂਪ ਬੱਸ ਦੇ ਰਾਹ ਤੋਂ ਪਰੇ ਕੁੱਦ ਗਿਆ, ਜਾਂ ਮੈਂ ਪ੍ਰਤਿ ਵਰਤ ਸਰੂਪ ਅੱਗ ਦੀ ਲਾਟ ਤੋਂ ਆਪਣਾ ਹੱਥ ਪਿੱਛੇ ਕਰ ਲਿਆ ਜਾਂ ਮੈਂ ਇੰਨਾ ਭੁੱਖਾ ਸੀ ਕਿ ਪ੍ਰਤਿ ਵਰਤ ਸਰੂਪ ਮੇਰੇ ਮੂੰਹ ਵਿੱਚ ਪਾਣੀ ਆਉਣ ਲੱਗਿਆ। ਇਸ ਦਾ ਅਸਲ ਵਿੱਚ ਕੀ ਭਾਵ ਹੈ? ਇਹਨਾਂ ਸਾਰੀਆਂ ਉਦਾਹਰਨਾਂ ਵਿੱਚ ਆਮ ਵਿਚਾਰ ਹੈ ਕਿ ਕਈ ਵਾਰ ਅਸੀਂ ਜੋ ਕੁੱਝ ਕਰਦੇ ਹਾਂ ਉਸ ਬਾਰੇ ਸੋਚਦੇ ਨਹੀਂ ਜਾਂ ਆਪਣੀਆਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਨਿਯੰਤਰਨ ਵਿੱਚ ਮਹਿਸੂਸ ਨਹੀਂ ਕਰਦੇ। ਇਹ ਉਹ ਸਥਿਤੀਆਂ ਹਨ ਜਿੱਥੇ ਅਸੀਂ ਆਪਣੇ ਵਾਤਾਵਰਨ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨਾਂ ਦੇ ਪ੍ਰਤਿ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰ ਰਹੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ ਕਿਵੇਂ ਪਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?

ਆਓ ਅਸੀਂ ਇਸ ਸੰਬੰਧ ਵਿੱਚ ਅੱਗੇ ਵਿਚਾਰ ਕਰੀਏ।ਪਹਿਲਾਂ ਵਾਲੀ ਉਦਾਹਰਨ ਮੁੜ ਵਿਚਾਰੀਏ। ਅੱਗ ਦੀ ਲਾਟ ਨੂੰ ਛੂਹਣਾ ਸਾਡੇ ਜਾਂ ਅਸਲ ਵਿੱਚ ਕਿਸੇ ਵੀ ਜੰਤੂ ਲਈ ਇੱਕ ਜ਼ਰੂਰੀ ਅਤੇ ਖਤਰਨਾਕ ਸਥਿਤੀ ਹੈ।ਅਸੀਂ ਇਸ ਦੇ ਪ੍ਰਤਿ ਕਿਵੇਂ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੇ ਹਾਂ? ਇਹ ਇੱਕ ਸਰਲ ਢੰਗ ਹੈ ਕਿ ਅਸੀਂ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਕਿ ਸਾਨੂੰ ਦਰਦ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ ਸੜਨ ਹੋ ਸਕਦੀ ਹੈ ਇਸ ਲਈ ਸਾਨੂੰ ਹੱਥ ਹਟਾ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ।ਇੱਕ ਜ਼ਰੂਰੀ ਪ੍ਰਸ਼ਨ ਇਹ ਉੱਠਦਾ ਹੈ ਕਿ ਇਹ ਸਭ ਕੁੱਝ ਕਰਨ ਲਈ ਸਾਨੂੰ ਕਿੰਨਾ ਸਮਾਂ ਲੱਗੇਗਾ? ਉੱਤਰ ਇਸ ਗੱਲ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਅਸੀਂ ਕਿਸ ਪ੍ਕਾਰ ਸੋਚਦੇ ਹਾਂ।ਜੇਕਰ ਨਾੜੀ ਆਵੇਗ ਨੂੰ ਉਸ ਤਰ੍ਹਾਂ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਬਾਰੇ ਅਸੀਂ ਪਹਿਲਾਂ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ, ਤਾਂ ਇਸ ਪ੍ਕਾਰ ਦੇ ਆਵੇਗ ਉਤਪੰਨ ਕਰਨ ਲਈ ਦਿਮਾਗ ਦੁਆਰਾ ਸੋਚਣਾ ਵੀ ਜ਼ਰੂਰੀ ਹੈ।ਸੋਚਣਾ ਇੱਕ ਜਟਿਲ ਕਿਰਿਆ ਹੈ ਕਿਉਂਕਿ ਇਹ ਬਹੁਤ ਸਾਰੇ ਨਿਊਰਾਨ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਨਾੜੀ ਆਵੇਗ ਆਪਸ ਵਿੱਚ ਜਟਿਲ ਰੂਪ ਵਿੱਚ ਜੁੜਨ ਨਾਲ ਸੰਭਵ ਹੋਵੇਗੀ।

ਜੇਕਰ ਇਹ ਸਥਿਤੀ ਹੈ ਤਾਂ ਕੋਈ ਅਸਚਰਜ ਨਹੀਂ ਕਿ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਸੋਚਣ ਵਾਲੇ ਟਿਸ਼ੂ ਨਿਊਰਾਨਾਂ ਦੇ ਜਟਿਲ ਰੂਪ ਵਿੱਚ ਬੁਣੇ ਸੰਘਣੇ ਜਾਲ ਤੋਂ ਬਣੇ ਹਨ। ਇਹ ਖੋਪੜੀ ਦੇ ਅਗਲੇ ਸਿਰੇ ਤੇ ਸਥਿਤ ਹਨ ਅਤੇ ਸਰੀਰ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਤੋਂ ਸੈਕੇਤ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਤੇ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਵਿਚਾਰ ਕਰਦੇ ਹਨ। ਬੇਸ਼ੱਕ, ਇਹਨਾਂ ਸੈਕੇਤਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਖੋਪੜੀ ਵਿੱਚ ਦਿਮਾਗ ਦਾ ਸੋਚਣ ਵਾਲਾ ਭਾਗ ਨਾੜੀਆਂ ਦੁਆਰਾ ਸਰੀਰ ਦੇ ਵੱਖ ਵੱਖ ਭਾਗਾਂ ਨਾਲ ਜੁੜਿਆ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇਕਰ ਦਿਮਾਗ ਦਾ ਇਹ ਭਾਗ ਪੇਸ਼ੀਆਂ ਨੂੰ ਗਤੀ ਕਰਨ ਦਾ ਆਦੇਸ਼ ਦਿੰਦਾ ਹੈ ਤਾਂ ਨਾੜੀਆਂ ਇਹਨਾਂ ਸੰਕੇਤਾਂ ਨੂੰ ਸਰੀਰ ਦੇ ਭਿੰਨ ਭਿੰਨ ਭਾਗਾਂ ਤੱਕ ਪਹੁੰਚਾਉਣ ਦਾ ਕੰਮ ਕਰਦੀਆਂ ਹਨ। ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਗਰਮ ਵਸਤੂ ਨੂੰ ਛੋਂਹਦੇ ਹਾਂ ਉਦੋਂ ਜੇਕਰ ਇਹ ਸਭ ਕੁੱਝ ਕਰਨਾ ਹੈ ਤਾਂ ਇਸ ਵਿੱਚ ਕਾਫੀ ਸਮਾਂ ਲੱਗੇਗਾ ਅਤੇ ਅਸੀਂ ਸੜ ਸਕਦੇ ਹਾਂ।

ਸਰੀਰ ਦਾ ਡਿਜ਼ਾਇਨ ਇਸ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਕਿਵੇਂ ਕੱਢਦਾ ਹੈ? ਤਾਪ ਦੇ ਸੰਕੇਤ ਦੇ ਬਾਰੇ ਸੋਚਣ ਦੀ ਬਜਾਏ ਜੇਕਰ ਉਨ੍ਹਾਂ ਨਾੜੀਆਂ ਜੋ ਤਾਪ ਦਾ ਪਤਾ ਕਰਦੀਆਂ ਹਨ, ਨੂੰ ਅਜਿਹੀਆਂ ਨਾੜੀਆਂ ਨਾਲ ਜੋੜਿਆ ਜਾਵੇ ਜੋ ਪੇਸ਼ੀਆਂ ਨੂੰ ਗਤੀ ਕਰਵਾਉਂਦੀਆਂ ਹਨ ਤਾਂ ਆਉਣ ਵਾਲੇ ਸੰਕੇਤਾਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਅਤੇ ਉਸ ਅਨੁਸਾਰ ਨਿਰਦੇਸ਼ਿਤ ਕਿਰਿਆ ਨੂੰ ਕਰਨ ਦਾ ਕੰਮ ਛੇਤੀ ਪੂਰਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਆਰਕ ਨੂੰ ਆਮ ਕਰਕੇ ਪ੍ਰਤੀਵਰਤੀ (Reflex arc) ਆਰਕ ਆਖਦੇ ਹਨ। (ਚਿੱਤਰ 7.2)। ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਪ੍ਰਤਿਵਰਤੀ ਆਰਕ ਦਾ ਜੋੜ, ਆਉਣ ਵਾਲੀ ਨਾੜੀ (input nerve) ਅਤੇ ਬਾਹਰੀ ਨਾੜੀ ਵਿਚਕਾਰ ਕਿੱਥੇ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ? ਸਭ ਤੋਂ ਢੁੱਕਵਾਂ ਸਥਾਨ ਸ਼ਾਇਦ ਓਹੀ ਬਿੰਦੂ ਹੋਵੇਗਾ ਜਿੱਥੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਉਹ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮਿਲਦੀਆਂ ਹਨ। ਸਾਡੇ ਸਰੀਰ ਦੀਆਂ ਨਾੜੀਆਂ ਦਿਮਾਗ ਨੂੰ ਜਾਂਦੇ ਰਾਹ ਵਿੱਚ ਇੱਕ ਬੰਡਲ ਦੇ ਰੂਪ ਸੁਖਮਨਾ ਨਾੜੀ ਅੰਦਰ ਮਿਲਦੀਆਂ ਹਨ। ਪ੍ਰਤਿਵਰਤੀ ਆਰਕ ਇਸੇ ਸੁਖਮਨਾ ਨਾੜੀ ਵਿੱਚ ਬਣਦੇ ਹਨ ਭਾਵੇਂ ਆਉਣ ਵਾਲੀਆਂ ਸੂਚਨਾਵਾਂ ਦਿਮਾਗ ਤੱਕ ਵੀ ਜਾਂਦੀਆਂ ਹਨ।

ਜੰਤੂਆਂ ਵਿੱਚ ਪ੍ਤਿਵਰਤੀ ਆਰਕ ਇਸ ਲਈ ਵਿਕਸਤ ਹੋਇਆ ਹੈ ਕਿਉਂਕਿ ਉਹਨਾਂ ਦੇ ਦਿਮਾਗ ਦੀ ਸੋਚਣ ਪ੍ਕਿਰਿਆ ਤੇਜ਼ ਨਹੀਂ ਹੈ। ਅਸਲ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਜੰਤੂਆਂ ਵਿੱਚ ਸੋਚਣ ਲਈ ਜ਼ਰੂਰੀ ਜਟਿਲ ਨਿਊਰਾਨ ਜਾਲ ਜਾਂ ਤਾਂ ਬਹੁਤ ਘੱਟ ਹੈ ਜਾਂ ਹੁੰਦਾ ਹੀ ਨਹੀਂ ਹੈ। ਇਸ ਲਈ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਵਾਸਤਵਿਕ ਵਿਚਾਰ ਪ੍ਤਿਕਿਰਿਆ ਦੀ ਅਣਹੋਂਦ ਵਿੱਚ ਪ੍ਤਿਵਿਰਤੀ ਆਰਕ ਦਾ ਵਿਕਾਸ ਰੱਖਿਆ ਕਾਰਜ ਪ੍ਣਾਲੀ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋਇਆ। ਭਾਵੇਂ ਜਟਿਲ ਨਿਊਰਾਨ ਜਾਲ ਵੀ ਹੋਂਦ ਵਿੱਚ ਆਇਆ ਹੈ ਪ੍ਰੰਤੂ ਪ੍ਤਿਵਰਤੀ ਆਰਕ, ਤੁਰੰਤ ਪ੍ਤਿਕਿਰਿਆ ਲਈ ਵਧੇਰੇ ਸਮਰੱਥ ਹੈ।

ਕੀ ਤੁਸੀਂ ਉਹਨਾਂ ਘਟਨਾਵਾਂ ਦੇ ਕ੍ਰਮ ਦਾ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ ਜੋ ਤੁਹਾਡੀਆਂ ਅੱਖਾਂ ਵਿੱਚ ਤੇਜ਼ ਪ੍ਰਕਾਸ਼ ਫੋਕਸ ਕਰਨ ਸਮੇਂ ਵਾਪਰਦੀਆਂ ਹਨ?

7.1.2 ਮਨੁੱਖੀ ਦਿਮਾਗ (Human Brain)

ਕੀ ਸੁਖਮਨਾ ਨਾੜੀ ਦਾ ਕੰਮ ਕੇਵਲ ਪ੍ਰਤਿਵਰਤੀ ਕਿਰਿਆ ਹੈ? ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਨਹੀਂ, ਕਿਉਂਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਅਸੀਂ ਸੋਚਣ ਵਾਲੇ ਪ੍ਰਾਣੀ ਹਾਂ। ਸੁਖਮਨਾ ਨਾੜੀ ਤੰਤੂਆਂ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ ਜੋ ਸੋਚਣ ਲਈ ਸੂਚਨਾਵਾਂ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਸੋਚਣ ਦੀ ਕਾਰਜ ਵਿਧੀ ਅਤੇ ਨਾੜੀ ਸੰਬੰਧ ਵਧੇਰੇ ਜਟਿਲ੍ਹ ਹੁੰਦਾ ਹੈ। ਇਹ ਦਿਮਾਗ ਵਿੱਚ ਕੇਂਦਰਿਤ ਹੁੰਦੇ ਹਨ ਜੋ ਮਨੁੱਖ ਦਾ ਪ੍ਰਮੁੱਖ ਨਾੜੀ ਕੇਂਦਰ ਹੈ। ਦਿਮਾਗ ਅਤੇ ਸੁਖਮਨਾ ਨਾੜੀ ਮਿਲ ਕੇ ਨਾੜੀ ਪ੍ਰਬੰਧ ਪ੍ਰਣਾਲੀ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਸਰੀਰ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਤੋਂ ਸੂਚਨਾਵਾਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਏਕੀਕਰਨ ਕਰਦੇ ਹਨ।

ਅਸੀਂ ਆਪਣੀਆਂ ਕਿਰਿਆਵਾਂ ਦੇ ਬਾਰੇ ਵੀ ਸੋਚਦੇ ਹਾਂ। ਲਿਖਣਾ, ਗੱਲ ਕਰਨਾ, ਇੱਕ ਕੁਰਸੀ ਘੁਮਾਉਣਾ, ਕਿਸੇ ਪ੍ਰੋਗਰਾਮ ਦੇ ਸਮਾਪਤ ਹੋਣ ਉਪਰੰਤ ਤਾੜੀਆਂ ਵਜਾਉਣਾ ਆਦਿ ਇੱਛਕ ਕਿਰਿਆਵਾਂ ਦੇ ਉਦਾਹਰਨ ਹਨ ਜੋ ਉਸ ਨਿਰਣੇ ਉੱਤੇ ਆਧਾਰਿਤ ਹਨ ਕਿ ਅੱਗੇ ਕੀ ਕਰਨਾ ਹੈ। ਇਸ ਲਈ ਦਿਮਾਗ ਨੇ ਵੀ ਪੇਸ਼ੀਆਂ ਤੱਕ ਸੰਦੇਸ਼ ਭੇਜਣੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਦੂਜਾ ਮਾਰਗ ਹੈ ਜਿਸ ਵਿੱਚ ਨਾੜੀ ਪ੍ਣਾਲੀ ਪੇਸ਼ੀਆਂ ਨੂੰ ਸੰਦੇਸ਼ ਭੇਜਦੀ ਹੈ। ਕੇਂਦਰੀ ਨਾੜੀ ਪ੍ਣਾਲੀ ਅਤੇ ਸਰੀਰ ਦੇ ਦੂਜੇ ਭਾਗਾਂ ਵਿੱਚ ਆਪਸੀ ਸੰਚਾਰ ਪਰਿਧੀ ਨਾੜੀ ਪ੍ਣਾਲੀ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ ਜੋ ਦਿਮਾਗ ਤੋਂ ਨਿਕਲਣ ਵਾਲੀਆਂ ਕਪਾਲ ਨਾੜੀਆਂ ਅਤੇ ਸੁਖਮਨਾ ਨਾੜੀ ਤੋਂ ਨਿਕਲਣ ਵਾਲੀਆਂ ਸੁਖਮਨਾ ਤੰਦਾਂ (Spinal nerves) ਤੋਂ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਦਿਮਾਗ ਸਾਨੂੰ ਸਮਝਣ ਅਤੇ ਸੋਚਣ ਉੱਤੇ ਆਧਾਰਿਤ ਕਿਰਿਆ ਕਰਨ ਦੀ ਆਗਿਆ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਸਮਝ ਹੀ ਰਹੇ ਹੋਵੋਗੇ ਕਿ ਇਹ ਇੱਕ ਜਟਿਲ ਡਿਜ਼ਾਇਨ ਦੁਆਰਾ ਪੂਰਾ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿ ਦਿਮਾਗ ਦੇ ਵੱਖ ਵੱਖ ਭਾਗਾਂ, ਜੋ ਆਉਣ ਵਾਲੀਆਂ ਅਤੇ ਜਾਣ ਵਾਲੀਆਂ ਭਿੰਨ ਭਿੰਨ ਸੂਚਨਾਵਾਂ ਦਾ ਏਕੀਕਰਨ ਕਰਨ ਲਈ ਉੱਤਰਦਾਈ ਹੈ, ਵਲੋਂ ਪੂਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਦਿਮਾਗ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਤਿੰਨ ਮੁੱਖ ਖੇਤਰ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਨਾਂ ਅਗਲਾ ਦਿਮਾਗ, ਮੁੱਧ ਦਿਮਾਗ ਅਤੇ ਪਿਛਲਾ ਦਿਮਾਗ ਹਨ।

ਚਿੱਤਰ 7.3 ਮਨੱਖੀ ਦਿਮਾਗ

ਦਿਮਾਗ ਦਾ ਸੋਚਣ ਵਾਲਾ ਮੁੱਖ ਭਾਗ ਅਗਲਾ ਦਿਮਾਗ ਹੈ। ਇਸ ਵਿੱਚ ਵੱਖ ਵੱਖ ਗ੍ਰਾਹੀਆਂ ਤੋਂ ਸੰਵੇਦੀ ਆਵੇਗ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਅਗਲੇ ਦਿਮਾਗ ਦੇ ਵੱਖ ਵੱਖ ਖੇਤਰ ਹਨ ਜੋ ਸੁਣਨ, ਸੁੰਘਣ, ਦੇਖਣ ਆਦਿ ਲਈ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਹਨ। ਇਸ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰਨ ਲਈ ਵੱਖ ਖੇਤਰ ਹੁੰਦੇ ਹਨ ਜਿੱਥੇ ਇਨ੍ਹਾਂ ਸੰਵੇਦੀ ਸੂਚਨਾਵਾਂ ਨੂੰ, ਹੋਰ ਗ੍ਰਾਹੀਆਂ ਤੋਂ ਪ੍ਰਾਪਤ ਸੂਚਨਾਵਾਂ ਅਤੇ ਪਹਿਲਾਂ ਤੋਂ ਦਿਮਾਗ ਵਿੱਚ ਇਕੱਤਰ ਸੂਚਨਾਵਾਂ ਨਾਲ ਇਕੱਠਾ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦਾ ਭਾਵ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਸਭ ਦੇ ਆਧਾਰ ਤੇ ਇੱਕ ਫੈਸਲਾ ਲਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਪ੍ਰਤਿਕਿਰਿਆ ਕਿਵੇਂ ਹੋਵੇ ਅਤੇ ਸੂਚਨਾ ਪ੍ਰੇਰਕ ਖੇਤਰ ਨੂੰ ਪਹੁੰਚਾਈ ਜਾਂਦੀ ਹੈ ਜੋ ਇਛੁੱਕ ਪੇਸ਼ੀਆਂ ਦੀ ਗਤੀ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ ਸਾਡੀਆਂ ਲੱਤਾਂ ਦੀਆਂ ਪੇਸ਼ੀਆਂ। ਕੁੱਝ ਸੰਵੇਦਨ ਵੇਖਣ ਅਤੇ ਸੁਣਨ ਤੋਂ ਵੱਧ ਜਟਿਲ ਹਨ ਜਿਵੇਂ, ਸਾਨੂੰ ਕਿਵੇਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਅਸੀਂ ਲੋੜ ਅਨੁਸਾਰ ਪੂਰਾ ਭੋਜਨ ਖਾ ਲਿਆ ਹੈ? ਇਸ ਅਹਿਸਾਸ ਲਈ ਕਿ ਸਾਡਾ ਪੇਟ ਪੂਰਾ ਭਰ ਗਿਆ ਹੈ, ਅਗਲੇ ਦਿਮਾਗ ਵਿੱਚ ਭੁੱਖ ਨਾਲ ਸੰਬੰਧਿਤ ਕੇਂਦਰ ਹੈ।

ਮਨੁੱਖੀ ਦਿਮਾਗ ਦੇ ਅੰਕਿਤ ਕੀਤੇ ਚਿੱਤਰ 7.3 ਦਾ ਅਧਿਐਨ ਕਰੋ।ਅਸੀਂ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਵੱਖ ਵੱਖ ਭਾਗਾਂ ਦੇ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਹਨ। ਕੀ ਅਸੀਂ ਇਹਨਾਂ ਦੇ ਕੰਮ ਪਤਾ ਕਰਦੇ ਹਾਂ?

ਆਓ 'ਪ੍ਤਿਵਰਤ' ਸ਼ਬਦ ਜਿਸ ਦੀ ਚਰਚਾ ਅਸੀਂ ਆਰੰਭ ਵਿੱਚ ਕੀਤੀ ਸੀ, ਦਾ ਦੂਜਾ ਉਪਯੋਗ ਜਾਣੀਏ।ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਅਜਿਹੇ ਖਾਣ ਯੋਗ ਪਦਾਰਥ ਨੂੰ ਵੇਖਦੇ ਹਾਂ ਜਿਸ ਨੂੰ ਅਸੀਂ ਪਸੰਦ ਕਰਦੇ ਹਾਂ ਤਾਂ ਸਾਡੇ ਮੂੰਹ ਵਿੱਚ ਪਾਣੀ ਆ ਜਾਂਦਾ ਹੈ। ਸਾਡਾ ਦਿਲ ਇਸ ਬਾਰੇ ਸੋਚਣ ਤੋਂ ਬਿਨਾਂ ਹੀ ਪੜਕਦਾ ਰਹਿੰਦਾ ਹੈ।ਅਸਲ ਵਿੱਚ ਇਹਨਾਂ ਬਾਰੇ ਸੋਚਣ ਜਾਂ ਚਾਹੁਣ ਨਾਲ ਅਸੀਂ ਸੌਖਿਆ ਇਹਨਾਂ ਕਿਰਿਆਵਾਂ ਉੱਤੇ ਕਾਬੂ ਨਹੀਂ ਪਾ ਸਕਦੇ।ਕੀ ਸਾਨੂੰ ਸਾਹ ਲੈਣ ਲਈ ਜਾਂ ਭੋਜਨ ਪਚਾਉਣ ਲਈ ਸੋਚਣਾ ਜਾਂ ਯਾਦ ਕਰਨਾ ਪੈਂਦਾ ਹੈ? ਇਸ ਲਈ ਸਾਧਾਰਣ ਪ੍ਤਿਵਰਤੀ ਕਿਰਿਆ ਜਿਵੇਂ ਕਿ ਪੁਤਲੀ ਦੇ ਆਕਾਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਅਤੇ ਕੋਈ ਸੋਚ ਕੇ ਕੀਤੀ ਕਿਰਿਆ ਜਿਵੇਂ ਕੁਰਸੀ ਖਿਸਕਾਉਣਾ ਦੇ ਵਿਚਕਾਰ ਇੱਕ ਹੋਰ ਨਿਯੰਤਰਨ ਪੇਸ਼ੀ ਗਤੀਆਂ ਦਾ ਸੈੱਟ ਹੈ ਜਿਸ ਉੱਤੇ ਸਾਡੇ ਸੋਚਣ ਦਾ ਕੋਈ ਕੈਟਰੋਲ ਨਹੀਂ ਹੈ। ਇਹਨਾਂ ਅਣਇੱਛਤ ਕਿਰਿਆਵਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਮੱਧ ਦਿਮਾਗ ਅਤੇ ਕੁੱਝ ਪਿਛਲੇ ਦਿਮਾਗ ਦੁਆਰਾ ਨਿਯੰਤਰਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਸਾਰੀਆਂ ਅਣ ਇੱਛਤ ਕਿਰਿਆਵਾਂ ਜਿਵੇਂ ਕਿ ਲਹੂ ਦਾ ਦਬਾਓ, ਲਾਰ ਆਉਣਾ ਅਤੇ ਉਲਟੀ ਆਉਣ ਦਾ ਕੈਟਰੋਲ ਪਿਛਲੇ ਦਿਮਾਗ ਵਿੱਚ ਸਥਿਤ ਮੈਡੂਲਾ ਕਰਦਾ ਹੈ।

ਕੁੱਝ ਕਿਰਿਆਵਾਂ ਜਿਵੇਂ ਕਿ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਚੱਲਣਾ, ਸਾਈਕਲ ਚਲਾਉਣ, ਇੱਕ ਪੈੱਸਿਲ ਉਠਾਉਣ ਬਾਰੇ ਸੋਚੋ। ਇਹ ਪਿਛਲੇ ਦਿਮਾਗ ਵਿੱਚ ਸਥਿਤ ਭਾਗ ਸੈਰੀਬੈਲਮ ਕਾਰਨ ਸੰਭਵ ਹਨ ਜੋ ਇਛੁੱਕ ਕਿਰਿਆਵਾਂ ਦੇ ਸਹੀ ਹੋਣ ਅਤੇ ਸਰੀਰ ਦੇ ਆਸਣ ਤੇ ਸੰਤੁਲਨ ਲਈ ਉੱਤਰਦਾਈ ਹੈ। ਕਲਪਨਾ ਕਰੋ ਜੇਕਰ ਅਸੀਂ ਇਹਨਾਂ ਦੇ ਬਾਰੇ ਨਹੀਂ ਸੋਚ ਰਹੇ ਅਤੇ ਇਹ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ਕੰਮ ਕਰਨਾ ਬੰਦ ਕਰ ਦੇਣ ਤਾਂ ਕੀ ਹੋਵੇਗਾ?

7.1.3 ਟਿਸ਼ੂਆਂ ਦੀ ਰੱਖਿਆ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ? (How are the tissues protected)

ਦਿਮਾਗ ਵਰਗੇ ਕੋਮਲ ਅੰਗ, ਜੋ ਵੱਖ ਵੱਖ ਕਿਰਿਆਵਾਂ ਲਈ ਅਤਿ ਜ਼ਰੂਰੀ ਹਨ, ਦੀ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਰੱਖਿਆ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਲਈ ਸਰੀਰ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਡਿਜ਼ਾਇਨ ਕੀਤਾ ਗਿਆ ਹੈ ਕਿ ਦਿਮਾਗ ਹੱਡੀਆਂ ਦੇ ਇੱਕ ਡੱਬੇ ਵਿੱਚ ਸੁਰੱਖਿਅਤ ਹੈ। ਡੱਬੇ ਦੇ ਅੰਦਰ ਇੱਕ ਅਜਿਹੇ ਤਰਲ ਭਰਪੂਰ ਗੁਬਾਰੇ ਦੇ ਵਿੱਚ ਦਿਮਾਗ ਸਥਿਤ ਹੈ ਜੋ ਇਸ ਨੂੰ ਝਟਕੇ ਸਹਿਣ ਦੇ ਕਾਬਲ ਬਣਾਉਂਦਾ ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਆਪਣੇ ਹੱਥ ਨੂੰ ਆਪਣੀ ਪਿੱਠ ਦੇ ਮੱਧ ਵਿੱਚੋਂ ਹੇਠਾਂ ਵੱਲ ਲੈ ਜਾਓ ਤਾਂ ਤੁਹਾਨੂੰ ਇੱਕ ਕਠੌਰ ਉਭਾਰਾਂ ਵਾਲੀ ਰਚਨਾ ਦਾ ਅਨੁਭਵ ਹੋਵੇਗਾ। ਇਹ ਰੀੜ੍ਹ ਦੀ ਹੱਡੀ ਜਾਂ ਬੈਕਬੋਨ ਹੈ ਜਿਹੜੀ ਕਿ ਸੁਖਮਨਾ ਨਾੜੀ ਦੀ ਰੱਖਿਆ ਕਰਦੀ ਹੈ।

7.1.4 ਨਾੜੀ ਟਿਸ਼ੂ ਕਿਵੇਂ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ? How does the Nervous Tissue cause Action ?

ਹੁਣ ਤੱਕ ਅਸੀਂ ਨਾੜੀ ਟਿਸ਼ੂ ਬਾਰੇ ਵਾਰਤਾਲਾਪ ਕਰਦੇ ਰਹੇ ਹਾਂ ਕਿ ਇਹ ਕਿਵੇਂ ਸੂਚਨਾ ਇਕੱਤਰ ਕਰਦਾ ਹੈ, ਇਸ ਨੂੰ ਸਰੀਰ ਵਿੱਚ ਭੇਜਦਾ ਹੈ, ਸੂਚਨਾ ਤੇ ਅਮਲ ਕਰਦਾ ਹੈ, ਸੂਚਨਾ ਦੇ ਆਧਾਰ 'ਤੇ ਨਿਰਣਾ ਲੈਂਦਾ ਹੈ ਅਤੇ ਕਿਰਿਆ ਲਈ ਨਿਰਣੇ ਨੂੰ ਪੇਸ਼ੀਆਂ ਤੱਕ ਭੇਜਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਜਦੋਂ ਕਿਰਿਆ ਜਾਂ ਗਤੀ ਪੂਰੀ ਹੋਣੀ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਪੇਸ਼ੀ ਟਿਸ਼ੂ ਅੰਤਮ ਕੰਮ ਕਰੇਗਾ। ਜੰਤੂ ਪੇਸ਼ੀਆਂ ਕਿਵੇਂ ਗਤੀ ਕਰਦੀਆਂ ਹਨ? ਜਦੋਂ ਨਾੜੀ ਆਵੇਗ ਪੇਸ਼ੀ ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ ਤਾਂ ਨਾੜੀ ਰੇਸ਼ੇ ਦਾ ਗਤੀ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ।ਇੱਕ ਨਾੜੀ ਸੈੱਲ ਕਿਵੇਂ ਗਤੀ ਕਰਦਾ ਹੈ? ਸੈੱਲ ਪੱਧਰ ਉੱਪਰ ਗਤੀ ਵਾਸਤੇ ਸਭ ਤੋਂ ਸਰਲ ਧਾਰਨਾ ਹੈ ਕਿ ਪੇਸ਼ੀ ਸੈੱਲ ਆਪਣੀ ਸ਼ਕਲ ਬਦਲ ਕੇ ਅਤੇ ਛੋਟਾ ਹੋ ਕੇ ਗਤੀ ਕਰਦਾ ਹੈ।ਅਗਲਾ ਪ੍ਰਸ਼ਨ ਹੈ ਕਿ ਪੇਸ਼ੀ ਸੈੱਲ ਆਪਣੀ ਸ਼ਕਲ ਕਿਵੇਂ ਬਦਲਦਾ ਹੈ? ਇਸ ਦਾ ਉੱਤਰ ਸੈੱਲ ਦੇ ਅੰਗਾਂ ਦੀ ਰਸਾਇਣਿਕ ਬਣਤਰ ਵਿੱਚ ਹੈ।ਪੇਸ਼ੀ ਸੈੱਲਾਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਪ੍ਕਾਰ ਦੀ ਪ੍ਰਟੀਨ ਹੁੰਦੀ ਹੈ ਜੋ ਉਹਨਾਂ ਦੀ ਸ਼ਕਲ ਅਤੇ ਵਿਵਸਥਾ ਦੋਵੇਂ ਹੀ ਬਦਲ ਦਿੰਦੀ ਹੈ। ਸੈੱਲ ਵਿੱਚ ਇਹ ਨਾੜੀ ਬਿਜਲਈ ਆਵੇਗ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਇਹ ਘਟਨਾ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਹਨਾਂ ਪ੍ਰਟੀਨਾਂ ਦੀ ਨਵੀਂ ਵਿਵਸਥਾ ਪੇਸ਼ੀ ਦੇ ਸੈੱਲਾਂ ਨੂੰ ਨਵਾਂ ਛੋਟਾ ਆਕਾਰ ਦਿੰਦੀ ਹੈ।ਯਾਦ ਕਰੋ ਜਦੋਂ ਅਸੀਂ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਪੇਸ਼ੀ ਟਿਸ਼ੂਆਂ ਦੀ ਚਰਚਾ ਕੀਤੀ ਸੀ ਤਾਂ ਭਿੰਨ ਭਿੰਨ ਪ੍ਕਾਰ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਜਿਵੇਂ ਕਿ ਇੱਛਤ ਪੇਸ਼ੀਆਂ ਅਤੇ ਅਣਇੱਛਤ ਪੇਸ਼ੀਆਂ ਦਾ ਜ਼ਿਕਰ ਕੀਤਾ ਸੀ। ਹੁਣ ਤੱਕ ਅਸੀਂ ਜੋ ਚਰਚਾ ਕੀਤੀ ਹੈ ਉਸ ਦੇ ਆਧਾਰ 'ਤੇ ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਇਹਨਾਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੋ ਸਕਦਾ ਹੈ?

ਪ੍ਰਸ਼ਨ

- ਪ੍ਰਤਿਵਿਰਤੀ ਕਿਰਿਆ ਅਤੇ ਤੁਰਨ ਵਿੱਚ ਕੀ ਔਤਰ ਹੈ?
- 2. ਦੋ ਨਿਊਰਾਨਾਂ ਵਿਚਕਾਰ ਸਾਇਨੈਪਸ ਤੇ ਕੀ ਹੁੰਦਾ ਹੈ?
- 3. ਦਿਮਾਗ ਦਾ ਕਿਹੜਾ ਭਾਗ ਸਰੀਰ ਦੀ ਸਥਿਤੀ ਅਤੇ ਸੰਤੁਲਨ ਨੂੰ ਬਣਾਈ ਰੱਖਦਾ ਹੈ?
- 4. ਅਸੀਂ ਅਗਰਬੱਤੀ ਦੀ ਗੈਧ ਦਾ ਪਤਾ ਕਿਵੇਂ ਕਰਦੇ ਹਾਂ?
- ਪ੍ਰਤਿਵਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਦਿਮਾਗ ਦੀ ਕੀ ਭੂਮਿਕਾ ਹੈ?

7.2 ਪੌਦਿਆਂ ਵਿੱਚ ਤਾਲਮੇਲ (Co-ordination in Plants)

ਸਰੀਰ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਦੇ ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ ਲਈ ਜੰਤੂਆਂ ਵਿੱਚ ਨਾੜੀ ਪ੍ਰਬੰਧ ਹੁੰਦਾ ਹੈ ਪਰ ਪੌਦਿਆਂ ਵਿੱਚ ਨਾ ਤਾਂ ਨਾੜੀ ਪ੍ਰਬੰਧ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਪੇਸ਼ੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਕਿਸੇ ਉਤੇਜਨਾ ਲਈ ਇਹ ਕਿਵੇਂ ਪ੍ਤਿਕਿਰਿਆ ਕਰਦੇ ਹਨ? ਜਦੋਂ ਅਸੀਂ ਛੂਈ ਮੂਈ (ਲਾਜਵੰਤੀ) ਪੌਦੇ ਦੀਆਂ ਪੱਤੀਆਂ ਨੂੰ ਛੋਂਹਦੇ ਹਾਂ ਤਾਂ ਉਹ ਤੁਰੰਤ ਇਕੱਠਾ ਹੋਣਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਹੇਠਾਂ ਨੂੰ ਝੁਕ ਜਾਂਦੀਆਂ ਹਨ। ਜਦੋਂ ਇੱਕ ਬੀਜ ਉੱਗਦਾ ਹੈ ਤਾਂ ਜੜ੍ਹਾਂ ਹੇਠਾਂ ਵੱਲ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਤਣਾ ਉੱਪਰ ਵੱਲ ਜਾਂਦਾ ਹੈ। ਪਹਿਲੀ ਸਥਿਤੀ ਵਿੱਚ ਛੂਈ ਮੂਈ ਪੌਦੇ ਦੀਆਂ ਪੱਤੀਆਂ ਛੋਹ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਨਾਲ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਗਤੀ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਗਤੀ ਨਾਲ ਵਾਧੇ ਦਾ ਕੋਈ ਸੰਬੰਧ ਨਹੀਂ ਹੈ। ਦੂਜੀ ਸਥਿਤੀ ਵਿੱਚ ਪੌਦੇ ਦੀ ਕਿਸੇ ਖਾਸ ਦਿਸ਼ਾ ਵਲ ਗਤੀ ਵਾਧੇ ਕਾਰਨ ਹੁੰਦੀ ਹੈ। ਜੇਕਰ ਇਸ ਦੇ ਵਾਧੇ ਨੂੰ ਕਿਸੇ ਤਰ੍ਹਾਂ ਰੋਕ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਇਹ ਕੋਈ ਗਤੀ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰੇਗਾ। ਇਸ ਲਈ ਪੌਦੇ ਦੋ ਭਿੰਨ ਭਿੰਨ ਪ੍ਕਾਰ ਦੀਆਂ ਗਤੀਆਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਵਾਧੇ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਅਤੇ ਦੂਜੀ ਵਾਧੇ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੀ।

ਚਿੱਤਰ 7.4 ਛੂਈ ਮੂਈ ਦਾ ਪੌਦਾ

7.2.1 ਸੰਵੇਦਨਾ ਪ੍ਰਤੀ ਤੁਰੰਤ ਪ੍ਰਤਿਕਿਰਿਆ Immediate Response to Stimulus

ਆਓ ਪਹਿਲੇ ਪ੍ਕਾਰ ਦੀ ਗਤੀ ਬਾਰੇ ਵਿਚਾਰ ਕਰੀਏ ਜਿਵੇਂ ਕਿ ਛੂਈ ਮੂਈ ਪੌਦੇ ਦੀ ਗਤੀ। ਕਿਉਂਕਿ ਇਹ ਵਾਧੇ ਨਾਲ ਸੰਬੰਧਿਤ ਨਹੀਂ ਇਸ ਲਈ ਛੋਹ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਪੱਤੀਆਂ ਵਿੱਚ ਗਤੀ ਆਉਣੀ ਚਾਹੀਦੀ ਹੈ ਪ੍ਰੰਤੂ ਇੱਥੇ ਕੋਈ ਨਾੜੀ ਟਿਸ਼ੂ ਨਹੀਂ ਹੈ ਅਤੇ ਨਾ ਹੀ ਕੋਈ ਪੇਸ਼ੀ ਟਿਸ਼ੂ, ਤਾਂ ਪੌਦਾ ਕਿਵੇਂ ਛੋਹ ਨੂੰ ਮਹਿਸੂਸ ਕਰਦਾ ਹੈ ਅਤੇ ਕਿਸ ਪ੍ਕਾਰ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਵਿੱਚ ਪੱਤੀਆਂ ਗਤੀ ਕਰਦੀਆਂ ਹਨ?

ਜੇਕਰ ਅਸੀਂ ਵਿਚਾਰ ਕਰੀਏ ਕਿ ਪੌਦੇ ਨੂੰ ਕਿਸ ਬਿੰਦੂ ਉੱਤੇ ਸਪਰਸ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪੌਦੇ ਦੇ ਕਿਹੜੇ ਭਾਗ ਵਿੱਚ ਗਤੀ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਸਪਰਸ਼ ਵਾਲਾ ਬਿੰਦੂ ਅਤੇ ਗਤੀ ਵਾਲਾ ਬਿੰਦੂ ਦੋਵੇਂ ਭਿੰਨ ਹਨ। ਇਸ ਲਈ ਸਪਰਸ਼ ਹੋਣ ਦੀ ਸੂਚਨਾ ਸੰਚਾਰਿਤ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਪੌਦਾ ਇਸ ਸੂਚਨਾ ਨੂੰ ਇੱਕ ਸੈੱਲ ਤੋਂ ਦੂਜੇ ਸੈੱਲ ਤੱਕ ਸੰਚਾਰਿਤ ਕਰਨ ਲਈ ਬਿਜਲੀ ਰਸਾਇਣ ਸਾਧਨ ਦਾ ਉਪਯੋਗ ਵੀ ਕਰਦਾ ਹੈ ਪ੍ਰੰਤੂ ਜੰਤੂਆਂ ਵਾਂਗੂੰ ਪੌਦੇ ਵਿੱਚ ਸੂਚਨਾਵਾਂ ਦੇ ਚੱਲਣ ਲਈ ਕੋਈ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਟਿਸ਼ੂ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਜਾਂ ਜੰਤੂਆਂ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਗਤੀ ਕਰਨ ਲਈ ਕੁੱਝ ਸੈੱਲਾਂ ਨੂੰ ਆਪਣੀ ਸ਼ਕਲ ਬਦਲ ਲੈਣੀ ਚਾਹੀਦੀ ਹੈ। ਜੰਤੂ ਪੇਸ਼ੀ ਸੈੱਲਾਂ ਦੀ ਤਰ੍ਹਾਂ ਪੌਦਾ ਸੈੱਲਾਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਪ੍ਰੋਟੀਨ ਤਾਂ ਨਹੀਂ ਹੁੰਦੇ ਪਰ ਉਹ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰਕੇ ਆਪਣੀ ਸ਼ਕਲ ਬਦਲ ਲੈਂਦੇ ਹਨ ਇਸ ਲਈ ਫੁੱਲਣ ਅਤੇ ਸੁੰਗੜਨ ਦੇ ਫਲਸਰੂਪ ਉਹਨਾਂ ਦਾ ਆਕਾਰ ਬਦਲ ਜਾਂਦਾ ਹੈ।

7.2.2 ਵਾਧੇ ਦੇ ਕਾਰਨ ਗਤੀ (Movement due to growth)

ਮਟਰ ਦੇ ਪੌਦੇ ਦੀ ਤਰ੍ਹਾਂ ਕੁੱਝ ਪੌਦੇ ਦੂਜੇ ਪੌਦਿਆਂ ਜਾਂ ਵਾੜ ਉੱਤੇ ਤੰਦੜੀਆਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਉੱਪਰ ਚੜ੍ਹਦੇ ਹਨ। ਇਹ ਤੰਦੜੀਆਂ ਸਪਰਸ਼ ਲਈ ਸੰਵੇਦਨਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਜਦੋਂ ਇਹ ਕਿਸੇ ਸਹਾਰੇ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੀਆਂ ਹਨ ਤਾਂ ਤੰਦੜੀ ਦਾ ਉਹ ਭਾਗ ਜੋ ਵਸਤੂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਉਨੀ ਤੇਜ਼ੀ ਨਾਲ ਵਾਧਾ ਨਹੀਂ ਕਰਦਾ ਜਿੰਨਾ ਤੰਦੜੀ ਦਾ ਉਹ ਭਾਗ ਜਿਹੜਾ ਵਸਤੂ ਤੋਂ ਪਰ੍ਹੇ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਕਾਰਨ ਤੰਦੜੀ ਵਸਤੂ ਦੇ ਆਲੇ ਦੁਆਲੇ ਲਿਪਟ ਜਾਂਦੀ ਹੈ ਅਤੇ ਉਸ ਨਾਲ ਚਿੰਬੜ ਜਾਂਦੀ ਹੈ। ਆਮ ਕਰਕੇ ਪੌਦੇ ਹੌਲੀ-ਹੌਲੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰਕੇ ਉਤੇਜਨਾ ਪ੍ਰਤਿ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਵਾਧਾ ਦਿਸ਼ਾਵੀ ਹੈ ਇਸ ਲਈ ਇਹ ਲਗਦਾ ਹੈ ਕਿ ਪੌਦਾ ਗਤੀ ਕਰ ਰਿਹਾ ਹੈ। ਆਓ ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਗਤੀ ਨੂੰ ਇੱਕ ਉਦਾਹਰਨ ਨਾਲ ਸਮਝਦੇ ਹਾਂ।

ਚਿੱਤਰ 7.5 ਪ੍ਰਕਾਸ਼ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪੌਦੇ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ

ਚਿੱਤਰ 7.6 ਅਨੁਵਰਤਨ ਦਰਸਾਉਂਦਾ ਪੌਦਾ

ਕਿਰਿਆ 7.2

- ਇੱਕ ਕੋਨੀਕਲ ਫਲਾਸਕ ਨੂੰ ਪਾਣੀ ਨਾਲ ਭਰੋ। ਫਲਾਸਕ ਦੇ ਮੁੰਹ ਨੂੰ ਤਾਰਾਂ ਦੀ ਜਾਲੀ ਨਾਲ ਢਕ ਦਿਓ।
- 🔹 ਇੱਕ ਤਾਜ਼ਾ ਪੁੰਗਰਦਾ ਸੇਮ ਦਾ ਬੀਜ ਤਾਰ ਦੀ ਜਾਲੀ ਉੱਤੇ ਰੱਖੋ।
- ਇੱਕ ਪਾਸੇ ਤੋਂ ਖੁੱਲ੍ਹਾ ਇੱਕ ਗੱਤੇ ਦਾ ਬਕਸਾ ਲਓ।
- ਫਲਾਸਕ ਨੂੰ ਬਕਸੇ ਵਿੱਚ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋਂ ਕਿ ਬਕਸੇ ਦਾ ਖੁੱਲ੍ਹਾ ਪਾਸਾ ਖਿੜਕੀ ਵੱਲ ਹੋਵੇਂ ਜਿਸ ਤੋਂ ਪ੍ਰਕਾਸ਼ ਆ ਰਿਹਾ ਹੋਵੇ। (ਚਿੱਤਰ 7.5)।
- ਦੋ ਜਾਂ ਤਿੰਨ ਦਿਨ ਪਿੱਛੋਂ ਦੇਖੋ। ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਕਰੂੰਬਲਾਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਵੱਲ ਝੁਕ ਜਾਂਦੀਆਂ ਹਨ ਤੇ ਜੜ੍ਹਾਂ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਦੂਰ ਪਰ੍ਹੇ ਵੱਲ ਜਾਂਦੀਆਂ ਹਨ।
- ਹੁਣ ਫਲਾਸਕ ਨੂੰ ਇਸ ਪ੍ਕਾਰ ਘੁਮਾਓ ਕਿ ਕਰੂਬਲਾਂ ਪ੍ਕਾਸ਼ ਤੋਂ ਪਰ੍ਹੇ ਅਤੇ ਜੜ੍ਹਾਂ ਪ੍ਕਾਸ਼ ਵੱਲ ਹੋ ਜਾਣ। ਇਸ ਨੂੰ ਇਸੇ ਅਵਸਥਾ ਵਿੱਚ ਕੁੱਝ ਦਿਨ ਅਡੋਲ ਪਿਆ ਰਹਿਣ ਦਿਓ।
- ਕੀ ਕਰੂਬਲਾਂ ਅਤੇ ਜੜ੍ਹਾਂ ਨੇ ਆਪਣੀ ਪੁਰਾਣੀ ਦਿਸ਼ਾ ਬਦਲ ਲਈ ਹੈ?
- ਕੀ ਇਹ ਅੰਤਰ ਨਵੇਂ ਵਾਧੇ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹਨ?
- ਇਸ ਕਿਰਿਆ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢਦੇ ਹੋ?

ਵਾਤਾਵਰਨੀ ਪ੍ਰੇਰਣਾ ਜਿਵੇਂ ਕਿ ਪ੍ਰਕਾਸ਼ ਜਾਂ ਗੁਰੂਤਾ ਪੌਦੇ ਦੇ ਵਾਧੇ ਵਾਲੇ ਭਾਗ ਵਿੱਚ ਦਿਸ਼ਾ ਪਰਿਵਰਤਨ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਹ ਦਿਸ਼ਾਵੀ ਜਾਂ ਅਨੁਵਰਤਨੀ ਗਤੀਆਂ ਉਤੇਜਕ ਦੇ ਵੱਲ ਜਾਂ ਉਸ ਤੋਂ ਪਰ੍ਹੇ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਦੋ ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੀਆਂ ਪ੍ਰਕਾਸ਼ ਅਨੁਵਰਤਨੀ ਗਤੀਆਂ ਵਿੱਚ ਕਰੂੰਬਲਾਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਵੱਲ ਮੁੜ ਕੇ ਪ੍ਰਤਿਕਿਰਿਆ ਅਤੇ ਜੜ੍ਹਾਂ ਇਸ ਤੋਂ ਪਰੇ ਮੁੜ ਕੇ ਪਤਿਕਿਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਨਾਲ ਪੌਦੇ ਦੀ ਸਹਾਇਤਾ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ?

ਪੌਦੇ ਹੋਰ ਉਤੇਜਕਾਂ ਵਾਸਤੇ ਵੀ ਪ੍ਤਿਕਿਰਿਆ ਕਰਦੇ ਹਨ। ਪੌਦੇ ਦੀਆਂ ਜੜ੍ਹਾਂ ਸਦਾ ਹੀ ਹੇਠਾਂ ਵੱਲ ਵਧਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਕਰੂੰਬਲਾਂ ਆਮ ਕਰਕੇ ਉੱਪਰ ਨੂੰ ਧਰਤੀ ਤੋਂ ਪਰ੍ਹੇ ਵਾਧਾ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਲੜੀਵਾਰ ਉੱਪਰ ਵੱਲ ਅਤੇ ਹੇਠਾਂ ਵੱਲ ਕਰੂੰਬਲਾਂ ਅਤੇ ਜੜ੍ਹਾਂ ਵਿੱਚ ਵਾਧਾ ਧਰਤੀ ਦੀ ਖਿੱਚ ਜਾਂ ਗੁਰੂਤਾ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆ ਜਾਂ ਸਪਸ਼ੱਟ ਤੌਰ ਤੇ ਭੌਂ ਅਨੁਵਰਤਨ ਹੈ (ਚਿੱਤਰ 7.6)। ਜੇਕਰ ਜਲ ਦਾ ਅਰਥ ਪਾਣੀ ਅਤੇ ਰਸਾਇਣ ਦਾ ਅਰਥ ਰਸਾਇਣਿਕ ਪਦਾਰਥ ਹੋਵੇ ਤਾਂ ਜਲ ਅਨੁਵਰਤਨ ਅਤੇ ਰਸਾਇਣ ਅਨੁਵਰਤਨ ਦੇ ਕੀ ਅਰਥ ਹਨ? ਕੀ ਅਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਦਿਸ਼ਾਵੀ ਗਤੀਆਂ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਬਾਰੇ ਵਿਚਾਰ ਕਰ ਸਕਦੇ ਹਾਂ? ਰਸਾਇਣ ਅਨੁਵਰਤਨ ਦੀ ਇੱਕ ਉਦਾਹਰਨ ਪ੍ਰਾਗ ਨਲੀਆਂ ਦਾ ਬੀਜ ਅੰਡ ਵੱਲ ਵਾਧਾ ਕਰਨਾ ਹੈ ਜਿਸ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਸੀਂ ਵਧੇਰੇ ਜਾਣਕਾਰੀ "ਜੀਵ ਜਣਨ ਕਿਵੇਂ ਕਰਦੇ ਹਨ" ਅਧਿਆਇ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ।

ਆਓ ਇੱਕ ਵਾਰ ਅਸੀਂ ਮੁੜ ਵਿਚਾਰ ਕਰੀਏ ਕਿ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਦੇ ਸਰੀਰ ਵਿੱਚ ਸੂਚਨਾ ਕਿਵੇਂ ਸੰਚਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਛੂਈ ਮੂਈ ਪੌਦੇ ਵਿੱਚ ਸਪਰਸ਼ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਦੀ ਗਤੀ ਬਹੁਤ ਤੇਜ਼ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਦਿਨ ਅਤੇ ਰਾਤ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਵਿੱਚ ਸੂਰਜਮੁਖੀ ਦੇ ਫੁੱਲਾਂ ਦੀ ਗਤੀ ਬਹੁਤ ਧੀਮੀ ਹੈ। ਪੌਦੇ ਦੇ ਵਾਧੇ ਨਾਲ ਸੰਬੰਧਿਤ ਗਤੀਆਂ ਵੀ ਬਹੁਤ ਹੌਲੀ ਹੁੰਦੀਆਂ ਹਨ। ਜੰਤੂ ਸਰੀਰਾਂ ਵਿੱਚ ਵੀ ਵਾਧੇ ਲਈ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਨਿਯੰਤਰਿਤ ਕੀਤੇ ਆਦੇਸ਼ ਹਨ। ਸਾਡੀਆਂ ਬਾਹਵਾਂ ਅਤੇ ਉਂਗਲੀਆਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧੀਆਂ ਹਨ ਨਾ ਕਿ ਉਗੜ ਦੁਗੜ। ਨਿਯੰਤਰਿਤ ਗਤੀਆਂ ਹੌਲੀ ਜਾਂ ਤੇਜ਼ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਜੇਕਰ ਉਤੇਜਨਾ ਲਈ ਤੀਬਰ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁੰਦੀ ਹੈ ਤਾਂ ਪਰਿਵਹਿਨ ਵੀ ਬਹੁਤ ਤੀਬਰਤਾ ਨਾਲ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਲਈ ਸੰਚਾਲਨ ਮਾਧਿਅਮ ਵੀ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਚੱਲਣ ਵਾਲਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸਦੇ ਲਈ ਬਿਜਲਈ ਆਵੇਗ ਇੱਕ ਉੱਤਮ ਸਾਧਨ ਹੈ ਪ੍ਰੰਤੂ ਬਿਜਲਈ ਆਵੇਗ ਦੇ ਉਪਯੋਗ ਲਈ ਕੁੱਝ ਸੀਮਾਵਾਂ ਹਨ। ਸਭ ਤੋਂ ਪਹਿਲੀ ਇਹ ਕਿ ਇਹ ਜੰਤੂ ਦੇ ਕੇਵਲ ਉਹਨਾਂ ਸੈੱਲਾਂ ਤੱਕ ਪਹੁੰਚੇਗਾ ਜੋ ਨਾੜੀ ਟਿਸ਼ੂਆਂ ਨਾਲ ਜੁੜੇ ਹੋਣਗੇ ਨਾ ਕਿ ਸਰੀਰ ਦੇ ਹਰ ਇੱਕ ਸੈੱਲ ਤੀਕ। ਦੂਜਾ, ਜੇ ਇੱਕ ਵਾਰ ਇੱਕ ਸੈੱਲ ਵਿੱਚੋਂ ਬਿਜਲਈ ਆਵੇਗ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸੰਚਾਰਿਤ ਹੁੰਦਾ ਹੈ, ਮੁੜ ਨਵੀਂ ਆਵੇਗ ਉਤਪੰਨ ਕਰਨ ਲਈ ਸੈੱਲ ਆਪਣੀ ਕਾਰਜ ਵਿਧੀ ਨੂੰ ਮੁੜ ਚਾਲੂ ਕਰਨ ਲਈ ਫਿਰ ਤੋਂ ਕੁੱਝ ਸਮਾਂ ਲਵੇਗਾ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਸੈੱਲ ਨਾ ਤਾਂ ਲਗਾਤਾਰ ਬਿਜਲਈ ਆਵੇਗ ਉਤਪੰਨ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਨਾ ਹੀ ਸੰਚਾਰਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਕੋਈ ਅਸਚਰਜ ਵਾਲੀ ਗੱਲ ਨਹੀਂ ਕਿ ਬਹੁਤੇ ਬਹੁਸੈੱਲੀ ਜੀਵ ਸੈੱਲਾਂ ਵਿਚਕਾਰ ਸੰਚਾਰ ਦੇ ਲਈ ਹੋਰ ਸਾਧਨਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਰਸਾਇਣਿਕ ਪਰਿਵਹਿਨ।

ਜੇਕਰ ਇੱਕ ਬਿਜਲਈ ਆਵੇਗ ਉਤਪੰਨ ਕਰਨ ਦੀ ਬਜਾਏ ਉਤੇਜਿਤ ਸੈੱਲ ਇੱਕ ਰਸਾਇਣਿਕ ਯੋਗਿਕ ਛੱਡਣਾ ਸ਼ੁਰੂ ਕਰ ਦੇਣ ਤਾਂ ਇਹ ਯੋਗਿਕ ਆਲੇ ਦੁਆਲੇ ਇਕਦਮ ਹੀ ਸਾਰੇ ਸੈੱਲਾਂ ਵਿੱਚ ਪਸਰਿਤ ਹੋ ਜਾਵੇਗਾ। ਜੇਕਰ ਆਲੇ ਦੁਆਲੇ ਸੈੱਲਾਂ ਕੋਲ ਇਕਦਮ ਇਸ ਯੋਗਿਕ ਦਾ ਪਤਾ ਲਗਾਉਣ ਦੇ ਸਾਧਨ ਹੋਣ ਤਾਂ ਉਹਨਾਂ ਦੀ ਸਤਹ ਉੱਤੇ ਮੌਜ਼ੂਦ ਵਿਸ਼ੇਸ਼ ਅਣੂਆਂ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਉਹ ਸੂਚਨਾਵਾਂ ਦੀ ਪਛਾਣ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਯੋਗ ਹੋਣਗੇ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਸੰਚਾਰਿਤ ਵੀ ਕਰਨਗੇ। ਬੇਸ਼ਕ ਇਹ ਪ੍ਰਕਿਰਿਆ ਬਹੁਤ ਧੀਮੀ ਹੋਵੇਗੀ ਪਰ ਇਹ ਨਾੜੀ ਸੰਬੰਧ ਦੇ ਬਿਨਾਂ ਵੀ ਸਰੀਰ ਦੇ ਸਾਰੇ ਸੈੱਲਾਂ ਤੱਕ ਪਹੁੰਚੇਗੀ ਅਤੇ ਇਸ ਨੂੰ ਲਗਾਤਾਰ ਅਤੇ ਸਥਾਈ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਬਹੁਸੈੱਲੀ ਜੰਤੂਆਂ ਦੁਆਰਾ ਕੰਟਰੋਲ ਅਤੇ ਤਾਲਮੇਲ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਇਹ ਯੋਗਿਕ ਜਾਂ ਹਾਰਮੋਨ ਸਾਡੀ ਆਸ ਅਨੁਸਾਰ ਭਿੰਨਤਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਵੱਖ ਵੱਖ ਪੌਦਾ ਹਾਰਮੋਨ ਵਾਧੇ, ਵਿਕਾਸ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਤੀ, ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਤਾਲਮੇਲ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਦੇ ਸੰਸਲੇਸ਼ਨ ਦਾ ਸਥਾਨ ਇਹਨਾਂ ਦੇ ਕਿਰਿਆ ਖੇਤਰ ਤੋਂ ਦੂਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸਾਧਾਰਨ ਪਸਰਣ ਦੁਆਰਾ ਇਹ ਕਿਰਿਆ ਖੇਤਰ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੇ ਹਨ।

ਆਓ ਅਸੀਂ ਇੱਕ ਉਦਾਹਰਨ ਲੈਂਦੇ ਹਾਂ, ਜੋ ਕਿਰਿਆ ਅਸੀਂ ਪਹਿਲਾਂ ਕੀਤੀ ਹੋਈ ਹੈ (7.2)। ਜਦੋਂ ਵਾਧਾ ਕਰਦੇ ਪੌਦੇ ਨੂੰ ਪ੍ਕਾਸ਼ ਮਿਲਦਾ ਹੈ ਤਦ ਇੱਕ ਆਕਸਿਨ ਨਾਮੀ ਹਾਰਮੋਨ ਕਾਰੂੰਬਲਾਂ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਸੰਸਲਿਸ਼ਟ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸੈੱਲਾਂ ਨੂੰ ਲੰਬਾਈ ਵਿੱਚ ਵਾਧਾ ਕਰਨ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਪੌਦੇ ਉੱਤੇ ਇੱਕ ਦਿਸ਼ਾ ਤੋਂ ਪ੍ਕਾਸ਼ ਆ ਰਿਹਾ ਹੁੰਦਾ ਹੈ ਆਕਸਿਨ ਪਸਰਿਤ ਹੋ ਕੇ ਛਾਂ ਵਾਲੇ ਭਾਗ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ। ਕਰੂੰਬਲਾਂ ਦੇ ਪ੍ਕਾਸ਼ ਤੋਂ ਪਰੇ ਵਾਲੇ ਪਾਸੇ ਵਿੱਚ ਆਕਸਿਨ ਦੀ ਮੌਜੂਦਗੀ ਸੈੱਲਾਂ ਨੂੰ ਲੰਬਾਈ ਵਿੱਚ ਵਾਧੇ ਲਈ ਉਤੇਜਿਤ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਪੌਦਾ ਪ੍ਕਾਸ਼ ਵੱਲ ਮੁੜਦਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

ਪੌਦਾ ਹਾਰਮੋਨ ਦਾ ਇੱਕ ਹੋਰ ਉਦਾਹਰਨ ਜਿੱਥੇਰੇਲਿਨ ਹੈ ਜੋ ਆਕਸਿਨ ਦੀ ਤਰ੍ਹਾਂ ਤਣੇ ਦੇ ਵਾਧੇ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦੇ ਹਨ।ਸਾਈਟੋਕਾਇਨਿਨ ਸੈੱਲ ਵਿਭਾਜਨ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰਦਾ ਹੈ ਅਤੇ ਇਸ ਲਈ ਇਹ ਉਹਨਾਂ ਖੇਤਰਾਂ ਵਿੱਚ, ਜਿੱਥੇ ਸੈੱਲ ਵਿਭਾਜਨ ਤੇਜ਼ ਹੁੰਦਾ ਹੈ ਵਿਸ਼ੇਸ਼ ਕਰ ਫਲਾਂ ਅਤੇ ਬੀਜਾਂ ਵਿੱਚ, ਵਧੇਰੇ ਸੰਘਣਤਾ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ।ਇਹ ਉਹਨਾਂ ਪੌਦਾ ਹਾਰਮੋਨ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ ਜੋ ਵਾਧੇ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ ਪ੍ਰੰਤੂ ਪੌਦੇ ਦੇ ਵਾਧੇ ਨੂੰ ਰੋਕਣ ਲਈ ਵੀ ਸੰਕੇਤਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਐਬਸਿਸਿਕ ਤੇਜ਼ਾਬ ਵਾਧਾ ਰੋਕਣ ਵਾਲੇ ਹਾਰਮੋਨ ਦੀ ਇੱਕ ਉਦਾਹਰਨ ਹੈ।ਪੱਤਿਆਂ ਦਾ ਮੁਰਝਾਉਣਾ ਵੀ ਇਸ ਦੇ ਪ੍ਰਭਾਵਾਂ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਪੌਦਾ ਹਾਰਮੋਨ ਕੀ ਹਨ?
- ਛੂਈ ਮੂਈ ਪੌਦੇ ਦੀਆਂ ਪੱਤੀਆਂ ਦੀ ਗਤੀ, ਪ੍ਰਕਾਸ਼ ਵੱਲ ਕਰੂੰਬਲਾਂ ਦੀ ਗਤੀ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹੈ?
- 3. ਇੱਕ ਪੈਦਾ ਹਾਰਮੋਨ ਦਾ ਉਦਾਹਰਨ ਦਿਓ ਜੋ ਵਾਧੇ ਲਈ ਉਤੇਜਿਤ ਕਰਦਾ ਹੈ।
- ਕਿਸ ਸਹਾਰ ਦੇ ਚੋਹਾਂ ਪਾਸਿਆਂ ਵੱਲ ਤੰਦੜੀਆਂ ਦੇ ਵਾਧੇ ਵਿੱਚ ਆੱਕਸਿਨ ਕਿਵੇਂ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ?
- 5. ਜਲ ਅਨੁਵਰਤਨ ਦਰਸਾਉਣ ਲਈ ਇੱਕ ਪ੍ਯੋਗ ਸੈੱਟ ਕਰੋ।

7.3 ਜੰਤੂਆਂ ਵਿੱਚ ਹਾਰਮੋਨ (Hormones in Animals)

ਅਜਿਹੇ ਰਸਾਇਣ ਜਾਂ ਹਾਰਮੋਨ ਜੰਤੂਆਂ (ਪ੍ਰਾਣੀਆਂ) ਵਿੱਚ ਕਿਸ ਪ੍ਕਾਰ ਸੂਚਨਾਵਾਂ ਦੇ ਸੰਚਾਰਨ ਦੇ ਸਾਧਨ ਵਜੋਂ ਵਰਤੇ ਜਾਂਦੇ ਹਨ? ਕੁੱਝ ਜੰਤੂ ਜਿਵੇਂ ਕਿ ਗਲਹਿਰੀ ਜਦੋਂ ਸਹਿਮ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਤਾਂ ਕੀ ਮਹਿਸੂਸ ਕਰਦੀ ਹੈ? ਉਹ ਆਪਣਾ ਸਰੀਰ ਲੜਨ ਜਾਂ ਭੱਜ ਜਾਣ ਲਈ ਤਿਆਰ ਕਰਦੀ ਹੈ। ਦੋਵੇਂ ਹੀ ਬਹੁਤ ਜਟਿਲ ਕਿਰਿਆਵਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਢੰਗ ਨਾਲ ਕਰਨ ਲਈ ਵਧੇਰੇ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ। ਇਸ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਭਿੰਨ ਭਿੰਨ ਟਿਸ਼ੂਆਂ ਦਾ ਉਪਯੋਗ ਹੋਵੇਗਾ ਅਤੇ ਉਹਨਾਂ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਮਿਲ ਕੇ ਇਹ ਕੰਮ ਕਰਨਗੀਆਂ। ਬੇਸ਼ਕ ਲੜਨਾ ਜਾਂ ਦੌੜਨਾ ਦੇ ਬਦਲਵੀਆਂ ਕਿਰਿਆਵਾਂ ਇੱਕ ਦੂਜੇ ਤੋਂ ਬਿਲਕੁਲ ਭਿੰਨ ਹਨ। ਇਸ ਲਈ ਇਹ ਅਜਿਹੀ ਸਥਿਤੀ ਹੈ ਜਿਸ ਦੌਰਾਨ ਸਰੀਰ ਵਿੱਚ ਕੁੱਝ ਆਮ ਤਿਆਰੀਆਂ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਇਹ ਤਿਆਰੀਆਂ ਆਦਰਸ਼ ਰੂਪ ਵਿੱਚ ਨੇੜਲੇ ਦੇ ਭਵਿੱਖ ਵਿੱਚ ਕਿਸੇ ਵੀ ਕਿਰਿਆ ਨੂੰ ਆਸਾਨ ਬਣਾ ਦੇਣਗੀਆਂ। ਇਹ ਸਭ ਕੁੱਝ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ?

ਜੇਕਰ ਗਲਹਿਰੀ ਦੇ ਸਰੀਰ ਦਾ ਡਿਜ਼ਾਇਨ ਨਾੜੀ ਸੈੱਲਾਂ ਦੁਆਰਾ ਕੇਵਲ ਬਿਜਲਈ ਆਵੇਗ ਉੱਤੇ ਆਸਰਾ ਕਰੇਗਾ ਤਾਂ ਆਗਾਮੀ ਕਿਰਿਆ ਨੂੰ ਕਰਨ ਲਈ ਟਿਸ਼ੂਆਂ ਦੀ ਸੀਮਾ ਸੀਮਤ ਹੋਵੇਗੀ। ਇਸ ਤੋਂ ਉਲਟ ਜੇਕਰ ਰਸਾਇਣਿਕ ਸੰਕੇਤ ਵੀ ਭੇਜਿਆ ਜਾਂਦਾ ਤਾਂ ਇਹ ਸਰੀਰ ਦੇ ਸਾਰੇ ਸੈੱਲਾਂ ਤੀਕ ਪਹੁੰਚਦਾ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਜ਼ਰੂਰੀ ਪਰਿਵਰਤਨ ਹੋ ਜਾਂਦੇ। ਮਨੁੱਖ ਸਹਿਤ ਅਨੇਕ ਜੰਤੂਆਂ ਐਂਡ੍ਰੀਨਲ ਗ੍ਰੰਥੀ ਤੋਂ ਛੱਡੇ ਐਂਡਰੀਨਾਲਿਨ ਹਾਰਮੋਨ ਦੁਆਰਾ ਇਹ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਗ੍ਰੰਥੀਆਂ ਦੀ ਸਥਿਤੀ ਜਾਨਣ ਲਈ ਚਿੱਤਰ 7.7 ਵੇਖੋ।

ਐਡਰੀਨਾਲਿਨ ਸਿੱਧਾ ਲਹੂ ਵਿੱਚ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸ਼ਰੀਰ ਦੇ ਭਿੰਨ ਭਿੰਨ ਭਾਗਾਂ ਤੱਕ ਪਹੁੰਚਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਦਿਲ ਸਹਿਤ ਇਹ ਸਬੰਧਤ ਅੰਗਾਂ ਜਾਂ ਵਿਸ਼ੇਸ਼ ਟਿਸ਼ੂਆਂ ਉੱਤੇ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਦਿਲ ਦੀ ਧੜਕਣ ਤੇਜ਼ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਜੋ ਸਾਡੀਆਂ ਪੇਸ਼ੀਆਂ ਲਈ ਲੋੜੀਂਦੀ ਵਧੇਰੇ ਆਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਪੂਰੀ ਹੋ ਸਕੇ। ਪਾਚਨ ਪ੍ਰਬੰਧ ਅਤੇ ਚਮੜੀ ਨੂੰ ਲਹੂ ਦੀ ਸਪਲਾਈ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਇਹਨਾਂ ਅੰਗਾਂ ਦੇ ਆਲੇ ਦੁਆਲੇ ਦੀਆਂ ਛੋਟੀਆਂ ਧਮਣੀਆਂ ਸੁੰਗੜ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਹਾਰਮੋਨ ਕੁੱਝ ਲਹੂ ਦੀ ਦਿਸ਼ਾ ਸਾਡੀਆਂ ਪਿੰਜਰ ਪੇਸ਼ੀਆਂ ਵੱਲ ਮੋੜ ਦਿੰਦਾ ਹੈ। ਡਾਇਆਫਰਾਮ ਅਤੇ ਪਸਲੀਆਂ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਸੁੰਗੜਨ ਕਾਰਨ ਸਾਹ ਦਰ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਇਹ ਸਾਰੀਆਂ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਮਿਲ ਕੇ ਜੰਤੂ ਸਰੀਰ ਨੂੰ ਸਥਿਤੀ ਨਾਲ ਨਿਪਟਣ ਲਈ ਤਿਆਰ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਜੰਤੂ ਹਾਰਮੋਨ ਅੰਤਰਰਿਸਾਵੀ ਪ੍ਰਣਾਲੀ ਦਾ ਭਾਗ ਹਨ ਜੋ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ ਦਾ ਦਜਾ ਮਾਰਗ ਹੈ।

ਕਿਰਿਆ 7.3

- ਚਿੱਤਰ 7.7 ਵੇਖੋ।
- 🍙 ਚਿੱਤਰ ਵਿੱਚ ਅੰਤਰ ਰਿਸਾਵੀ ਗ੍ਰੇਥੀਆਂ ਦੀ ਪਹਿਚਾਣ ਕਰੋ।
- ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਗ੍ਰੰਥੀਆਂ ਨੂੰ ਪੁਸਤਕ ਵਿੱਚ ਵਰਣਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਪੁਸਤਕਾਲੇ ਵਿੱਚ ਪੁਸਤਕਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਤੇ ਅਧਿਆਪਕ ਜੀ ਨਾਲ ਚਰਚਾ ਕਰਕੇ ਕੁੱਝ ਹੋਰ ਗ੍ਰੰਥੀਆਂ ਦੇ ਕਾਰਜ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ।

ਚਿੱਤਰ 7.7 ਮਾਨਵ ਦੀਆਂ ਅੰਦਰ ਰਿਸਾਵੀ ਗ੍ਰੰਥੀਆਂ (a) ਨਰ, (b) ਮਾਦਾ

ਚੇਤੇ ਕਰੋ ਕਿ ਪੌਦਿਆਂ ਵਿੱਚ ਹਾਰਮੋਨ ਹੁੰਦੇ ਹਨ ਜੋ ਉਹਨਾਂ ਦੀ ਦਿਸ਼ਾਵੀ ਵਾਧੇ ਨੂੰ ਕੈਟਰੋਲ ਕਰਦੇ ਹਨ।ਜੰਤੂ ਹਾਰਮੋਨ ਕੀ ਕਿਰਿਆ ਕਰਦੇ ਹਨ? ਅਸੀਂ ਉਹਨਾਂ ਦੀ ਭੂਮਿਕਾ ਦੀ ਕਲਪਨਾ ਦਿਸ਼ਾਵੀ ਵਾਧੇ ਵਿੱਚ ਨਹੀਂ ਕਰ ਸਕਦੇ ਅਸੀਂ ਕਿਸੇ ਜੰਤੂ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਜਾਂ ਗੁਰੂਤਾ ਦੇ ਆਸਰੇ ਕਿਸੇ ਇੱਕ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧੇਰੇ ਵਾਧਾ ਕਰਦੇ ਕਦੇ ਨਹੀਂ ਵੇਖਿਆ ਹੈ ਪ੍ਰੰਤੂ ਜੇਕਰ ਅਸੀਂ ਇਸ ਬਾਰੇ ਵਧੇਰੇ ਸੋਚੀਏ ਤਾਂ ਇਹ ਸਪੱਸ਼ਟ ਹੋਵੇਗਾ ਕਿ ਜੰਤੂ ਸਰੀਰ ਵਿੱਚ ਵੀ ਸਾਵਧਾਨੀਪੂਰਵ ਨਿਯੰਤਰਿਤ ਕੀਤੇ ਸਥਾਨਾਂ ਉੱਤੇ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਪੌਦੇ ਆਪਣੇ ਸਰੀਰ ਉੱਤੇ ਅਨੇਕ ਸਥਾਨ ਤੇ ਪੱਤੀਆਂ ਉਗਾਉਂਦੇ ਹਨ ਪ੍ਰੰਤੂ ਅਸੀਂ ਆਪਣੇ ਚਿਹਰੇ ਉੱਤੇ ਉਂਗਲੀਆਂ ਨਹੀਂ ਉਗਾਉਂਦੇ ਹਾਂ। ਬੱਚਿਆਂ ਦੇ ਵਾਧੇ ਦੌਰਾਨ ਸਰੀਰ ਦੀ ਬਣਤਰ ਬਰਕਰਾਰ ਰਹਿੰਦੀ ਹੈ।

ਇਹ ਸਮਝਣ ਲਈ ਕਿ ਇਕਸਾਰ ਵਾਧੇ ਵਿੱਚ ਹਾਰਮੋਨ ਕਿਵੇਂ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ, ਆਓ ਕੁੱਝ ਉਦਾਹਰਨਾਂ ਨੂੰ ਵਿਚਾਰੀਏ। ਲੂਣ ਦੇ ਪੈੱਕਟਾਂ ਉੱਪਰ ਅਸੀਂ ਸਾਰਿਆਂ ਨੇ ਵੇਖਿਆ ਹੈ, "ਆਇਓਡੀਨ ਯੁਕਤ ਲੂਣ" ਜਾਂ 'ਆਇਓਡੀਨ ਨਾਲ ਸਮਰਿੱਧ'। ਸਾਨੂੰ ਆਪਣੇ ਭੋਜਨ ਵਿੱਚ ਆਇਓਡੀਨ ਯੁਕਤ ਲੂਣ ਲੈਣਾ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ? ਥਾਇਰਾਈਡ ਗ੍ਰੰਥੀ ਨੂੰ ਥਾਇਰਾਕਸਿਨ ਹਾਰਮੋਨ ਬਣਾਉਣ ਲਈ ਆਇਓਡੀਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਥਾਈਰਾਕਸਿਨ ਹਾਰਮੋਨ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਕਾਰਬੋਹਾਈਡਰੇਟ ਪ੍ਰੋਟੀਨ ਅਤੇ ਚਰਬੀ ਦੀ ਢਾਹੂ ਉਸਾਰੂ ਕਿਰਿਆ ਦਾ ਨਿਯੰਤਰਨ ਕਰਦਾ ਹੈ ਤਾਂ ਜੋ ਵਾਧੇ ਲਈ ਸਭ ਤੋਂ ਉੱਤਮ ਸੰਤੁਲਨ ਉਪਲਬਧ ਕਰਾਇਆ ਜਾ ਸਕੇ। ਥਾਇਰਾਕਸਿਨ ਦੇ ਸੰਸਲੇਸ਼ਨ ਲਈ ਆਇਓਡੀਨ ਜ਼ਰੂਰੀ ਹੈ ਜੇਕਰ ਸਾਡੇ ਭੌਜਨ ਵਿੱਚ ਆਇਓਡੀਨ ਦੀ ਘਾਟ ਹੈ ਤਾਂ ਸਾਡੇ ਗਿੱਲੜ (goitre) ਨਾਲ ਪੀੜਤ ਹੋ ਜਾਣ ਦੀ ਸੰਭਾਵਨਾ ਹੈ। ਇਸ ਬੀਮਾਰੀ ਦਾ ਇੱਕ ਲੱਛਣ ਫੁੱਲੀ ਹੋਈ ਗਰਦਨ ਹੈ। ਕੀ ਤੁਸੀਂ ਚਿੱਤਰ 7.7 ਨੂੰ ਵੇਖ ਕੇ ਥਾਈਰਾਈਡ ਗ੍ਰੰਥੀ ਦੀ ਸਥਿਤੀ ਅਤੇ ਇਸ ਲੱਛਣ ਦਾ ਪਰਸਪਰ ਸੰਬੰਧ ਸਮਝ ਸਕਦੇ ਹੈ?

ਕਦੇ ਕਦੇ ਅਸੀਂ ਅਜਿਹੇ ਵਿਅਕਤੀਆਂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੇ ਹਾਂ ਜੋ ਬਹੁਤ ਛੋਟੇ (ਬੌਣੇ) ਹੁੰਦੇ ਹਨ ਜਾਂ ਬਹੁਤ ਅਧਿਕ ਲੰਬੇ ਹੁੰਦੇ ਹਨ। ਕੀ ਤੁਹਾਨੂੰ ਕਦੇ ਹੈਰਾਨੀ ਹੋਈ ਹੈ ਕਿ ਇਹ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ? ਪਿਚੂਟਰੀ ਗ੍ਰੰਥੀ ਤੋਂ ਨਿਕਲਣ ਵਾਲੇ ਹਾਰਮੋਨ ਵਿੱਚ ਇੱਕ 'ਵਾਧਾ' ਹਾਰਮੋਨ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਇਸ ਦਾ ਨਾਂ ਹੈ ਇਹ ਵਾਧਾ ਹਾਰਮੋਨ ਸਰੀਰ ਦੇ ਵਾਧੇ ਅਤੇ ਵਿਕਾਸ ਨੂੰ ਕੈਟਰੋਲ ਕਰਦਾ ਹੈ। ਬਾਲਪਨ ਵਿੱਚ ਇਸ ਦੀ ਘਾਟ ਬੌਨੇਪਣ ਦਾ ਕਾਰਨ ਬਣਦੀ ਹੈ।

ਜਦੋਂ ਤੁਹਾਡੀ ਜਾਂ ਤੁਹਾਡੇ ਮਿੱਤਰਾਂ ਦੀ ਉਮਰ 10-12 ਸਾਲ ਦੀ ਹੋਈ ਸੀ ਤਾਂ ਤੁਸੀਂ ਆਪਣੇ ਅਤੇ ਉਹਨਾਂ ਦੇ ਅੰਦਰ ਕਈ ਨਾਟਕੀ ਅੰਤਰ ਵੇਖੇ ਹੋਣਗੇ। ਇਹ ਪਰਿਵਰਤਨ ਲਿੰਗੀ ਪ੍ਰੋੜ੍ਹਤਾ ਨਾਲ ਸੰਬੰਧਿਤ ਹਨ ਕਿਉਂਕਿ ਨਰ ਵਿੱਚ ਟੈਸਟੋਸਟੀਰੋਨ ਅਤੇ ਮਾਦਾ ਵਿੱਚ ਈਸਟਰੋਜਨ ਹਾਰਮੋਨ ਦੇ ਰਸਾਓ ਹੁੰਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਪਰਿਵਾਰ ਜਾਂ ਦੋਸਤਾਂ ਦੇ ਪਰਿਵਾਰਾਂ ਵਿੱਚ ਕਿਸੇ ਵਿਅਕਤੀ ਨੂੰ ਜਾਣਦੇ ਹੋ ਜਿਸ ਨੂੰ ਡਾਕਟਰ ਨੇ ਭੋਜਨ ਵਿੱਚ ਘੱਟ ਸ਼ੱਕਰ (ਖੰਡ) ਲੈਣ ਦੀ ਸਲਾਹ ਦਿੱਤੀ ਹੋਵੇ ਕਿਉਂਕਿ ਉਹ ਸ਼ੱਕਰ ਰੋਗ ਤੋਂ ਪੀੜਿਤ ਹਨ? ਇਲਾਜ ਵਜੋਂ ਉਹ ਇੰਸੂਲਿਨ ਦਾ ਇੰਜ਼ੈਕਸ਼ਨ ਵੀ ਲਗਵਾ ਰਹੇ ਹੋਣਗੇ। ਇਹ ਇੱਕ ਹਾਰਮੋਨ ਹੈ ਜਿਸ ਦਾ ਉਤਪਾਦਨ ਲੁੱਬਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜੋ ਲਹੂ ਵਿੱਚ ਸ਼ੱਕਰ ਦੇ ਪੱਧਰ ਨੂੰ ਕੈਟਰੋਲ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਇਸ ਦਾ ਰਸਾਉ ਉੱਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦਾ ਤਾਂ ਲਹੂ ਵਿੱਚ ਸ਼ੱਕਰ ਸਤਰ ਵੱਧ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕਈ ਹਾਨੀਕਾਰਕ ਪ੍ਰਭਾਵਾਂ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ।

ਜੇਕਰ ਹਾਰਮੋਨ ਦਾ ਰਿਸਾਓ ਉੱਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਹੋਣਾ ਇਨਾਂ ਜ਼ਰੂਰੀ ਹੈ ਤਾਂ ਸਾਨੂੰ ਇੱਕ ਅਜਿਹੀ ਕਿਰਿਆ ਵਿਧੀ ਦੀ ਜ਼ਰੂਰਤ ਹੈ, ਜਿਸ ਰਾਹੀਂ ਇਹ ਆਪ ਮੁਹਾਰੇ ਕੀਤਾ ਜਾਂਦਾ ਰਹੇ। ਰਿਸਾਓ ਹੋਣ ਵਾਲੇ ਹਾਰਮੋਨ ਦਾ ਰਿਸਣਾ ਅਤੇ ਮਾਤਰਾ ਦਾ ਕੰਟਰੋਲ ਪੁਨਰਪੂਰਨ (ਫੀਡਬੈਕ) ਕਿਰਿਆ ਵਿਧੀ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਨ ਲਈ ਜੇਕਰ ਲਹੂ ਵਿੱਚ ਸ਼ੱਕਰ ਵਧ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਲੁੱਬਾ ਦੇ ਸੈੱਲ ਪਤਾ ਕਰ ਲੈਂਦੇ ਹਨ ਅਤੇ ਆਪਣੀ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਜ਼ਿਆਦਾ ਇੰਸੂਲਿਨ ਦਾ ਰਿਸਾਓ ਕਰਦੇ ਹਨ। ਜਦੋਂ ਲਹੂ ਵਿੱਚ ਸ਼ੱਕਰ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇੰਸੂਲਿਨ ਦਾ ਰਿਸਾਓ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- 1. ਜੰਤੂਆਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਤਾਲਮੇਲ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ?
- 2. ਆਇਓਡੀਨ ਯੁਕਤ ਲੂਣ ਦੇ ਉਪਯੋਗ ਦੀ ਸਲਾਹ ਕਿਉਂ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ?
- 3. ਜਦੋਂ ਐਡਰੀਨਾਲਿਨ ਦਾ ਲਹੂ ਵਿੱਚ ਰਿਸਾਓ ਹੁੰਦਾ ਹੈ ਤਾਂ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਕੀ ਪ੍ਰਤਿਕਿਰਿਆ ਹੁੰਦੀ ਹੈ?
- 4. ਸ਼ੱਕਰ ਰੋਗ ਦੇ ਕੁੱਝ ਰੋਗੀਆਂ ਦਾ ਇਲਾਜ ਇੰਸੂਲਿਨ ਦਾ ਇੰਜੈਕਸ਼ਨ ਲਗਾ ਕੇ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ਹੈ?

- ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਕਾਬੂ ਅਤੇ ਤਾਲਮੇਲ ਦਾ ਕਾਰਜ ਨਾੜੀ ਸਿਸਟਮ ਅਤੇ ਹਾਰਮੋਨ ਦਾ ਹੈ?
- ਨਾੜੀ ਪ੍ਬੰਧ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਨੂੰ ਪ੍ਤਿਵਰਤੀ ਕਿਰਿਆ, ਇਛੁੱਕ ਕਿਰਿਆ ਜਾਂ ਅਣਇੱਛੁਕ ਕਿਰਿਆ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?
- ਸੰਦੇਸ਼ ਸੰਚਾਰਿਤ ਕਰਨ ਲਈ ਨਾੜੀ ਪ੍ਰਬੰਧ ਬਿਜਲਈ ਆਵੇਗ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ।
- 😱 ਰਸਾਇਣਿਕ ਤਾਲਮੇਲ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਦੋਵਾਂ ਵਿੱਚ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਹਾਰਮੋਨ ਜੀਵ ਦੇ ਇੱਕ ਭਾਗ ਵਿੱਚ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦੂਜੇ ਭਾਗ ਵਿੱਚ ਇਛੱਤ ਪ੍ਰਭਾਵ ਪਾਉਣ ਲਈ ਗਤੀ ਕਰਦੇ ਹਨ।
- 💼 ਹਾਰਮੋਨ ਦੀ ਕਿਰਿਆ ਨੂੰ ਪੁਨਰਕਰਨ ਕਿਰਿਆ (feedback) ਵਿਧੀ ਨਿਯੰਤਰਿਤ ਕਰਦੀ ਹੈ।

ਅਭਿਆਸ

- ।. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਪੌਦਾ ਹਾਰਮੋਨ ਹੈ?
 - (a) ਇੰਸੂਲਿਨ

- (b) ਥਾਇਰਾਕਸਿਨ
- (c) ਈਸਟਰੋਜਨ
- (d) ਸਾਈਟੋਕਾਇਨਿਨ
- 2. ਦੋ ਨਾੜੀ ਸੈੱਲਾਂ ਵਿਚਕਾਰਲੀ ਖਾਲੀ ਥਾਂ ਨੂੰ ਕਹਿੰਦੇ ਹਨ
 - (a) ਡੈਂਡਰਾਈਟ

(b) ਸਾਈਨੈਪਸ

(c) ਐਕਸਾੱਨ

- (d) ਆਵੇਗ
- 3. ਦਿਮਾਗ ਉੱਤਰਦਾਈ ਹੈ:
 - (a) ਸੋਚਣ ਲਈ
 - (b) ਦਿਲ ਦੀ ਧੜਕਨ ਨੂੰ ਇਕਸਾਰ ਰੱਖਣ ਲਈ
 - (e) ਸਰੀਰ ਦਾ ਸੰਤੂਲਨ ਕਾਇਮ ਰੱਖਣ ਲਈ
 - (d) ਉਕਤ ਸਾਰੇ
- 4. ਸਾਡੇ ਸਗੈਰ ਵਿੱਚ ਗ੍ਰਾਹੀ ਦਾ ਕੀ ਕੰਮ ਹੈ? ਅਜਿਹੀ ਸਥਿਤੀ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿੱਥੇ ਗ੍ਰਾਹੀ ਉਚਿੱਤ ਪ੍ਰਕਾਰ ਨਾਲ ਕਾਰਜ ਨਹੀਂ ਕਰਦੀ। ਇਸ ਨਾਲ ਕੀ ਸਮੱਸਿਆਵਾਂ ਉਤਪੰਨ ਹੋ ਸਕਦੀਆਂ ਹਨ ?
- 5. ਇੱਕ ਨਿਊਰਾਨ ਦੀ ਰਚਨਾ ਦਰਸਾਓ ਅਤੇ ਉਸ ਦੇ ਕਾਰਜ ਦਾ ਵਰਨਣ ਕਰੋ।
- 6. ਪੈਂਦਿਆਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਅਨੁਵਰਤਨ ਕਿਸ ਪ੍ਰਕਾਰ ਹੁੰਦਾ ਹੈ?
- ਸਖਮਨਾ ਨਾੜੀ ਤੇ ਸੱਟ ਲੱਗਣ ਨਾਲ ਕਿਹੜੇ ਸੈਕੇਤਾਂ ਵਿੱਚ ਰੁਕਾਵਟ ਆਵੇਗੀ?
- 8. ਪੌਦਿਆਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਤਾਲਮੇਲ ਕਿਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ?
- 9. ਇੱਕ ਜੀਵ ਵਿੱਚ ਕੈਟਰੋਲ ਅਤੇ ਤਾਲਮੇਲ ਦੇ ਸਿਸਟਮ ਦੀ ਕਿਉਂ ਲੋੜ ਹੈ?
- 10. ਅਣਇੱਛਤ ਕਿਰਿਆਵਾਂ ਅਤੇ ਪਤਿਵਿਰਤੀ ਕਿਰਿਆਵਾਂ ਇੱਕ ਦੂਜੇ ਤੋਂ ਕਿਸ ਪ੍ਕਾਰ ਭਿੰਨ ਹਨ?
- 11. ਜੰਤੂਆਂ ਵਿੱਚ ਕੰਟਰੋਲ ਅਤੇ ਤਾਲਮੇਲ ਦੇ ਲਈ ਨਾੜੀ ਅਤੇ ਹਾਰਮੋਨ ਕਿਰਿਆ ਵਿਧੀਆਂ ਦੀ ਤੁਲਨਾ ਅਤੇ ਟਾਕਰਾ ਕਰੋ।
- 12. ਛੂਈ-ਮੂਈ ਪੌਦੇ ਵਿੱਚ ਗਤੀ ਅਤੇ ਸਾਡੀ ਲੱਤ ਦੀ ਗਤੀ ਦੇ ਤਰੀਕਿਆਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ?

(How do Organisms Reproduce?

ਵਾਂ ਦੇ ਪ੍ਰਜਣਨ (ਜਣਨ) ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਆਓ ਅਸੀਂ ਇੱਕ ਮੂਲ ਪ੍ਰਸ਼ਨ ਪੁੱਛੀਏ ਕਿ ਜੀਵ ਪ੍ਰਜਣਨ ਕਿਉਂ ਕਰਦੇ ਹਨ? ਅਸਲ ਵਿੱਚ ਪੋਸ਼ਣ, ਸਾਹ ਅਤੇ ਮਲ ਤਿਆਗ ਜਿਹੀਆਂ ਜ਼ਰੂਰੀ ਜੈਵ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਮੁਕਾਬਲੇ ਕਿਸੇ ਜੀਵ ਦੇ ਜਿਊਂਦਾ ਰਹਿਣ ਲਈ ਪ੍ਰਜਣਨ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਜੀਵ ਨੂੰ ਸੰਤਾਨ ਪੈਦਾ ਕਰਨ ਲਈ ਕਾਫੀ ਵੱਧ ਮਾਤਰਾ ਵਿੱਚ ਊਰਜਾ ਵਰਤਣੀ ਪਵੇਗੀ। ਜੀਵ ਉਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਆਪਣੀ ਊਰਜਾ ਕਿਉਂ ਗੁਆਵੇ ਜੋ ਜਿਉਂਦਾ ਰਹਿਣ ਲਈ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ। ਜਮਾਤ ਵਿੱਚ ਇਸ ਪ੍ਰਸ਼ਨ ਦੇ ਸੰਭਾਵਿਤ ਉੱਤਰਾਂ ਬਾਰੇ ਵਿਚਾਰ ਕਰਨਾ ਦਿਲਚਸਪੀ ਭਰਪੂਰ ਹੋਵੇਗਾ।

ਇਸ ਪ੍ਰਸ਼ਨ ਦਾ ਜੋ ਵੀ ਉੱਤਰ ਹੋਵੇ ਪਰ ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਭਿੰਨ-ਭਿੰਨ ਜੀਵ ਇਸ ਲਈ ਧਿਆਨ ਵਿੱਚ ਆਉਂਦੇ ਹਨ ਕਿਉਂਕਿ ਉਹ ਪ੍ਰਜਣਨ ਕਰਦੇ ਹਨ? ਜੇਕਰ ਉਹ ਜੀਵ ਇਕੱਲਾ ਹੁੰਦਾ ਅਤੇ ਕੋਈ ਵੀ ਪ੍ਰਜਣਨ ਦੁਆਰਾ ਆਪਣੇ ਜਿਹਾ ਜੀਵ ਪੈਦਾ ਨਾ ਕਰਦਾ ਤਾਂ ਸੰਭਵ ਹੈ ਕਿ ਸਾਨੂੰ ਉਸ ਦੀ ਹੋਂਦ ਦਾ ਪਤਾ ਹੀ ਨਾ ਹੁੰਦਾ। ਕਿਸੇ ਜਾਤੀ (Species) ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਜੀਵਾਂ ਦੀ ਵਿਸ਼ਾਲ ਸੰਖਿਆ ਹੀ ਸਾਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਹੋਂਦ ਦਾ ਗਿਆਨ ਕਰਾਉਂਦੀ ਹੈ। ਸਾਨੂੰ ਕਿਵੇਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਦੋ ਵੱਖ ਵੱਖ ਜੀਵ ਇੱਕ ਹੀ ਜਾਤੀ (Species) ਦੇ ਮੈਂਬਰ ਹਨ? ਆਮ ਕਰਕੇ ਅਸੀਂ ਅਜਿਹਾ ਇਸ ਲਈ ਕਹਿੰਦੇ ਹਾਂ ਕਿਉਂਕਿ ਉਹ ਇੱਕੋ ਜਿਹੇ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ। ਪ੍ਰਜਣਨ ਕਰਨ ਵਾਲੇ ਜੀਵ ਨਵੀਂ ਸੰਤਾਨ ਪੈਦਾ ਕਰਦੇ ਹਨ ਜੋ ਬਹੁਤ ਕਰਕੇ ਉਹਨਾਂ ਵਰਗੀ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ।

8.1 ਕੀ ਜੀਵ ਆਪਣੇ ਆਪ ਦੀ ਪੂਰਨ ਨਕਲ ਪੈਦਾ ਕਰਦੇ ਹਨ? Do organisms create exact copies of themselves ?

ਇੱਕ ਵਿਸ਼ੇਸ਼ ਤਰ੍ਹਾਂ ਦੇ ਜੀਵ ਇੱਕੋ ਜਿਹੇ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਉਹਨਾਂ ਦੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਇੱਕੋ ਜਿਹੀ ਹੈ। ਜੇਕਰ ਸਰੀਰ ਦੀ ਬਣਤਰ ਇੱਕੋ ਜਿਹੀ ਹੈ ਤਾਂ ਇਸ ਬਣਤਰ ਦਾ ਬਲੂਪ੍ਰਿੰਟ ਵੀ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਲਈ ਮੂਲ ਰੂਪ ਵਿੱਚ ਪ੍ਰਜਣਨ ਜੀਵ ਦੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਦੇ ਬਲੂਪ੍ਰਿੰਟ ਦੀਆਂ ਕਾਪੀਆਂ ਤਿਆਰ ਕਰਨਾ ਹੈ।ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਤੁਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ ਕਿ ਸੈੱਲ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜ਼ੂਦ ਗੁਣਸੂਤਰਾਂ ਦੇ ਡੀ. ਐਨ.ਏ. (DNA) (ਡੀ ਆਕਸੀਰਾਇਬੋਨਿਊਕਲਿਕ ਐਸਿਡ) ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕ ਗੁਣਾਂ ਦਾ ਸੰਦੇਸ਼ ਹੁੰਦਾ ਹੈ ਜੋ ਮਾਪਿਆਂ ਤੋਂ ਅਗਲੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਸੈੱਲ ਦੇ ਨਿਊਕਲੀਅਸ ਦੇ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਪ੍ਰੋਟੀਨ ਸੈਸਲੇਸ਼ਨ ਹਿਤ ਸੂਚਨਾ ਹੁੰਦੀ ਹੈ। ਜੇਕਰ ਸੂਚਨਾ ਬਦਲ ਜਾਂਦੀ ਹੈ ਤਾਂ ਬਣਨ ਵਾਲਾ ਪ੍ਰੋਟੀਨ ਭਿੰਨ ਹੋਵੇਗਾ। ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰੋਟੀਨਾਂ ਕਾਰਨ ਅੰਤ ਵਿੱਚ ਸਰੀਰਾਂ ਦੀ ਬਣਤਰ ਬਦਲ ਜਾਵੇਗੀ।

ਇਸ ਲਈ ਪ੍ਰਜਣਨ ਦੀ ਮੁੱਖ ਘਟਨਾ ਡੀ. ਐਨ. ਏ. ਦੀ ਕਾਪੀ ਬਣਾਉਣਾ ਹੈ। ਆਪਣੇ ਡੀ. ਐਨ. ਏ. ਦੀ ਕਾਪੀ ਤਿਆਰ ਕਰਨ ਲਈ ਸੈੱਲ ਰਸਾਇਣਿਕ ਪ੍ਤਿਕਿਰਿਆਵਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਜਣਨ ਸੈੱਲ ਵਿੱਚ ਡੀ. ਐਨ. ਏ. ਦੀਆਂ ਦੋ ਕਾਪੀਆਂ ਬਣਦੀਆਂ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦਾ ਇੱਕ ਦੂਜੇ ਤੋਂ ਵੱਖ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ ਪਰ ਡੀ. ਐਨ. ਏ. ਦੀ ਇੱਕ ਕਾਪੀ ਨੂੰ ਮੂਲ ਸੈੱਲ ਵਿੱਚ ਰੱਖ ਕੇ ਦੂਜੀ ਕਾਪੀ ਨੂੰ ਬਾਹਰ ਕੱਢਣ ਨਾਲ ਕੰਮ ਨਹੀਂ ਚੱਲੇਗਾ ਕਿਉਂਕਿ ਬਾਹਰ ਕੱਢੀ ਦੂਜੀ ਕਾਪੀ ਕੋਲ ਜੈਵ ਪ੍ਤਿਕਿਰਿਆਵਾਂ ਲਈ ਸੰਗਠਿਤ ਸੈੱਲ ਰਚਨਾ ਤਾਂ ਹੋਵੇਗੀ ਨਹੀਂ। ਇਸ ਲਈ ਡੀ. ਐਨ. ਏ. ਦੀ ਕਾਪੀ ਬਣਨ ਦੇ ਨਾਲ-ਨਾਲ ਸੈੱਲ ਦੀਆਂ ਰਚਨਾਵਾਂ ਵੀ ਬਣਦੀਆਂ ਹਨ ਅਤੇ ਇਸ ਤੋਂ ਪਿੱਛੋਂ ਡੀ. ਐਨ. ਏ. ਦੀਆਂ ਕਾਪੀਆਂ ਆਪੋ ਆਪਣਾ ਸੈੱਲੀ ਉਪਕਰਨ ਲੈ ਕੇ ਵੱਖ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।ਅਸਲ ਵਿੱਚ ਇੱਕ ਸੈੱਲ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਦੋ ਸੈੱਲ ਬਣ ਜਾਂਦੇ ਹਨ।

ਬੇਸ਼ੱਕ ਇਹ ਦੋਵੇਂ ਸੈੱਲ ਇੱਕੋ ਜਿਹੇ ਹਨ ਪਰ ਕੀ ਇਹ ਪੂਰਨ ਤੌਰ ਤੇ ਸਮਰੂਪ (Similar) ਹਨ? ਇਸ ਪ੍ਰਸ਼ਨ ਦਾ ਉੱਤਰ ਇਸ ਗੱਲ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਕਾਪੀ ਕਰਨ ਦੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਕਿੰਨੇ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਪੂਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।ਕੋਈ ਜੈਵ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਪੂਰਨ ਤੌਰ ਤੇ ਭਰੋਸੇਯੋਗ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਲਈ ਆਸ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਕਿ ਡੀ. ਐਨ. ਏ. ਦੀ ਕਾਪੀ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਕੁੱਝ ਭਿੰਨਤਾ ਆਵੇਗੀ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਬਣਨ ਵਾਲੀ ਡੀ. ਐਨ. ਏ. ਦੀ ਕਾਪੀ ਇਕ ਸਮਾਨ ਤਾਂ ਹੋਵੇਗੀ ਪਰ ਮੌਲਿਕ ਡੀ. ਐਨ. ਏ. ਦਾ ਸਮਰੂਪ ਨਹੀਂ ਹੋਵੇਗੀ। ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਕੁੱਝ ਭਿੰਨਤਾਵਾਂ ਇੰਨੀਆਂ ਜ਼ਿਆਦਾ ਹੋਣ ਕਿ ਡੀ. ਐਨ. ਏ. ਦੀ ਨਵੀਂ ਕਾਪੀ ਵਿਰਾਸਤ ਵਿੱਚ ਮਿਲੇ ਆਪਣੇ ਸੈੱਲ ਸੰਗਠਨ ਦੇ ਨਾਲ ਕੰਮ ਨਾ ਕਰ ਸਕੇ। ਇਸ ਤਰ੍ਹਾਂ ਨਵਾਂ ਜੰਮਿਆਂ ਸੈੱਲ ਮਰ ਜਾਵੇਗਾ। ਦੂਜੇ ਪਾਸੇ ਡੀ. ਐਨ. ਏ. ਦੀਆਂ ਕੁਝ ਕਾਪੀਆਂ ਵਿੱਚ ਅਨੇਕ ਭਿੰਨਤਾਵਾਂ ਇੰਨੀਆਂ ਜ਼ਿਆਦਾ ਨਹੀਂ ਹੁੰਦੀਆਂ ਕਿ ਅਜਿਹੇ ਸਿੱਟੇ ਨਿਕਲਣ। ਇਸ ਲਈ ਬਾਕੀ ਬਚੇ ਸੈੱਲ ਸਮਾਨ ਹੁੰਦੇ ਹੋਏ ਵੀ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਪ੍ਰਜਣਨ ਵਿੱਚ ਹੋਣ ਵਾਲੀਆਂ ਇਹ ਭਿੰਨਤਾਵਾਂ ਜੈਵ ਵਿਕਾਸ ਦਾ ਆਧਾਰ ਹਨ ਜਿਸ ਦੀ ਚਰਚਾ ਅਸੀਂ ਅਗਲੇ ਅਧਿਆਇ ਵਿੱਚ ਕਰਾਂਗੇ।

8.1.1 ਭਿੰਨਤਾ ਦਾ ਮਹੱਤਵ (The importance of Variation)

ਆਪਣੀ ਜਣਨ ਯੋਗਤਾ ਦਾ ਉਪਯੋਗ ਕਰ ਕੇ ਜੀਵਾਂ ਦੀ ਜਨਸੰਖਿਆ ਪਰਿਸਥਿਤਕ ਸਿਸਟਮ ਸਥਾਨ ਜਾਂ ਨਿੱਚ-ਗ੍ਰਹਿਣ ਕਰਦੀ ਹੈ। ਪ੍ਰਜਣਨ ਦੇ ਦੌਰਾਨ ਡੀ. ਐਨ. ਏ. ਕਾਪੀ ਦੀ ਸਥਿਰਤਾ ਜੀਵ ਦੀ ਸਰੀਰਕ ਰਚਨਾ ਅਤੇ ਬਣਤਰ ਦੇ ਲਈ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੈ ਜੋ ਉਸ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਟਿਕਾਣੇ (Niche) ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ।ਇਸੇ ਲਈ ਕਿਸੇ ਪ੍ਰਜਾਤੀ ਦੀ ਜਨ ਸੰਖਿਆ ਦੀ ਸਥਿਰਤਾ ਦਾ ਸੰਬੰਧ ਜਣਨ ਨਾਲ ਹੈ।

ਫਿਰ ਵੀ ਟਿਕਾਣੇ (Niche) ਵਿੱਚ ਕਈ ਪਰਿਵਰਤਨ ਆ ਸਕਦੇ ਹਨ ਜੋ ਜੀਵਾਂ ਦੇ ਕਾਬੂ ਤੋਂ ਬਾਹਰ ਹਨ। ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਤਾਪਮਾਨ ਘੱਟ ਜਾਂ ਵੱਧ ਹੋ ਸਕਦਾ ਹੈ, ਪਾਣੀ ਦਾ ਸਤਰ ਬਦਲ ਸਕਦਾ ਹੈ। ਉਲਕਾ ਪਿੰਡ ਟਕਰਾ ਸਕਦਾ ਹੈ, ਆਦਿ ਇਸ ਦੇ ਕੁੱਝ ਉਦਾਹਰਣ ਹਨ। ਜੇਕਰ ਜੀਵਾਂ ਦੀ ਜਨਮ ਦੇਣ ਵਾਲੀ ਜਨ ਸੰਖਿਆ ਆਪਣੇ ਟਿਕਾਣੇ ਦੇ ਅਨੁਕੂਲ ਹੈ ਅਤੇ ਜੇਕਰ ਉਸ ਟਿਕਾਣੇ ਵਿੱਚ ਵੱਡੀ ਤਬਦੀਲੀ ਆਉਂਦੀ ਹੈ ਤਾਂ ਜਨ ਸੰਖਿਆ ਨਸ਼ਟ ਹੋ ਸਕਦੀ ਹੈ। ਫਿਰ ਵੀ ਜੇ ਇਸ ਜਨ ਸੰਖਿਆ ਦੇ ਕੁੱਝ ਜੀਵਾਂ ਵਿੱਚ ਕੁੱਝ ਭਿੰਨਤਾ ਹੋਵੇਗੀ ਤਾਂ ਉਹਨਾਂ ਦੇ ਜਿਉਂਦਾ ਰਹਿਣ ਦੀ ਕੁੱਝ ਸੰਭਾਵਨਾ ਹੁੰਦੀ। ਜੇਕਰ ਸਾਧਾਰਨ ਤਾਪਮਾਨ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਬੈਕਟੀਰੀਆ ਦੀ ਜਨ ਸੰਖਿਆ ਰਹਿੰਦੀ ਹੋਵੇ ਅਤੇ ਵਿਸ਼ਵ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧੇ (Global Warming) ਕਾਰਨ ਜੇਕਰ ਪਾਣੀ ਦਾ ਤਾਪਮਾਨ ਕਾਫੀ ਵੱਧ ਜਾਂਦਾ ਹੈ ਤਾਂ ਵਧੇਰੇ ਕਰਕੇ ਬੈਕਟੀਰੀਆ ਮਰ ਜਾਣਗੇ ਪਰ ਤਾਪ ਸਹਿ ਸਕਣ ਵਾਲੇ ਕੁੱਝ ਬੈਕਟੀਰੀਆ ਜਿਉਂਦੇ ਰਹਿਣਗੇ ਅਤੇ ਵਾਧਾ ਕਰਦੇ ਰਹਿਣਗੇ। ਇਸ ਲਈ ਭਿੰਨਤਾਵਾਂ ਪ੍ਰਜਾਤੀਆਂ ਨੂੰ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਜਿਉਂਦਾ ਰੱਖਣ ਲਈ ਉਪਯੋਗੀ ਹਨ।

ਪ੍ਰਸ਼ਨ

- ਡੀ. ਐਨ. ਏ. ਦੀ ਨਕਲ ਬਣਾਉਣ ਦੀ ਜਨਣ ਵਿੱਚ ਕੀ ਮਹੱਤਤਾ ਹੈ?
- ਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾਵਾਂ ਪ੍ਰਜਾਤੀਆਂ ਦੇ ਲਈ ਲਾਭਦਾਇਕ ਹਨ ਪਰ ਵਿਅਕਤੀਆਂ ਲਈ ਜ਼ਰੂਰੀ ਨਹੀਂ। ਕਿਉਂ?

8.2 ਇਕੱਲੇ ਜੀਵਾਂ ਵਿੱਚ ਪ੍ਰਜਣਨ ਦੀਆਂ ਵਿਧੀਆਂ Modes of Reproduction Used by Single Organisms

ਕਿਰਿਆ 8,1

- 100 mL ਪਾਣੀ ਵਿੱਚ ਲਗਭਗ 10 g ਖੰਡ ਘੋਲੋ।
- ਇੱਕ ਪਰਖ ਨਲੀ ਵਿੱਚ ਇਸ ਘੋਲ ਦਾ 20 mL ਲੈ ਕੇ ਉਸ ਵਿੱਚ ਇੱਕ ਚੁਟਕੀ ਯੀਸਟ ਪਾਉਡਰ ਦੀ ਪਾਓ।
- 🍍 ਪਰੰਪ ਨਲੀ ਦੇ ਮੂੰਹ ਨੂੰ ਤੂੰ ਨਾਲ ਢੱਕ ਕੇ ਇਸ ਨੂੰ ਕਿਸੇ ਗਰਮ ਸਥਾਨ ਉੱਤੇ ਰੱਖੋ।
- । ਜਾਂ 2 ਘੰਟੇ ਪਿੱਛੋਂ ਪਰਖ ਨਲੀ ਵਿੱਚੋਂ ਯੀਸਟ ਕਲਚਰ ਦਾ ਇੱਕ ਤੁਪਕਾ ਸਲਾਈਡ ਉੱਤੇ ਲੈ ਕੇ ਉਸ ਉੱਪਰ ਕਵਰ ਸਲਿੱਪ ਰੱਖ।
- 🍍 ਸੂਖਮਦਰਸ਼ੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਲਾਈਡ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।

विविभा 8.2

- ਡਬਲ ਰੋਟੀ ਦੇ ਇੱਕ ਟੁਕੜੇ ਨੂੰ ਪਾਣੀ ਨਾਲ ਗਿੱਲਾ ਕਰੋ ਅਤੇ ਇਸ ਨੂੰ ਠੰਢੇ, ਸਿੱਲ੍ਹੇ ਅਤੇ ਹਨੇਰੇ ਸਥਾਨ ਉੱਤੇ ਰੱਖੋ।
- ਵੱਡਦਰਸ਼ੀ ਲੈਂਜ਼ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਟੁਕੜੇ ਦਾ ਪ੍ਰੇਖਣ (Observe) ਕਰੋ।
- 🔹 ਆਪਣੇ ਪ੍ਰੇਖਣ ਇੱਕ ਹਫਤਾ ਕਰਦੇ ਰਹੇ ਅਤੇ ਨੌਟ ਕਰੋ।

ਪਹਿਲੀ ਕਿਰਿਆ ਵਿੱਚ ਯੀਸਟ ਦੇ ਵਾਧੇ ਅਤੇ ਦੂਜੀ ਕਿਰਿਆ ਵਿੱਚ ਮੋਲਡ (Mould) ਦੇ ਵਾਧੇ ਦੇ ਤਰੀਕੇ ਦੀ ਤੁਲਨਾ ਕਰੋ ਅਤੇ ਪਤਾ ਕਰੋ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ?

ਇਸ ਚਰਚਾ ਦੇ ਪਿੱਛੋਂ ਕਿ ਪ੍ਰਜਣਨ ਪ੍ਰਕਿਰਿਆ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ, ਆਓ ਅਸੀਂ ਜਾਣੀਏ ਕਿ ਭਿੰਨ ਭਿੰਨ ਜੀਵ ਅਸਲ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਜਣਨ ਕਰਦੇ ਹਨ। ਭਿੰਨ-ਭਿੰਨ ਜੀਵਾਂ ਵਿੱਚ ਪ੍ਰਜਣਨ ਦੀ ਵਿਧੀ ਉਹਨਾਂ ਦੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

8.2.1 ਵਿਖੰਡਨ (Fission)

ਇੱਕ ਸੈੱਲੀ ਜੀਵਾਂ (Unicellular Organisms) ਵਿੱਚ ਸੈੱਲ ਵੰਡ ਜਾਂ ਵਿਖੰਡਨ ਦੁਆਰਾ ਨਵੇਂ ਜੀਵਾਂ ਦੀ ਉਤਪਤੀ ਹੁੰਦੀ ਹੈ।ਵਿਖੰਡਨ ਦੇ ਬਹੁਤ ਸਾਰੇ ਢੰਗ ਵੇਖਣ ਵਿੱਚ ਆਏ ਹਨ।ਅਨੇਕ ਪ੍ਰਕਾਸ਼ ਦੇ ਬੈਕਟੀਰੀਆ ਅਤੇ ਪ੍ਰੋਟੋਜ਼ੋਆ ਦੇ ਸੈੱਲ ਵਿਭਾਜਨ ਦੁਆਰਾ ਆਮ ਕਰਕੇ ਦੋ ਬਰਾਬਰ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡੇ ਜਾਂਦੇ ਹਨ।ਅਮੀਬਾ ਜਿਹੇ ਜੀਵਾਂ ਵਿੱਚ ਸੈੱਲ ਦੀ ਵੰਡ ਕਿਸੇ ਵੀ ਤਲ ਤੋਂ ਹੋ ਸਕਦੀ ਹੈ।

ਕਿਰਿਆ 8.3

- ਅਮੀਬਾ ਦੀ ਸਥਾਈ ਸਲਾਈਡ ਦਾ ਸੂਖਮਦਰਸ਼ੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਇਸੇ ਤਰ੍ਹਾਂ ਅਮੀਬਾ ਦੇ ਵਿਖੰਡਨ ਦੀ ਸਥਾਈ ਸਲਾਈਡ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਹੁਣ ਦੋਵੇਂ ਸਲਾਈਡਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਚਿੱਤਰ 8.1 ਅਮੀਬਾ ਵਿੱਚ ਦੋ ਖੰਡਨ

ਕੁੱਝ ਇੱਕ ਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸਰੀਰਕ ਰਚਨਾ ਵਧੇਰੇ ਸੰਗਠਿਤ ਹੁੰਦੀ ਹੈ।ਉਦਾਹਰਨ ਵਜੋਂ ਕਾਲਾ ਜ਼ਾਰ ਦੇ ਰੋਗਾਣੂ, ਲੇਸ਼ਮਾਨੀਆਂ ਵਿੱਚ ਸੈੱਲ ਦੇ ਇੱਕ ਸਿਰੇ ਉੱਤੇ ਛਾਂਟੇ ਵਰਗੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ।ਅਜਿਹੇ ਜੀਵਾਂ ਵਿੱਚ ਵਿਖੰਡਨ ਇੱਕ ਨਿਰਧਾਰਿਤ ਤਲ ਤੋਂ ਹੁੰਦਾ ਹੈ।ਮਲੇਰੀਆ ਪਰਜੀਵੀ ਪਲਾਜ਼ਮੋਡੀਅਮ ਜਿਹੇ ਅਨੇਕ ਇੱਕ ਸੈੱਲੀ ਜੀਵ ਇੱਕੋ ਸਮੇਂ ਅਨੇਕ ਸੰਤਾਨ ਸੈੱਲਾਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਹੋ ਜਾਂਦੇ ਹਨ ਜਿਸ ਨੂੰ ਬਹੁ ਖੰਡਨ (Multiple Fission) ਕਹਿੰਦੇ ਹਨ।

ਦੂਜੇ ਪਾਸੇ ਯੀਸਟ ਸੈੱਲ ਤੋਂ ਛੋਟੇ ਬੱਡ (ਡੋਡੀ) ਉਭਰ ਕੇ ਸੈੱਲ ਤੋਂ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਵਾਧਾ ਕਰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਕਿਰਿਆ 8.1 ਵਿੱਚ ਵੇਖਿਆ ਹੈ।

ਚਿੱਤਰ 8.2 ਪਲਾਜ਼ਮੋਡੀਅਮ ਵਿੱਚ ਬਹ ਖੰਡਨ

8.2.2 ਖੰਡ ਕਰਨਾ (FRAGMENTATION)

ਕਿਰਿਆ 8.4

- ਕਿਸੇ ਝੀਲ ਜਾਂ ਤਲਾਬ ਜਿਸ ਦਾ ਪਾਣੀ ਗਹਿਰਾ ਹਰਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੋਵੇ ਅਤੇ ਜਿਸ ਵਿੱਚ ਤੌਤੂ ਦੇ ਬਰਾਬਰ ਰਚਨਾਵਾਂ ਹੋਣ, ਉਸ ਤੋਂ ਕੁੱਝ ਪਾਣੀ ਲਓ।
- 🔹 ਇੱਕ ਸਲਾਈਡ ਉੱਤੇ ਇੱਕ ਜਾਂ ਦੋ ਤੰਤੂ ਰੱਖੋ।
- 🔻 ਇਹਨਾਂ ਤੰਤੂਆਂ ਉੱਤੇ ਗਲਿਸਰੀਨ ਦੀ ਬੂੰਦ ਪਾ ਕੇ ਕਵਰ ਸਲਿੱਪ ਨਾਲ ਢਕ ਦਿਓ।
- 🏮 ਸੁੱਖਮਦਰਸ਼ੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਲਾਈਡ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਕੀ ਤੁਸੀਂ ਸਪਾਇਰੋਗਾਇਰਾ ਤੰਤੂਆਂ (Filaments) ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਟਿਸ਼ੂ ਪਹਿਚਾਣ ਸਕਦੇ ਹੋ?

ਸਰਲ ਰਚਨਾ ਵਾਲੇ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ (Multicellular Organisms) ਵਿੱਚ ਜਣਨ ਦੀ ਸਰਲ ਵਿਧੀ ਕੰਮ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਸਪਾਇਰੋਗਾਇਰਾ ਆਮ ਕਰਕੇ ਵਿਕਸਿਤ ਹੋ ਕੇ ਛੋਟੇ-ਛੋਟੇ ਟੁਕੜਿਆਂ ਵਿੱਚ ਖੰਡਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਟੁਕੜੇ ਜਾਂ ਖੰਡ ਵਾਧਾ ਕਰਕੇ ਨਵੇਂ ਜੀਵਾਂ ਵਿੱਚ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਕਿਰਿਆ 8.4 ਦੇ ਪ੍ਰਯੋਗ ਦੇ ਆਧਾਰ ਉੱਤੇ ਕੀ ਅਸੀਂ ਇਸ ਦਾ ਕਾਰਨ ਪ੍ਰੇਜ ਸਕਦੇ ਹਾਂ?

ਇਹ ਗੱਲ ਸਾਰੇ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਲਈ ਸੱਚੀ ਨਹੀਂ ਹੈ। ਉਹ ਸੈੱਲ ਦਰ ਸੈੱਲ ਵਿਭਾਜਿਤ ਨਹੀਂ ਹੁੰਦੇ। ਅਜਿਹਾ ਕਿਉਂ ਹੈ? ਇਸ ਦਾ ਕਾਰਨ ਹੈ ਕਿ ਵਧੇਰੇ ਬਹੁਸੈੱਲੀ ਜੀਵ ਵਿਭਿੰਨ ਸੈੱਲਾਂ ਦਾ ਸਮੂਹ ਮਾਤਰ ਹੀ ਨਹੀਂ ਹੁੰਦੇ। ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਹਿਤ ਵਿਸ਼ੇਸ਼ ਸੈੱਲ ਸਮੂਹ ਰੂਪ ਵਿੱਚ ਟਿਸ਼ੂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ ਅਤੇ ਟਿਸ਼ੂ ਸੰਗਠਿਤ ਹੋ ਕੇ ਅੰਗ ਬਣਾਉਂਦੇ ਹਨ, ਸਰੀਰ ਵਿੱਚ ਇਹਨਾਂ ਦੀ ਸਥਿਤੀ ਵੀ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੀ ਸੁਯੋਗ ਅਤੇ ਵਿਵਸਥਿਤ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਸੈੱਲ ਦਰ ਸੈੱਲ ਵਿਭਾਜਨ ਅਵਿਵਹਾਰਿਕ ਹੋਵੇਗਾ। ਇਸ ਲਈ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਨੂੰ ਜਣਨ ਲਈ ਵਧੇਰੇ ਜਟਿਲ ਵਿਧੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਦੁਆਰਾ ਵਰਤੀ ਜਾਂਦੀ ਇੱਕ ਮੂਲ ਯੁਕਤੀ ਇਹ ਹੈ ਕਿ ਭਿੰਨ-ਭਿੰਨ ਕਿਸਮ ਦੇ ਸੈੱਲ ਭਿੰਨ-ਭਿੰਨ ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਕਰਨ ਲਈ ਸਮਰੱਥ ਹੁੰਦੇ ਹਨ। ਇਸ ਵਿਵਸਥਾ ਦਾ ਪਾਲਣ ਕਰਦੇ ਹੋਏ ਜੀਵਾਂ ਵਿੱਚ ਜਣਨ ਲਈ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਦੇ ਸੈੱਲ ਹੁੰਦੇ ਹਨ। ਕੀ ਜੀਵ ਅਨੇਕ ਪ੍ਕਾਰ ਦੇ ਸੈੱਲਾਂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ? ਇਸ ਦਾ ਉੱਤਰ ਹੈ ਕਿ ਜੀਵ ਵਿੱਚ ਕੁੱਝ ਅਜਿਹੇ ਸੈੱਲ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਜੋ ਲੋੜੀਂਦੀਆਂ ਉੱਚਿਤ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਬਣਾਉਣ ਦੇ ਯੋਗ ਹੋਣ।

8.2.3 ਪੁਨਰਜਣਨ (Regeneration)

ਪੂਰਨ ਤੌਰ ਤੇ ਵਿਭੇਦਿਤ (Differentiated) ਬਹੁਤ ਸਾਰੇ ਜੀਵਾਂ ਵਿੱਚ ਆਪਣੇ ਸਰੀਰ ਦੇ ਭਾਗ ਤੋਂ

ਚਿੱਤਰ 8,3 ਪਲੇਨੇਰੀਆ ਵਿੱਚ ਪੁਨਰਜਣਨ

ਨਵੇਂ ਜੀਵ ਦਾ ਨਿਰਮਾਣ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ। ਭਾਵ ਇਹ ਕਿ ਜੇਕਰ ਕੋਈ ਜੀਵ ਕਿਸੇ ਕਾਰਨ ਬਹੁਤ ਸਾਰੇ ਟੁਕੜਿਆਂ ਵਿੱਚ ਟੁੱਟ ਜਾਂਦਾ ਹੈ ਜਾਂ ਕੱਟਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਦੇ ਬਹੁਤ ਸਾਰੇ ਟੁਕੜੇ ਵਾਧਾ ਕਰਕੇ ਨਵੇਂ ਜੀਵਾਂ ਵਿੱਚ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਹਾਈਡਰਾ ਅਤੇ ਪਲੇਨੇਰੀਆ ਜਿਹੇ ਸਰਲ ਜੀਵਾਂ ਨੂੰ ਜੇਕਰ ਕਈ ਟੁਕੜਿਆਂ ਵਿੱਚ ਕੱਟ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਹਰ ਇੱਕ ਟੁਕੜਾ ਪੂਰਨ ਜੀਵ ਵਿੱਚ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਪੁਨਰਜਣਨ ਕਹਿੰਦੇ ਹਨ (ਚਿੱਤਰ 8.3)। ਪੁਨਰਜਣਨ ਵਿਸ਼ੇਸ਼ ਸੈੱਲਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਸੈੱਲ ਪ੍ਰਭੁੱਲਿਤ (Proliferate) ਹੁੰਦੇ ਹਨ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਸੈੱਲ ਬਣਾ ਲੈਂਦੇ ਹਨ। ਸੈੱਲਾਂ ਦੇ ਇਸ ਸਮੂਹ ਤੋਂ ਪਰਿਵਰਤਨ ਦੌਰਾਨ ਭਿੰਨ-ਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਅਤੇ ਟਿਸ਼ੂ ਬਣਦੇ ਹਨ। ਇਹ ਪਰਿਵਰਤਨ ਬਹੁਤ ਵਿਵਸਥਿਤ ਰੂਪ ਅਤੇ ਕ੍ਰਮ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਜਿਸ ਨੂੰ ਵਾਧਾ (Development) ਕਹਿੰਦੇ ਹਨ। ਪਰ ਪੁਨਰਜਣਨ ਜਣਨ ਦੇ ਸਮਾਨ ਨਹੀਂ ਹੈ। ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਹਰ ਇੱਕ ਜੀਵ ਦੇ ਕਿਸੇ ਵੀ ਭਾਗ ਨੂੰ ਕੱਟ ਕੇ ਆਮ ਤੌਰ ਤੇ ਨਵਾਂ ਜੀਵ ਪੈਦਾ ਨਹੀਂ ਹੁੰਦਾ।

8.2.4 ਬਡਿੰਗ (Budding)

ਹਾਈਡਰਾ ਜਿਹੇ ਕੁੱਝ ਜੀਵ ਪੁਨਰਜਣਨ ਦੀ ਸਮਰੱਥਾ ਰੱਖਣ ਵਾਲੇ ਸੈੱਲਾਂ ਦਾ ਉਪਯੋਗ ਜਣਨ ਦੀ ਬਡਿੰਗ ਵਿਧੀ ਵਿੱਚ ਕਰਦੇ ਹਨ। ਹਾਈਡਰਾ ਵਿੱਚ ਸੈੱਲਾਂ ਦੇ ਨਿਯਮਿਤ ਵਿਭਾਜਨ ਦੇ ਕਾਰਨ ਇੱਕ ਸਥਾਨ ਉੱਤੇ ਉਭਾਰ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨੂੰ ਕਲੀਆਂ (BUD) ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 8.4) ਇਹ ਉਭਾਰ (BUD) ਵਾਧਾ ਕਰਦਾ ਹੋਇਆ ਨਵੇਂ ਜੀਵ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪੂਰਨ ਵਿਕਸਿਤ ਹੋ ਕੇ ਪਿਤਰ ਸਰੀਰ (Parent body) ਤੋਂ ਵੱਖ ਹੋ ਕੇ ਸੁਤੰਤਰ ਜੀਵ ਬਣ ਜਾਂਦਾ ਹੈ।

ਚਿੱਤਰ 8.4 ਹਾਈਡਰਾ ਵਿੱਚ ਬਡਿੰਗ

8.2.5 ਕਾਇਕ ਪ੍ਰਜਣਨ (Vegetative Propagation)

ਅਜਿਹੇ ਬਹੁਤ ਸਾਰੇ ਪੌਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਕੁੱਝ ਭਾਗ ਜਿਵੇਂ ਤਣਾ, ਜੜ੍ਹ ਅਤੇ ਪੱਤੀਆਂ ਅਨੁਕੂਲ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਵਿਕਸਤ ਹੋ ਕੇ ਨਵਾਂ ਪੌਦਾ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਬਹੁਤ ਸਾਰੇ ਜੰਤੂਆਂ ਦੇ ਵਿਪਰੀਤ ਪੌਦੇ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਯੋਗਤਾ ਦਾ ਉਪਯੋਗ ਜਣਨ ਦੀ ਵਿਧੀ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰਦੇ ਹਨ। ਦਾਬ ਲਗਾਉਣਾ, ਕਲਮ ਲਾਉਣਾ, ਪਿਉਂਦ ਲਾਉਣਾ ਆਦਿ ਜਿਹੀਆਂ ਕਾਇਕ ਪ੍ਰਜਣਨ ਦੀਆਂ ਤਕਨੀਕਾਂ ਦਾ ਉਪਯੋਗ ਖੇਤੀਬਾੜੀ ਵਿੱਚ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਗੰਨਾ, ਗੁਲਾਬ ਅਤੇ ਅੰਗੂਰ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਪ੍ਰਜਣਨ ਦੇ ਉਦਾਹਰਣ ਹਨ।ਕਾਇਕ ਪ੍ਰਜਣਨ ਦੁਆਰਾ ਉਗਾਏ ਗਏ ਪੌਦਿਆਂ ਵਿੱਚ ਬੀਜ ਦੁਆਰਾ ਉਗਾਏ ਗਏ ਪੌਦਿਆਂ ਨਾਲੋਂ ਫ਼ੁੱਲ ਅਤੇ ਫ਼ਲ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਲੱਗਣ ਲੱਗਦੇ ਹਨ।ਇਹ ਵਿਧੀ ਕੇਲਾ, ਸੰਤਰਾ, ਗੁਲਾਬ ਅਤੇ ਚਮੇਲੀ ਜਿਹੇ ਉਹ ਪੌਦੇ ਲਗਾਉਣ ਲਈ ਉਪਯੋਗੀ ਹੈ ਜੋ ਬੀਜ ਪੈਦਾ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਖੋ ਚੁੱਕੇ ਹਨ।ਕਾਇਕ ਪ੍ਰਜਣਨ ਦਾ ਦੂਜਾ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਪੈਦਾ ਹੋਏ ਸਾਰੇ ਪੌਦੇ ਅਨੁਵੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਪਿਤਰ ਪੌਦੇ ਦੇ ਸਮਾਨ ਹੁੰਦੇ ਹਨ।

ਕਿਰਿਆ 8.5

- ਇੱਕ ਆਲੂ ਲੈ ਕੇ ਉਸ ਦੀ ਸਤਹ ਦਾ ਨਿਰੀਖਣ ਕਰੋ। ਕੀ ਇਸ ਵਿੱਚ ਡੂੰਘ ਜਾਂ ਬੱਡ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ?
- ਆਲੂ ਨੂੰ ਛੋਟੇ−ਛੋਟੇ ਟੁਕੜਿਆਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਕੱਟੋ ਕਿ ਕੁੱਝ ਵਿੱਚ ਤਾਂ ਇਹ ਡੂੰਘ ਜਾਂ ਕਲੀਆਂ (BUD) ਹੋਣ ਅਤੇ ਕੁੱਝ ਵਿੱਚ ਨਾ ਹੋਣ।
- ਇੱਕ ਟਰੇਅ ਵਿੱਚ ਰੂੰ ਦੀ ਪਤਲੀ ਪਰਤ ਵਿਛਾ ਕੇ ਉਸ ਨੂੰ ਗਿੱਲਾ ਕਰੋ। ਡੂੰਘ ਵਾਲੇ ਟੁਕੜਿਆਂ ਨੂੰ ਇੱਕ ਪਾਸੇ ਅਤੇ ਬਿਨਾਂ ਡੂੰਘ ਵਾਲੇ ਟੁਕੜਿਆਂ ਨੂੰ ਦੂਜੇ ਪਾਸੇ ਰੱਖੋ।
- ਅਗਲੇ ਕੁੱਝ ਦਿਨਾਂ ਤੱਕ ਇਹਨਾਂ ਟੁਕੜਿਆਂ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨਾਂ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਧਿਆਨ ਰੱਖੋ ਹੁੰ ਪਾਣੀ ਨਾਲ ਗਿੱਲੀ ਰਹੇ।
- ਉਹ ਕਿਹੜੇ ਟੁਕੜੇ ਹਨ ਜਿਨ੍ਹਾਂ ਤੋਂ ਹਰੀਆਂ ਕਰੂੰਬਲਾਂ (Shoots) ਅਤੇ ਜੜ੍ਹ ਵਿਕਸਿਤ ਹੋ ਰਹੇ ਹਨ?

ਚਿੱਤਰ *8.5* ਕਲੀਆਂ ਸਹਿਤ ਬ੍ਰਾਇਓਫਾਈਲਮ

ਇਸੇ ਤਰ੍ਹਾਂ ਬ੍ਰਾਇਓਫਾਈਲਮ ਦੇ ਪੱਤਿਆਂ ਦੀ ਕਿਨਾਰੀ ਉੱਤੇ ਵਿਕਸਿਤ ਕਲੀਆਂ ਮਿੱਟੀ ਵਿੱਚ ਡਿੱਗ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਨਵੇਂ ਪੌਦਿਆਂ ਵਜੋਂ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।(ਚਿੱਤਰ 8.5)।

ਕਿਰਿਆ 8.6

- 😦 ਇੱਕ ਮਨੀਪਲਾਂਟ ਲਓ।
- ਇਸ ਨੂੰ ਕੁੱਝ ਟੁਕੜਿਆਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਕੱਟੋ ਕਿ ਹਰ ਇੱਕ ਵਿੱਚ ਘੱਟੋ-ਘੱਟ ਇੱਕ ਪੱਤਾ ਜ਼ਰੂਰ ਹੋਵੇ।
- 🔳 ਦੋ ਪੱਤਿਆਂ ਦੇ ਵਿਚਕਾਰਲੇ ਭਾਗ ਦੇ ਕੁੱਝ ਟੁਕੜੇ ਕੱਟੋ।
- ਸਾਰੇ ਟੁਕੜਿਆਂ ਦੇ ਇੱਕ-ਇੱਕ ਸਿਰੇ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਡੂਬੋ ਕੇ ਰੱਖੋ ਅਤੇ ਅਗਲੇ ਕੁੱਝ ਦਿਨਾਂ ਤੱਕ ਉਹਨਾਂ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਕਿਹੜੇ ਟੁਕੜਿਆਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਭਾਵ ਨਵੀਆਂ ਪੱਤੀਆਂ ਨਿਕਲਦੀਆਂ ਹਨ?
- ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਤੋਂ ਕੀ ਨਤੀਜੇ ਕੱਢ ਸਕਦੇ ਹੋ?

ਟਿਸ਼ੂ ਕਲਚਰ (Tissue culture)

ਟਿਸ਼ੂ ਕਲਚਰ ਤਕਨੀਕ ਵਿੱਚ ਪੌਦੇ ਦੇ ਟਿਸ਼ੂ ਜਾਂ ਪੌਦੇ ਦੇ ਵਧਦੇ ਸਿਰੇ ਦੀ ਨੌਕ ਤੋਂ ਉਸ ਦੇ ਸੈੱਲਾਂ ਨੂੰ ਵੱਖ ਕਰਕੇ ਨਵੇਂ ਪੌਦੇ ਉਗਾਏ ਜਾਂਦੇ ਹਨ। ਇਹਨਾਂ ਸੈੱਲਾਂ ਨੂੰ ਬਣਾਉਟੀ ਪੋਸ਼ਕ ਮਾਧਿਅਮ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸੈੱਲ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਅਨੇਕ ਸੈੱਲਾਂ ਦਾ ਇੱਕ ਛੋਟਾ ਜਿਹਾ ਸਮੂਹ ਬਣਾਉਂਦੇ ਹਨ ਜਿਸ ਨੂੰ ਕੈਲਸ (Callus) ਕਹਿੰਦੇ ਹਨ। ਕੈਲਸ ਨੂੰ ਵਾਧਾ ਅਤੇ ਵਿਭੇਦਨ ਦੇ ਹਾਰਮੋਨ ਯੁਕਤ ਇੱਕ ਹੋਰ ਮਾਧਿਅਮ ਵਿੱਚ ਰੱਖ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਬਹੁਤ ਹੀ ਛੋਟੇ ਪੌਦਿਆਂ ਨੂੰ ਮਿੱਟੀ ਵਿੱਚ ਲਗਾ ਦਿੰਦੇ ਹਨ ਤਾਂ ਜੋ ਉਹ ਵਧ ਕੇ ਵਧੇਰੇ ਪੌਦੇ ਬਣ ਜਾਣ। ਟਿਸ਼ੂ ਕਲਚਰ ਤਕਨੀਕ ਦੁਆਰਾ ਕਿਸੇ ਇਕੱਲੇ ਪੌਦੇ ਤੋਂ ਬੀਮਾਰੀਆਂ ਮੁਕਤ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਅਨੇਕ ਪੌਦੇ ਪੈਦਾ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਸ ਤਕਨੀਕ ਦਾ ਉਪਯੋਗ ਆਮ ਕਰਕੇ ਸਜਾਵਟੀ ਪੌਦਿਆਂ ਦੇ ਪ੍ਰਜਣਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

8.2.6 ਬੀਜਾਣੂ ਬਣਨਾ (Spore Formation)

ਚਿੱਤਰ 8.6 ਰਾਈਜ਼ੋਪਸ ਵਿੱਚ ਬੀਜਾਣ ਬਣਨਾ

ਅਨੇਕ ਸਰਲ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਵੀ ਵਿਸ਼ੇਸ਼ ਜਣਨ ਰਚਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਕਿਰਿਆ 8.2 ਬੀਜਾਣੂ ਵਿੱਚ ਬ੍ਰੈੱਡ ਉੱਤੇ ਧਾਗਿਆਂ ਵਰਗੀਆਂ ਰਚਨਾਵਾਂ ਵਿਕਸਿਤ ਹੋਈਆਂ ਸਨ। ਇਹ ਬ੍ਰੈੱਡ ਮੋਲਡ ਰਾਈਜ਼ੋਪਸ ਦੇ ਹਾਈਫੇ (Hyphae) ਹਨ। ਇਹ ਜਣਨ ਦੇ ਭਾਗ ਨਹੀਂ ਹਨ। ਪਰ ਹਾਈਫੇ (Hyphae) ਦੇ ਉੱਪਰਲੇ ਸਿਰੇ ਉੱਤੇ ਸੂਖ਼ਮ ਗੋਲ ਗੁੱਛੇਦਾਰ ਬਣਤਰਾਂ ਜਣਨ ਵਿੱਚ ਭਾਗ ਲੈਂਦੀਆਂ ਹਨ।ਗੁੱਛੇਦਾਰ ਬਣਤਰ ਨੂੰ ਸਪੋਰੇਨਜੀਆ (Sporangia) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸੈੱਲ ਜਾਂ ਸਪੋਰਜ਼ ਹੁੰਦੇ ਹਨ ਜੋ ਵਾਧਾ ਕਰਕੇ ਅੰਤ ਵਿੱਚ ਨਵੇਂ ਰਾਈਜ਼ੋਪਸ ਬਣਦੇ ਹਨ। (ਚਿੱਤਰ 8.6) ਸਪੋਰ ਦੀ ਕੰਧ ਮੋਟੀ ਉਦੋਂ ਤੱਕ ਇਸ ਦੀ ਰੱਖਿਆ ਕਰਦੀ ਹੈ ਜਦੋਂ ਤੱਕ ਕਿ ਇਹ ਇੱਕ ਹੋਰ ਨਮੀਂ ਵਾਲੀ ਸਤਹ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆ ਕੇ ਵਾਧਾ ਨਾ ਕਰਨ ਲੱਗ ਪਵੇ।

ਹੁਣ ਤੱਕ ਜਣਨ ਦੀਆਂ ਜਿਹੜੀਆਂ ਵਿਧੀਆਂ ਦੀ ਅਸੀਂ ਚਰਚਾ ਕੀਤੀ ਹੈ ਉਹਨਾਂ ਸਭ ਵਿੱਚ ਨਵੀਂ ਪੀੜ੍ਹੀ ਦੀ ਸਿਰਜਨਾ ਕੇਵਲ ਇੱਕ ਹੀ ਜੀਵ ਦੁਆਰਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਅਲਿੰਗੀ ਜਣਨ(Asexual Reproduction) ਆਖਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- ਦੋ ਖੰਡਨ ਬਹੁਖੰਡਨ ਨਾਲੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹੈ?
- ਬੀਜਾਣੂ ਦੁਆਰਾ ਜਣਨ ਨਾਲ ਜੀਵ ਕਿਸ ਤਰ੍ਹਾਂ ਲਾਹੇਵੰਦ ਰਹਿੰਦਾ ਹੈ?
- 3. ਕੀ ਤੁਸੀਂ ਕੁੱਝ ਕਾਰਨ ਸੋਚ ਸਕਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੋਵੇ ਕਿ ਜਟਿਲ ਰਚਨਾ ਵਾਲੇ ਜੀਵ ਪੁਨਰਜਣਨ ਦੁਆਰਾ ਨਵੀਂ ਸੰਤਾਨ ਪੈਦਾ ਨਹੀਂ ਕਰ ਸਕਦੇ?
- ਕੁੱਝ ਪੈਂਦਿਆਂ ਨੂੰ ਉਗਾਉਣ ਲਈ ਕਾਇਕ ਪ੍ਰਜਣਨ ਦਾ ਉਪਯੋਗ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- ਡੀ.ਐਨ.ਏ. ਦੀ ਕਾਪੀ ਬਣਾਉਣਾ ਜਣਨ ਦੇ ਲਈ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ?

8.3 ਲਿੰਗੀ ਪ੍ਰਜਣਨ (Sexual Reproduction)

ਅਸੀਂ ਪ੍ਰਜਣਨ ਦੀ ਉਸ ਵਿਧੀ ਤੋਂ ਵੀ ਜਾਣੂ ਹਾਂ ਜਿਸ ਵਿੱਚ ਨਵੀਂ ਸੰਤਾਨ ਪੈਦਾ ਕਰਨ ਲਈ ਦੋ ਵਿਕਅਤੀਆਂ ਦੀ ਸਾਂਝੇਦਾਰੀ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਨਾ ਤਾਂ ਇਕੱਲਾ ਸਾਨ੍ਹ ਨਵਾਂ ਬੱਚਾ ਪੈਦਾ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਇਕੱਲੀ ਮੁਰਗੀ ਨਵੇਂ ਚੂਚੇ ਪੈਦਾ ਕਰ ਸਕਦੀ ਹੈ। ਅਜਿਹੇ ਜੀਵਾਂ ਵਿੱਚ ਨਵੀਂ ਪੀੜ੍ਹੀ ਪੈਦਾ ਕਰਨ ਲਈ ਨਰ ਅਤੇ ਮਾਦਾ ਦੋਵੇਂ ਲਿੰਗਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਿੰਗੀ ਜਣਨ ਦੀ ਕੀ ਮਹੱਤਤਾ ਹੈ? ਕੀ ਅਲਿੰਗੀ ਜਣਨ ਜਿਸ ਦੀ ਚਰਚਾ ਅਸੀਂ ਉੱਪਰ ਕਰ ਚੁੱਕੇ ਹਾਂ? ਦੀਆਂ ਕੁੱਝ ਸੀਮਾਵਾਂ ਹਨ।

8.3.1 ਲਿੰਗੀ ਪ੍ਰਜਣਨ ਪ੍ਣਾਲੀ ਕਿਉਂ? (Why the sexual mode of reproduction)

ਇੱਕ ਸੈੱਲ ਤੋਂ ਦੋ ਸੈੱਲ ਬਣਨ ਵਿੱਚ ਡੀ. ਐਨ. ਏ. ਦੀ ਕਾਪੀ ਬਣਨਾ ਅਤੇ ਸੈੱਲ ਸੰਗਠਨ ਦੋਵੇਂ ਹੀ ਜ਼ਰੂਰੀ ਹਨ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਵੀ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਡੀ. ਐਨ. ਏ. ਕਾਪੀ ਕਰਨ ਦੀ ਤਕਨੀਕ ਪੂਰਨ ਤੌਰ ਤੇ ਦਰੁਸਤ ਨਹੀਂ ਹੈ, ਪਰਿਣਾਮੀ ਤਰੁੱਟੀਆਂ ਜੀਵ ਦੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਭਿੰਨਤਾ ਦਾ ਕਾਰਨ ਹਨ। ਹਰ ਇੱਕ ਜੀਵ ਮਾਤਰ ਭਿੰਨਤਾ ਦੁਆਰਾ ਸੁਰੱਖਿਅਤ ਨਹੀਂ ਹੋ ਸਕਦਾ ਪਰ ਪ੍ਰਜਾਤੀ ਦੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਪਾਈ ਜਾਂਦੀ ਭਿੰਨਤਾ ਉਸ ਪ੍ਰਜਾਤੀ ਦੀ ਹੋਂਦ ਨੂੰ ਬਣਾਈ ਰੱਖਣ ਵਿੱਚ ਸਹਾਇਕ ਹੈ। ਇਸ ਲਈ ਜੀਵਾਂ ਦੇ ਜਣਨ ਦੀ ਕੋਈ ਅਜਿਹੀ ਵਿਧੀ ਵਧੇਰੇ ਸਾਰਥਕ ਹੋਵੇਗੀ ਜਿਸ ਵਿੱਚ ਵਧੇਰੇ ਭਿੰਨਤਾ ਪੈਦਾ ਹੋ ਸਕੇ।

ਫਿਰ ਵੀ ਡੀ.ਐਨ.ਏ.ਕਾਪੀ ਕਰਨ ਦੀ ਪ੍ਣਾਲੀ ਪੂਰਨ ਤੌਰ ਤੇ ਦਰੁਸਤ ਨਹੀਂ ਹੈ ਪਰ ਇਹ ਇੰਨੀ ਦਰੁਸਤ ਜ਼ਰੂਰ ਹੈ ਜਿਸ ਨਾਲ ਭਿੰਨਤਾ ਬਹੁਤ ਧੀਮੀ ਗਤੀ ਨਾਲ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਜੇਕਰ ਡੀ.ਐਨ.ਏ. ਕਾਪੀ ਕਰਨ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਘੱਟ ਦਰੁਸਤ ਹੁੰਦੀ ਤਾਂ ਬਣਨ ਵਾਲੀਆਂ ਡੀ.ਐਨ.ਏ. ਕਾਪੀਆਂ ਸੈੱਲ ਰਚਨਾ ਨਾਲ ਕੰਮ ਨਾ ਕਰ ਸਕਦੀਆਂ ਅਤੇ ਮਰ ਜਾਂਦੀਆਂ। ਇਸ ਲਈ ਪਰਿਵਰਤਨ ਪੈਦਾ ਕਰਨ ਦੀ ਪ੍ਤਿਕਿਰਿਆ ਨੂੰ ਕਿਵੇਂ ਗਤੀ ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ? ਹਰ ਇੱਕ ਡੀ.ਐਨ.ਏ. ਕਾਪੀ ਵਿੱਚ ਨਵੀਂ ਭਿੰਨਤਾ ਪੈਦਾ ਹੋਣ ਦੇ ਨਾਲ-ਨਾਲ ਪੂਰਵ ਪੀੜ੍ਹੀਆਂ ਦੀਆਂ ਵਿਭਿੰਨਤਾਵਾਂ ਵੀ ਇਕੱਠੀਆਂ ਹੁੰਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਜਨਸੰਖਿਆ ਦੇ ਦੋ ਜੀਵਾਂ ਵਿੱਚ ਇਕੱਠੀਆਂ ਹੋਈਆਂ ਭਿੰਨਤਾਵਾਂ ਦੇ ਨਮੂਨੇ ਵੀ ਕਾਫੀ ਭਿੰਨ ਹੋਣਗੇ। ਇਹ ਸਾਰੀਆਂ ਭਿੰਨਤਾਵਾਂ ਜੀਵਤ ਜੀਵਾਂ ਵਿੱਚ ਪਾਈਆਂ ਜਾ ਰਹੀਆਂ ਹਨ ਇਸ ਲਈ ਇਹ ਨਿਸ਼ਚਿਤ ਹੀ ਹੈ ਕਿ ਇਹ ਭਿੰਨਤਾਵਾਂ ਹਾਨੀਕਾਰਕ ਨਹੀਂ ਹਨ। ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਜੀਵਾਂ ਦੀਆਂ ਭਿੰਨਤਾਵਾਂ ਦੇ ਆਪਸੀ ਜੋੜ ਨਾਲ ਨਵੇਂ ਜੋੜ ਪੈਦਾ ਹੋਣਗੇ। ਕਿਉਂਕਿ ਇਸ ਪ੍ਕਿਰਿਆ ਵਿੱਚ ਦੋ ਭਿੰਨ ਭਿੰਨ ਜੀਵ ਭਾਗ ਲੈਂਦੇ ਹਨ ਇਸ ਲਈ ਹਰ ਇੱਕ ਜੋੜ ਆਪਣੇ ਆਪ ਵਿੱਚ ਅਨੋਖਾ ਹੋਵੇਗਾ। ਲਿੰਗੀ ਜਣਨ ਵਿੱਚ ਦੋ ਭਿੰਨ ਜੀਵਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਡੀ.ਐਨ.ਏ.ਨੂੰ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ।

ਪਰ ਇਸ ਨਾਲ ਇੱਕ ਹੋਰ ਪ੍ਰਮੁੱਖ ਸਮੱਸਿਆ ਪੈਦਾ ਹੋ ਸਕਦੀ ਹੈ। ਜੇਕਰ ਨਵੀਂ ਪੀੜ੍ਹੀ ਵਿੱਚ ਜਣਨ ਕਰਨ ਵਾਲੇ ਜੀਵਾਂ ਦੇ ਡੀ.ਐਨ.ਏ.ਦਾ ਜੋੜ ਹੁੰਦਾ ਰਹੇ ਤਾਂ ਹਰ ਇੱਕ ਪੀੜ੍ਹੀ ਵਿੱਚ ਡੀ.ਐਨ.ਏ. ਦਾ ਜੋੜ ਹੁੰਦਾ ਰਹੇ ਤਾਂ ਹਰ ਇੱਕ ਪੀੜ੍ਹੀ ਵਿੱਚ ਡੀ.ਐਨ.ਏ. ਦੀ ਮਾਤਰਾ ਪਹਿਲੀ ਪੀੜ੍ਹੀ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਦੁੱਗਣੀ ਹੁੰਦੀ ਜਾਵੇਗੀ। ਇਸ ਨਾਲ ਡੀ.ਐਨ.ਏ. ਦੁਆਰਾ ਸੈੱਲ ਸੰਗਠਨ ਉੱਤੇ ਨਿਯੰਤਰਨ ਟੁੱਟਣ ਦੀ ਸੰਭਾਵਨਾ ਬਣ ਜਾਂਦੀ ਹੈ। ਇਸ ਦੇ ਇਲਾਵਾ ਜੇਕਰ ਹਰ ਪੀੜ੍ਹੀ ਵਿੱਚ ਡੀ.ਐਨ.ਏ. ਦੀ ਮਾਤਰਾ ਦੁੱਗਣੀ ਹੁੰਦੀ ਗਈ ਤਾਂ ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਇਸ ਧਰਤੀ ਉੱਤੇ ਕੇਵਲ ਡੀ.ਐਨ.ਏ. ਹੀ ਮਿਲੇਗਾ ਅਤੇ ਕਿਸੇ ਹੋਰ ਵਸਤੂ ਲਈ ਕੋਈ ਥਾਂ ਨਹੀਂ ਬਚੇਗਾ। ਇਸ ਸਮੱਸਿਆ ਦੇ ਹੱਲ ਲਈ ਅਸੀਂ ਕਿੰਨੇ ਢੰਗ ਸੋਚ ਸਕਦੇ ਹਾਂ?

ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਜਿਵੇਂ-ਜਿਵੇਂ ਜੀਵਾਂ ਦੀ ਜਟਿਲਤਾ ਵਧਦੀ ਜਾਂਦੀ ਹੈ ਤਿਵੇਂ-ਤਿਵੇਂ ਟਿਸ਼ੂਆਂ ਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਉਪਰੋਕਤ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਨੇ ਇਸ ਤਰ੍ਹਾਂ ਲੱਭਿਆ ਜਿਸ ਅਨੁਸਾਰ ਕੁਝ ਵਿਸ਼ੇਸ਼ ਅੰਗਾਂ ਵਿੱਚ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਦੀ ਪਰਤ ਹੁੰਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਗੁਣ ਸੂਤਰਾਂ ਦੀ ਸੰਖਿਆ ਜੀਵ ਦੇ ਸ਼ਰੀਰਕ ਸੈੱਲਾਂ ਨਾਲੋਂ ਅੱਧੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਡੀ. ਐਨ. ਏ. ਦੀ ਮਾਤਰਾ ਵੀ ਅੱਧੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਜਦੋਂ ਦੋ ਭਿੰਨ ਜੀਵਾਂ ਦੇ ਜਣਨ ਸੈੱਲ (Germ cells) ਲਿੰਗੀ ਜਣਨ ਦੌਰਾਨ ਮਿਲ ਕੇ ਨਵੇਂ ਜੀਵ ਦਾ ਯੁਗਮਜ (Zygote) ਪੈਦਾ ਕਰਦੇ ਹਨ ਤਾਂ ਨਵੀਂ ਪੀੜ੍ਹੀ ਵਿੱਚ ਗੁਣਸੂਤਰਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਡੀ. ਐਨ. ਏ. ਦੀ ਮਾਤਰਾ ਪਹਿਲਾਂ ਜਿੰਨੀ ਹੀ ਹੋ ਜਾਂਦੀ ਹੈ।

ਜੇਕਰ ਯੁਗਮਜ ਵਾਧੇ ਅਤੇ ਵਿਕਾਸ ਨਾਲ ਇੱਕ ਅਜਿਹੇ ਨਵੇਂ ਜੀਵ ਵਿੱਚ ਵਿਕਸਿਤ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਟਿਸ਼ੂ ਅਤੇ ਅੰਗ ਹੋਣ ਤਾਂ ਇਸ ਦੀ ਪੂਰਤੀ ਲਈ ਉਸ ਵਿੱਚ ਊਰਜਾ ਦਾ ਕਾਫੀ ਭੰਡਾਰ ਵੀ ਉਪਲਬੱਧ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।ਅਤਿ ਸਰਲ ਰਚਨਾ ਵਾਲੇ ਜੀਵਾਂ ਵਿੱਚ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਦੋ ਜਣਨ ਸੈੱਲਾਂ ਵਿੱਚ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਅੰਤਰ ਨਹੀਂ ਹੁੰਦਾ ਅਤੇ ਉਹ ਇੱਕੋਂ ਜਿਹੇ ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਪਰ ਜਿਵੇਂ ਜਿਵੇਂ ਸਰੀਰਕ ਡਿਜ਼ਾਇਨ ਵਧੇਰੇ ਜਟਿਲ ਹੁੰਦਾ ਹੈ, ਜਣਨ ਸੈੱਲ ਵੀ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।ਇੱਕ ਜਣਨ ਸੈੱਲ ਤੁਲਨਾ ਵਿੱਚ ਵੱਡਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਭੋਜਨ ਦਾ ਲੋੜੀਂਦਾ ਭੰਡਾਰ ਵੀ ਹੁੰਦਾ ਹੈ।ਜਦੋਂ ਕਿ ਦੂਜਾ ਮੁਕਾਬਲਤਨ ਛੋਟਾ ਅਤੇ ਵਧੇਰੇ ਗਤੀਸ਼ੀਲ ਹੁੰਦਾ ਹੈ ਗਤੀਸ਼ੀਲ ਜਣਨ ਸੈੱਲ ਨੂੰ ਨਰ ਯੁਗਮਕ (Male Gamete) ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਜਿਸ ਜਣਨ ਸੈੱਲ ਵਿੱਚ ਭੋਜਨ ਦਾ ਭੰਡਾਰ ਸੰਚਿਤ ਹੁੰਦਾ ਹੈ ਉਸ ਨੂੰ ਮਾਦਾ ਯੁਗਮਕ (Female Gamete) ਆਖਦੇ ਹਨ।ਅਗਲੇ ਕੁੱਝ ਸੈਕਸ਼ਨਾਂ (ਅਨੁਭਾਗਾਂ) ਵਿੱਚ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਇਹ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਜਣਨ ਸੈੱਲ ਹੀ ਨਰ ਅਤੇ ਮਾਦਾ ਜਣਨ ਅੰਗਾਂ ਵਿੱਚ ਅੰਤਰ ਪੈਦਾ ਕਰਦੇ ਹਨ ਅਤੇ ਕੁੱਝ ਜੀਵਾਂ ਵਿੱਚ ਨਰ ਅਤੇ ਮਾਦਾ ਵਿੱਚ ਸਰੀਰਕ ਅੰਤਰ ਵੀ ਸਪੱਸ਼ਟ ਦਿਸ਼ਟੀਗੋਚਰ ਹੁੰਦੇ ਹਨ।

8.3.2 ਫੁੱਲਾਂ ਵਾਲੇ ਪੌਦਿਆਂ ਵਿੱਚ ਲਿੰਗੀ ਜਣਨ (Sexual reproducation in flowering Plants)

ਫੁੱਲਦਾਰ ਪੌਦਿਆਂ (Angiosperms) ਦੇ ਜਣਨ ਅੰਗ ਫੁੱਲ ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ। ਤੁਸੀਂ ਫੁੱਲ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਭਾਗਾਂ ਬਾਰੇ ਪਹਿਲਾਂ ਹੀ ਪੜ੍ਹ ਚੁੱਕੇ ਹੈ। ਇਹ ਭਾਗ ਹਨ : ਹਰੀਆਂ ਪੱਤੀਆਂ, ਰੰਗਦਾਰ ਪੱਤੀਆਂ, ਪੁੰਕੇਸਰ ਅਤੇ ਇਸਤਰੀ ਕੇਸਰ। ਪੁੰਕੇਸਰ ਅਤੇ ਇਸਤਰੀ ਕੇਸਰ ਫੁੱਲ ਦੇ ਜਣਨ ਭਾਗ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਜਣਨ ਸੈੱਲ ਹੁੰਦੇ ਹਨ। ਹਰੀਆਂ ਪੱਤੀਆਂ ਅਤੇ ਰੰਗਦਾਰ ਪੱਤੀਆਂ ਦੇ ਕੀ ਕੰਮ ਹੋ ਸਕਦੇ ਹਨ?

ਸਟਿਗਮਾ ਪਰਾਗਕੇਸ਼ ਇਸਤਰੀ ਕੇਸਰ ਰੰਗਦਾਰ ਪੱਤੀ ਅੰਡਕੇਸ਼ ਹਰੀ ਪੱਤੀ

ਜਦੋਂ ਫੁੱਲ ਵਿੱਚ ਪੁੰਕੇਸਰ ਜਾਂ ਇਸਤਰੀ ਕੇਸਰ ਵਿੱਚੋਂ ਕੋਈ ਇੱਕ ਜਣਨ ਅੰਗ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ ਤਾਂ ਫੁੱਲ ਇੱਕਲਿੰਗੀ (Unisexual) ਕਹਾਉਂਦਾ ਹੈ (ਪਪੀਤਾ, ਇੱਕਲਿੰਗੀ (Unisexual) ਕਹਾਉਂਦਾ ਹੈ (ਪਪੀਤਾ, ਤਰਬੂਜ਼)।ਜਦੋਂ ਇੱਕ ਫੁੱਲ ਵਿੱਚ ਪੁੰਕੇਸਰ ਅਤੇ ਇਸਤਰੀ ਕੇਸਰ ਦੋਵੇਂ ਮੌਜੂਦ ਹੋਣ ਤਾਂ ਉਸ ਨੂੰ ਦੋਲਿੰਗੀ (Bisexual) ਫੁੱਲ ਆਖਦੇ ਹਨ। ਪੁੰਕੇਸਰ ਨਰ ਜਣਨ ਅੰਗ ਹੈ ਜੋ ਪਰਾਗ ਕਣ (Pollen Grains) ਬਣਾਉਂਦੇ ਹਨ। ਪਰਾਗ ਕਣ ਆਮ ਕਰਕੇ ਪੀਲੇ ਹੁੰਦੇ ਹਨ। ਤੁਸੀਂ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਜਦੋਂ ਤੁਸੀਂ ਕਿਸੇ ਫੁੱਲ ਦੇ ਪੁੰਕੇਸਰ (Stamens) ਨੂੰ ਸਪਰਸ਼ ਕਰਦੇ ਹੋ ਤਾਂ ਹੱਥ ਨੂੰ ਇੱਕ ਪੀਲਾ ਪਾਉਡਰ ਜਿਹਾ ਲੱਗ ਜਾਂਦਾ ਹੈ। ਇਸਤਰੀ

ਕੇਸਰ (CARPEL) ਫੁੱਲ ਦੇ ਕੇਂਦਰ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ ਅਤੇ ਫੁੱਲ ਦਾ ਇਹ ਮਾਦਾ ਜਣਨ ਅੰਗ ਹੈ। ਇਹ ਭਿੰਨ ਭਾਗਾਂ ਤੋਂ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਆਧਾਰ ਉੱਤੇ ਉੱਭਰਿਆ ਹੋਇਆ ਭਾਗ ਅੰਡਕੋਸ਼ (Ovary) ਹੈ। ਵਿਚਕਾਰ ਲੰਬਾ ਭਾਗ ਸਟਾਇਲ (Style) ਅਤੇ ਸਿਖਰ ਦਾ ਭਾਗ ਸਟਿਗਮਾ (Stigma) ਹੈ ਜੋ ਚਿਪਚਿਪਾ ਹੁੰਦਾ ਹੈ। ਅੰਡਕੋਸ਼ ਵਿੱਚ ਬੀਜ ਅੰਡ (Ovules) ਹੁੰਦੇ ਹਨ ਅਤੇ ਹਰ ਇੱਕ ਬੀਜ ਅੰਡ ਵਿੱਚ ਇੱਕ ਅੰਡ ਸੈੱਲ (Egg Cell) ਹੁੰਦਾ ਹੈ। ਪਰਾਗ ਕਣ ਦੁਆਰਾ ਉਤਪਾਦਿਤ ਨਰ ਜਣਨ ਸੈੱਲ ਬੀਜ ਅੰਡ ਵਿੱਚ ਮੌਜੂਦ ਮਾਦਾ ਜਣਨ ਸੈੱਲ ਨਾਲ ਮਿਲਦਾ ਹੈ। ਜਣਨ ਸੈੱਲਾਂ ਦੇ ਮਿਲਣ ਜਾਂ ਨਿਸ਼ੇਚਨ ਨਾਲ ਯੁਗਮਜ ਬਣਦਾ ਹੈ। ਜਿਸ ਵਿੱਚ ਨਵੇਂ ਪੌਦੇ ਵਿੱਚ ਵਿਕਸਿਤ ਹੋਣ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ।

ਇਸ ਲਈ ਪਰਾਗ ਕਣਾਂ ਨੂੰ ਪੁੰਕੇਸਰ ਤੋਂ ਸਟਿਗਮਾ ਤੱਕ ਪਰਿਵਹਿਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।ਜੇਕਰ ਪਰਾਗ ਕਣਾਂ ਦਾ ਇਹ ਪਰਿਵਹਿਨ ਉਸੇ ਫੁੱਲ ਦੇ ਸਟਿਗਮਾ ਉੱਤੇ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਹ ਸਵੈਪਰਾਗਣ (Self Pollination) ਕਹਾਉਂਦਾ ਹੈ।ਜਦੋਂ ਇੱਕ ਫੁੱਲ ਤੋਂ ਪਰਾਗ ਕਣ ਦੂਜੇ ਫੁੱਲ ਉੱਤੇ ਪਰਿਵਹਿਨ ਕਰਦੇ ਹਨ ਤਾਂ ਉਸ ਨੂੰ ਪਰਪਰਾਗਣ (Cross Pollination) ਆਖਦੇ ਹਨ।ਇੱਕ ਫੁੱਲ ਤੋਂ ਦੂਜੇ ਫੁੱਲ ਤੱਕ ਪਰਾਗ ਕਣਾਂ ਦਾ ਇਹ ਪਰਿਵਹਿਣ ਵਾਹਕਾਂ (agents) ਜਿਵੇਂ ਹਵਾ, ਪਾਣੀ ਅਤੇ ਜੀਵਾਂ ਦੁਆਰਾ ਪੂਰਾ ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ 8.7 ਫੁੱਲ ਦੀ ਲੰਬਾਤਮਕ ਕਾਟ

ਪਰਾਗ ਕਣ ਦੇ ਉਪਯੁਕਤ ਸਟਿਗਮਾ ਉੱਤੇ ਪਹੁੰਚਣ ਪਿੱਛੋਂ ਨਰ ਜਣਨ ਸੈੱਲ ਦਾ ਅੰਡਕੋਸ਼ ਵਿੱਚ ਸਥਿਤ ਮਾਦਾ ਜਣਨ ਸੈੱਲ ਤੱਕ ਪਹੁੰਚਣਾ ਜ਼ਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਮੰਤਵ ਲਈ ਪਰਾਗ ਕਣ ਤੋਂ ਇੱਕ ਨਾਲੀ ਵਿਕਸਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਸਟਾਇਲ ਵਿੱਚੋਂ ਹੁੰਦੀ ਹੋਈ ਬੀਜ ਅੰਡ ਤੱਕ ਪਹੁੰਚਦੀ ਹੈ।

ਨਿਸ਼ੇਚਨ ਪਿੱਛੋਂ ਉਪਜੇ ਯੂਗਮਜ ਵਿੱਚ ਅਨੇਕਾਂ ਵਿਭਾਜਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਬੀਜ ਅੰਡ ਵਿੱਚ ਭਰਣ ਵਿਕਸਿਤ ਹੁੰਦਾ ਹੈ। ਬੀਜ ਅੰਡ ਤੋਂ ਇੱਕ ਕਠੌਰ ਤਹਿ ਵਿਕਸਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਹ ਆਮ ਕਰਕੇ ਬੀਜ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਅੰਡ ਕੋਸ਼ ਤੇਜ਼ੀ ਨਾਲ ਵਾਧਾ ਕਰਦਾ ਹੈ ਅਤੇ ਪੱਕ ਕੇ ਫ਼ਲ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਸਮੇਂ ਵਿੱਚ ਹਰੀਆਂ ਪੱਤੀਆਂ, ਰੰਗਦਾਰ ਪੱਤੀਆਂ, ਪੈਕੇਸਰ, ਸਟਾਇਲ ਅਤੇ ਸਟਿਗਮਾ ਮੁਰਝਾ ਕੇ ਡਿੱਗ ਜਾਂਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਕਦੇ ਫੁੱਲ ਦੇ ਕਿਸੇ ਭਾਗ ਨੂੰ ਫ਼ਲ ਦੇ ਨਾਲ ਸਥਾਈ ਰੂਪ ਵਿੱਚ ਜੁੜੇ ਵੇਖਿਆ ਹੈ? ਸੋਚੋ, ਬੀਜਾਂ ਦੇ ਬਣਨ ਨਾਲ ਪੌਦੇ ਨੂੰ ਕੀ ਲਾਭ ਹੈ? ਬੀਜ ਵਿੱਚ ਭਾਵੀ ਪੌਦਾ ਭਾਵ ਭਰੂਣ ਹੁੰਦਾ ਹੈ ਜੋ ਅਨੁਕੂਲ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਪਨੀਰੀ ਵਜੋਂ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਪੂੰਗਰਣ (Germination) ਕਹਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 8.8 ਸਟਿਗਮਾ ਉੱਤੇ ਪਰਾਗ ਕਣਾਂ ਦਾ

ਕਿਰਿਆ 8.7

- 🏿 ਛੋਲਿਆਂ ਦੇ ਕੁੱਝ ਬੀਜਾਂ ਨੂੰ ਰਾਤ ਤੱਕ ਪਾਣੀ ਵਿੱਚ ਭਿਓਂ ਦਿਓ।
- 🔳 ਵਾਧੂ ਪਾਣੀ ਨੂੰ ਸੁੱਟ ਦਿਓ ਅਤੇ ਭਿੱਜੇ ਹੋਏ ਬੀਜਾਂ ਨੂੰ ਗਿੱਲੇ ਕੱਪੜੇ ਨਾਲ ਢੱਕ ਕੇ ਇੱਕ ਦਿਨ ਲਈ ਰੱਖ ਦਿਓ। ਧਿਆਨ ਰੱਖੋ ਕਿ ਬੀਜ਼ ਗਿੱਲੇ ਰਹਿਣ।
- 🏴 ਬੀਜਾਂ ਨੂੰ ਸਾਵਧਾਨੀ ਨਾਲ ਖੋਲ੍ਹ ਕੇ ਉਹਨਾਂ ਦੇ ਭਿੱਨ-ਭਿੰਨ ਭਾਗਾਂ ਦਾ ਪੇਖਣ ਕਰੋ।
- 🔳 ਆਪਣੇ ਪ੍ਰੇਖਣ ਦੀ ਤੁਲਨਾ ਚਿੱਤਰ 8.9 ਨਾਲ ਕਰੋ। ਕੀ ਤੁਸੀਂ ਸਾਰੇ ਭਾਗਾਂ ਨੂੰ ਪਹਿਚਾਣ ਸਕਦੇ ਹੈ।

8.3.3 ਮਨੁੱਖ ਵਿੱਚ ਲਿੰਗੀ ਜਣਨ ਬੀਜ ਪੱਤਰ (Reproduction in Human Beings) (ਭੋਜਨ ਸੰਗਹਿ)

ਹੁਣ ਤੱਕ ਅਸੀਂ ਭਿੰਨ-ਭਿੰਨ ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਜਣਨ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਪਣਾਲੀਆਂ ਦੀ ਚਰਚਾ ਕਰਦੇ ਰਹੇ ਹਾਂ। ਆਓ, ਹੁਣ ਅਸੀਂ ਉਸ ਪ੍ਰਜਾਤੀ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਜਾਣਨ ਦਾ ਉਪਰਾਲਾ ਕਰੀਏ ਜਿਸ ਵਿੱਚ ਸਾਡੀ ਸਭ ਤੋਂ ਵੱਧ ਦਿਲਚਸਪੀ ਹੈ, ਉਹ ਹੈ ਮਨੁੱਖ । ਮਨੁੱਖ ਵਿੱਚ ਲਿੰਗੀ ਜਣਨ ਹੁੰਦਾ ਹੈ ਇਹ ਪਕਿਰਿਆ ਕਿਸ ਤਰਾਂ ਕੰਮ ਕਰਦੀ ਹੈ?

ਆਓ, ਹੁਣ ਇੱਕ ਆਭਾਸੀ ਅਣ ਸੰਬੰਧਿਤ ਬਿੰਦੂ ਤੋਂ ਆਰੰਭ ਕਰਦੇ ਹਾਂ।ਅਸੀਂ ਸਾਰੇ ਵਾਣਦੇ ਹਾਂ ਕਿ ਉਮਰ ਵਧਣ ਨਾਲ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਆਉਂਦੇ ਹਨ। ਜਮਾਤ ਦੋ ਤੋਂ ਦਸ ਤੱਕ ਪਹੁੰਚਦੇ-ਪਹੁੰਚਦੇ ਸਾਡੀ ਲੰਬਾਈ ਅਤੇ ਭਾਰ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਪਹਿਲੇ ਦੰਦ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਦੱਧ ਦੇ ਦੰਦ ਕਹਿੰਦੇ ਹਨ, ਗੁਆ ਦਿੰਦੇ ਹਾਂ ਅਤੇ ਨਵੇਂ ਦੰਦ ਨਿਕਲ ਆਉਂਦੇ ਹਨ। ਇਹਨਾਂ ਸਾਰੇ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਇੱਕ ਆਮ ਪ੍ਰਕਿਰਿਆ ਵਾਧੇ ਅਧੀਨ ਇਕੱਠਿਆ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਸਰੀਰਕ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।ਪਰ ਕਿਸ਼ੋਰ ਅਸਵਥਾ ਦੇ ਆਰੰਭਿਕ ਵਰ੍ਹਿਆਂ ਵਿੱਚ ਕੁੱਝ ਅਜਿਹੇ ਪਰਿਵਰਤਨ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਸਰੀਰਕ ਵਾਧੇ ਦੇ ਆਧਾਰ ਤੇ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ।ਇਸ ਸਮੇਂ ਦੌਰਾਨ ਸਰੀਰ ਦੀ ਦਿੱਖ ਬਦਲ ਜਾਂਦੀ ਹੈ, ਸਰੀਰਕ ਅਨੁਪਾਤ ਬਦਲ ਜਾਂਦਾ ਹੈ, ਨਵੇਂ ਲੱਛਣ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਅਤੇ ਸੰਵੇਦਨਾ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਆਉਂਦੇ ਹਨ।

ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਪਰਿਵਰਤਨ ਤਾਂ ਲੜਕਿਆਂ ਅਤੇ ਲੜਕੀਆਂ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸਰੀਰ ਦੇ ਕੁੱਝ ਨਵੇਂ ਭਾਗਾਂ ਜਿਵੇਂ ਕਿ ਕੁੱਛਾਂ ਅਤੇ ਪੱਟਾਂ ਵਿਚਕਾਰ ਜਣਨ ਖੇਤਰ ਵਿੱਚ ਸੰਘਣੇ ਵਾਲ ਨਿਕਲ ਆਉਂਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਦਾ ਰੰਗ ਵੀ ਕੁੱਝ ਗਹਿਰਾ ਜਿਹਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਲੱਤਾਂ, ਬਾਹਵਾਂ ਅਤੇ ਚਿਹਰੇ ਉੱਤੇ ਬਰੀਕ ਵਾਲ ਆ ਜਾਂਦੇ ਹਨ। ਚਮੜੀ ਆਮ ਕਰਕੇ ਤੇਲ ਵਾਲੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਕਦੇ-ਕਦੇ ਚਿਹਰੇ ਉੱਤੇ ਕਿੱਲ, ਫਿਸੀਆਂ ਨਿਕਲ ਆਉਂਦੇ ਹਨ। ਅਸੀਂ ਆਪਣੇ ਅਤੇ ਦੂਜਿਆਂ ਦੇ ਸਰੀਰਾਂ ਬਾਰੇ ਵਧੇਰੇ ਸੂਚੇਤ ਹੋ ਜਾਂਦੇ ਹਾਂ ਉਹ ਵੀ ਕਿਸੇ ਨਿਵੇਕਲੇ ਢੰਗ ਨਾਲ।

ਚਿੱਤਰ 8.9 ਪੰਗਰਣ

ਦੂਜੇ ਪਾਸੇ ਕੁੱਝ ਅਜਿਹੇ ਵੀ ਪਰਿਵਰਤਨ ਹਨ ਜੋ ਲੜਕਿਆਂ ਅਤੇ ਲੜਕੀਆਂ ਵਿੱਚ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਲੜਕੀਆਂ ਵਿੱਚ ਛਾਤੀ ਦਾ ਆਕਾਰ ਵਧਣ ਲਗਦਾ ਹੈ ਅਤੇ ਛਾਤੀ ਦੇ ਅੰਤਲੇ ਸਿਰੇ ਤੇ ਨਿੱਪਲ ਅਤੇ ਉਸ ਦੇ ਆਸਪਾਸ ਦੀ ਚਮੜੀ ਦਾ ਰੰਗ ਗੂੜ੍ਹਾ ਹੋਣ ਲਗਦਾ ਹੈ। ਇਸ ਸਮੇਂ ਦੌਰਾਨ ਲੜਕੀਆਂ ਨੂੰ ਮਾਹਵਾਰੀ (Menstruation) ਆਉਣੀ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀ ਹੈ। ਲੜਕਿਆਂ ਦੇ ਚਿਹਰੇ ਉੱਤੇ ਦਾੜ੍ਹੀ, ਮੁੱਛਾਂ ਆਉਣ ਲੱਗਦੀਆਂ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੀ ਆਵਾਜ਼ ਫਟਣ ਲਗਦੀ ਹੈ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਦਿਨ ਜਾਂ ਰਾਤ ਨੂੰ ਜਾਂ ਸੁਪਨੇ ਵਿੱਚ ਲਿੰਗ ਦਾ ਆਕਾਰ ਵੱਡਾ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਅਕੜਾਅ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ।

ਇਹ ਸਾਰੇ ਪਰਿਵਰਤਨ ਮਹੀਨਿਆਂ ਅਤੇ ਸਾਲਾਂ ਵਿੱਚ ਬਹੁਤ ਧੀਮੀ ਗਤੀ ਨਾਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਪਰਿਵਰਤਨ ਸਾਰੇ ਵਿਅਕਤੀਆਂ ਵਿੱਚ ਇੱਕ ਹੀ ਸਮੇਂ ਇੱਕ ਨਿਸਚਿਤ ਉਮਰ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ। ਕੁੱਝ ਵਿਅਕਤੀਆਂ ਵਿੱਚ ਇਹ ਪਰਿਵਰਤਨ ਘੱਟ ਉਮਰ ਵਿੱਚ ਤੀਬਰਤਾ ਨਾਲ ਹੁੰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਹੋਰ ਵਿੱਚ ਧੀਮੀ ਗਤੀ ਨਾਲ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ। ਹਰ ਇੱਕ ਪਰਿਵਰਤਨ ਤੇਜ਼ੀ ਨਾਲ ਪੂਰਾ ਵੀ ਨਹੀਂ ਹੁੰਦਾ। ਉਦਾਹਰਣ ਵਜੋਂ ਲੜਕਿਆਂ ਦੇ ਚਿਹਰੇ ਉੱਤੇ ਸੰਘਣੇ ਵਾਲ ਪਹਿਲਾਂ ਕੁੱਝ ਬਿਖਰਵੇਂ ਮੋਟੇ ਰੂਪ ਵਿੱਚ ਆਉਂਦੇ ਹਨ ਅਤੇ ਫਿਰ ਹੌਲੇ-ਹੌਲੇ ਇੱਕ ਸਾਰ ਸੰਘਣੇ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। ਫਿਰ ਵੀ ਇਹਨਾਂ ਸਾਰੇ ਪਰਿਵਰਤਨਾਂ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਵਿਅਕਤੀਆਂ ਵਿੱਚ ਭਿੰਨਤਾ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਜਿਵੇਂ ਸਾਡੇ ਨੱਕ ਜਾਂ ਉਂਗਲੀਆਂ ਦੀ ਸ਼ਕਲ ਵੱਖ-ਵੱਖ ਹੈ ਇਸੇ ਤਰ੍ਹਾਂ ਵਾਲਾਂ ਦੇ ਵਾਧੇ ਦਾ ਪੈਟ੍ਨ ਜਾਂ ਛਾਤੀ ਦਾ ਆਕਾਰ ਅਤੇ ਸ਼ਕਲ ਵੀ ਭਿੰਨ-ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਇਹ ਸਾਰੇ ਪਰਿਵਰਤਨ ਸਰੀਰ ਦੀ ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ (Sexual Maturation) ਦੇ ਪਹਿਲ ਹਨ।

ਇਸ ਉਮਰ ਵਿੱਚ ਸਰੀਰ ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ ਕਿਉਂ ਦਰਸਾਉਂਦਾ ਹੈ? ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਖਾਸ ਕਾਰਜਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਵਿਸ਼ੇਸ਼ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਦੀ ਜ਼ਰੂਰਤ ਦੀ ਗੱਲ ਅਸੀਂ ਪਹਿਲਾਂ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਲਿੰਗੀ ਜਣਨ ਵਿੱਚ ਭਾਗ ਲੈਣ ਲਈ ਜਣਨ ਸੈੱਲਾਂ ਦਾ ਉਤਪਾਦਨ ਇਸੇ ਤਰ੍ਹਾਂ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਹੈ ਅਤੇ ਅਸੀਂ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪੌਦਿਆਂ ਵਿੱਚ ਵੀ ਇਸ ਵਾਸਤੇ ਵਿਸ਼ੇਸ਼ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਅਤੇ ਟਿਸ਼ੂ ਵਿਕਸਿਤ ਹੁੰਦੇ ਹਨ।ਜੀਵ, ਜਿਵੇਂ ਕਿ ਮਨੁੱਖ ਇਸ ਕਾਰਜ ਵਾਸਤੇ ਵਿਸ਼ੇਸ਼ ਟਿਸ਼ੂ ਵਿਕਸਿਤ ਕਰਦਾ ਹੈ। ਭਾਵੇਂ ਕਿਸੇ ਵਿਅਕਤੀ ਦੇ ਸਰੀਰ ਦੇ ਆਕਾਰ ਵਿੱਚ ਯੁਵਾ ਅਵਸਥਾ ਵਾਲਾ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੁੰਦਾ ਹੈ। ਪਰ ਸਰੀਰ ਦੇ ਸਾਧਨ ਮੁੱਖ ਤੌਰ ਤੇ ਇਸ ਵਾਧੇ ਦੀ ਪ੍ਰਾਪਤੀ ਦੇ ਵੱਲ ਲੱਗੇ ਰਹਿੰਦੇ ਹਨ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੇ ਚਲਦੇ ਹੋਏ ਜਣਨ ਟਿਸ਼ੂਆਂ ਦੀ ਪਰਿਪੱਕਤਾ ਮੁੱਖ ਪਹਿਲ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਲਈ ਜਿਵੇਂ-ਜਿਵੇਂ ਸਰੀਰ ਦੇ ਸਾਧਾਰਨ ਵਾਧੇ ਦੀ ਦਰ ਧੀਮੀ ਹੋਣੀ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ, ਤਿਵੇਂ-ਤਿਵੇਂ ਲਿੰਗੀ ਟਿਸ਼ੂ ਪਰਿਪੱਕ ਹੋਣਾ ਆਰੰਭ ਕਰਦੇ ਹਨ। ਕਿਸ਼ੋਰ ਅਵਸਥਾ ਦੇ ਇਸ ਕਾਲ ਨੂੰ ਜੋਬਨ (puberty) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਉਹ ਸਾਰੇ ਪਰਿਵਰਤਨ ਜਿਨ੍ਹਾਂ ਦੀ ਅਸੀਂ ਚਰਚਾ ਕੀਤੀ ਜਣਨ ਪ੍ਕਿਰਿਆ ਨਾਲ ਕਿਵੇਂ ਸੰਬੰਧਿਤ ਹਨ? ਸਾਨੂੰ ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਲਿੰਗੀ ਜਣਨ ਪ੍ਣਾਲੀ ਦਾ ਅਰਥ ਹੈ ਕਿ ਦੋ ਭਿੰਨ ਵਿਅਕਤੀਆਂ ਦੇ ਜਣਨ ਸੈੱਲਾਂ ਦਾ ਆਪੋ ਵਿੱਚ ਸੰਗਮ ਜਾਂ ਸੁਮੇਲ। ਇਹ ਕੁੱਝ ਦੋ ਜੀਵਾਂ ਦੇ ਜਣਨ ਸੈੱਲਾਂ ਦੇ ਸਰੀਰ ਤੋਂ ਬਾਹਰ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਨਾਲ ਹੋ ਸਕਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਫ਼ੁੱਲਦਾਰ ਪੌਦਿਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਜਾਂ ਫਿਰ ਦੋ ਜੀਵਾਂ ਦੇ ਸਰੀਰਾਂ ਦੇ ਪਰਸਪਰ ਸੰਬੰਧ ਦੁਆਰਾ ਜਣਨ ਸੈੱਲਾਂ ਦੇ ਅੰਦਰੂਨੀ ਪਰਿਵਹਿਨ ਦੁਆਰਾ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਅਨੇਕ ਪ੍ਰਾਣੀਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਜੰਤੂਆਂ ਨੇ ਸੰਗਮ ਦੀ ਇਸ ਪ੍ਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣਾ ਹੈ ਤਾਂ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਦੂਜੇ ਜੀਵ ਉਨ੍ਹਾਂ ਦੀ ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ ਦੀ ਪਹਿਚਾਣ ਕਰ ਸਕਣ। ਪਿਊਬਰਟੀ ਦੇ ਸਮੇਂ ਵਿੱਚ ਅਨੇਕ ਪਰਿਵਰਤਨ ਜਿਵੇਂ ਕਿ ਵਾਲ ਉੱਗਣ ਦਾ ਨਵੀਨ ਪੈਟ੍ਨ ਇਸ ਗੱਲ ਦਾ ਸੰਕੇਤ ਹੈ ਕਿ ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ ਆ ਰਹੀ ਹੈ।

ਦੂਜੇ ਪਾਸੇ ਦੋ ਵਿਅਕਤੀਆਂ ਦੇ ਵਿਚਕਾਰ ਜਣਨ ਸੈੱਲਾਂ ਦੇ ਵਾਸਤਵਿਕ ਪਰਿਵਹਿਨ ਵਾਸਤੇ ਵਿਸ਼ੇਸ਼ ਅੰਗਾਂ/ ਰਚਨਾਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਉਦਾਹਰਣ ਵਜੋਂ ਲਿੰਗ ਵਿੱਚ ਅਕੜਾਅ ਪੈਦਾ ਹੋਣ ਦੀ ਸਮਰੱਥਾ। ਥਣਧਾਰੀਆਂ ਜਿਵੇਂ ਕਿ ਮਨੁੱਖ ਵਿੱਚ ਬੱਚਾ ਮਾਂ ਦੇ ਸਰੀਰ ਵਿੱਚ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਰਹਿੰਦਾ ਹੈ ਅਤੇ ਜਨਮ ਉਪਰੰਤ ਦੁੱਧ ਚੁੰਘਦਾ ਰਹਿੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਨਾਲ ਨਿਪਟਣ ਲਈ ਮਾਦਾ ਦੇ ਜਨਣ ਅੰਗ ਅਤੇ ਛਾਤੀ ਦਾ ਪਰਿਪੱਕ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਆਓ, ਅਸੀਂ ਉਸ ਸਿਸਟਮ ਦੇ ਬਾਰੇ ਵਿੱਚ ਜਾਣੀਏ ਜੋ ਲਿੰਗੀ ਜਣਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

8.3.3 (a) ਨਰ ਪ੍ਰਜਣਨ ਪ੍ਰਣਾਲੀ (Male Reproductive System

ਨਰ ਜਣਨ ਸੈੱਲਾਂ ਦਾ ਉਤਪਾਦਨ ਕਰਨ ਵਾਲੇ ਅੰਗ ਅਤੇ ਜਣਨ ਸੈੱਲਾਂ ਨੂੰ ਨਿਸ਼ੇਚਨ ਦੇ ਸਥਾਨ ਤੱਕ ਪਹੁੰਚਾਉਣ ਵਾਲੇ ਅੰਗਾਂ ਨੂੰ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਨਰ ਪ੍ਰਜਣਨ ਪ੍ਣਾਲੀ ਕਹਿੰਦੇ ਹਨ (ਚਿੱਤਰ 8.10)।

ਨਰ ਜਣਨ ਸੈੱਲ ਜਾਂ ਸ਼ੁਕਰਾਣੂ ਦਾ ਨਿਰਮਾਣ ਪਤਾਲੂਆਂ (TESTES) ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਹ ਪੇਟ ਖੋੜ ਤੋਂ ਬਾਹਰ ਪਤਾਲੂ ਥੈਲੀ ਵਿੱਚ ਸਥਿਤ ਹਨ। ਇਸ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਸ਼ੁਕਰਾਣੂ ਦੇ ਉਤਪਾਦਨ ਲਈ ਲੌੜੀਂਦਾ ਜ਼ਰੂਰੀ ਤਾਪਮਾਨ ਸਰੀਰ ਦੇ ਤਾਪਮਾਨ ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਟੈੱਸਟੋਸਟੀਰੋਨ (TESTOSTERONE) ਹਾਰਮੋਨ ਦੇ ਉਤਪਾਦਨ ਅਤੇ ਪਤਾਲੂ ਥੈਲੀ ਵਿਚਲੇ ਪਤਾਲੂਆਂ ਦੀ ਭੂਮਿਕਾ ਦੀ ਚਰਚਾ ਅਸੀਂ ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਸ਼ੁਕਰਾਣੂ ਉਤਪਾਦਨ ਦੇ ਨਿਯੰਤਰਨ ਤੋਂ ਇਲਾਵਾ ਟੈੱਸਟੋਸਟੀਰੋਨ ਲੜਕਿਆਂ ਵਿੱਚ ਪਿਊਬਰਟੀ ਸਮੇਂ ਦਿੱਖ ਵਿੱਚ ਆਈਆਂ ਤਬਦੀਲੀਆਂ ਦਾ ਵੀ ਜ਼ਿੰਮੇਵਾਰ ਹੈ।

ਪੈਦਾ ਹੋਏ ਸ਼ੁਕਰਾਣੂ ਸ਼ੁਕਰਾਣੀ ਵਹਿਣੀ ਰਾਹੀਂ ਪਰਿਵਹਿਣ ਕਰਦੇ ਹਨ। ਸ਼ੁਕਰਾਣੀ ਵਹਿਣੀ ਮੂਤਰ ਮਸਾਨੇ ਤੋਂ ਆਉਣ ਵਾਲੀ ਨਲੀ ਨਾਲ ਜੁੜ ਕੇ ਇੱਕ ਸੰਯੁਕਤ ਨਲੀ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਲਈ ਮੂਤਰ ਮਾਰਗ ਸ਼ੁਕਰਾਣੂਆਂ ਅਤੇ ਮੂਤਰ ਦੋਵਾਂ

ਦੇ ਜਾਣ ਲਈ ਸਾਂਝਾ ਰਸਤਾ ਹੈ। ਪ੍ਰੋਸਟੇਟ ਗ੍ਰੰਥੀ ਅਤੇ ਵੀਰਜ ਥੈਲੀ (Seminal Vesicle) ਆਪੋ ਆਪਣੇ ਰਿਸਾਓ ਸ਼ੁਕਰਾਣੂ ਵਹਿਣੀ ਵਿੱਚ ਪਾਉਂਦੇ ਹਨ ਜਿਸ ਨਾਲ ਸ਼ੁਕਰਾਣੂ ਇੱਕ ਤਰਲ ਮਾਧਿਅਮ ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਨ। ਇਸ ਦੇ ਕਾਰਨ ਇਹਨਾਂ ਦਾ ਪਰਿਵਹਿਨ ਸੌਖ ਨਾਲ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਇਹ ਰਿਸਾਓ ਸ਼ੁਕਰਾਣੂਆਂ ਨੂੰ ਭੌਜਨ ਵੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਸ਼ੁਕਰਾਣੂ ਸੂਖ਼ਮ ਰਚਨਾਵਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਮੁੱਖ ਤੌਰ ਤੇ ਅਨੁਵੰਸ਼ਿਕ ਪਦਾਰਥ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਇੱਕ ਲੰਬੀ ਪੂੰਛ ਹੁੰਦੀ ਹੈ ਜੋ ਇਹਨਾਂ ਨੂੰ ਮਾਦਾ ਜਣਨ ਸੈੱਲਾਂ ਤੱਕ ਤੈਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ।

ਮਾਦਾ ਜਣਨ ਸੈੱਲਾਂ ਜਾਂ ਅੰਡਾ ਸੈੱਲਾਂ ਦਾ ਨਿਰਮਾਣ ਅੰਡਕੋਸ਼ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇੱਹ ਅੰਡਕੋਸ਼ ਕੁੱਝ ਹਾਰਮੋਨ ਵੀ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਚਿੱਤਰ 8.11 ਨੂੰ ਵੇਖੋ ਅਤੇ ਮਾਦਾ ਜਣਨ ਪ੍ਣਾਲੀ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਅੰਗਾਂ ਨੂੰ ਪਹਿਚਾਣੇ।

ਜਨਮ ਸਮੇਂ ਤੋਂ ਹੀ ਲੜਕੀ ਦੇ ਅੰਡਕੋਸ਼ ਵਿੱਚ ਬਹੁਤ ਛੋਟੇ ਅਵਿਕਸਿਤ ਅੰਡੋ ਹੁੰਦੇ ਹਨ। ਪਿਊਬਰਟੀ ਆਉਣ ਤੇ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਵਿਕਸਿਤ ਹੋਣ ਲਗਦੇ ਹਨ। ਦੋਵੇਂ ਅੰਡਕੋਸ਼ਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹਰ ਮਹੀਨੇ ਇੱਕ ਅੰਡਾ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਪਤਲੀ ਅੰਡ ਵਹਿਣੀ ਜਾਂ ਫੈਲੋਪੀਅਨ ਟਿਊਬ ਦੁਆਰਾ ਇਹ ਅੰਡਾ ਅੰਡਕੋਸ਼ ਤੋਂ ਬੱਚੇਦਾਨੀ (Womb) ਵਿੱਚ ਲੈ ਜਾਇਆ ਜਾਂਦਾ ਹੈ। ਦੋਵੇਂ ਅੰਡ ਵਹਿਣੀਆਂ ਜੁੜਕੇ ਇੱਕ ਲਚੀਲੀ ਥੈਲੀ ਨੁਮਾ ਰਚਨਾ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀਆਂ ਹਨ ਜਿਸ ਨੂੰ ਬੱਚੇਦਾਨੀ ਸਰਵਿਕਸ ਜਾਂ ਗਰਭ ਕੋਸ਼ ਕਹਿੰਦੇ ਹਨ। ਬੱਚੇਦਾਨੀ ਸਰਵਿਕਸ ਰਾਹੀਂ ਯੋਨੀ ਵਿੱਚ ਖੁੱਲ੍ਹਦੀ ਹੈ। ਨਰ-ਮਾਦਾ ਦੇ ਸੰਯੋਗ ਦੇ ਸਮੇਂ ਸ਼ੁਕਰਾਣੂ ਯੋਨੀ ਮਾਰਗ ਵਿੱਚ ਸਥਾਪਿਤ ਹੁੰਦੇ ਹਨ ਜਿੱਥੇਂ ਉਹ ਉੱਪਰ ਵੱਲ ਯਾਤਰਾ ਕਰਕੇ ਅੰਡ ਵਹਿਣੀ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੇ ਹਨ ਜਿੱਥੇ ਉਹ ਅੰਡੇ ਨਾਲ ਟਕਰਾ ਸਕਦੇ ਹਨ।

ਬਰਰ *8,10* ਮਾਨਵ ਦਾ ਨਰ ਜਣਨ ਸਿਸਟਮ

ਚਿੱਤਰ 8.11 ਮਾਨਵ ਦਾ ਮਾਦਾ ਜਣਨ ਸਿਸਟਮ

ਨਿਸ਼ੇਚਨ ਮਗਰੋਂ ਨਿਸ਼ੇਚਿਤ ਅੰਡਾ ਭਾਵ ਯੁਗਮਜ ਬੱਚੇਦਾਨੀ ਦੀ ਦੀਵਾਰ ਨਾਲ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਵਿਭਾਜਿਤ ਹੋਣ ਲਗਦਾ ਹੈ।ਅਸੀਂ ਪਹਿਲਾਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਮਾਂ ਦਾ ਸਰੀਰ ਗਰਭ ਧਾਰਨ ਕਰਨ ਅਤੇ ਬੱਚੇ ਦੇ ਵਿਕਾਸ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਅਨੁਕੂਲ ਹੁੰਦਾ ਹੈ।ਇਸ ਲਈ ਬੱਚੇਦਾਨੀ ਹਰ ਮਹੀਨੇ ਭਰੂਣ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਨ ਅਤੇ ਉਸ ਦੇ ਪੋਸ਼ਣ ਲਈ ਤਿਆਰੀ ਕਰਦੀ ਹੈ।ਇਸ ਦੀ ਅੰਦਰਲੀ ਪਰਤ ਮੋਟੀ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਭਰੂਣ ਦੇ ਪੋਸ਼ਣ ਲਈ ਲਹੂ ਦਾ ਪ੍ਵਾਹ ਵੀ ਵੱਧ ਜਾਂਦਾ ਹੈ।

ਭਰੂਣ ਨੂੰ ਮਾਂ ਦੇ ਲਹੂ ਤੋਂ ਹੀ ਪੋਸ਼ਣ ਮਿਲਦਾ ਹੈ। ਇਸ ਦੇ ਲਈ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਔਲ (ਪਲੈਸੈਂਟਾ) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਇੱਕ ਤਸ਼ਤਰੀ ਜਿਹੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜੋ ਬੱਚੇਦਾਨੀ ਦੀ ਕੰਧ ਵਿੱਚ ਧਸੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਭਰੂਣ ਦੇ ਪਾਸੇ ਵਾਲੇ ਟਿਸ਼ੂ ਉੱਤੇ ਵਿਲਈ (Villi) ਹੁੰਦੇ ਹਨ। ਮਾਂ ਵਾਲੇ ਪਾਸੇ ਲਹੂ ਸਥਾਨ(Blood Spaces) ਹੁੰਦੇ ਹਨ ਜੋ ਵਿਲਈ ਨੂੰ ਘੇਰਦੇ ਹਨ। ਇਹ ਮਾਂ ਦੇ ਲਹੂ ਤੋਂ ਭਰੂਣ ਤੱਕ ਗੁਲੂਕੋਜ਼, ਆਕਸੀਜਨ ਅਤੇ ਹੋਰ ਪਦਾਰਥਾਂ ਦੇ ਪਰਿਵਹਿਨ ਲਈ ਇੱਕ ਵੱਡਾ ਖੇਤਰ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਵਧਦਾ ਹੋਇਆ ਭਰੂਣ ਮਲ ਪਦਾਰਥ ਵੀ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਸ ਦਾ ਨਿਪਟਾਰਾ ਵੀ ਔਲ ਰਾਹੀਂ ਮਾਂ ਦੇ ਲਹੂ ਵਿੱਚ ਪਰਿਵਹਿਨ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਮਾਂ ਦੇ ਸ਼ਹੀਰ ਵਿੱਚ ਬੱਚੇ ਨੂੰ ਵਿਕਸਿਤ ਹੋਣ ਲਈ ਲੱਗਪਗ 9 ਮਹੀਨੇ ਦਾ ਸਮਾਂ ਲੱਗਦਾ ਹੈ। ਬੱਚੇਦਾਨੀ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਦੇ ਨਿਰੰਤਰ ਸੁੰਗੜਨ ਨਾਲ ਬੱਚੇ ਦਾ ਜਨਮ ਹੁੰਦਾ ਹੈ।

8.3.3 (c) ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਅੰਡੇ ਦਾ ਨਿਸ਼ੇਚਨ ਨਹੀਂ ਹੁੰਦਾ?

ਜੇਕਰ ਅੰਡੇ ਦਾ ਨਿਸ਼ੇਚਨ ਨਹੀਂ ਹੁੰਦਾ ਤਾਂ ਇਹ ਲਗਭਗ ਇੱਕ ਦਿਨ ਤੱਕ ਜਿਊਂਦਾ ਰਹਿੰਦਾ ਹੈ ਕਿਉਂਕਿ ਅੰਡਕੋਸ਼ ਹਰ ਮਹੀਨੇ ਇੱਕ ਅੰਡਾ ਛੱਡਦਾ ਹੈ। ਇਸ ਲਈ ਨਿਸ਼ੇਚਿਤ ਅੰਡੇ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਹਿਤ ਬੱਚੇਦਾਨੀ ਵੀ ਹਰ ਮਹੀਨੇ ਤਿਆਰੀ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਬੱਚੇਦਾਨੀ ਦੀਆਂ ਅੰਦਰਲੀਆਂ ਕੰਧਾਂ ਮੋਟੀਆਂ ਅਤੇ ਸਪੰਜੀ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਜੋ ਕਿ ਅੰਡੇ ਦੇ ਨਿਸ਼ੇਚਿਤ ਹੋਣ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਉਸ ਪੇਸ਼ਣ ਦੇ ਲਈ ਜ਼ਰੂਰੀ ਹੈ। ਜੇਕਰ ਨਿਸ਼ੇਚਨ ਨਹੀਂ ਹੁੰਦਾ ਤਾਂ ਇਸ ਪਰਤ ਦੀ ਲੋੜ ਨਹੀਂ ਰਹਿੰਦੀ। ਇਸ ਲਈ ਇਹ ਪਰਤ ਹੌਲੀ-ਹੌਲੀ ਟੁੱਟ ਕੇ ਯੋਨੀ ਮਾਰਗ ਰਾਹੀਂ ਲਹੂ ਅਤੇ ਮਿਊਕਸ ਦੇ ਰੂਪ ਵਿੱਚ ਬਾਹਰ ਆ ਜਾਂਦੀ ਹੈ। ਇਸ ਚੱਕਰ ਵਿੱਚ ਲਗਪਗ ਇੱਕ ਮਹੀਨੇ ਦਾ ਸਮਾਂ ਲੱਗਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਮਾਹਵਾਰੀ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਲਗਪਗ 2 ਤੋਂ 8 ਦਿਨ ਤੱਕ ਰਹਿੰਦੀ ਹੈ।

8.3.3 (d) ਪ੍ਰਜਣਨਕ ਸਿਹਤ (Reproductive Health)

ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ ਇੱਕ ਲਗਾਤਾਰ ਪ੍ਰਕਿਰਿਆ ਹੈ ਅਤੇ ਇਹ ਉਸ ਸਮੇਂ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਸਰੀਰਕ ਵਾਧਾ ਅਜੇ ਹੋ ਰਿਹਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਸੀਮਾ ਤੱਕ ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ ਦਾ ਇਹ ਅਰਥ ਨਹੀਂ ਕਿ ਸਰੀਰ ਅਤੇ ਦਿਮਾਗ ਜਣਨ ਕਿਰਿਆ, ਬੱਚੇ ਪੈਦਾ ਕਰਨ ਅਤੇ ਪਾਲਣ ਲਈ ਤਿਆਰ ਹੋ ਗਏ ਹਨ। ਅਸੀਂ ਇਹ ਨਿਰਣਾ ਕਿਸ ਤਰ੍ਹਾਂ ਲੈ ਸਕਦੇ ਹਾਂ ਕਿ ਸਰੀਰ ਅਤੇ ਦਿਮਾਗ ਇਸ ਮੁੱਖ ਜ਼ਿੰਮੇਵਾਰੀ ਦੇ ਯੋਗ ਹੋ ਗਏ ਹਨ। ਇਸ ਵਿਸ਼ੇ ਉੱਤੇ ਸਾਡੇ ਸਾਰਿਆਂ ਉੱਤੇ ਕਿਸੇ ਨਾ ਕਿਸੇ ਤਰ੍ਹਾਂ ਦਾ ਦਬਾਓ ਹੈ। ਕਈ ਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਸਾਡੇ ਮਿੱਤਰਾਂ ਦਾ ਦਬਾਓ ਵੀ ਹੋ ਸਕਦਾ ਹੈ, ਭਾਵੇਂ ਕਿ ਅਸਲ ਵਿੱਚ ਅਸੀਂ ਚਾਹੁੰਦੇ ਹਾਂ ਜਾਂ ਨਹੀਂ। ਵਿਆਹ ਅਤੇ ਸੰਤਾਨ ਉਤਪਤੀ ਦੇ ਲਈ ਪਰਿਵਾਰਿਕ ਦਬਾਓ ਵੀ ਹੋ ਸਕਦਾ ਹੈ, ਭਾਵੇਂ ਕਿ ਅਸਲ ਵਿੱਚ ਕੋਈ ਹੋ ਸਕਦਾ ਹੈ, ਭਾਵੇਂ ਕਿ ਅਸਲ ਵਿੱਚ ਲਈ ਦੇ ਹਾਂ ਜਾਂ ਨਹੀਂ। ਸੰਤਾਨ ਉਤਪਾਦਨ ਤੋਂ ਬਚ ਕੇ ਰਹਿਣ ਦਾ ਸਰਕਾਰੀ ਅਦਾਰਿਆਂ ਵੱਲੋਂ ਵੀ ਦਬਾਓ ਹੋ ਸਕਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਕੋਈ ਨਿਰਣਾ ਲੈਣਾ ਕਾਫੀ ਕਿਠਨ ਹੋ ਸਕਦਾ ਹੈ।

ਲਿੰਗੀ ਕਿਰਿਆਵਾਂ ਦੇ ਸਿਹਤ ਉੱਤੇ ਪੈਣ ਵਾਲੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵੀ ਸਾਨੂੰ ਸੋਚਣਾ ਚਾਹੀਦਾ ਹੈ।ਅਸੀਂ ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਰੋਗ ਇੱਕ ਵਿਅਕਤੀ ਤੋਂ ਦੂਜੇ ਵਿਅਕਤੀ ਨੂੰ ਕਈ ਤਰ੍ਹਾਂ ਨਾਲ ਲੱਗ ਸਕਦੇ ਹਨ ਕਿਉਂਕਿ ਲਿੰਗੀ ਕਿਰਿਆ ਵਿੱਚ ਬਹੁਤ ਨੇੜੇ ਦਾ ਸਰੀਰਕ ਸੰਬੰਧ ਸਥਾਪਿਤ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਇਹ ਕੋਈ ਅਸਚਰਜ ਦੀ ਗੱਲ ਨਹੀਂ ਕਿ ਅਨੇਕ ਰੋਗਾਂ ਦਾ ਸੰਚਾਰਨ ਲਿੰਗੀ ਕਿਰਿਆ ਦੁਆਰਾ ਹੋ ਸਕਦਾ ਹੈ।ਇਸ ਵਿੱਚ ਬੈਕਟੀਰੀਆ ਕਾਰਨ, ਗੋਨੇਰੀਆ (Gonorrhoea) ਅਤੇ ਸਿਫਲਿਸ (Siphilis) ਅਤੇ ਵਾਇਰਸ ਕਾਰਨ ਵਾਰਟ (Wart) ਅਤੇ ਐਚ. ਆਈ. ਵੀ., ਏਡਜ਼ (HIV-AIDS) ਆਦਿ ਬਿਮਾਰੀਆਂ ਸ਼ਾਮਿਲ ਹਨ। ਲਿੰਗੀ ਕਿਰਿਆਵਾਂ ਦੇ ਦੌਰਾਨ ਕੀ ਇਹਨਾਂ ਰੋਗਾਂ ਨੂੰ ਰੋਕਿਆ ਜਾ ਸਕਦਾ ਹੈ? ਸੰਯੋਗ ਦੌਰਾਨ ਲਿੰਗ ਲਈ ਕਵਰ, ਜਿਸ ਨੂੰ ਨਿਰੋਧ (ਕੈਡੋਮ) ਕਹਿੰਦੇ ਹਨ, ਦਾ ਉਪਯੋਗ ਇਹਨਾਂ ਬੀਮਾਰੀਆਂ ਵਿੱਚੋਂ ਬਹੁਤ ਸਾਰੀਆਂ ਨੂੰ ਕਿਸੇ ਹੱਦ ਤੱਕ ਲੱਗਣ ਤੋਂ ਬਚਾਉਣ ਲਈ ਲਾਭਦਾਇਕ ਹੈ।

ਸੰਯੋਗ ਜਾਂ ਲਿੰਗੀ ਕਿਰਿਆ ਦੁਆਰਾ ਗਰਭ ਧਾਰਨ ਦੀ ਸੰਭਾਵਨਾ ਸਦਾ ਹੀ ਰਹਿੰਦੀ ਹੈ। ਗਰਭਧਾਰਨ ਦੀ ਅਵਸਥਾ ਇਸਤਰੀ ਦੇ ਮਾਨਸਿਕ ਅਤੇ ਸਰੀਰਕ ਪੱਧਰ ਲਈ ਬਹੁਤ ਵੱਡੀ ਚੁਣੌਤੀ ਹੈ। ਜੇਕਰ ਉਹ ਇਸ ਲਈ ਤਿਆਰ ਨਹੀਂ ਹੈ ਤਾਂ ਇਸ ਦਾ ਉਸ ਦੇ ਸਿਹਤ ਉੱਪਰ ਮਾੜਾ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ। ਇਸ ਲਈ ਗਰਭ ਧਾਰਨ ਰੋਕਣ ਲਈ ਅਨੇਕ ਢੰਗ ਖੋਜੇ ਗਏ ਹਨ। ਇਹ ਗਰਭਰੋਧੀ (Contraceptive) ਤਰੀਕੇ ਅਨੇਕ ਤਰ੍ਹਾਂ ਦੇ ਹੋ ਸਕਦੇ ਹਨ। ਇੱਕ ਢੰਗ ਯੰਤਰਿਕ ਅਵਰੋਧ ਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਸ਼ੁਕਰਾਣੂ ਅੰਡੇ ਤੱਕ ਨਾ ਪਹੁੰਚ ਸਕਣ। ਲਿੰਗ ਕਵਰ ਕਰਨ ਵਾਲੇ ਨਿਰੋਧ (ਕੰਡੋਮ) ਅਤੇ ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਯੋਨੀ ਨੂੰ ਢਕਣ ਵਾਲੀ ਟੇਪੀ ਇਹ ਮੰਤਵ ਸਾਰ ਸਕਦੀ ਹੈ। ਦੂਜਾ ਢੰਗ ਸਰੀਰ ਵਿੱਚ ਹਾਰਮੋਨ ਦੇ ਸੰਤੂਲਨ ਦੇ ਪਰਿਵਰਤਨ ਦਾ ਹੈ ਜਿਸ ਨਾਲ ਅੰਡਾ ਮੁਕਤ ਹੀ ਨਹੀਂ ਹੁੰਦਾ ਅਤੇ ਨਿਸ਼ੇਚਨ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਹ ਦਵਾਈ ਆਮ ਗੋਲੀ ਦੇ ਰੂਪ ਵਿੱਚ ਮੂੰਹ ਰਾਹੀਂ ਲਈ ਜਾਂਦੀ ਹੈ। ਇਹ ਹਾਰਮੋਨ ਦੇ ਸੰਤੂਲਨ ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰਦੀ ਹੈ ਇਸ ਲਈ ਇਸ ਦੇ ਕੁੱਝ ਉਲਟ ਪ੍ਰਭਾਵ ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਕੁੱਝ ਹੋਰ ਯੁਕਤੀਆਂ ਦੁਆਰਾ ਜਿਵੇਂ ਕਿ ਲੂਪ ਅਤੇ ਕਾਪਰ-ਟੀ (Copper-T) ਨੂੰ ਬੱਚੇਦਾਨੀ ਵਿੱਚ ਸਥਾਪਿਤ ਕਰਕੇ ਗਰਭਧਾਰਨ ਰੋਕਿਆ ਜਾਂਦਾ ਹੈ ਪਰ ਇਸ ਦੇ ਵੀ ਕੁਝ ਉਲਟ ਪ੍ਰਭਾਵ ਹੋ ਸਕਦੇ ਹਨ ਜਿਵੇਂ ਬੱਚੇਦਾਨੀ ਦੀ ਉਤੇਜਨਾ। ਜੇਕਰ ਨਰ ਦੀ ਸ਼ੁਕਰਾਣੂ ਵਹਿਣੀ ਵਿੱਚ ਰੋਕ ਪਾ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਸ਼ੁਕਰਾਣੂ ਦਾ ਪਰਿਵਹਿਨ ਰੁਕ ਜਾਵੇਗਾ। ਜੇਕਰ ਇਸਤਰੀ ਦੀ ਅੰਡਾ ਵਹਿਣੀ ਜਾਂ ਫੈਲੋਪੀਅਨ ਟਿਊਬ ਵਿੱਚ ਰੌਕ ਪਾ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਅੰਡੇ ਗਰਭਕੋਸ਼ ਤੱਕ ਨਹੀਂ ਪਹੁੰਚ ਸਕਣਗੇ। ਦੋਵੇਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਨਿਸ਼ੇਚਨ ਨਹੀਂ ਹੋ ਪਾਏਗਾ। ਸਰਜੀਕਲ ਤਕਨੀਕ ਦੁਆਰਾ ਇਸ ਪ੍ਕਾਰ ਦੀਆਂ ਰੋਕਾਂ ਉਤਪੰਨ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਭਾਵੇਂ ਸਰਜੀਕਲ ਤਕਨੀਕ ਭਵਿੱਖ ਲਈ ਪੂਰਨ ਸੁਰੱਖਿਅਤ ਹੈ ਪਰ ਸਰਜਰੀ ਇਨਫੈਕਸ਼ਨ ਅਤੇ ਦੂਜੀਆਂ ਹੋਰ ਸਮੱਸਿਆਵਾਂ ਪੈਦਾ ਕਰ ਸਕਦੀ ਹੈ ਜੇਕਰ ਇਸ ਨੂੰ ਪੂਰਨ ਸਾਵਧਾਨੀ ਨਾਲ ਨਾ ਕੀਤਾ ਜਾਵੇ। ਸਰਜਰੀ ਦੁਆਰਾ ਅਣਚਾਹੇ ਗਰਭ ਨੂੰ ਹਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਕਨੀਕ ਦਾ ਦੁਰਉਪਯੋਗ ਉਹਨਾਂ ਲੋਕਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਲਿੰਗ ਦਾ ਬੱਚਾ ਨਹੀਂ ਚਾਹੁੰਦੇ। ਅਜਿਹਾ ਗੈਰ ਕਾਨੂੰਨੀ ਕੰਮ ਵਧੇਰੇ ਕਰਕੇ ਮਾਦਾ ਗਰਭ ਦੇ ਗੈਰ ਕਾਨੂੰਨੀ ਗਰਭਪਾਤ ਵਾਸਤੇ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ। ਇੱਕ ਸਿਹਤਮੰਦ ਸਮਾਜ ਲਈ ਮਾਦਾ ਅਤੇ ਨਰ ਲਿੰਗ ਅਨੁਪਾਤ ਬਣਾਈ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਭਾਵੇਂ ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਗਰਭ ਸਮੇਂ ਲਿੰਗ ਨਿਰਧਾਰਨ ਇੱਕ ਕਾਨੂੰਨੀ ਅਪਰਾਧ ਹੈ ਫਿਰ ਵੀ ਸਾਡੇ ਸਮਾਜ ਦੀਆਂ ਕੁੱਝ ਇਕਾਈਆਂ ਵਿੱਚ ਮਾਦਾ ਭਰੁਣ ਦੀ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੱਤਿਆ ਦੇ ਕਾਰਨ ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਬੱਚਿਆਂ ਦਾ ਲਿੰਗ ਅਨੁਪਾਤ ਤੇਜੀ ਨਾਲ ਘੱਟ ਰਿਹਾ ਹੈ ਜੋ ਬਹੁਤ ਚਿੰਤਾ ਦਾ ਵਿਸ਼ਾ ਹੈ।

ਅਸੀਂ ਪਹਿਲਾਂ ਵੇਖਿਆ ਹੈ ਕਿ ਜਣਨ ਇੱਕ ਅਜਿਹੀ ਪ੍ਰਕਿਰਿਆ ਹੈ ਜਿਸ ਦੁਆਰਾ ਜੀਵ ਆਪਣੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਵਾਧਾ ਕਰਦੇ ਹਨ। ਕਿਸੇ ਵੀ ਇੱਕ ਜਨਸੰਖਿਆ ਵਿੱਚ ਜਨਮ ਦਰ ਅਤੇ ਮੌਤ ਦਰ ਉਸ ਦਾ ਆਕਾਰ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਨ। ਜਨਸੰਖਿਆ ਦਾ ਵਿਸ਼ਾਲ ਆਕਾਰ ਬਹੁਤ ਲੋਕਾਂ ਲਈ ਚਿੰਤਾ ਦਾ ਵਿਸ਼ਾ ਹੈ। ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਵਧਦੀ ਹੋਈ ਜਨਸੰਖਿਆ ਕਾਰਨ ਹਰ ਇੱਕ ਵਿਅਕਤੀ ਦੇ ਜੀਵਨ ਸਤਰ ਵਿੱਚ ਸੁਧਾਰ ਲਿਆਉਣਾ ਬਹੁਤ ਔਖਾ ਕੰਮ ਹੈ। ਜੇਕਰ ਸਮਾਜਿਕ ਅਸਮਾਨਤਾ ਸਾਡੇ ਸਮਾਜ ਦੇ ਕੁਝ ਵਰਗਾਂ ਦੇ ਮਾੜੇ ਜੀਵਨ ਸਤਰ ਲਈ ਉੱਤਰਦਾਈ ਹੈ ਤਾਂ ਇਸ ਦੀ ਤੁਲਨਾਤਮਕ ਜਨਸੰਖਿਆ ਦੇ ਆਕਾਰ ਦਾ ਮਹੱਤਵ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਆਪਣੇ ਆਲੇ ਦੁਆਲੇ ਵੇਖੀਏ ਤਾਂ ਮਾੜੇ ਜੀਵਨ ਪੱਧਰ ਲਈ ਤੁਸੀਂ ਕਿਸ ਕਾਰਨ ਨੂੰ ਸਭ ਤੋਂ ਜ਼ਿੰਮੇਵਾਰ ਸਮਝੌਗੇ।

ਪ੍ਰਸ਼ਨ

- ਪਰਾਗਣ ਕਿਰਿਆ ਨਿਸ਼ੇਚਨ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹੈ?
- ਵੀਰਜ ਬੈਲੀਆਂ ਅਤੇ ਪ੍ਰੋਸਟੇਟ ਗ੍ਰੰਥੀ ਦੀ ਕੀ ਭੂਮਿਕਾ ਹੈ?
- 3. ਪਿਊਬਰਟੀ ਸਮੇਂ ਲੜਕੀਆਂ ਵਿੱਚ ਕਿਹੜੇ-ਕਿਹੜੇ ਪਰਿਵਰਤਨ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ?
- 4. ਮਾਂ ਦੇ ਸਰੀਰ ਵਿੱਚ ਭਰੂਣ ਪੋਸ਼ਣ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ?
- 5. ਜੇਕਰ ਕੋਈ ਇਸਤਰੀ ਕਾਪਰ-ਟੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰ ਰਹੀ ਹੈ ਤਾਂ ਕੀ ਇਹ ਲਿੰਗੀ ਸੰਪਰਕ ਦੁਆਰਾ ਸੰਚਾਰਿਤ ਰੋਗਾਂ ਤੋਂ ਉਸ ਦੀ ਰੱਖਿਆ ਕਰੇਗਾ?

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ਹੈ?

- 📱 ਦੂਜੀਆਂ ਜੈਵ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਉਲਟ ਕਿਸੇ ਜੀਵ ਦੀ ਆਪਣੀ ਹੋਂਦ ਲਈ ਜਣਨ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ।
- ਜਣਨ ਵਿੱਚ ਭਾਗ ਲੈ ਰਹੇ ਸੈੱਲ ਦੁਆਰਾ ਡੀ. ਐਨ. ਏ. ਕਾਪੀ ਦਾ ਨਿਰਮਾਣ ਅਤੇ ਅਤਿਰਿਕਤ ਸੈੱਲ ਸੰਗਠਨ ਦਾ ਸਿਰਜਨ ਹੁੰਦਾ ਹੈ।
- ਼ ਭਿੰਨ-ਭਿੰਨ ਜੀਵਾਂ ਦੁਆਰਾ ਅਪਣਾਏ ਜਾਣ ਵਾਲੀ ਜਣਨ ਪ੍ਣਾਲੀ ਉਹਨਾਂ ਦੀ ਸ਼ਹੀਰਕ ਬਣਤਰ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।
- ਵਿਖੰਡਨ ਵਿਧੀ ਵਿੱਚ ਬੈਕਟੀਰੀਆ ਅਤੇ ਪ੍ਰੋਟੋਜੋਆ ਦਾ ਸੈੱਲ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਦੋ ਜਾਂ ਵੱਧ ਸੰਤਾਨ ਸੈੱਲਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ
- ਜੇਕਰ ਹਾਈਡਰਾ ਜਿਹੇ ਜੀਵਾਂ ਦਾ ਸਰੀਰ ਕਈ ਟੁਕੜਿਆਂ ਵਿੱਚ ਟੁੱਟ ਜਾਵੇ ਤਾਂ ਹਰ ਇੱਕ ਭਾਗ ਤੋਂ ਪੁਨਰ ਜਣਨ ਦੁਆਰਾ ਜੀਵ ਵਿਕਸਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਹਨਾਂ ਵਿੱਚ ਕਲੀਆਂ (ਬੱਡ) ਉਭਰ ਕੇ ਨਵੇਂ ਜੀਵ ਵਿਕਸਿਤ ਕਰਦੇ ਹਨ।
- 🔹 ਕੁੱਝ ਪੌਦਿਆਂ ਵਿੱਚ ਕਾਇਕ ਪ੍ਜਣਨ ਦੁਆਰਾ ਜੜ੍ਹਾਂ, ਤਣੇ ਅਤੇ ਪੱਤਿਆਂ ਤੋਂ ਨਵੇਂ ਪੌਦੇ ਵਿਕਸਿਤ ਹੁੰਦੇ ਹਨ।
- 🔹 ਅਲਿੰਗੀ ਜਣਨ ਦੇ ਅਜਿਹੇ ਉਦਾਹਰਣ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸੰਤਾਨ ਦੀ ਉਤਪਤੀ ਇੱਕ ਇਕੱਲੇ ਜੀਵ ਦੁਆਰਾ ਹੁੰਦੀ ਹੈ।
- ਲਿੰਗੀ ਜਣਨ ਵਿੱਚ ਸੰਤਾਨ ਉਤਪਾਦਨ ਹਿਤ ਦੋ ਜੀਵ ਭਾਗ ਲੈਂਦੇ ਹਨ।
- ਡੀ. ਐਨ. ਏ. ਕਾਪੀ ਦੀ ਤਕਨੀਕ ਤੋਂ ਵਿਭਿੰਨਤਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਜੋ ਪ੍ਰਜਾਤੀ ਦੀ ਹੋਂਦ ਲਈ ਲਾਭਦਾਇਕ ਹੈ।
 ਲਿੰਗੀ ਜਣਨ ਦੁਆਰਾ ਜ਼ਿਆਦਾ ਵਿਭਿੰਨਤਾਵਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ
- ਫੁੱਲਾਂ ਵਾਲੇ ਪੌਦਿਆਂ ਵਿੱਚ ਜਣਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪਰਾਗ ਕਣ, ਪੁੰਕੇਸਰ ਤੋਂ ਇਸਤਰੀਕੇਸਰ ਦੇ ਸਟਿਗਮਾ ਤੱਕ ਪਰਿਵਹਿਨ ਕਰਦੇ ਹਨ ਜਿਸ ਨੂੰ ਪਰਾਗਣ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਪਿੱਛੋਂ ਨਿਸ਼ੇਚਨ ਹੁੰਦਾ ਹੈ।
- ਪਿਊਬਰਟੀ ਵਿੱਚ ਸਰੀਰ ਅੰਦਰ ਅਨੇਕ ਪਰਿਵਰਤਨ ਆਉਂਦੇ ਹਨ, ਉਦਾਹਰਣ ਲਈ ਲੜਕੀਆਂ ਵਿੱਚ ਛਾਤੀ ਦਾ ਵਿਕਾਸ ਅਤੇ ਲੜਕਿਆਂ ਦੇ ਚਿਹਰੇ ਉੱਤੇ ਨਵੇਂ ਵਾਲਾਂ ਦਾ ਆਉਣਾ, ਲਿੰਗੀ ਪਰਿਪੱਕਤਾ ਦੇ ਚਿੰਨ੍ਹ ਹਨ।

- ਮਨੁੱਖ ਦੀ ਜਣਨ ਪ੍ਣਾਲੀ ਵਿੱਚ ਪਤਾਲੂ, ਸ਼ੁਕਰਾਣੂ ਵਹਿਣੀ, ਵੀਰਜ ਬੈਲੀ, ਪ੍ਰੋਸਟੇਟ ਗ੍ਰੰਥੀ, ਮੂਤਰ ਮਾਰਗ ਅਤੇ ਲਿੰਗ ਹੁੰਦੇ ਹਨ। ਪਤਾਲੂ ਸ਼ੁਕਰਾਣੂ ਪੈਦਾ ਕਰਦੇ ਹਨ।
- 😦 ਮਨੁੱਖ ਦੀ ਮਾਦਾ ਜਣਨ ਪ੍ਣਾਲੀ ਵਿੱਚ ਅੰਡਕੋਸ਼, ਫੈਲੋਪੀਅਨ ਟਿਊਬ, ਬੱਚੇਦਾਨੀ ਅਤੇ ਯੋਨੀ ਪਾਏ ਜਾਂਦੇ ਹਨ।
- ਮਨੁੱਖ ਵਿੱਚ ਲਿੰਗੀ ਜਣਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸ਼ੁਕਰਾਣੂਆਂ ਦਾ ਇਸਤਰੀ ਦੀ ਯੋਨੀ ਵਿੱਚ ਪਰਿਵਹਿਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਿਸ਼ੇਚਨ ਫੈਲੋਪੀਅਨ ਟਿਊਬ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
- ਗਰਭਰੋਧੀ ਯੁਕਤੀਆਂ ਅਪਣਾ ਕੇ ਗਰਭਧਾਰਨ ਰੋਕਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੰਡੋਮ, ਗਰਭ ਨਿਰੋਧਕ ਗੋਲੀਆਂ, ਕਾਪਰ-ਟੀ ਅਤੇ ਹੋਰ ਵਿਧੀਆਂ ਇਸ ਦੇ ਉਦਾਹਰਣ ਹਨ।

ਅਭਿਆਸ

- ਅਲਿੰਗੀ ਜਣਨ ਬਡਿੰਗ ਦੁਆਰਾ ਇਨ੍ਹਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ:
 - (ੳ) ਅਮੀਬਾ
 - (भ) जीमट
 - ਇ) ਪਲਾਜ਼ਮੋਡੀਅਮ
 - (ਸ) ਲੇਸ਼ਮਾਨੀਆ
- 2. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਮਨੁੱਖ ਵਿੱਚ ਮਾਦਾ ਜਣਨ ਪ੍ਰਣਾਲੀ ਦਾ ਭਾਗ ਨਹੀਂ :
 - (ੳ) ਅੰਡਕੋਸ਼
 - (ਅ) ਗਰਭਕੋਸ਼
 - (ੲ) ਸ਼ੁਕਰਾਣੂ ਵਹਿਣੀ
 - (ਸ) ਫੈਲੌਪੀਅਨ ਟਿਊਬ
- 3. ਪਰਾਗ ਕੋਸ਼ ਵਿੱਚ ਹੁੰਦਾ ਹੈ : -
 - (ੳ) ਹਰੀਆਂ ਪੱਤੀਆਂ
 - (भ) घीन भेड
 - (ੲ) ਇਸਤਰੀ ਕੇਸਰ
 - (ਸ) ਪਰਾਗ ਕਣ
- 4. ਅਲਿੰਗੀ ਜਣਨ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਲਿੰਗੀ ਜਣਨ ਦੇ ਕੀ ਲਾਭ ਹਨ?
- ਮਨੁੱਖ ਵਿੱਚ ਪਤਾਲੂਆਂ ਦੇ ਕੀ ਕਾਰਜ ਹਨ?
- 6. ਮਾਹਾਵਾਰੀ ਕਿਉਂ ਹੁੰਦੀ ਹੈ?
- 7. ਫੁੱਲ ਦੀ ਲੰਬਾਤਮਕ ਕਾਟ ਦਾ ਅੰਕਿਤ ਕੀਤਾ ਚਿੱਤਰ ਬਚਾਓ।
- 8. ਗੁਰਭ ਨਿਰੋਧਨ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਵਿਧੀਆਂ ਕਿਹੜੀਆਂ ਹਨ?
- 9. ਇੱਕ ਸੈੱਲੀ ਅਤੇ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਦੀਆਂ ਜਣਨ ਵਿਧੀਆਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹਨ?
- 10. ਜਣਨ ਕਿਸੇ ਪ੍ਰਜਾਤੀ ਦੀ ਜਨਸੰਖਿਆ ਦੇ ਸਥਾਈਪਣ ਵਿੱਚ ਕਿਵੇਂ ਸਹਾਇਕ ਹੈ?
- ।।. ਗਰਭ ਨਿਰੋਧਕ ਯੁਕਤੀਆਂ ਅਪਣਾਉਣ ਦੇ ਕੀ ਕਾਰਨ ਹੋ ਸਕਦੇ ਹਨ?

ਅਧਿਆਇ 9 ਅਨੁਵੰਸ਼ਿਕਤਾ ਅਤੇ ਜੀਵ ਵਿਕਾਸ

(Heredity and Evolution)

ਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਜਣਨ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਨਵੇਂ ਜੀਵ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਜੋ ਜਨਕ ਦੇ ਸਮਾਨ ਹੁੰਦੇ ਹੋਏ ਵੀ ਕੁੱਝ ਭਿੰਨ ਹੁੰਦੇ ਹਨ।ਅਸੀਂ ਇਹ ਚਰਚਾ ਕੀਤੀ ਹੈ ਕਿ ਅਲਿੰਗੀ ਜਣਨ ਦੁਆਰਾ ਵੀ ਕੁੱਝ ਭਿੰਨਤਾਵਾਂ ਕਿਵੇਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ। ਵਧੇਰੇ ਸੰਖਿਆ ਵਿੱਚ ਸਫਲ ਭਿੰਨਤਾਵਾਂ ਲਿੰਗੀ ਪ੍ਰਜਣਨ ਦੁਆਰਾ ਹੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਜੇਕਰ ਅਸੀਂ ਗੰਨੇ ਦੇ ਖੇਤ ਦਾ ਅਵਲੋਕਨ ਕਰੀਏ ਤਾਂ ਸਾਨੂੰ ਵਿਅਕਤੀਗਤ ਪੌਦਿਆਂ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਭਿੰਨਤਾਵਾਂ ਵਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ। ਮਨੁੱਖ ਅਤੇ ਵਧੇਰੇ ਕਰਕੇ ਜੰਤੂ ਜੋ ਲਿੰਗੀ ਜਣਨ ਦੁਆਰਾ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਵਿੱਚ ਵਿਅਕਤੀਗਤ ਪੱਧਰ ਤੇ ਅਨੇਕ ਭਿੰਨਤਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਉਹਨਾਂ ਕਿਰਿਆ ਵਿਧੀਆਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ ਜਿਨ੍ਹਾਂ ਦੇ ਕਾਰਨ ਭਿੰਨਤਾਵਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਅਤੇ ਵਿਰਸੇ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਭਿੰਨਤਾਵਾਂ ਦੇ ਲੰਬੇ ਸਮੇਂ ਦੇ ਸੰਗ੍ਰਹਿ ਦੇ ਪ੍ਰਭਾਵਾਂ ਦਾ ਅਧਿਐਨ ਬੜਾ ਰੋਚਕ ਹੈ। ਜੀਵ ਵਿਕਾਸ ਵਿੱਚ ਅਸੀਂ ਇਸ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

9.1 ਜਣਨ ਦੇ ਦੌਰਾਨ ਭਿੰਨਤਾਵਾਂ ਦਾ ਸੰਚਨ (Accumulation of Variations During Reproduction)

ਚਿੱਤਰ 9.1 ਅਗਲੀਆਂ ਪੀੜ੍ਹੀਆਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ ਦੀ ਉਤਪਤੀ ਸਿਖਰ ਉੱਤੇ ਵਿਖਾਏ ਗਏ ਪਹਿਲੀ ਪੀੜ੍ਹੀ ਦੇ ਜੀਵ, ਮੰਨ ਲਓ ਕਿ ਦੋ ਸੰਤਾਨਾਂ ਨੂੰ ਜਨਮ ਦੇਣਗੇ ਜਿਨ੍ਹਾਂ ਦੀ ਆਮ ਸਰੀਰਕ ਰਚਨਾ ਤਾਂ ਇੱਕ ਸਮਾਨ ਹੋਵੇਗੀ ਪਰ ਭਿੰਨਤਾਵਾਂ ਵੀ ਹੋਣਗੀਆਂ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਅਗਲੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਦੋ ਸੰਤਾਨਾਂ ਦੀ ਉਤਪਤੀ ਕਰੇਗਾ। ਚਿੱਤਰ ਵਿੱਚ ਸਭ ਤੋਂ ਹੇਠਾਂ ਵਿਖਾਏ ਗਏ ਚਾਰੇ ਜੀਵ ਵਿਅਕਤੀਗਤ ਪੱਧਰ ਤੇ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੱਨ ਹੋਣਗੇ। ਕੁੱਝ ਭਿੰਨਤਾਵਾਂ ਵਿਸ਼ੇਸ਼ ਹੋਣਗੀਆਂ ਕੱਝ ਉਨ੍ਹਾਂ ਨੂੰ ਆਪਣੇ ਜਨਕ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਈਆਂ ਹਨ ਜੋ ਆਪ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਸਨ। ਸੰਤਾਨ ਨੂੰ ਪਿਛਲੀ ਪੀੜ੍ਹੀ ਤੋਂ ਵਿਰਸੇ ਵਿੱਚ ਇੱਕ ਮੁੱਢਲੀ ਸਰੀਰਕ ਬਣਤਰ ਅਤੇ ਇਸ ਵਿੱਚ ਕੁੱਝ ਭਿੰਨਤਾਵਾਂ ਮਿਲਦੀਆਂ ਹਨ। ਹੁਣ ਸੋਚੋ ਕਿ ਕੀ ਹੋਵੇਗਾ ਜਦੋਂ ਇਹ ਨਵੀਂ ਪੀੜ੍ਹੀ ਅੱਗੇ ਪ੍ਰਜਣਨ ਕਰਦੀ ਹੈ। ਦੂਜੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਪਹਿਲੀ ਪੀੜ੍ਹੀ ਤੋਂ ਵਿਰਸੇ ਵਿੱਚ ਮਿਲੀਆਂ ਭਿਨਤਾਵਾਂ ਦੇ ਨਾਲ ਹੀ ਕੁੱਝ ਨਵੀਆਂ ਭਿੰਨਤਾਵਾਂ ਵੀ ਪੈਦਾ ਹੋਣਗੀਆਂ (ਚਿੱਤਰ 9.1)

ਚਿੱਤਰ 9.1 ਵਿੱਚ ਉਸ ਸਥਿਤੀ ਨੂੰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਜਦੋਂ ਕੇਵਲ ਇਕੱਲਾ ਜੀਵ ਜਣਨ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਅਲਿੰਗੀ ਜਣਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਇੱਕ ਬੈਕਟੀਰੀਆ ਵਿਭਾਜਿਤ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਸ ਦੇ ਨਤੀਜੇ ਵਿੱਚ ਦੋ ਬੈਕਟੀਰੀਆ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਜੋ ਮੁੜ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਚਾਰ ਬੈਕਟੀਰੀਆ ਪੈਦਾ ਕਰਨਗੇ ਜਿਹੜੇ ਆਪਸ ਵਿੱਚ ਬਹੁਤ ਹੱਦ ਤੱਕ ਸਮਾਨ ਹੋਣਗੇ। ਇਹਨਾਂ ਅੰਦਰ ਆਪਸ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਅੰਤਰ ਹੋਵੇਗਾ ਜੋ ਡੀ. ਐਨ. ਏ. ਕਾਪੀ ਕਰਨ ਸਮੇਂ ਹੋਈਆਂ ਤਰੁਟੀਆਂ ਦੇ ਕਾਰਨ ਪੈਦਾ ਹੋਏ ਹੋਣਗੇ। ਜੇਕਰ ਲਿੰਗੀ ਜਣਨ ਹੁੰਦਾ ਤਾਂ ਅੰਤਰ ਕੁੱਝ ਵੱਧ ਹੁੰਦਾ। ਜੋ ਅਸੀਂ ਵਿਰਾਸਤ ਦੇ ਨਿਯਮਾਂ ਬਾਰੇ ਚਰਚਾ ਕਰਦੇ ਹੋਏ ਵੇਖ ਸਕਾਂਗੇ।

ਕੀ ਕਿਸੇ ਵੀ ਸਪੀਸੀਜ਼ ਵਿੱਚ ਇਹ ਇਹਨਾਂ ਸਾਰੀਆਂ ਭਿੰਨਤਾਵਾਂ ਸਮੇਤ ਆਪਣੇ ਵਾਤਾਵਰਨ ਵਿੱਚ ਰਹਿਣ ਦੀ ਸੰਭਾਵਨਾ ਇੱਕੋ ਜਿਹੀ ਹੈ? ਸਪਸ਼ਟ ਤੌਰ ਤੇ ਨਹੀਂ। ਭਿੰਨਤਾਵਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਨੁਸਾਰ ਵੱਖ-ਵੱਖ ਵਿਅਕਤੀਆਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦਾ ਲਾਭ ਹੋਵੇਗਾ। ਤਾਪ ਸਹਿਨ ਕਰਨ ਵਾਲ਼ੇ ਬੈਕਟੀਰੀਆ ਵਧੇਰੇ ਗਰਮੀ ਵਿੱਚ ਜੀਵਤ ਰਹਿਣਗੇ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਵਿਚਾਰ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਵਾਤਾਵਰਨ ਕਾਰਕਾਂ ਦੁਆਰਾ ਭਿੰਨਤਾ ਵਾਲੇ ਜੀਵਾਂ ਦੀ ਚੋਣ ਜੀਵ ਵਿਕਾਸ ਪ੍ਰਕਿਰਿਆ ਦਾ ਆਧਾਰ ਬਣਦੀ ਹੈ ਜਿਸ ਦੀ ਚਰਚਾ ਅਸੀਂ ਅੱਗੇ ਕਰਾਂਗੇ।

ਪ੍ਰਸ਼ਨ

- ਜੇਕਰ ਇੱਕ 'ਲੱਛਣ A' ਅਲਿੰਗੀ ਪ੍ਰਜਣਨ ਵਾਲੀ ਜਨਸੰਖਿਆ ਦੇ 10% ਜੀਵਾਂ ਵਿੱਚ ਮਿਲਦਾ ਹੈ ਅਤੇ 'ਲੱਛਣ B' ਉਸੇ ਜਨਸੰਖਿਆ ਵਿੱਚ 60% ਜੀਵਾਂ ਵਿੱਚ ਮਿਲਦਾ ਹੈ ਤਾਂ ਕਿਹੜਾ ਲੱਛਣ ਪਹਿਲਾਂ ਪੈਦਾ ਹੋਇਆ ਹੋਵੇਗਾ?
- ਕ੍ਰਿਨਤਾਵਾਂ ਦੇ ਪੈਦਾ ਹੋਣ ਨਾਲ ਕਿਸੇ ਸਪੀਸ਼ੀਜ ਦੀ ਹੋਂਦ ਕਿਵੇਂ ਵੱਧ ਜਾਂਦੀ ਹੈ?

9.2 ਅਨੁਵੰਸ਼ਿਕਤਾ (Heredity)

ਜਣਨ ਪ੍ਰਕਿਰਿਆ ਦਾ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਨਤੀਜਾ ਸੰਤਾਨ ਦੇ ਜਣਕਾਂ ਦੇ ਸਮਾਨ ਬਣਤਰ ਦਾ ਹੋਣਾ ਹੈ। ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੇ ਨਿਯਮ ਉਸ ਕਿਰਿਆ ਦਾ ਨਿਰਧਾਰਨ ਕਰਦੇ ਹਨ ਜਿਸ ਦੁਆਰਾ ਭਿੰਨ ਲੱਛਣ ਅਤੇ ਗੁਣ ਭਰੋਸੇਯੋਗ ਢੰਗ ਨਾਲ ਵਿਰਸੇ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।ਆਓ, ਇਹਨਾਂ ਨਿਯਮਾਂ ਦਾ ਧਿਆਨਪਰਵਕ ਅਧਿਐਨ ਕਰੀਏ।

9.2.1 ਖ਼ਾਨਦਾਨੀ ਲੱਛਣ (Inherited Traits)

ਅਸਲ ਵਿੱਚ ਸਮਾਨਤਾ ਅਤੇ ਭਿੰਨਤਾਵਾ ਤੋਂ ਸਾਡਾ ਕੀ ਭਾਵ ਹੈ? ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਬੱਚੇ ਵਿੱਚ ਮਾਪਿਆਂ ਦੇ ਸਾਰੇ ਮੌਲਿਕ ਲੱਛਣ ਹੁੰਦੇ ਹਨ। ਫਿਰ ਵੀ ਇਹ ਪੂਰਨ ਰੂਪ ਤੋਂ ਆਪਣੇ ਮਾਪਿਆਂ ਜਿਹਾ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦਾ ਅਤੇ ਮਨੁੱਖੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਇਹ ਭਿੰਨਤਾ ਸਪਸ਼ਟ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ।

ਕਿਰਿਆ 9.1

ਆਪਣੀ ਜਮਾਤ ਦੇ ਸਾਰੇ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਕੈਨਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ। ਅਜਿਹੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਵੱਖ-ਵੱਖ ਸੂਚੀ ਬਣਾਓ ਜਿਨ੍ਹਾਂ ਦੀ ਕੰਨਪਾਲੀ (ear lobe) ਸੁਤੰਤਰ ਹੋਵੇ ਜਾਂ ਜੁੜੀ ਹੋਈ (ਚਿੱਤਰ 9.2)। ਜੁੜੀ ਕੰਨਪਾਲੀ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਅਤੇ ਸੁਤੰਤਰ ਕੰਨਪਾਲੀ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਪ੍ਰਤਿਸ਼ਤ ਗਿਆਤ ਕਰੋ। ਹਰ ਇੱਕ ਵਿਦਿਆਰਥੀ ਦੀ ਕੰਨਪਾਲੀ ਦੀ ਕਿਸਮ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਮਾਪਿਆਂ ਨਾਲ ਮਿਲਾ ਕੇ ਦੇਖੋ। ਇਸ ਪ੍ਰੇਖਣ ਦੇ ਆਧਾਰ ਉੱਤੇ ਕੰਨਪਾਲੀ ਦੀ ਵਿਰਾਸਤ ਦੇ ਸੰਭਾਵਿਤ ਨਿਯਮ ਸੁਝਾਓ।

ਮਨੁੱਖ ਵਿੱਚ ਲੱਛਣਾਂ ਦੀ ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੇ ਨਿਯਮ ਇਸ ਗੱਲ ਉੱਤੇ ਆਧਾਰਿਤ ਹਨ ਕਿ ਮਾਤਾ ਅਤੇ ਪਿਤਾ ਦੋਵੇਂ ਹੀ ਲਗਭਗ ਸਮਾਨ ਮਾਤਰਾ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕ ਪਦਾਰਥ ਸੰਤਾਨ ਨੂੰ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਹਰ ਇੱਕ ਲੱਛਣ ਮਾਤਰੀ ਅਤੇ ਪਿਤਰੀ ਡੀ. ਐਨ.ਏ. ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਹਰ ਇੱਕ ਲੱਛਣ ਲਈ ਹਰ ਸੰਤਾਨ ਵਿੱਚ ਦੋ ਵਿਕਲਪ ਹੋਣਗੇ। ਫਿਰ ਕਿਹੜਾ ਲੱਛਣ ਸੰਤਾਨ ਵਿੱਚ ਵਿਖਾਈ ਦੇਵੇਗਾ? ਮੈਂਡਲ (ਬਾਕਸ ਵੇਖੋ) ਨੇ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੇ ਕੁੱਝ ਮੁੱਖ ਨਿਯਮ ਪ੍ਰਦਾਨ ਕੀਤੇ। ਇਹਨਾਂ ਪ੍ਰਯੋਗਾਂ ਬਾਰੇ ਜਾਣਨਾ ਅਤਿ ਰੋਚਕ ਹੋਵੇਗਾ ਜੋ ਉਸ ਨੇ ਲਗਭਗ ਇੱਕ ਸ਼ਤਾਬਦੀ ਤੋਂ ਵੀ ਪਹਿਲਾਂ ਕੀਤੇ ਸਨ।

(b)

ਚਿੱਤਰ 9.2

(a) ਸੁੰਤਤਰ ਅਤੇ (b) ਜੁੜੀ ਕੰਨਪਾਲੀ।ਕੰਨ ਦੇ ਹੇਠਲੇ ਭਾਗ ਨੂੰ ਕੰਨਪਾਲੀ ਕਹਿੰਦੇ ਹਨ।ਇੱਹੇ ਕੁੱਝ ਲੌਕਾਂ ਵਿੱਚ ਸਿਰ ਪਾਸੇ ਪੂਰੇ ਰੂਪ ਵਿੱਚ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ ਪਰ ਕੁੱਝ ਵਿੱਚ ਨਹੀਂ। ਸੁਤੰਤਰ ਅਤੇ ਜੁੜੀ ਕੰਨਪਾਲੀ ਮਨੁੱਖੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਪਾਏ ਜਾਣ ਵਾਲੇ ਦੋ ਪਰਿਵਰਤਨ ਹਨ।

ਗ੍ਰੇਗਰ ਜਾਨ ਮੈਂਡਲ (1822-1884)

ਮੈਂਡਲ ਦੀ ਮੁੱਢਲੀ ਸਿੱਖਿਆ ਇੱਕ ਮੋਨਾਸਟਰੀ ਵਿੱਚ ਹੋਈ ਸੀ ਅਤੇ ਉਹ ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਦੇ ਅਧਿਐਨ ਲਈ ਵਿਆਨਾ ਵਿਸ਼ਵ ਵਿਦਿਆਲਾ ਗਏ। ਅਧਿਆਪਨ ਹਿਤ ਸਰਟੀਫਿਕੇਟ ਦੀ ਪ੍ਰੀਖਿਆ ਵਿੱਚ ਅਸਫਲ ਹੋਣਾ ਉਨ੍ਹਾਂ ਦੀ ਵਿਗਿਆਨਕ ਖੋਜ ਦੇ ਰੁਝਾਨ ਨੂੰ ਦਬਾ ਨਹੀਂ ਸਕਿਆ। ਉਹ ਆਪਣੀ ਮੋਨਾਸਟਰੀ ਵਿੱਚ ਵਾਪਸ ਗਏ ਅਤੇ ਮਟਰ ਦੇ ਪੌਦੇ ਉੱਤੇ ਪ੍ਰਯੋਗ ਕਰਨੇ ਆਰੰਭ ਕੀਤੇ। ਉਨ੍ਹਾਂ ਤੋਂ ਪਹਿਲਾਂ ਵੀ ਬਹੁਤ ਸਾਰੇ ਵਿਗਿਆਨੀਆਂ ਨੇ ਮਟਰ ਅਤੇ ਦੂਜੇ ਬੀਜਾਂ ਉੱਤੇ ਅਨੁਵੈਸ਼ਿਕ ਗੁਣਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਸੀ ਪਰ ਮੈਂਡਲ ਨੇ ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਦੇ ਆਪਣੇ ਗਿਆਨ ਨੂੰ ਮਿਸ਼ਰਿਤ ਕੀਤਾ ਅਤੇ ਉਹ ਪਹਿਲੇ ਵਿਗਿਆਨਕ ਸਨ ਜਿਨ੍ਹਾਂ ਨੇ ਹਰ ਇੱਕ ਪੀੜ੍ਹੀ ਦੇ ਇੱਕ-ਇੱਕ ਪੌਦੇ ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਲੱਛਣਾਂ ਦਾ ਰਿਕਾਰਡ ਰੱਖਿਆ ਅਤੇ ਗਣਨਾ ਕੀਤੀ। ਇਸ ਤੋਂ ਉਹਨਾਂ ਨੂੰ ਅਨੁਵੈਸ਼ਿਕਤਾ ਦੇ ਨਿਯਮ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲੀ ਜਿਸ ਬਾਰੇ ਮੁੱਖ ਅਧਿਆਇ ਵਿੱਚ ਚਰਚਾ ਕੀਤੀ ਗਈ ਹੈ।

ਮੈਂਡਲ ਨੇ ਮਟਰ ਦੇ ਪੌਦੇ ਦੇ ਅਨੇਕ ਵਿਰੋਧੀ ਲੱਛਣਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ, ਉਦਾਹਰਣ ਵਜੋਂ ਗੋਲ਼/ ਭਰੜੀਦਾਰ ਬੀਜ, ਲੈਬੇ/ਬੌਨੇ ਪੌਦੇ, ਚਿੱਟੇ/ਬੈਂਗਣੀ ਫੁੱਲ ਆਦਿ। ਉਸ ਨੇ ਭਿੰਨ ਲੱਛਣਾਂ ਵਾਲੇ ਮਟਰ ਦੇ ਪੌਦਿਆਂ ਨੂੰ ਲਿਆ ਜਿਵੇਂ ਕਿ ਲੈਬੇ ਪੌਦੇ ਅਤੇ ਬੌਨੇ ਪੌਦੇ। ਇਹਨਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਸੰਤਾਨ ਪੀੜ੍ਹੀ ਵਿੱਚ ਲੈਬੇ ਅਤੇ ਬੌਨੇ ਪੌਦਿਆਂ ਦੀ ਪ੍ਰਤਿਸ਼ਤ ਦੀ ਗਣਨਾ ਕੀਤੀ।

ਪਹਿਲੀ ਸੰਤਾਨ ਪੀੜ੍ਹੀ ਭਾਵ \mathbf{F}_1 ਵਿੱਚ ਕੋਈ ਪੌਦਾ ਮੱਧਮ ਉਚਾਈ ਵਾਲਾ ਨਹੀਂ ਸੀ। ਸਾਰੇ ਪੌਦੇ ਲੈਬੇ ਸਨ। ਇਸ ਤੋਂ ਭਾਵ ਸੀ ਕਿ ਦੋ ਲੱਛਣਾਂ ਵਿੱਚੋਂ ਕੇਵਲ ਇੱਕ ਹੀ ਪਿਤਰੀ ਲੱਛਣ ਵਿਖਾਈ ਦਿੱਤਾ

ਚਿੱਤਰ 9.3 ਦੋ ਪੀੜ੍ਹੀਆਂ ਤੱਕ ਲੱਛਣਾਂ ਦੀ ਅਨੁਵੰਸ਼ਿਕਤਾ

ਸੀ, ਇਹਨਾਂ ਦੋਨਾਂ ਦਾ ਮਿਸ਼ਰਤ ਪ੍ਰਭਾਵ ਵਿਖਾਈ ਨਹੀਂ ਦਿੱਤਾ ਸੀ। ਫਿਰ ਅਗਲਾ ਪ੍ਰਸ਼ਨ ਕਿ ਕੀ F, ਪੀੜ੍ਹੀ ਦੇ ਪੌਦੇ ਆਪਣੇ ਪਿਤਰੀ ਲੰਬੇ ਪੌਦਿਆਂ ਦੇ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸਮਾਨ ਸਨ? ਮੈਂਡਲ ਨੇ ਆਪਣੇ ਪ੍ਰਯੋਗ ਵਿੱਚ ਦੋਵੇਂ ਤਰ੍ਹਾਂ ਦੇ ਪੌਦਿਆਂ ਭਾਵ ਆਰੰਭਕ ਲੰਬੇ ਪੌਦਿਆਂ ਅਤੇ F. ਪੀੜੀ ਦੇ ਪੌਦਿਆਂ ਤੋਂ ਸਵੈ ਪਰਾਗਣ ਕਰਕੇ ਵੱਖ-ਵੱਖ ਪੌਦੇ ਪੈਦਾ ਕੀਤੇ। ਆਰੰਭਿਕ ਪੌਦਿਆਂ ਤੋਂ ਪੈਦਾ ਪੀੜ੍ਹੀ ਦੇ ਸਾਰੇ ਪੌਦੇ ਪਹਿਲਾਂ ਦੀ ਤਰਾਂ ਲੈਬੇ ਸਨ ਪਰ F_1 ਪੀੜ੍ਹੀ ਦੇ ਲੰਬੇ ਪੌਦਿਆਂ ਦੀ ਦੂਜੀ ਪੀੜ੍ਹੀ ਭਾਵ F_2 ਪੀੜ੍ਹੀ ਦੇ ਸਾਰੇ ਪੌਦੇ ਲੰਬੇ ਨਹੀਂ ਸਨ ਸਗੋਂ ਉਹ ਚੌਥਾ ਹਿੱਸਾ ਸੰਤਾਨ ਪੌਦੇ ਬੌਨੇ ਸਨ। ਇਹ ਇ<mark>ਸ਼ਾਰਾ ਕਰ</mark>ਦਾ ਹੈ ਕਿ F₁ ਪੌਦਿਆਂ ਨੂੰ ਲੰਬੇਪਣ ਅਤੇ ਬੌਨੇਪਣ ਦੋਵੇਂ ਤਰ੍ਹਾਂ ਦੇ ਲੱਛਣ ਵਿਰਾਸਤ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੋਏ ਪਰ ਲੈਬੇਪਣ ਵਾਲਾ ਗੁਣ ਹੀ ਪ੍ਰਗਟ ਹੋ ਪਾਇਆ। ਇਸ ਲਈ ਲਿੰਗੀ ਜਣਨ ਦੁਆਰਾ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਜੀਵਾਂ ਵਿੱਚ ਕਿਸੇ ਵੀ ਲੱਛਣ ਦੀਆਂ ਦੋ ਕਾਪੀਆਂ ਖ਼ਾਨਦਾਨੀ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਦੋਵੇਂ ਇੱਕ ਸਮਾਨ ਹੋ ਸਕਦੇ ਹਨ ਜਾਂ ਭਿੰਨ ਹੋ ਸਕਦੇ ਹਨ ਜੋ ਉਹਨਾਂ ਦੇ ਮਾਪਿਆਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਕਲਪਨਾ ਦੇ ਆਧਾਰ ਤੇ ਅਨੁਵੰਸ਼ਿਕਤਾ ਦਾ ਤਿਆਰ ਕੀਤਾ ਇੱਕ ਪੈਟਨ ਚਿੱਤਰ 9.3 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਕਿਰਿਆ 9.2

 ਚਿੱਤਰ 9.3 ਵਿੱਚ ਅਸੀਂ ਕਿਹੜਾ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਸ ਤੋਂ ਇਹ ਨਿਸ਼ਚਿਤ ਹੋਵੇ ਕਿ ਅਸਲ ਵਿੱਚ F, ਪੀੜ੍ਹੀ ਵਿੱਚ TT, Tt ਅਤੇ tt ਦਾ ਸੰਯੋਜਨ 1:2:1 ਅਨੁਪਾਤ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿਆਖਿਆ ਵਿੱਚ "TT" ਅਤੇ "Tt' ਦੋਵੇਂ ਹੀ ਲੰਬੇ ਪੌਦੇ ਹਨ ਜਦੋਂ ਕਿ 'tt' ਬੈਨੇ ਪੌਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ "T" ਦੀ ਇੱਕ ਕਾਪੀ ਹੀ ਪੌਦੇ ਨੂੰ ਲੰਬਾ ਬਣਾਉਣ ਲਈ ਕਾਫੀ ਹੈ ਜਦੋਂ ਕਿ ਬੌਨੇਪਨ ਦੇ ਲਈ 't' ਦੀਆਂ ਦੋਵੇਂ ਕਾਪੀਆਂ 't' ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ। "T' ਜਿਹੇ ਲੱਛਣ ਪ੍ਭਾਵੀ ਲੱਛਣ (Dominant trait) ਕਹਾਉਂਦੇ ਹਨ। ਜਦੋਂ ਕਿ ਜੋ ਲੱਛਣ 't' ਵਾਂਗੂੰ ਵਿਵਹਾਰ ਕਰਦੇ ਹਨ ਅਪ੍ਭਾਵੀ ਲੱਛਣ (Recessive Trait) ਅਖਵਾਉਂਦੇ ਹਨ। ਚਿੱਤਰ 9.4 ਵਿੱਚ ਕਿਹੜਾ ਲੱਛਣ ਪਭਾਵੀ ਹੈ ਅਤੇ ਕਿਹੜਾ ਅਪ੍ਭਾਵੀ ਹੈ?

ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਮਟਰ ਦੇ ਪੌਦੇ ਵਿੱਚ ਇੱਕ ਲੱਛਣ ਦੀ ਥਾਂ ਦੋ ਲੱਛਣ ਹੋਣ ਅਤੇ ਅਧਿਐਨ ਕਰਨ ਲਈ ਉਨ੍ਹਾਂ ਦਾ ਆਪਸੀ ਪਰਾਗਣ ਕਰਵਾਇਆ ਜਾਵੇ? ਗੋਲ ਬੀਜ ਵਾਲੇ ਲੰਬੇ ਪੌਦਿਆਂ ਦਾ ਜੇਕਰ ਝੁਰੜੀਦਾਰ ਬੀਜਾਂ ਵਾਲੇ ਬੌਨੇ ਪੌਦਿਆਂ ਨਾਲ ਪਰਾਗਣ ਕਰਵਾਇਆ ਜਾਵੇ ਤਾਂ ਪ੍ਰਾਪਤ ਸੰਤਾਨ ਕਿਹੋ ਜਿਹੀ ਹੋਵੇਗੀ? F₁ ਪੀੜ੍ਹੀ ਦੇ ਸਾਰੇ ਪੌਦੇ ਲੰਬੇ ਅਤੇ ਗੋਲ਼ ਬੀਜ ਵਾਲੇ ਹੋਣਗੇ। ਲੰਬਾਈ ਅਤੇ ਗੋਲ਼ ਬੀਜ ਪ੍ਰਭਾਵੀ ਲੱਛਣ ਹਨ। ਪਰ ਕੀ ਹੋਵੇਗਾ ਜਦੋਂ F₁ ਸੰਤਾਨ ਦੇ ਸਵੈ ਨਿਸ਼ੇਚਨ ਤੋਂ F₂ ਪੀੜ੍ਹੀ ਦੀ ਸੰਤਾਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਮੈਂਡਲ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਪਹਿਲੇ ਪ੍ਰਯੋਗ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ F₂ ਸੰਤਾਨ ਦੇ ਕੁੱਝ ਪੌਦੇ ਗੋਲ਼ ਬੀਜ ਵਾਲੇ ਲੰਬੇ ਪੌਦੇ ਹੋਣਗੇ ਅਤੇ ਕੁੱਝ ਝੁਰੜੀਦਾਰ ਬੀਜ ਵਾਲੇ ਬੌਨੇ ਪੌਦੇ। ਪਰ F₂ ਦੀ ਸੰਤਾਨ ਦੇ ਕੁੱਝ ਪੌਦੇ ਨਵੇਂ ਮਿਸ਼ਰਣ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨਗੇ। ਉਹਨਾਂ ਵਿੱਚ ਕੁੱਝ ਪੌਦੇ ਲੰਬੇ ਪਰ ਝੁਰੜੀਦਾਰ ਬੀਜ ਅਤੇ ਕੁੱਝ ਪੌਦੇ ਬੌਨੇ ਪਰ ਗੋਲ਼ ਬੀਜ ਵਾਲੇ ਹੋਣਗੇ। ਇਸ ਲਈ ਲੰਬੇ/ਬੌਨੇ ਲੱਛਣ ਅਤੇ ਗੋਲ਼/ਝੁਰੜੀਦਾਰ ਲੱਛਣ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਚਿੱਤਰ 9.5 ਵਿੱਚ ਦਰਸਾਈ ਗਈ ਹੈ।

9.2.3 ਲੱਛਣ ਆਪਣੇ ਆਪ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਗਟ ਕਰਦੇ ਹਨ?

(How do these Traits get Expressed)

ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੀ ਕਾਰਜ ਵਿਧੀ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ? ਸੈੱਲ ਦੇ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਪ੍ਰੋਟੀਨ ਸੰਸਲੇਸ਼ਣ ਇੱਕ ਸੂਚਨਾ ਸਰੋਤ ਹੁੰਦਾ ਹੈ।ਡੀ. ਐਨ. ਏ. ਦਾ ਉਹ ਭਾਗ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਪ੍ਰੋਟੀਨ ਸੰਸਲੇਸ਼ਨ ਦੇ ਲਈ ਸੂਚਨਾ ਹੁੰਦੀ ਹੈ ਉਸ ਪ੍ਰੋਟੀਨ ਦਾ ਜੀਨ ਕਹਾਉਂਦਾ ਹੈ।ਪ੍ਰੋਟੀਨ ਉਨ੍ਹਾਂ ਭਿੰਨ ਲੱਛਣਾਂ ਨੂੰ ਕਿਵੇਂ ਨਿਯੰਤਰਿਤ ਕਰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਬਾਰੇ ਅਸੀਂ ਇੱਥੇ ਚਰਚਾ ਕਰਦੇ ਹਾਂ। ਆਓ, ਪੌਦੇ ਦੀ ਲੰਬਾਈ ਦੇ ਇੱਕ ਲੱਛਣ ਨੂੰ ਉਦਾਹਰਣ ਦੇ ਰੂਪ ਵਿੱਚ ਲੈਂਦੇ ਹਾਂ।ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪੌਦੇ ਵਿੱਚ ਕੁੱਝ ਹਾਰਮੋਨ ਹੁੰਦੇ ਹਨ ਜੋ ਲੰਬਾਈ ਦਾ ਨਿਯੰਤਰਨ ਕਰਦੇ ਹਨ।ਇਸ ਲਈ ਕਿਸੇ ਪੌਦੇ ਦੀ ਲੰਬਾਈ ਪੌਦੇ ਵਿੱਚ ਮੌਜੂਦ ਵਿਸ਼ੇਸ਼ ਹਾਰਮੋਨ ਦੀ ਮਾਤਰਾ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।ਪੌਦੇ ਦੇ

ਾਰਮੋਨ ਦੀ ਮਾਤਰਾ ਉਸ ਪ੍ਰਤਿਕਿਰਿਆ ਦੀ ਕੁਸ਼ਲਤਾ ਤੇ ਨਿਰਭਰ ਕਰੇਗੀ ਜਿਸ ਦੁਆਰਾ ਇਸਦਾ ਉਤਪਾਦਨ ਹੁੰਦਾ ਹੈ।ਐਨਜ਼ਾਇਮ ਇਸ ਪ੍ਰਕਿਰਿਆ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ।ਜੇਕਰ ਇਹ ਐਨਜ਼ਾਇਮ ਕੁਸ਼ਲਤਾ ਨਾਲ ਕੰਮ ਕਰੇਗਾ ਤਾਂ ਹਾਰਮੋਨ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ਬਣੇਗਾ ਅਤੇ ਪੌਦਾ ਲੰਬਾ ਹੋਵੇਗਾ। ਜੇਕਰ ਇਸ ਪ੍ਰੋਟੀਨ ਦੇ ਜੀਨ ਵਿੱਚ ਕੁੱਝ ਪਰਿਵਰਤਨ ਆਉਂਦੇ ਹਨ ਤਾਂ ਬਣਨ ਵਾਲੀ ਪ੍ਰੋਟੀਨ ਦੀ ਕੁਸ਼ਲਤਾ ਤੇ ਪ੍ਰਭਾਵ ਪਵੇਗਾ।ਉਹ ਘੱਟ ਕੁਸ਼ਲ ਹੋਵੇਗੀ, ਬਣਨ ਵਾਲੇ ਹਾਰਮੋਨ ਦੀ ਮਾਤਰਾ ਵੀ ਘੱਟ ਹੋਵੇਗੀ ਅਤੇ ਪੌਦਾ ਬੌਣਾ ਹੋਵੇਗਾ।ਇਸ ਲਈ ਜੀਨ ਲੱਛਣਾਂ (traits) ਨੂੰ ਕੰਟਰੋਲ ਕਰਦੇ ਹਨ।

ਜੇਕਰ ਮੈਂਡਲ ਦੇ ਪ੍ਯੋਗਾਂ ਦੀ ਵਿਆਖਿਆ, ਜਿਸ ਬਾਰੇ ਅਸੀਂ ਚਰਚਾ ਕਰ ਰਹੇ ਹਾਂ, ਠੀਕ ਹੈ ਤਾਂ ਲਿੰਗੀ ਪ੍ਰਜਣਨ ਦੇ ਦੌਰਾਨ ਸੰਤਾਨ ਦੇ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਦੋਵੇਂ ਮਾਪਿਆਂ ਦਾ ਸਮਾਨ ਰੂਪ ਵਿੱਚ

ਚਿੱਤਰ 9.5 ਦੋ ਵੱਖ-ਵੱਖ ਲੱਛਣਾਂ , ਸ਼ਕਲ ਅਤੇ ਰੰਗ ਦੀ ਸੁਤੰਤਰ ਅਨੁਵੰਸ਼ਿਕਤਾ

ਯੋਗਦਾਨ ਹੋਵੇਗਾ। ਇਸ ਦੀ ਚਰਚਾ ਅਸੀਂ ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਜੇਕਰ ਦੋਵੇਂ ਮਾਪੇ ਜਨਕ (ਸੰਤਾਨ) ਦੇ ਲੱਛਣ ਦੇ ਨਿਰਧਾਰਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ ਤਾਂ ਦੋਵੇਂ ਮਾਪੇ ਇੱਕੋ ਹੀ ਜੀਨ ਦੀ ਇੱਕ ਕਾਪੀ ਸੰਤਾਨ ਨੂੰ ਪ੍ਰਦਾਨ ਕਰਨਗੇ। ਇਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਮਟਰ ਦੇ ਹਰ ਇੱਕ ਪੌਦੇ ਵਿੱਚ ਸਾਰੇ ਜੀਨਾਂ ਦੇ ਦੋ ਸੈੱਟ ਹੋਣਗੇ, ਹਰ ਇੱਕ ਮਾਪੇ ਤੋਂ ਇੱਕ ਸੈੱਟ ਦੀ ਵਿਰਾਸਤ ਮਿਲਦੀ ਹੈ। ਇਸ ਢੰਗ ਨੂੰ ਸਫਲ ਕਰਨ ਲਈ ਹਰ ਇੱਕ ਜਣਨ ਸੈੱਲ ਵਿੱਚ ਜੀਨ ਦਾ ਕੇਵਲ ਇੱਕ ਹੀ ਸੈੱਟ ਹੋਵੇਗਾ।

ਜਦੋਂ ਕਿ ਸਰੀਰ ਦੇ ਸਾਧਾਰਨ ਸੈੱਲਾਂ ਵਿੱਚ ਜੀਨ ਦੇ ਸੈੱਟਾਂ ਦੀਆਂ ਦੋ ਕਾਪੀਆਂ (copies) ਹੁੰਦੀਆਂ ਹਨ ਫਿਰ ਇਹਨਾਂ ਤੋਂ ਜਣਨ ਸੈੱਲ ਵਿੱਚ ਇਸ ਦਾ ਇੱਕ ਸੈੱਟ ਕਿਸ ਤਰ੍ਹਾਂ ਬਣਦਾ ਹੈ? ਜੇਕਰ ਸੰਤਾਨ ਪੌਦੇ ਨੂੰ ਮਾਪੇ ਪੌਦੇ ਤੋਂ ਸੰਪੂਰਨ ਜੀਨਾਂ ਦਾ ਇੱਕ ਪੂਰਾ ਸੈੱਟ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਤਾਂ ਚਿੱਤਰ 9.5 ਵਿੱਚ ਦਰਸਾਇਆ ਪ੍ਰਯੋਗ ਸਫਲ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਦੋ ਲੱਛਣ 'R' ਅਤੇ 'y' ਸੈੱਟ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਨਾਲ ਜੁੜੇ ਰਹਿਣਗੇ ਅਤੇ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਅਨੁਵੰਸ਼ਕ੍ਰਿਤ ਨਹੀਂ ਹੋ ਸਕਦੇ। ਇਸ ਨੂੰ ਇਸ ਤੱਥ ਦੇ ਆਧਾਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਅਸਲ ਵਿੱਚ ਇੱਕ ਜੀਨ ਸੈੱਟ ਕੇਵਲ ਇੱਕ ਡੀ.ਐਨ.ਏ. ਦੀ ਲੜੀ ਦੇ ਰੂਪ ਵਿੱਚ ਨਾ ਹੋਕੇ ਡੀ.ਐਨ.ਏ. ਦੇ ਵੱਖ-ਵੱਖ ਸੁਤੰਤਰ ਟੁਕੜੇ ਹੁੰਦੇ ਹਨ, ਹਰ ਇੱਕ ਟੁਕੜਾ ਗੁਣ ਸੂਤਰ ਕਹਾਉਂਦਾ ਹੈ। ਇਸ ਲਈ ਹਰ ਇੱਕ ਸੈੱਲ ਵਿੱਚ ਹਰ ਇੱਕ ਗੁਣਸੂਤਰ ਦੀਆਂ ਦੋ ਕਾਪੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨਰ ਅਤੇ ਦੂਜੀ ਮਾਦਾ ਮਾਪੇ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਹਰ ਇੱਕ ਜਣਨ ਸੈੱਲ (ਮਾਤਰੀ ਅਤੇ ਪਿਤਰੀ) ਤੋਂ ਗੁਣਸੂਤਰ ਦੇ ਹਰ ਇੱਕ ਜੋੜੇ ਦਾ ਕੇਵਲ ਇੱਕ ਗੁਣਸੂਤਰ ਹੀ ਇੱਕ ਜਣਨ ਸੈੱਲ (ਮਾਤਰੀ ਅਤੇ ਪਤਰੀ) ਰੋ ਜਦੋਂ ਦੇ ਜਣਨ ਸੈੱਲ ਮਿਲਦੇ ਹਨ ਤਾਂ ਬਣੇ ਹੋਏ ਯੁਗਮਜ ਵਿੱਚ ਗੁਣਸੂਤਰਾਂ ਦੀ ਸੰਖਿਆ ਮੁੜ ਪਹਲਿਾਂ ਵਰਗੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਸੰਤਾਨ

ਵਿੱਚ ਗੁਣਸੂਤਰਾਂ ਦੀ ਸੰਖਿਆ ਸਥਿਰ ਬਣੀ ਰਹਿੰਦੀ ਹੈ ਜੋ ਸਪੀਸ਼ੀਜ ਦੇ ਡੀ.ਐਨ.ਏ.ਦੀ ਸਥਿਰਤਾ ਨਿਸ਼ਚਿਤ ਕਰਦੀ ਹੈ।ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੀ ਇਸ ਕਿਰਿਆ ਵਿਧੀ ਤੋਂ ਮੈਂਡਲ ਦੇ ਪ੍ਰਯੋਗ ਦੇ ਨਤੀਜੇ ਦੀ ਵਿਆਖਿਆ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਦਾ ਉਪਯੋਗ ਲਿੰਗੀ ਜਣਨ ਕਰਨ ਵਾਲੇ ਸਾਰੇ ਜੀਵ ਕਰਦੇ ਹਨ। ਪਰ ਅਲਿੰਗੀ ਜਣਨ ਕਰਨ ਵਾਲੇ ਜੀਵ ਵੀ ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੇ ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਕਰਦੇ ਹਨ। ਕੀ ਅਸੀਂ ਪਤਾ ਕਰ ਸਕਦੇ

ਹਾਂ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕਤਾ ਕਿਸ ਤਰ੍ਹਾਂ ਹੁੰਦੀ ਹੈ?

9.2.4 ਲਿੰਗ ਨਿਰਧਾਰਣ (Sex Determination)

ਇਸ ਗੱਲ ਦੀ ਚਰਚਾ ਅਸੀਂ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਲਿੰਗੀ ਜਣਨ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਦੋ ਜੀਵ ਕਿਸੀ ਨਾ ਕਿਸੀ ਰੂਪ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਦੇ ਕਈ ਕਾਰਨ ਹਨ। ਨਵ ਜੰਮੇ ਜੀਵ ਦਾ ਲਿੰਗ ਨਿਰਧਾਰਣ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ? ਵੱਖ-ਵੱਖ ਸਪੀਸੀਜ਼ ਇਸ ਲਈ ਵੱਖ-ਵੱਖ ਜੁਗਤਾਂ ਅਪਣਾਉਂਦੀਆਂ ਹਨ। ਕੁੱਝ ਪੂਰਨ ਰੂਪ ਤੇ ਵਾਤਾਵਰਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਕੁੱਝ ਜੀਵਾਂ ਵਿੱਚ ਲਿੰਗ ਨਿਰਧਾਰਣ ਨਿਸ਼ੇਚਿਤ ਅੰਡੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਸੰਤਾਨ ਨਰ ਹੋਵੇਗੀ ਜਾਂ ਮਾਦਾ। ਘੋਗੇ ਜਿਹੇ ਕੁੱਝ ਜੀਵ ਆਪਣਾ ਲਿੰਗ ਬਦਲ ਸਕਦੇ ਹਨ ਜੋ ਇਸ ਗੱਲ ਦਾ ਸੰਕੇਤ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚ ਲਿੰਗ ਨਿਰਧਾਰਣ ਅਨੁਵੰਸ਼ਿਕ ਆਧਾਰ 'ਤੇ ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਮੱਨੁਖ ਵਿੱਚ ਲਿੰਗ ਨਿਰਧਾਰਣ ਅਨੁਵੰਸ਼ਿਕ ਆਧਾਰ ਤੇ ਹੁੰਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਮਾਪਿਆਂ ਵੱਲੋਂ ਅਨੁਵੰਸ਼ਿਕ ਕੀਤਾ ਜੀਨ ਇਹ ਨਿਰਣਾ ਕਰਦਾ ਹੈ ਕਿ ਸੰਤਾਨ ਲੜਕਾ ਹੋਵੇਗਾ ਜਾਂ ਲੜਕੀ। ਪਰ ਹੁਣ ਤੱਕ ਅਸੀਂ ਮੰਨਦੇ ਆ ਰਹੇ ਹਾਂ ਕਿ ਦੋਵੇਂ ਮਾਪਿਆਂ ਤੋਂ ਇੱਕੋ ਜਿਹੇ ਜੀਨ ਸੈੱਟ ਸੰਤਾਨ ਵਿੱਚ ਆਉਂਦੇ ਹਨ। ਜੇਕਰ ਇਹ ਠੀਕ ਹੈ ਤਾਂ ਫਿਰ ਲਿੰਗ ਨਿਰਧਾਰਣ ਅਨੁਵੰਸ਼ਿਕਤਾ ਉੱਤੇ ਕਿਵੇਂ ਨਿਰਭਰ ਹੋ ਸਕਦਾ ਹੈ?

ਇਸ ਦੀ ਵਿਆਖਿਆ ਇਸ ਤੱਥ ਵਿੱਚ ਹੈ ਕਿ ਮਨੁੱਖ ਦੇ ਸਾਰੇ ਗੁਣਸੂਤਰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਜੋੜੇ ਨਹੀਂ ਹੁੰਦੇ।ਮਨੁੱਖ ਵਿੱਚ ਵਧੇਰੇ ਕਰਕੇ ਗੁਣਸੂਤਰ ਮਾਤਾ ਅਤੇ ਪਿਤਾ ਦੇ ਗੁਣਸੂਤਰਾਂ ਦੇ ਪ੍ਰਤਿਰੂਪ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਦੀ ਸੰਖਿਆ 22 ਜੋੜੇ ਹੈ। ਪਰ ਇੱਕ ਗੁਣਸੂਤਰ ਜਿਸ ਨੂੰ ਲਿੰਗੀ ਗੁਣਸੂਤਰ (Sex Chromosome) ਕਹਿੰਦੇ ਹਨ, ਹਮੇਸ਼ਾ ਸੰਪੂਰਨ ਨਹੀਂ ਹੁੰਦਾ।ਮਾਦਾ ਵਿੱਚ ਗੁਣਸੂਤਰ ਦਾ ਸੰਪੂਰਨ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਦੋਵਾਂ ਨੂੰ 'X' ਕਹਿੰਦੇ ਹਨ ਪਰ ਨਰ ਵਿੱਚ ਗੁਣ ਸੂਤਰਾਂ ਦਾ ਅਪੂਰਨ ਜੋੜਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਇੱਕ ਸਾਧਾਰਨ ਆਕਾਰ ਦਾ 'X' ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਛੋਟਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ 'Y' ਕਹਿੰਦੇ ਹਨ।ਇਸ ਲਈ ਮਾਦਾ ਵਿੱਚ 'XX' ਅਤੇ ਨਰ ਵਿੱਚ 'XY' ਗੁਣਸੂਤਰ ਹੁੰਦੇ ਹਨ।ਕੀ ਅਸੀਂ ਹੁਣ X ਅਤੇ Y ਦਾ ਅਨੁਵੰਸ਼ਿਕ ਪੈਟ੍ਨ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ?

ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 9.6 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ, ਆਮਤੌਰ ਤੇ ਅੱਧੇ ਬੱਚੇ ਲੜਕੇ ਅਤੇ ਅੱਧੇ ਬੱਚੇ ਲੜਕੀਆਂ ਹੋ ਸਕਦੇ ਹਨ। ਸਾਰੇ ਬੱਚੇ ਭਾਵੇਂ ਉਹ ਲੜਕਾ ਹੋਣ ਜਾਂ ਲੜਕੀ, ਆਪਣੀ ਮਾਤਾ ਤੋਂ 'X' ਗੁਣਸੂਤਰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਇਸ ਲਈ ਬੱਚੇ ਦਾ ਲਿੰਗ ਨਿਰਧਾਰਣ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾਹੈ ਕਿ ਉਸਨੂੰ ਆਪਣੇ ਪਿਤਾ ਤੋਂ ਕਿਸ ਤਰ੍ਹਾਂ ਦਾ ਗੁਣਸੂਤਰ ਪ੍ਰਾਪਤ ਹੋਇਆ ਹੈ। ਜਿਸ ਬੱਚੇ ਨੂੰ ਆਪਣੇ ਪਿਤਾ ਤੋਂ 'X' ਗੁਣਸੂਤਰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਉਹ ਲੜਕੀ ਹੋਵੇਗਾ, ਜਿਸ ਬੱਚੇ ਨੂੰ ਆਪਣੇ ਪਿਤਾ ਤੋਂ 'Y' ਗੁਣਸੂਤਰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਉਹ ਲੜਕਾ ਹੋਵੇਗਾ।

ਪ੍ਰਸ਼ਨ

- ਮੈਂਡਲ ਦੇ ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਕਿਵੇਂ ਪਤਾ ਲੱਗਿਆ ਕਿ ਲੱਛਣ ਪ੍ਰਭਾਵੀ ਅਤੇ ਅਪ੍ਰਭਾਵੀ ਹੁੰਦੇ ਹਨ?
- ਮੈਂਡਲ ਦੇ ਪ੍ਰਯੋਗ ਤੋਂ ਕਿਵੇਂ ਪਤਾ ਲੱਗ ਸਕਦਾ ਹੈ ਕਿ ਭਿੰਨ ਲੱਛਣ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕ ਹੁੰਦੇ ਹਨ?
- 3. ਇੱਕ 'A- ਲਹੂਵਰਗ ਵਾਲਾ ਪੁਰਸ਼ ਇੱਕ ਇਸਤਰੀ ਜਿਸ ਦਾ ਲਹੂ ਵਰਗ 'O' ਹੈ, ਨਾਲ ਵਿਆਹ ਕਰਵਾਉਂਦਾ ਹੈ ਉਹਨਾਂ ਦੀ ਪੁੱਤਰੀ ਦਾ ਲਹੂ ਵਰਗ ਗਰੁੱਪ - 'O' ਹੈ। ਕੀ ਇਹ ਸੂਚਨਾ ਪੂਰੀ ਹੈ ਜੇਕਰ ਤੁਹਾਨੂੰ ਕਿਹਾ ਜਾਵੇ ਕਿ ਲਹੂ ਗਰੁੱਪ - 'A' ਜਾਂ 'O' ਵਿੱਚ ਕਿਹੜਾ ਪ੍ਰਭਾਵੀ ਲੱਛਣ ਹੈ? ਆਪਣੇ ਉੱਤਰ ਦੇ ਪੱਖ ਵਿੱਚ ਕਾਰਨ ਦਿਓ।
- 4. ਮਨੁੱਖ ਵਿੱਚ ਬੱਚੇ ਦਾ ਲਿੰਗ ਨਿਰਧਾਰਣ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ ?

9.3 ਵਿਕਾਸ (Evolution)

ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਜਣਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਵਿਭਿੰਨਤਾ (Variation) ਦਾ ਰੁਝਾਨ ਅੰਦਰੂਨੀ ਹੁੰਦਾ ਹੈ ਜੋ ਡੀ. ਐਨ. ਏ. ਕਾਪੀ ਵਿੱਚ ਤਰੁੱਟੀਆਂ ਅਤੇ ਲਿੰਗੀ ਜਣਨ ਦੇ ਸਿੱਟੇ ਹੁੰਦੇ ਹਨ ਆਓ, ਅਸੀਂ ਇਸ ਰੁਝਾਨ ਦੇ ਕੁੱਝ ਸਿੱਟੀਆਂ ਦਾ ਅਧਿਐਨ ਕਰੀਏ।

9.3.1 ਇੱਕ ਦ੍ਰਿਸ਼ਟਾਂਤ

ਸੋਚੋਂ ਕਿ 12 ਲਾਲ ਭੰਬੀਰੀਆਂ (beetles) ਦਾ ਇੱਕ ਸਮੂਹ ਹੈ। ਉਹ ਹਰੀਆਂ ਪੱਤੀਆਂ ਵਾਲੀਆਂ ਝਾੜੀਆਂ ਵਿੱਚ ਰਹਿੰਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਦੀ ਜਨਸੰਖਿਆ ਲਿੰਗੀ ਪ੍ਰਜਣਨ ਦੁਆਰਾ ਵ੍ਰਿਧੀ ਕਰਦੀ ਹੈ ਅਤੇ ਇਸ ਲਈ ਭਿੰਨਤਾਵਾਂ ਪੈਦਾ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਅਸੀਂ ਇਸ ਦੀ ਵੀ ਕਲਪਣਾ ਕਰੀਏ ਕਿ ਕਾਂ ਭੰਬੀਰੀਆਂ ਨੂੰ ਖਾਂਦੇ ਹਨ। ਕਾਂ ਜਿੰਨੀਆਂ ਭੰਬੀਰੀਆਂ ਖਾਣਗੇ ਉੱਨੀਆਂ ਘੱਟ ਭੰਬੀਰੀਆਂ ਜਣਨ ਲਈ ਉਪਲਬਧ ਹੋਣਗੀਆਂ। ਹੁਣ ਅਸੀਂ ਕੁੱਝ ਵੱਖ ਪਰਿਸਥਿਤੀਆਂ ਦੀ ਕਲਪਣਾ (ਚਿੱਤਰ 9.7) ਕਰੀਏ ਜੋ ਇਹਨਾਂ ਭੰਬੀਰੀਆਂ ਦੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਵਿਕਸਿਤ ਹੋ ਸਕਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 9.7 ਇੱਕ ਜਨਸੰਖਿਆ ਵਿੱਚ ਭਿੰਨਤਾਵਾਂ-ਅਨੁਵੈਸ਼ਿਕ ਅਤੇ ਹੋਰ ਕਾਰਨ

ਪਹਿਲੀ ਸਥਿਤੀ ਵਿੱਚ ਜਣਨ ਦੇ ਦੌਰਾਨ ਇੱਕ ਰੰਗ ਦੀ ਭਿੰਨਤਾ ਪੈਦਾ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਜਨਸੰਖਿਆ ਵਿੱਚ ਲਾਲ ਦੀ ਥਾਂ ਇੱਕ ਹਰੀ ਭੰਬੀਰੀ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਹਰੀ ਭੰਬੀਰੀ ਆਪਣਾ ਰੰਗ ਆਪਣੀ ਸੰਤਾਨ ਨੂੰ ਦੇ ਸਕਦੀ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇਸ ਦੀਆਂ ਸਾਰੀਆਂ ਸੰਤਾਨਾਂ ਦਾ ਰੰਗ ਹਰਾ ਹੋਵੇਗਾ। ਕਾਂ ਹਰੀਆਂ ਪੱਤੀਆਂ ਦੀਆਂ ਝਾੜੀਆਂ ਵਿੱਚ ਹਰੀਆਂ ਭੰਬੀਰੀਆਂ ਵੇਖ ਨਹੀਂ ਸਕਦੇ ਇਸ ਲਈ ਉਹਨਾਂ ਨੂੰ ਨਹੀਂ ਖਾ ਸਕਦੇ। ਤਦ ਕੀ ਹੋਵੇਗਾ? ਹਰੀਆਂ ਭੰਬੀਰੀਆਂ ਦੀ ਸੰਤਾਨ ਦਾ ਸ਼ਿਕਾਰ ਨਹੀਂ ਹੁੰਦਾ ਜਦੋਂ ਕਿ ਲਾਲ ਭੰਬੀਰੀਆਂ ਦੀ ਸੰਤਾਨ ਲਗਾਤਾਰ ਸ਼ਿਕਾਰ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਭੰਬੀਰੀਆਂ ਦੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਲਾਲ ਭੰਬੀਰੀਆਂ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਹਰੀਆਂ ਭੰਬੀਰੀਆਂ ਦੀ ਸੰਖਿਆ ਵਧਦੀ ਜਾਂਦੀ ਹੈ।

ਦੂਜੀ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਜਣਨ ਦੌਰਾਨ ਫਿਰ ਰੰਗ ਦੀ ਭਿੰਨਤਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਪਰ ਇਸ ਸਮੇਂ ਭੰਬੀਰੀ ਦਾ ਰੰਗ ਲਾਲ ਦੀ ਥਾਂ ਨੀਲਾ ਹੈ। ਇਹ ਭੰਬੀਰੀ ਵੀ ਆਪਣਾ ਰੰਗ ਅਗਲੀ ਪੀੜ੍ਹੀ ਨੂੰ ਦੇ ਸਕਦੀ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇਸ ਭੰਬੀਰੀ ਦੀ ਸਾਰੀ ਸੰਤਾਨ ਨੀਲੀ ਹੁੰਦੀ ਹੈ। ਕਾਂ ਨੀਲੀਆਂ ਅਤੇ ਲਾਲ ਭੰਬੀਰੀਆਂ ਨੂੰ ਹਰੀਆਂ ਪੱਤੀਆਂ ਵਿੱਚ ਪਹਿਚਾਣ ਕੇ ਉਹਨਾਂ ਨੂੰ ਖਾ ਸਕਦੇ ਹਨ। ਆਰੰਭ ਵਿੱਚ ਕੀ ਹੁੰਦਾ ਹੈ? ਜਨਸੰਖਿਆ ਦਾ ਆਕਾਰ ਜਿਵੇਂ-ਜਿਵੇਂ ਵਧਦਾ ਹੈ ਉਸ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਨੀਲੀਆਂ ਭੰਬੀਰੀਆਂ ਹਨ ਅਤੇ ਵਧੇਰੇ ਭੰਬੀਰੀਆਂ ਲਾਲ ਹਨ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਇੱਕ ਹਾਥੀ ਉੱਥੇ ਆਉਂਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਝਾੜੀਆਂ ਨੂੰ ਮਿੱਥ (ਕੁਚਲ) ਦਿੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਇਹ ਭੰਬੀਰੀਆਂ ਰਹਿੰਦੀਆਂ ਸਨ। ਇਸ ਨਾਲ ਬਹੁਤ ਸਾਰੀਆਂ ਭੰਬੀਰੀਆਂ ਮਰ ਜਾਂਦੀਆਂ ਹਨ। ਕੁਦਰਤੀ, ਕੁੱਝ ਨੀਲੀਆਂ ਭੰਬੀਰੀਆਂ ਬੱਚ ਜਾਂਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਦੀ ਜਨਸੰਖਿਆ ਹੌਲੀ-ਹੌਲੀ ਵਧਦੀ ਹੈ ਤੇ ਇਸ ਵਿੱਚ ਵਧੇਰੇ ਭੰਬੀਰੀਆਂ ਨੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

ਇਹ ਸੁਭਾਵਿਕ ਹੈ ਕਿ ਦੋਵੇਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਜੋ ਘੱਟ ਭਿੰਨਤਾ ਸੀ, ਸਮੇਂ ਦੇ ਬੀਤਣ ਨਾਲ ਇੱਕ ਆਮ ਲੱਛਣ ਬਣ ਗਈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕ ਲੱਛਣ ਦੀ ਆਵ੍ਰਿਤੀ ਵਿੱਚ ਪੀੜ੍ਹੀਆਂ ਦੌਰਾਨ ਪਰਿਵਰਤਨ ਆਏ। ਜੀਨ ਹੀ ਲੱਛਣਾਂ ਦਾ ਨਿਯੰਤ੍ਰਨ ਕਰਦੇ ਹਨ। ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਜਨਸੰਖਿਆ ਵਿੱਚ ਕੁੱਝ ਜੀਨਾਂ ਦੀ ਆਵ੍ਰਿਤੀ ਪੀੜ੍ਹੀਆਂ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀ ਹੈ। ਇਹ ਜੀਵ ਵਿਕਾਸ ਦੀ ਕਲਪਣਾ ਦਾ ਸਾਰ ਹੈ। ਪਰ ਦੋਵੇਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਕੁੱਝ ਰੋਚਕ ਅੰਤਰ ਵੀ ਹਨ। ਪਹਿਲੀ ਸਥਿਤੀ ਵਿੱਚ ਭਿੰਨਤਾ ਇੱਕ ਆਮ ਭਿੰਨਤਾ ਬਣੀ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਜਿੰਦਾ ਰਹਿਣ ਦੇ ਲਾਭ ਪ੍ਰਾਪਤ ਸੀ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਇਹ ਇੱਕ ਕੁਦਰਤੀ ਚੋਣ (Natural Selection) ਸੀ ਜੋ ਕਾਵਾਂ ਦੁਆਰਾ ਕੀਤੀ ਗਈ। ਜਿੰਨੇ ਵਧੇਰੇ ਕਾਂ ਹੋਣਗੇ ਉੱਨੀਆਂ ਜਿਆਦਾ ਲਾਲ ਭੰਬੀਰੀਆਂ ਉਹਨਾਂ ਦੇ ਸ਼ਿਕਾਰ ਬਣਨਗੀਆਂ ਅਤੇ ਜਨਸੰਖਿਆ ਵਿੱਚ ਹਰੀਆਂ ਭੰਬੀਰੀਆਂ ਦੀ ਅਨੁਪਾਤ/ਸੰਖਿਆ ਵਧਦੀ ਜਾਵੇਗੀ। ਇਸ ਲਈ ਕੁਦਰਤੀ ਚੋਣ ਭੰਬੀਰੀਆਂ ਨੂੰ ਜਨਸੰਖਿਆ ਦੇ ਵਿਕਾਸ ਦੇ ਵੱਲ ਲੈ ਜਾ ਰਹੀ ਹੈ। ਸਿੱਟੇ ਵਜੋਂ ਭੰਬੀਰੀਆਂ ਦੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਅਨੁਕੂਲਣ ਪੈਦਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਕਾਰਨ ਉਨ੍ਹਾਂ ਦੀ ਜਨਸੰਖਿਆ ਵਾਤਾਵਰਨ ਵਿੱਚ ਵਧੇਰੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਰਹਿ ਸਕੇ।

ਦੂਜੀ ਸਥਿਤੀ ਵਿੱਚ ਰੰਗ ਪਰਿਵਰਤਨ ਨਾਲ ਹੋਂਦ ਬਣਾਈ ਰੱਖਣ ਲਈ ਕੋਈ ਲਾਭ ਨਾ ਮਿਲਿਆ। ਅਸਲ ਵਿੱਚ ਇਹ ਸੁਭਾਵਕ ਹੀ ਸੀ ਕਿ ਦੁਰਘਟਨਾ ਦੇ ਕਾਰਨ ਇੱਕ ਰੰਗ ਦੀਆਂ ਭੰਬੀਰੀਆਂ ਦੀ ਜਨਸੰਖਿਆ ਬੱਚ ਗਈ ਜਿਸ ਨਾਲ ਜਨਸੰਖਿਆ ਦਾ ਸਰੂਪ ਬਦਲ ਗਿਆ। ਜੇਕਰ ਭੰਬੀਰੀਆਂ ਦੀ ਜਨਸੰਖਿਆ ਦਾ ਆਕਾਰ ਕਾਫੀ ਵੱਡਾ ਹੁੰਦਾ ਤਾਂ ਹਾਥੀ ਦੁਆਰਾ ਕੁਚਲੇ ਜਾਣ ਦਾ ਉਸ ਉੱਤੇ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਭਾਵ ਨਾ ਪੈਂਦਾ। ਛੋਟੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਦੁਰਘਟਨਾਵਾਂ ਕਿਸੇ ਜੀਨ ਦੀ ਆਵ੍ਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਜੀਵਤ ਰਹਿਣ ਲਈ ਉਸ ਦਾ ਕੋਈ ਲਾਭ ਨਹੀਂ ਹੈ। ਇਹ ਅਨੁਵੰਸ਼ਿਕ ਵਿਚਲਨ (Genetic Drift) ਦਾ ਸਿਧਾਂਤ ਹੈ ਜੋ ਬਿਨਾਂ ਕਿਸੀ ਅਨੁਕੂਲਣ ਦੇ ਵੀ ਭਿੰਨਤਾ ਪੈਦਾ ਕਰਦਾ ਹੈ।

ਹੁਣ ਤੀਜੀ ਸਥਿਤੀ ਵੱਲ ਧਿਆਨ ਦਿਓ। ਇਸ ਵਿੱਚ ਭੰਬੀਰੀਆਂ ਦੀ ਜਨਸੰਖਿਆ ਵਧਣਾ ਆਰੰਭ ਕਰਦੀ ਹੈ। ਝਾੜੀਆਂ ਪੌਦਿਆਂ ਦੀ ਕਿਸੇ ਬੀਮਾਰੀ ਦਾ ਸ਼ਿਕਾਰ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਭੰਬੀਰੀਆਂ ਲਈ ਪੱਤੀਆਂ ਘੱਟ ਹੁੰਦੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਭੰਬੀਰੀਆਂ ਅਲਪ ਪੌਸ਼ਿਤ ਰਹਿ ਜਾਂਦੀਆਂ ਹਨ। ਭੰਬੀਰੀਆਂ ਦੇ ਔਸਤ ਭਾਰ ਵਿੱਚ ਕਮੀ ਆ ਜਾਂਦੀ ਹੈ। ਪਰ ਕੋਈ ਅਨੁਵੰਸ਼ਿਕ ਤਬਦੀਲੀ ਨਹੀਂ ਆਉਂਦੀ। ਕੁੱਝ ਸਾਲਾਂ ਪਿੱਛੋਂ ਭੰਬੀਰੀਆਂ ਦੀਆਂ ਘਾਟ ਦੌਰਾਨ ਜੀਵਿਤ ਰਹਿਣ ਵਾਲੀਆਂ ਭੰਬੀਰੀਆਂ ਦੀਆਂ ਕਈ ਪੀੜ੍ਹੀਆਂ ਉਪਰੰਤ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਤਬਦੀਲੀ ਆਉਂਦੀ ਹੈ। ਪੌਦਿਆਂ ਦੀ ਬੀਮਾਰੀ ਹਟ ਜਾਂਦੀ ਹੈ। ਭੌਜਨ ਦੀ ਲੋੜੀਂਦੀ ਮਾਤਰਾ ਉਪਲਬੱਧ ਹੁੰਦੀ ਹੈ ਤਦ ਭੰਬੀਰੀਆਂ ਦੇ ਭਾਰ ਵਿੱਚ ਕੀ ਪਰਿਵਰਤਨ ਆਏਗਾ, ਇਸ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ?

9.3.2 ਗ੍ਰਹਿਤ ਅਤੇ ਅਨੁਵੰਸ਼ਿਕ ਲੱਛਣ (Acquired and inherited raits)

ਅਸੀਂ ਪਹਿਲਾਂ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਲਿੰਗੀ ਜਣਨ ਕਰਨ ਵਾਲੇ ਜੀਵਾਂ ਵਿੱਚ ਜਰਮ ਸੈੱਲ ਵਿਸ਼ਿਸ਼ਟ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਬਣਦੇ ਹਨ। ਜੇਕਰ ਭੁੱਖਮਰੀ ਕਾਰਨ ਭੰਬੀਰੀ ਦੇ ਸਰੀਰ ਦੇ ਭਾਰ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ ਤਾਂ ਇਸ ਦੇ ਜਰਮ ਸੈੱਲਾਂ ਦੇ ਡੀ. ਐਨ. ਏ. ਦੇ ਸੰਗਠਨ ਉੱਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪਵੇਗਾ। ਇਸ ਲਈ ਭੁੱਖਮਰੀ ਦੇ ਕਾਰਨ ਜੇਕਰ ਜਨਸੰਖਿਆ ਦੀਆਂ ਕੁੱਝ ਭੰਬੀਰੀਆਂ ਘੱਟ ਭਾਰ ਦੀਆਂ ਹੋਣ ਤਾਂ ਵੀ ਇਹ ਵਿਕਾਸ ਦੀ ਉਦਾਹਰਣ ਨਹੀਂ ਹੈ। ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਨ ਇਸ ਲੱਛਣ ਦਾ ਅਨੁਵੰਸ਼ਿਕ ਨਾ ਹੋਣਾ ਹੈ ਪ੍ਰਜਣਨ ਵਾਲੇ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਵਾਪਰਦੀ ਤਬਦੀਲੀ ਜਰਮ ਸੈੱਲ ਦੇ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਨਹੀਂ ਜਾ ਸਕਦੀ। ਕਿਸੇ ਵਿਅਕਤੀ ਵਲੋਂ ਜੀਵਨ ਕਾਲ ਵਿੱਚ ਗ੍ਰਹਿਣ ਕੀਤੇ ਅਨੁਭਵ ਕਿਉਂਕਿ ਜਰਮ ਸੈੱਲਾਂ ਦੇ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਨਹੀਂ ਲਿਆਉਂਦੇ ਇਸ ਲਈ ਇਸ ਨੂੰ ਵੀ ਜੀਵ ਵਿਕਾਸ ਨਹੀਂ ਕਹਿ ਸਕਦੇ।

ਗ੍ਰਹਣ ਕੀਤੇ ਅਨੁਭਵ/ਲੱਛਣ ਜੀਵ ਪ੍ਰਕਿਰਿਆ ਦੁਆਰਾ ਅਗਲੀ ਪੀੜ੍ਹੀ (Progeny) ਵਿੱਚ ਨਹੀਂ ਜਾਂਦੇ, ਇਸਨੂੰ ਇੱਕ ਉਦਾਹਰਣ ਦੁਆਰਾ ਸਮਝਦੇ ਹਾਂ। ਜੇਕਰ ਅਸੀਂ ਪੂਛ ਵਾਲੇ ਚੂਹਿਆਂ ਨੂੰ ਪਾਲੀਏ ਤਾਂ ਆਸ ਅਨੁਸਾਰ ਉਹਨਾਂ ਦੀ ਅਗਲੀ ਪੀੜ੍ਹੀ ਦੇ ਸਾਰੇ ਚੂਹਿਆਂ ਵਿੱਚ ਪੂਛ ਹੋਵੇਗੀ। ਹੁਣ ਜੇਕਰ ਇਹਨਾਂ ਚੂਹਿਆਂ ਦੀ ਪੂਛ ਨੂੰ ਕਈ ਪੀੜ੍ਹੀਆਂ ਤੱਕ ਕੱਟਦੇ ਰਹੇ ਤਾਂ ਕੀ ਇਨ੍ਹਾਂ ਚੂਹਿਆਂ ਤੋਂ ਪੂਛ ਰਹਿਤ ਸੰਤਾਨ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ? ਇਸ ਦਾ ਉੱਤਰ ਹੈ, ਨਹੀਂ। ਇਹ ਸੁਭਾਵਿਕ ਹੀ ਹੈ ਕਿਉਂਕਿ ਪੂਛ ਕੱਟਣ ਨਾਲ ਚੂਹਿਆਂ ਦੇ ਜਰਮ ਸੈੱਲਾਂ ਦੇ ਜੀਨ ਉੱਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪੈਂਦਾ।

ਚਾਰਲਸ ਰਾਬਰਟ ਡਾਰਵਿਨ (1809–1882)

ਚਾਰਲਸ ਡਾਰਵਿਨ ਜਦੋਂ 22 ਸਾਲ ਦੇ ਸਨ ਤਾਂ ਉਹਨਾਂ ਨੇ ਸਮੁੰਦਰੀ ਯਾਤਰਾ ਕੀਤੀ। ਪੰਜ ਸਾਲ ਵਿੱਚ ਉਹਨਾਂ ਨੇ ਦੱਖਣੀ ਅਮਰੀਕਾ ਅਤੇ ਉਸ ਦੇ ਤਿੰਨ ਟਾਪੂਆਂ ਦਾ ਦੌਰਾ ਕੀਤਾ। ਇਸ ਯਾਤਰਾ ਦਾ ਉਦੇਸ਼ ਧਰਤੀ ਉੱਪਰ ਜੀਵ ਵਿਭਿੰਨਤਾ ਦੇ ਰੂਪਾਂ ਦਾ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰਨਾ ਸੀ। ਉਹਨਾਂ ਦੀ ਇਸ ਯਾਤਰਾ ਨੇ ਜੀਵ ਵਿਗਿਆਨ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਉਸ ਸਮੇਂ ਦੇ ਪ੍ਚਲਤ ਦ੍ਸ਼ਿਟੀਕੋਣ ਨੂੰ ਸਦਾ ਲਈ ਬਦਲ ਦਿੱਤਾ। ਇਹ ਵੀ ਬਹੁਤ ਰੌਚਕ ਹੈ ਕਿ ਇੰਗਲੈਂਡ ਵਾਪਸ ਆਉਣ ਤੋਂ ਬਾਅਦ ਉਹ ਮੁੜ ਕਿਸੇ ਹੋਰ ਯਾਤਰਾ ਉੱਪਰ ਨਹੀਂ ਗਏ। ਉਹ ਘਰ ਹੀ ਰਹੇ ਅਤੇ ਉਹਨਾਂ ਨੇ ਅਨੇਕ ਪ੍ਯੋਗ ਕੀਤੇ ਜਿਨ੍ਹਾਂ ਦੇ ਆਧਾਰ 'ਤੇ ਉਨ੍ਹਾਂ ਨੇ ਕੁਦਰਤੀ ਚੋਣ ਦੁਆਰਾ ਜੀਵ ਵਿਕਾਸ ਸਿਧਾਂਤ ਦੀ ਸਥਾਪਨਾ ਕੀਤੀ। ਉਹਨਾਂ ਨੂੰ ਇਹ

ਨਹੀਂ ਸੀ ਪਤਾ ਕਿ ਕਿਸ ਵਿਧੀ ਦੁਆਰਾ ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਭਿੰਨਤਾਵਾਂ ਆਉਂਦੀਆਂ ਹਨ। ਉਹਨਾਂ ਨੂੰ ਮੈਂਡਲ ਦੇ ਪ੍ਰਯੋਗਾਂ ਦਾ ਕਾਫ਼ੀ ਲਾਭ ਮਿਲ ਸਕਦਾ ਸੀ ਪਰ ਉਹ ਦੋਵੇਂ ਵਿਅਕਤੀ ਨਾ ਤਾਂ ਇੱਕ ਦੂਜੇ ਨੂੰ ਅਤੇ ਨਾ ਹੀ ਉਹਨਾਂ ਦੇ ਕੰਮ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਜਾਣਦੇ ਸਨ।

ਅਸੀਂ ਆਮ ਕਰਕੇ ਡਾਰਵਿਨ ਨੂੰ ਉਹਨਾਂ ਦੇ ਜੀਵ ਵਿਕਾਸਵਾਦ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਜਾਣਦੇ ਹਾਂ ਪਰ ਉਹ ਕੁਸ਼ਲ ਕੁਦਰਤੀ ਵਿਗਿਆਨੀ ਵੀ ਸਨ ਅਤੇ ਉਹਨਾਂ ਦੀ ਇੱਕ ਖੋਜ ਭੂਮੀ ਦੇ ਉਪਜਾਊਪਣ ਵਿੱਚ ਗੰਡੋਇਆ ਦੀ ਭੂਮਿਕਾ ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਸੀ।

ਇਹੋ ਇੱਕ ਕਾਰਨ ਹੈ ਕਿ ਅਨੁਵੰਸ਼ਿਕਤਾ ਅਤੇ ਜਣਨ ਵਿਗਿਆਨ ਜਿਨ੍ਹਾਂ ਦੀ ਚਰਚਾ ਅਸੀਂ ਪਹਿਲਾਂ ਕਰ ਚੁੱਕੇ ਹਾਂ, ਦਾ ਗਿਆਨ ਜੀਵ ਵਿਕਾਸ ਨੂੰ ਸਮਝਣ ਲਈ ਜ਼ਰੂਰੀ ਹੈ। ਇਹੋ ਹੀ ਕਾਰਨ ਹੈ ਕਿ ਉੱਨੀਵੀਂ ਸਦੀ ਵਿੱਚ ਕੁਦਰਤੀ ਚੋਣ ਦੁਆਰਾ ਜੀਵ ਵਿਕਾਸ ਦਾ ਸਿਧਾਂਤ ਦੇਣ ਵਾਲੇ ਚਾਰਲਸ ਡਾਰਵਿਨ ਵੀ ਇਸ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਨਹੀਂ ਖੋਜ ਸਕੇ। ਉਹ ਜ਼ਰੂਰ ਹੀ ਅਜਿਹਾ ਕਰ ਲੈਂਦੇ ਜੇਕਰ ਉਹਨਾਂ ਨੂੰ ਸਮਕਾਲੀ ਆਸਟ੍ਰੀਅਨ ਗ੍ਰੇਗਰ ਮੈਂਡਲ ਦੇ ਪ੍ਰਯੋਗਾਂ ਦੇ ਮਹੱਤਵ ਨੂੰ ਜਾਣਿਆ ਹੁੰਦਾ। ਮੈਂਡਲ ਵੀ ਡਾਰਵਨ ਦੇ ਸਿਧਾਂਤਾਂ ਨੂੰ ਆਪਣੇ ਕੰਮ ਨਾਲ ਸੰਬੰਧਿਤ ਨਹੀਂ ਸਮਝ ਸਕੇ।

ๅ<u>ๅ</u>ๅๅๅๅๅๅๅ

ਧਰਤੀ ਉੱਤੇ ਜੀਵਨ ਦੀ ਉਤਪਤੀ

ਡਾਰਵਿਨ ਦੇ ਸਿਧਾਂਤ ਸਾਨੂੰ ਦੱਸਦੇ ਹਨ ਕਿ ਪ੍ਰਿਬਵੀ ਉੱਤੇ ਸਰਲ ਜੀਵਾਂ ਤੋਂ ਜਟਿਲ ਸਰੂਪ ਵਾਲੇ ਜੀਵਾਂ ਦਾ ਵਿਕਾਸ ਕਿਸ ਤਰ੍ਹਾਂ ਹੋਇਆ। ਮੈਂਡਲ ਦੇ ਪ੍ਰਯੋਗਾਂ ਤੋਂ ਸਾਨੂੰ ਇੱਕ ਪੀੜ੍ਹੀ ਤੋਂ ਦੂਜੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਲੱਛਣਾਂ ਦੀ ਅਨੁਵੰਸ਼ਿਕਤਾ ਦੀ ਕਾਰਜ ਵਿਧੀ ਦਾ ਪਤਾ ਲੱਗਿਆ। ਪਰ ਦੋਵੇਂ ਹੀ ਇਹ ਦੱਸਣ ਵਿੱਚ ਅਸਮਰੱਥ ਰਹੇ ਕਿ ਧਰਤੀ ਉੱਤੇ ਜੀਵਨ ਦੀ ਉਤਪਤੀ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਿਵੇਂ ਹੋਈ।

ਇੱਕ ਬ੍ਰਿਟਿਸ਼ ਵਿਗਿਆਨਕ ਜੇ. ਬੀ. ਐਸ. ਹਾਲਡੇਨ (ਜੋ ਬਾਅਦ ਵਿੱਚ ਭਾਰਤ ਦੇ ਨਾਗਰਿਕ ਬਣ ਗਏ ਸੀ) ਨੇ 1929 ਵਿੱਚ ਇਹ ਸੁਝਾਓ ਦਿੱਤਾ ਕਿ ਜੀਵਾਂ ਦੀ ਸਭ ਤੋਂ ਉਤਪਤੀ ਉਨ੍ਹਾਂ ਸਰਲ ਅਕਾਰਬਨਿਕ ਅਣੂਆਂ ਤੋਂ ਹੋਈ ਹੋਵੇਗੀ ਜੋ ਪ੍ਰਿਥਵੀ ਦੀ ਉਤਪਤੀ ਦੇ ਸਮੇਂ ਬਣੇ ਸਨ। ਉਸ ਨੇ ਕਲਪਨਾ ਕੀਤੀ ਕਿ ਪ੍ਰਿਥਵੀ ਤੇ ਉਸ ਸਮੇਂ ਦਾ ਵਾਤਾਵਰਨ, ਪ੍ਰਿਥਵੀ ਦੇ ਵਰਤਮਾਨ ਵਾਤਾਵਰਨ ਤੋਂ ਬਹੁਤ ਭਿੰਨ ਸੀ। ਉਸ ਆਰੇਭਿਕ ਵਾਤਾਵਰਨ ਵਿੱਚ ਸੰਭਵ ਤੌਰ ਤੇ ਕੁੱਝ ਜਟਿਲ ਕਾਰਬਨੀ ਅਣੂਆਂ ਦਾ ਸੰਸਲੇਸ਼ਨ ਹੋਇਆ ਹੋਵੇਗਾ ਜੋ ਜੀਵਨ ਲਈ ਜ਼ਰੂਰੀ ਸਨ। ਸਭ ਤੋਂ ਪਹਿਲੇ ਜੀਵ ਬਹੁਤ ਸਾਰੇ ਰਸਾਇਣਿਕ ਸੰਸਲੇਸਨਾਂ ਦੁਆਰਾ ਪੈਦਾ ਹੋਏ ਹੋਣਗੇ। ਇਹ ਕਾਰਬਨ ਅਣੂ ਕਿਸ ਤਰ੍ਹਾਂ ਪੈਦਾ ਹੋਏ ਹੋਣਗੇ? ਇਸਦਾ ਉੱਤਰ ਸਟੈਨਲੇ ਐਲ, ਮਿੱਲਰ ਅਤੇ ਹੇਰਾਲਡ ਸੀ. ਯੂਰੇ ਦੁਆਰਾ 1953 ਵਿੱਚ ਕੀਤੇ ਗਏ ਪ੍ਯੋਗਾਂ ਦੇ ਆਧਾਰ 'ਤੇ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਹਨਾਂ ਨੇ ਕਰਿਤਮਕ ਰੂਪ ਵਿੱਚ ਅਜਿਹੇ ਵਾਤਾਵਰਨ ਦੀ ਸਿਰਜਣਾ ਕੀਤੀ ਜੋ ਸੰਭਵ ਤੌਰ 'ਤੇ ਮੁੱਢਲੇ ਵਾਤਾਵਰਨ ਦੇ ਸਮੇਂ ਧਰਤੀ 'ਤੇ (ਇਸ ਵਿੱਚ ਅਮੋਨੀਆ, ਮੀਥੇਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਸਲਫਾਈਡ ਦੇ ਅਣੂ ਪਰ ਆਕਸੀਜਨ ਨਹੀਂ) ਸੀ। ਇਸ ਨੂੰ 100° ਸੈਲਸੀਅਸ ਤੋਂ ਕੁੱਝ ਘੱਟ ਤਾਪ ਕ੍ਰਮ ਉੱਤੇ ਰੱਖਿਆ ਗਿਆ। ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਨ ਵਿੱਚੋਂ ਬਿਜਲੀ ਦੀਆਂ ਚਿੰਗਾਰੀਆਂ ਪੈਦਾ ਕੀਤੀਆਂ ਗਈਆਂ ਜਿਵੇਂ ਕਿ ਆਸਮਾਨ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਤਰ੍ਹਾਂ। ਇੱਕ ਹਫਤੇ ਪਿੱਛੋਂ 15% ਕਾਰਬਨ (ਮੀਥੇਨ ਤੋਂ) ਸਰਲ ਕਾਰਬਨੀ ਯੋਗਿਕਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਗਿਆ। ਇਸ ਵਿੱਚ ਅਮਾਇਨੇ ਤੇਜ਼ਾਬ ਵੀ ਸੰਸਲੇਸ਼ਿਤ ਹੋਏ ਜੋ ਪ੍ਰੋਟੀਨ ਦੇ ਅਣੂਆਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਤਾਂ, ਕੀ ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਅੱਜ ਵੀ ਜੀਵਨ ਦੀ ਉਤਪਤੀ ਹੋ ਸਕਦੀ ਹੈ?

ਪ੍ਰਸ਼ਨ

- ਉਹ ਕਿਹੜੇ ਭਿੰਨ ਢੰਗ ਹਨ ਜਿਨ੍ਹਾਂ ਦੁਆਰਾ ਵਿਸ਼ੇਸ਼ ਲੱਛਣਾਂ ਵਾਲੇ ਜੀਵਾਂ ਦੀ ਗਿਣਤੀ ਉਸ ਖਾਸ ਜਨਸੰਖਿਆ ਵਿੱਚ ਵੱਧ ਸਕਦੀ ਹੈ?
- 2 ਇੱਕ ਜੀਵ ਦੁਆਰਾ ਜੀਵ ਕਾਲ ਵਿੱਚ ਗ੍ਰਹਿਣ ਕੀਤੇ ਲੱਛਣ ਆਮ ਕਰਕੇ ਅਗਲੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦੇ?
- ਸ਼ੇਰਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਕਮੀ ਅਨੁਵੈਸ਼ਿਕਤਾ ਦੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਚਿੰਤਾ ਦਾ ਵਿਸ਼ਾ ਕਿਉਂ ਹੈ?

9.4 ਸਪੀਸੀਏਸ਼ਨ (Speciation)

ਹੁਣ ਤੱਕ ਅਸੀਂ ਜੋ ਕੁੱਝ ਵੀ ਸਮਝਿਆ ਉਹ ਸੂਖ਼ਮ ਵਿਕਾਸ ਸੀ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਇਹ ਪਰਿਵਰਤਨ ਬਹੁਤ ਛੋਟੇ ਹਨ ਪਰ ਫਿਰ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹਨ। ਇਹ ਸਪੀਸ਼ੀਜ਼ ਵਿਸ਼ੇਸ਼ ਦੀ ਜਨ ਸੰਖਿਆ ਦੇ ਆਮ ਲੱਛਣਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦੇ ਹਨ ਪਰ ਇਸ ਤੋਂ ਇਹ ਨਹੀਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਕਿ ਨਵੀਂ ਸਪੀਸ਼ੀਜ਼ ਹੋਂਦ ਵਿੱਚ ਕਿਵੇਂ ਆਉਂਦੀ ਹੈ। ਇਹ ਤਾਂ ਹੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਸੀ ਜਦੋਂ ਭੰਬੀਰੀਆਂ ਦਾ ਇਹ ਸਮੂਹ ਜਿਸ ਦੀ ਅਸੀਂ ਚਰਚਾ ਕਰ ਰਹੇ ਸਾਂ, ਦੋ ਅਜਿਹੀਆਂ ਭਿੰਨ ਜਨਸੰਖਿਆਵਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਜੋ ਆਪੋ ਵਿੱਚ ਜਣਨ ਕਰਨ ਤੋਂ ਅਸਮਰੱਥ ਹੋਣ। ਜਦੋਂ ਇਹ ਸਥਿਤੀ ਪੈਦਾ ਹੋ ਜਾਂਦੀ ਹੈ ਤਦ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ ਦੋ ਸੁਤੰਤਰ ਸਪੀਸ਼ੀਜ਼ ਕਹਿ ਸਕਦੇ ਹਾਂ। ਤਾਂ ਕੀ ਅਜਿਹੀ ਸਪੀਸੀਏਸ਼ਨ ਦਾ ਵਰਨਣ ਕਰਨ ਲਈ ਅਸੀਂ ਉਹਨਾਂ ਕਾਰਨਾਂ ਦੀ ਵਧੇਰੇ ਵਿਆਖਿਆ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਬਾਰੇ ਅਸੀਂ ਉੱਪਰ ਗੱਲ ਕੀਤੀ ਹੈ।

ਸੋਚੋ, ਕੀ ਹੋਵੇਗਾ ਜਦੋਂ ਉਹ ਝਾੜੀਆਂ ਜਿਨ੍ਹਾਂ ਉੱਪਰ ਭੰਬੀਰੀਆਂ ਭੋਜਨ ਲਈ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹਨ, ਪਹਾੜਾਂ ਦੀ ਲੜੀ ਵਿੱਚ ਬਹੁਤ ਵੱਡੇ ਖੇਤਰ ਵਿੱਚ ਫੈਲੀਆਂ ਹੋਈਆਂ ਹੋਣ। ਨਤੀਜੇ ਵਜੋਂ ਜਨਸੰਖਿਆ ਦਾ ਆਕਾਰ ਵੀ ਵਿਸ਼ਾਲ ਹੋ ਜਾਵੇਗਾ। ਪਰ ਇਕੱਲੇ ਤੌਰ ਤੇ ਭੰਬੀਰੀਆਂ ਆਪਣੇ ਭੋਜਨ ਲਈ ਜੀਵਨ ਭਰ ਆਪਣੇ ਆਲੇ ਦੁਆਲੇ ਦੀਆਂ ਕੁੱਝ ਝਾੜੀਆਂ ਉੱਪਰ ਹੀ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹਨ। ਉਹ ਬਹੁਤ ਦੂਰ ਨਹੀਂ ਜਾ ਸਕਦੀਆਂ। ਇਸ ਲਈ ਭੰਬੀਰੀਆਂ ਦੀ ਇਸ ਵਿਸ਼ਾਲ ਜਨਸੰਖਿਆ ਵਿੱਚ ਉਪ ਜਨ ਸੰਖਿਆ ਹੋਵੇਗੀ। ਕਿਉਂਕਿ ਜਣਨ ਲਈ ਨਰ ਅਤੇ ਮਾਦਾ ਭੰਬੀਰੀਆਂ ਜ਼ਰੂਰੀ ਹਨ, ਇਸ ਲਈ ਵਧੇਰੇ ਕਰਕੇ ਜਣਨ ਇਹਨਾਂ ਉੱਪ ਜਨ ਸੰਖਿਆ ਦੇ ਮੈਂਬਰਾਂ ਦੇ ਵਿਚਕਾਰ ਹੀ ਹੋਵੇਗਾ। ਹਾਂ, ਪਰ ਕੁੱਝ ਉੱਦਮੀ ਭੰਬੀਰੀਆਂ ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੇ ਸਥਾਨ ਉੱਤੇ ਜਾ ਸਕਦੀਆਂ ਹਨ ਜਾਂ ਇੱਕ ਕਾਂ ਇੱਕ ਭੰਬੀਰੀ ਨੂੰ ਇੱਕ ਸਥਾਨ ਤੋਂ ਚੁੱਕ ਕੇ ਬਿਨਾਂ ਹਾਨੀ ਪਹੁੰਚਾਏ ਦੂਜੇ ਸਥਾਨ ਉੱਤੇ ਛੱਡ ਸਕਦਾ ਹੈ। ਦੋਵੇਂ ਹੀ ਸਥਿਤੀਆਂ ਵਿੱਚ ਪ੍ਵਾਸੀ ਭੰਬੀਰੀ ਸਥਾਨਿਕ ਜਨ ਸੰਖਿਆ ਨਾਲ ਹੀ ਜਣਨ ਕਰੇਗੀ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਪ੍ਵਾਸੀ ਭੰਬੀਰੀ ਦੇ ਜੀਨ ਨਵੀਂ ਜਨਸੰਖਿਆ ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਣਗੇ। ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਜੀਨ ਪ੍ਵਾਹ ਉਹਨਾਂ ਜਨ ਸੰਖਿਆਵਾਂ ਵਿਚਕਾਰ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ ਜੋ ਅੰਸ਼ਕ ਰੂਪ ਵਿੱਚ ਵੱਖ ਵੱਖ ਹਨ ਪ੍ਰੰਤੂ ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਵੱਖ ਨਹੀਂ ਹੋਈਆਂ ਹਨ। ਜੇਕਰ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਦੋ ਉੱਪ ਜਨ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿਚਕਾਰ ਇੱਕ ਵਿਸ਼ਾਲ ਨਦੀ ਆ ਜਾਵੇ ਤਾਂ ਦੋਵੇਂ ਜਨਸੰਖਿਆਵਾਂ ਹੋਰ ਵਧੇਰੇ ਵੱਖ ਹੋ ਜਾਣਗੀਆਂ। ਦੋਵਾਂ ਵਿਚਕਾਰ ਜੀਵਨ ਪ੍ਵਾਹ ਦਾ ਸਤਰ ਹੋਰ ਵੀ ਘੱਟ ਹੋ ਜਾਵੇਗਾ।

ਪੀੜ੍ਹੀ ਦਰ ਪੀੜ੍ਹੀ ਹਰ ਇੱਕ ਉੱਪ ਜਨਸਸੰਖਿਆ ਵਿੱਚ ਅਨੁਵੈਸ਼ਿਕ ਵਿਚਲਨ (Genetic Drift) ਕਾਰਨ ਵੱਖ-ਵੱਖ ਪਰਿਵਰਤਨਾਂ ਦਾ ਇਕੱਠ ਹੋ ਜਾਵੇਗਾ।ਭੂਗੋਲਿਕ ਤੌਰ ਤੇ ਵੱਖ ਇਹਨਾਂ ਜਨਸੰਖਿਆਵਾਂ ਵਿੱਚ ਕੁਦਰਤੀ ਚੋਣ ਦਾ ਢੰਗ ਵੀ ਭਿੰਨ ਹੋਵੇਗਾ।ਉਦਾਹਰਣ ਲਈ ਇੱਕ ਉੱਪ ਜਨਸੰਖਿਆ ਦੀ ਸੀਮਾ ਵਿੱਚ ਉਕਾਬ ਦੁਆਰਾ ਕਾਂ ਸਮਾਪਤ ਕਰ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ।ਪਰ ਦੂਜੀ ਉੱਪ ਜਨਸੰਖਿਆ ਵਿੱਚ ਇਹ ਘਟਨਾ ਨਹੀਂ ਹੁੰਦੀ ਜਿੱਥੇ ਕਾਵਾਂ ਦੀ ਸੰਖਿਆ ਬਹੁਤ ਵੱਧ ਹੈ।ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਹਰੇ ਰੰਗ (ਲੱਛਣ) ਦੀਆਂ ਭੰਬੀਰੀਆਂ ਦੀ ਕੁਦਰਤੀ ਚੋਣ ਪਹਿਲੇ ਸਥਾਨ ਉਤੇ ਨਹੀਂ ਹੋਵੇਗੀ ਜਦੋਂ ਕਿ ਦੂਜੇ ਸਥਾਨ ਉੱਪਰ ਇਸ ਦੀ ਜਬਰਦਸਤ ਚੋਣ ਹੋਵੇਗੀ।

ਭੰਬੀਰੀਆਂ ਦੀਆਂ ਇਹਨਾਂ ਵੱਖਰੀਆਂ ਉੱਪ ਜਨਸੰਖਿਆਵਾਂ ਵਿੱਚ ਅਨੁਵੰਸ਼ਿਕ ਵਿਚਲਨ ਅਤੇ ਕੁਦਰਤੀ ਚੋਣ ਦੇ ਸੰਯੁਕਤ ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਨ ਹਰ ਇੱਕ ਜਨਸੰਖਿਆ ਇੱਕ ਦੂਜੇ ਤੋਂ ਵਧੇਰੇ ਭਿੰਨ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਅੰਤ ਵਿੱਚ ਇਹਨਾਂ ਜਨਸੰਖਿਆਵਾਂ ਦੇ ਮੈਂਬਰ ਆਪਸ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮਿਲਣ ਉਪਰੰਤ ਵੀ ਅੰਤਰ ਜਣਨ ਵਿੱਚ ਅਸਮਰੱਥ ਹੋ ਜਾਣਗੇ।

ਅਨੇਕ ਢੰਗ ਹਨ ਜਿਨ੍ਹਾਂ ਦੁਆਰਾ ਇਹ ਪਰਿਵਰਤਨ ਸੰਭਵ ਹਨ। ਜੇਕਰ ਇਹ ਪਰਿਵਰਤਨ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹਨ ਜਿਵੇਂ ਕਿ ਗੁਣਸੂਤਰਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਪਰਿਵਰਤਨ ਤਾਂ ਦੋ ਜਨ ਸੰਖਿਆਵਾਂ ਦੇ ਮੈਂਬਰਾਂ ਦੀਆਂ ਜਰਮ ਸੈੱਲ ਆਪਸ ਵਿੱਚ ਸੰਗਮ ਕਰਨ ਵਿੱਚ ਅਸਮਰੱਥ ਹੋ ਸਕਦੀਆਂ ਹਨ ਜਾਂ ਸੰਭਵ ਹੈ ਕਿ ਅਜਿਹੀ ਭਿੰਨਤਾ ਉਤਪੰਨ ਹੋ ਜਾਵੇ ਜਿਸ ਵਿੱਚ ਹਰੇ ਰੰਗ ਦੀ ਮਾਦਾ ਭੰਬੀਰੀ ਲਾਲ ਰੰਗ ਵਾਲੀ ਨਰ ਭੰਬੀਰੀ ਨਾਲ ਜਣਨ ਦੀ ਸਮਰੱਥਾ ਹੀ ਖੋ ਦੇਵੇ, ਉਹ ਸਿਰਫ ਹਰੇ ਰੰਗ ਦੀਆਂ ਨਰ ਭੰਬੀਰੀਆਂ ਨਾਲ ਹੀ ਜਣਨ ਕਰਨ ਦੇ ਲਈ ਸਮਰੱਥ ਹੋਣ। ਹੁਣ ਜੇਕਰ ਅਜਿਹੀ ਹਰੀ ਮਾਦਾ ਭੰਬੀਰੀ ਦੂਜੇ ਸਮੂਹ ਦੇ ਲਾਲ ਨਰ ਨਾਲ ਮਿਲਦੀ ਹੈ ਤਾਂ ਉਸ ਦਾ ਵਿਵਹਾਰ ਐਂਸਾ ਹੋਵੇਗਾ ਕਿ ਉਨ੍ਹਾਂ ਵਿੱਚ ਜਣਨ ਨਾ ਹੋ ਸਕੇ। ਇਸ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਭੰਬੀਰੀਆਂ ਦੀ ਨਵੀਂ ਸਪੀਸ਼ੀਜ਼ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਉਹ ਕਿਹੜੇ ਕਾਰਕ ਹਨ ਜੋ ਨਵੀਂ ਸਪੀਸ਼ੀਜ਼ ਪੈਦਾ ਕਰਨ ਵਿੱਚ ਸਹਾਇਕ ਹਨ?
- ਕੀ ਭੂਗੋਲਿਕ ਵਖਰੇਵਾਂ ਸਵੈ ਪਰਾਗਣ ਕਰਨ ਵਾਲੇ ਪੌਦਿਆਂ ਦੇ ਸਪੀਸ਼ਜ਼ ਦੀ ਸਪੀਸੀਏਸ਼ਨ ਦਾ ਮੁੱਖ ਕਾਰਕ ਹੈ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?
- ਕੀ ਭੂਗੋਲਿਕ ਵਖਰੇਵਾਂ ਅਲਿੰਗੀ ਜਣਨ ਵਾਲੇ ਜੀਵਾਂ ਦੀ ਸਪੀਸੀਏਸ਼ਨ ਦਾ ਮੁੱਖ ਕਾਰਕ ਹੈ ਸਕਦਾ ਹੈ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?

9.5 ਵਿਕਾਸ ਅਤੇ ਵਰਗੀਕਰਨ (Evolution and Classification)

ਇਹਨਾਂ ਸਿਧਾਂਤਾਂ ਦੇ ਆਧਾਰ 'ਤੇ ਅਸੀਂ ਆਪਣੇ ਚਾਰੇ ਪਾਸੇ ਮਿਲਣ ਵਾਲੀਆਂ ਭਿੰਨ ਭਿੰਨ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਵਿਚਕਾਰ ਵਿਕਾਸ ਸੰਬੰਧ ਸਥਾਪਿਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ ਇੱਕ ਤਰ੍ਹਾਂ ਨਾਲ ਵਿੱਚ ਸਮੇਂ ਤੋਂ ਪਿਛਾਂਹ ਜਾਣਾ ਹੈ। ਅਸੀਂ ਅਜਿਹਾ ਭਿੰਨ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਲੱਛਣਾਂ ਵਿਚਾਲੇ ਦਰਜਾਬੰਦੀ ਕਰਕੇ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਦਰਜਾਬੰਦੀ ਨੂੰ ਸਮਝਣ ਲਈ ਅਸੀਂ ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹੇ ਜੀਵਾਂ ਦੇ ਵਰਗੀਕਰਨ ਨੂੰ ਯਾਦ ਕਰਦੇ ਹਾਂ।

ਭਿੰਨ ਜੀਵਾਂ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਸਾਨੂੰ ਉਹਨਾਂ ਜੀਵਾਂ ਨੂੰ ਇੱਕ ਸਮੂਹ ਵਿੱਚ ਰੱਖਣ ਅਤੇ ਫਿਰ ਉਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਕਰਨ ਦਾ ਮੌਕਾ ਪ੍ਰਦਾਨ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਵਾਸਤੇ ਕਿਹੜੇ ਲੱਛਣ ਜੀਵਾਂ ਵਿੱਚ ਵਧੇਰੇ ਆਧਾਰ ਪੂਰਨ ਭਿੰਨਤਾਵਾਂ ਦਾ ਨਿਰਣਾ ਕਰਦੇ ਹਨ ਅਤੇ ਕਿਹੜੇ ਲੱਛਣ ਘੱਟ ਮਹੱਤਵਪੂਰਨ ਭਿੰਨਤਾਵਾਂ ਦਾ ਨਿਰਣਾ ਕਰਦੇ ਹਾਂ। ਲੱਛਣਾਂ (ਜਾਂ ਗੁਣਾਂ) ਤੋਂ ਸਾਡਾ ਕੀ ਭਾਵ ਹੈ? ਲੱਛਣਾਂ (Characteristics) ਤੋਂ ਭਾਵ ਹੈ ਆਕਾਰ (ਦਿੱਖ) ਜਾਂ ਵਰਤਾਓ ਦਾ ਵੇਰਵਾ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਸਰੂਪ ਜਾਂ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਹੀ ਲੱਛਣ ਹੈ। ਸਾਡੇ ਚਾਰ ਅੰਗ ਹੁੰਦੇ ਹਨ, ਇਹ ਇੱਕ ਲੱਛਣ ਹੈ ਪੌਦਿਆਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ਸੰਸਲੇਸ਼ਣ ਹੁੰਦਾ ਹੈ, ਇਹ ਵੀ ਇੱਕ ਲੱਛਣ ਹੈ।

ਕੁੱਝ ਮੂਲ ਲੱਛਣ ਬਹੁਤ ਸਾਰੇ ਜੀਵਾਂ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਸੈੱਲ ਸਾਰੇ ਜੀਵਾਂ ਦੀ ਮੁੱਢਲੀ ਇਕਾਈ ਹੈ। ਵਰਗੀਕਰਨ ਦੇ ਅਗਲੇ ਪੱਧਰ ਉੱਪਰ ਕੋਈ ਲੱਛਣ ਬਹੁਤੇ ਜੀਵਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋ ਸਕਦਾ ਹੈ ਪਰ ਸਾਰੇ ਜੀਵਾਂ ਵਿੱਚ ਨਹੀਂ। ਸੈੱਲ ਦੀ ਬਣਤਰ ਦੇ ਮੂਲ ਲੱਛਣ ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਸੈੱਲ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਦਾ ਹੋਣਾ ਜਾਂ ਨਾ ਹੋਣਾ ਹੈ ਜੋ ਭਿੰਨ ਜੀਵਾਂ ਵਿੱਚ ਭਿੰਨ ਹੋ ਸਕਦਾ ਹੈ। ਬੈਕਟੀਰੀਆ ਦੇ ਸੈੱਲ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਨਹੀਂ ਹੁੰਦਾ ਜਦੋਂ ਕਿ ਜ਼ਿਆਦਾਤਰ ਦੂਜੇ ਜੀਵਾਂ ਦੇ ਸੈੱਲਾਂ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਪਾਇਆ ਜਾਂਦਾ ਹੈ। ਨਿਊਕਲੀਅਸ ਯੁਕਤ ਸੈੱਲਾਂ ਵਾਲੇ ਜੀਵਾਂ ਵਿੱਚ ਕਿਹੜੇ ਇੱਕ ਸੈੱਲੀ ਅਤੇ ਕਿਹੜੇ ਬਹੁ ਸੈੱਲੀ ਹਨ ਇਹ ਲੱਛਣ ਸਰੀਰਕ ਬਣਤਰ ਵਿੱਚ ਇੱਕ ਮੂਲ ਅੰਤਰ ਦਰਸਾਉਂਦਾ ਹੈ ਜੋ ਸੈੱਲਾਂ ਅਤੇ ਟਿਸ਼ੂਆਂ ਦੀ ਵਿਲੱਖਣਤਾ ਦਾ ਕਾਰਨ ਹੈ। ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਦਾ ਹੋਣਾ ਜਾਂ ਨਾ ਹੋਣਾ ਵਰਗੀਕਰਨ ਦਾ ਅਗਲਾ ਪੱਧਰ ਹੈ। ਉਹਨਾਂ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਨਹੀਂ ਹੁੰਦਾ, ਵਿੱਚ ਕੁੱਝ ਜੀਵ ਅਜਿਹੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪਿੰਜਰ ਸਰੀਰ ਦੇ ਅੰਦਰ ਹੁੰਦਾ ਹੈ ਜਾਂ ਕੁੱਝ ਵਿੱਚ ਬਾਹਰ, ਇਹ ਬਣਤਰ ਵਿੱਚ ਇੱਕ ਹੋਰ ਪ੍ਕਾਰ ਦਾ ਮੂਲ ਅੰਤਰ ਹੈ। ਇਹਨਾਂ ਥੋੜ੍ਹੇ ਜਿਹੇ ਪ੍ਰਸ਼ਨਾਂ, ਜੋ ਅਸੀਂ ਇੱਥੇ ਪੁੱਛੇ ਹਨ, ਦੇ ਦੁਆਰਾ ਵੀ ਅਸੀਂ ਵੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਦਰਜਾ ਵਿਕਸਿਤ ਹੋ ਰਿਹਾ ਹੈ। ਜਿਸ ਦੇ ਆਧਾਰ ਉੱਤੇ ਵਰਗੀਕਰਨ ਦੇ ਲਈ ਗਰੁੱਪ ਬਣਾ ਸਕਦੇ ਹਾਂ।

ਦੋਂ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਵਿਚਕਾਰ ਜਿੰਨੇ ਜ਼ਿਆਦਾ ਲੱਛਣ ਸਮਾਨ ਹੋਣਗੇ ਉਨ੍ਹਾਂ ਦਾ ਸੰਬੰਧ ਵੀ ਉੱਨਾ ਹੀ ਨਿਕਟ ਦਾ ਹੋਵੇਗਾ। ਜਿੰਨੀਆਂ ਜ਼ਿਆਦਾ ਸਮਾਨਤਾਵਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚ ਹੋਣਗੀਆਂ ਨੇੜੇ ਦੇ ਅਤੀਤ ਵਿੱਚ ਜਨਣ ਵੀ ਸਮਾਨ ਪੂਰਵਜਾਂ ਤੋਂ ਹੋਇਆ ਹੋਵੇਗਾ। ਇਸ ਨੂੰ ਅਸੀਂ ਉਦਾਹਰਣ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਮਝ ਸਕਦੇ ਹਾਂ, ਇੱਕ ਭਰਾ ਅਤੇ ਭੈਣ ਨੇੜੇ ਦੇ ਸੰਬੰਧੀ ਹਨ। ਉਨ੍ਹਾਂ ਤੋਂ ਪਹਿਲੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਪੂਰਵਜ ਸਮਾਨ ਸਨ ਭਾਵ ਉਹ ਇੱਕ ਹੀ ਮਾਤਾ-ਪਿਤਾ ਦੀ ਸੰਤਾਨ ਸਨ। ਲੜਕੀ ਦੇ ਚਚੇਰੇ/ਮਮੇਰੇ ਭਾਈ-ਭੈਣ ਵੀ ਉਸ ਨਾਲ ਸੰਬੰਧਿਤ ਹਨ ਪਰ ਉਸ ਦੇ ਆਪਣੇ ਭਾਈ ਤੋਂ ਘੱਟ ਹਨ। ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਣ ਹੈ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਪੂਰਵਜ ਸਮਾਨ ਹਨ, ਭਾਵ ਦਾਦਾ-ਦਾਦੀ ਜੋ ਉਨ੍ਹਾਂ ਤੋਂ ਦੋ ਪੀੜ੍ਹੀ ਪਹਿਲਾਂ ਦੇ ਹਨ ਨਾ ਕਿ ਇੱਕ ਪੀੜ੍ਹੀ ਪਹਿਲਾਂ ਦੇ। ਹੁਣ ਤੁਸੀਂ ਇਸ ਗੱਲ ਨੂੰ ਭਲੀ ਤਰ੍ਹਾਂ ਸਮਝ ਸਕਦੇ ਹੋ ਕਿ ਸਪੀਸ਼ੀਜ਼/ਜੀਵਾਂ ਦਾ ਵਰਗੀਕਰਨ ਉਨ੍ਹਾਂ ਦੇ ਵਿਕਾਸ ਦੇ ਸੰਬੰਧਾਂ ਦਾ ਪ੍ਰਤਿਬੰਬ ਹੈ।

ਅਸੀਂ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਅਜਿਹੇ ਸਮੂਹ ਦਾ ਨਿਰਮਾਣ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਦੇ ਪੂਰਵਜ ਨਿਕਟ ਅਤੀਤ ਵਿੱਚ ਸਮਾਨ ਸਨ, ਇਸ ਤੋਂ ਪਿੱਛੋਂ ਇਸ ਸਮੂਹ ਦਾ ਇੱਕ ਵੱਡਾ ਸਮੂਹ ਬਣਾਈਏ ਜਿਨ੍ਹਾਂ ਦੇ ਪੂਰਵਜ ਕੁੱਝ ਵਧੇਰੇ ਦੂਰ ਦੇ ਹੋਣ। ਸਿਧਾਂਤਿਕ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਅਤੀਤ ਦੀਆਂ ਕੜੀਆਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹੋਏ ਅਸੀਂ ਵਿਕਾਸ ਦੀ ਆਰੰਭਿਕ ਸਥਿਤੀ ਤੱਕ ਪਹੁੰਚ ਸਕਦੇ ਹਾਂ ਜਿੱਥੇ ਇੱਕ ਹੀ ਸਪੀਸ਼ੀਜ਼ ਸੀ। ਜੇਕਰ ਇਹ ਸੱਚ ਹੈ ਤਾਂ ਜੀਵਨ ਦੀ ਉਤਪਤੀ ਜ਼ਰੂਰ ਹੀ ਬੇਜਾਨ ਪਦਾਰਥਾਂ ਤੋਂ ਹੋਈ ਹੋਵੇਗੀ। ਇਹ ਕਿਵੇਂ ਸੰਭਵ ਹੋਇਆ ਹੋਵੇਗਾ, ਇਸ ਵਿਸ਼ੇ ਬਾਰੇ ਅਨੇਕ ਸਿਧਾਂਤ ਹਨ। ਇਹ ਦਿਲਚਸਪੀ ਭਰਪੂਰ ਹੋਵੇਗਾ ਜੇਕਰ ਅਸੀਂ ਆਪਣੇ ਸਿਧਾਂਤ ਦੇ ਸਕੀਏ।

9.5.1 ਵਿਕਾਸ ਦੇ ਸੰਬੰਧ ਖੋਜਣਾ (Tracing Evolutionary Relationships)

ਜਦੋਂ ਅਸੀਂ ਵਿਕਾਸ ਦੇ ਸੰਬੰਧਾਂ ਨੂੰ ਜਾਨਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਇੱਕ ਸਮਾਨ ਲੱਛਣਾਂ ਦੀ ਪਹਿਚਾਣ ਕਿਵੇਂ ਕਰਦੇ ਹਾਂ? ਵੱਖ-ਵੱਖ ਜੀਵਾਂ ਵਿੱਚ ਇਹ ਲੱਛਣ ਸਮਾਨ ਹੋਣਗੇ ਕਿਉਂਕਿ ਉਹ ਸਮਾਨ ਮਾਪਿਆਂ ਤੋਂ ਵਿਰਸੇ ਵਿੱਚ ਮਿਲੇ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ ਇਸ ਅਸਲੀਅਤ ਨੂੰ ਹੀ ਲੈਂਦੇ ਹਾਂ ਕਿ ਪੰਛੀਆਂ, ਗੈਂਗਣ ਵਾਲੇ ਜੀਵਾਂ ਅਤੇ ਜਲਬਲੀ ਜੀਵਾਂ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਬਣਧਾਰੀ ਜੀਵਾਂ ਦੇ ਚਾਰ ਅੰਗ ਹੁੰਦੇ ਹਨ। (ਚਿੱਤਰ 9.8)। ਸਾਰਿਆਂ ਦੇ ਅੰਗਾਂ ਦੀ ਮੂਲ ਰਚਨਾ ਇੱਕ ਸਮਾਨ ਹੁੰਦੀ ਹੈ ਭਾਵੇਂ ਭਿੰਨ ਭਿੰਨ ਰੀੜ੍ਹਧਾਰੀਆਂ ਵਿੱਚ ਵੱਖ ਵੱਖ ਕਾਰਜ ਕਰਨ ਲਈ ਰੂਪਾਂਤਰਣ ਹੋਇਆ ਹੈ ਫਿਰ ਵੀ ਅੰਗ ਦੀ ਮੁੱਢਲੀ ਰਚਨਾ ਇੱਕ ਸਮਾਨ ਹੈ। ਅਜਿਹੇ ਸਮਜਾਤ (Homologous) ਲੱਛਣਾਂ ਨਾਲ ਭਿੰਨ-ਭਿੰਨ

ਚਿੱਤਰ 9.8 ਸਮਜਾਤ ਅੰਗ

ਵਿਖਾਈ ਦੇਣ ਵਾਲੀਆਂ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਵਿੱਚ, ਵਿਕਾਸ ਦੇ ਸੰਬੰਧ ਦੀ ਪਹਿਚਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ।

ਪਰੰਤੂ ਕੇਵਲ ਕਿਸੇ ਅੰਗ ਦੀ ਸ਼ਕਲ ਜਾਂ ਆਕਾਰ ਵਿੱਚ ਸਮਾਨਤਾਵਾਂ ਹੋਣ ਦਾ ਕਾਰਨ ਕੇਵਲ

ਚਿੱਤਰ 9.9 ਸਮਰੂਪ ਅੰਗ ਚਮਗਿੱਦੜ ਅਤੇ ਪੰਛੀ ਦੇ ਖੰਭ

ਸਮਾਨ ਪੂਰਵਜ਼ਾਂ ਦਾ ਹੋਣਾ ਨਹੀਂ ਹੈ। ਚਮਗਿੱਦੜ ਅਤੇ ਪੰਛੀ ਦੇ ਖੰਭਾਂ (ਚਿੱਤਰ 9.9) ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤੁਹਾਡਾ ਕੀ ਵਿਚਾਰ ਹੈ? ਪੰਛੀ ਅਤੇ ਚਮਗਿੱਦੜ ਦੇ ਖੰਭ ਹੁੰਦੇ ਹਨ ਪਰ ਗਲਹਿਰੀ ਅਤੇ ਛਿਪਕਲੀ ਦੇ ਨਹੀਂ। ਤਾਂ ਕੀ ਪੰਛੀਆਂ ਅਤੇ ਚਮਗਿੱਦੜਾਂ ਵਿੱਚ ਸੰਬੰਧ ਗਲਹਿਰੀਆਂ ਅਤੇ ਛਿਪਕਲੀਆਂ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਵਧੇਰੇ ਗੁੜ੍ਹੇ ਹਨ?

ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਕਿ ਅਸੀਂ ਕੋਈ ਨਤੀਜਾ ਕੱਢੀਏ, ਸਾਨੂੰ

ਪੱਛੀ ਅਤੇ ਚਮਗਿੱਦੜ ਦੇ ਖੰਭਾਂ ਨੂੰ ਬਰੀਕੀ ਨਾਲ ਵੇਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਅਜਿਹਾ ਕਰਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਚਮਗਿੱਦੜ ਦੇ ਖੰਭ ਮੁੱਖ ਤੌਰ ਤੇ ਉਸ ਦੀਆਂ ਲੰਬੀਆਂ ਉੱਗਲੀਆਂ ਦੇ ਵਿਚਕਾਰ ਚਮੜੀ ਦੇ ਫੈਲਣ ਨਾਲ ਬਣਿਆ ਹੈ ਜਦੋਂ ਕਿ ਪੱਛੀ ਦੇ ਖੰਭ ਉਸ ਦੀਆਂ ਅਗਲੀਆਂ ਲੱਤਾਂ ਅਤੇ ਫਰ ਵਾਲੀ ਚਮੜੀ ਨਾਲ ਬਣਿਆ ਹੈ। ਇਸ ਲਈ ਦੋ ਖੰਭਾਂ ਦੀ ਬਣਤਰ, ਰਚਨਾ ਅਤੇ ਘਟਕਾਂ ਵਿੱਚ ਬਹੁਤ ਅੰਤਰ ਹੈ। ਇਹ ਇਕੋ ਜਿਹੇ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਉਹ ਉੱਡਣ ਲਈ ਇਹਨਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ ਪਰ ਇਹਨਾਂ ਦੀ ਉਤਪੱਤੀ ਸਮਾਨ ਨਹੀਂ ਹੈ। ਇਸ ਕਾਰਨ ਇਹ ਉਹਨਾਂ ਨੂੰ ਸਮਰੂਪ ਲੱਛਣ ਬਣਾਉਂਦਾ ਹੈ ਨਾ ਕਿ ਸਮਜਾਤ (Homologous) ਲੱਛਣ। ਹੁਣ ਇਹ ਵਿਚਾਰ ਕਰਨਾ ਰਚਕ ਹੋਵੇਗਾ ਕਿ ਪੰਛੀ ਦੇ ਅਗਲੇ ਹੱਥ (Birds ARM) ਅਤੇ ਚਮਗਿੱਦੜ ਦੇ ਅਗਲੇ ਹੱਥ (BAT ARMS) ਨੂੰ ਸਮਜਾਤ ਮੰਨਿਆ ਜਾਵੇ ਜਾਂ ਸਮਰੂਪ।

9.5.2 ਪਥਰਾਟ (Fossils)

ਅੰਗਾਂ ਦੀ ਰਚਨਾ ਦਾ ਅਧਿਐਨ ਕੇਵਲ ਵਰਤਮਾਨ ਸਪੀਸ਼ੀਜ਼ ਉੱਪਰ ਹੀ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਸਗੋਂ ਉਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ਼ ਉੱਪਰ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਹੁਣ ਜੀਵਤ ਨਹੀਂ ਹਨ।ਅਸੀਂ ਇਹ ਕਿਵੇਂ ਜਾਣ ਜਾਂਦੇ ਹਾਂ ਕਿ ਇਹ ਲੁਪਤ ਸਪੀਸ਼ੀਜ਼ ਕਦੇ ਹੁੰਦੀਆਂ ਸਨ? ਇਹ ਅਸੀਂ ਪਥਰਾਟਾਂ ਦੁਆਰਾ ਜਾਣ ਜਾਂਦੇ ਹਾਂ (ਚਿੱਤਰ 9.10 ਵੇਖੋ)। ਪਥਰਾਟ ਕੀ ਹੈ? ਆਮ ਕਰਕੇ ਜੀਵਾਂ ਦੀ ਮੌਤ ਪਿੱਛੋਂ ਉਸ ਦੇ ਸਰੀਰ ਦਾ ਅਪਘਟਨ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਹ ਸਮਾਪਤ ਹੋ ਜਾਂਦਾ ਹੈ ਪਰ ਕਦੇ-ਕਦੇ ਜੀਵ ਅਤੇ ਉਸ

ਪੂਬਰਾਟ - ਜਿਉਂਦੇ ਪੇੜ ਦਾ ਤਣਾ

ਪਥਰਾਟ - ਅਗੋੜਧਾਰੀ (ਐਮੋਨਾਈਟ)

ਪਥਰਾਟ-ਰੀੜ੍ਹਧਾਰੀ (ਟਰਾਈਲਬਾਈਟ)

ਪਥਰਾਟ-ਮੱਛੀ (ਨਾਈਟਿਆ)

ਪਬਰਾਟ-ਡਾਈਨੋਸਾਰ ਦੀ ਖੋਪੜੀ (ਰਾਜਾਸੌਰਸ)

ਚਿੱਤਰ 9.10 ਭਿੰਨ-ਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਪਥਰਾਟ। ਭਿੰਨ ਦਿੱਖ, ਵਿਸਤਾਰ ਦੀ ਸੀਮਾ ਅਤੇ ਸੁਰੱਖਿਅਣ ਨੌਟ ਕਰੋ। ਵਿਖਾਈ ਗਈ ਡਾਈਨੌਸਾਰ ਦੀ ਖੋਪੜੀ ਦਾ ਪਥਰਾਟ ਕੁਝ ਸਾਲ ਪਹਿਲਾਂ ਨਰਮਦਾ ਘਾਟੀ ਵਿੱਚ ਮਿਲਿਆ ਸੀ। ਦੇ ਕੁੱਝ ਭਾਗ ਅਜਿਹੇ ਵਾਤਾਵਰਨ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਜਿਸ ਦੇ ਕਾਰਨ ਉਹਨਾਂ ਦਾ ਅਪਘਟਨ ਪੂਰੀ ਤਨ੍ਹਾਂ ਨਹੀਂ ਹੁੰਦਾ।ਉਦਾਹਰਣ ਲਈ ਜੇਕਰ ਕੋਈ ਮਰਿਆ ਕੀਟ ਗਰਮ ਮਿੱਟੀ ਵਿੱਚ ਸੁੱਕ ਕੇ ਕਠੱਰ ਹੋ ਜਾਵੇ ਅਤੇ ਉਸ ਮਿੱਟੀ ਵਿੱਚ ਕੀਟ ਦੇ ਸਰੀਰ ਦੀ ਛਾਪ ਸੁਰੱਖਿਅਤ ਰਹਿ ਜਾਵੇ। ਜੀਵਾਂ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਸੁਰੱਖਿਅਤ ਅਵਸ਼ੇਸ਼ਾਂ ਨੂੰ ਪਥਰਾਟ (Fossils) ਕਹਿੰਦੇ ਹਨ।

ਸਾਨੂੰ ਇਹ ਕਿਵੇਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਪਥਰਾਟ ਕਿੰਨੇ ਪੁਰਾਣੇ ਹਨ? ਇਸ ਦਾ ਅੰਦਾਜ਼ਾ ਕਰਨ ਲਈ ਦੋ ਘਟਕ ਹਨ। ਇੱਕ ਹੈ ਸਾਪੇਖਿਕ (Relative) ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਸਥਾਨ ਦੀ ਖੁਦਾਈ ਕਰਦੇ ਹਾਂ ਅਤੇ ਇੱਕ ਗਹਿਰਾਈ ਤੱਕ ਖੋਦਣ ਤੋਂ ਪਿੱਛੋਂ ਸਾਨੂੰ ਪਥਰਾਟ ਮਿਲਣੇ ਆਰੰਭ ਹੋ ਜਾਂਦੇ ਹਨ ਤਦ ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਇਹ ਸੋਚਣਾ ਤਰਕਸ਼ੀਲ ਹੈ ਕਿ ਪ੍ਰਿਥਵੀ ਦੀ ਸਤਹ ਤੋਂ ਨਿਕਲਣ ਵਾਲੇ ਪਥਰਾਟ ਡੂੰਘਾਈ ਤੇ ਮਿਲਣ ਵਾਲੇ ਪਥਰਾਟਾਂ ਤੋਂ ਵਧੇਰੇ ਨਵੇਂ ਹਨ। ਦੂਜੀ ਵਿਧੀ ਹੈ 'ਫਾਸਿਲ ਡੇਟਿੰਗ' (Fossil Dating) ਜਿਸ ਵਿੱਚ ਪਥਰਾਟ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਕਿਸੀ ਇੱਕ ਤੱਤ ਦੇ ਵੱਖ-ਵੱਖ ਸਮਸਥਾਨਕਾਂ ਦੇ ਅਨੁਪਾਤ ਦੇ ਆਧਾਰ 'ਤੇ ਪਥਰਾਟ ਦਾ ਸਮਾਂ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਜਾਣਨਾ ਰੋਚਕ ਹੋਵੇਗਾ ਕਿ ਇਹ ਵਿਧੀ ਕਿਸ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦੀ ਹੈ।

^^^^^^

ਪਰਤ ਦਰ ਪਰਤ ਪਥਰਾਟ ਕਿਵੇਂ ਬਣਦੇ ਹਨ?

ਆਓ 10 ਕਰੋੜ (100 ਮਿਲੀਅਨ) ਸਾਲ ਪਹਿਲਾਂ ਤੋਂ ਆਰੰਭ ਕਰਦੇ ਹਾਂ। ਸਮੁੰਦਰੀ ਤਲ ਤੇ ਕੁੱਝ ਅਰੀੜਧਾਰੀ (Invertebrate) ਜੀਵ ਮਰ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਹ ਰੇਤ ਵਿੱਚ ਦਬ ਜਾਂਦੇ ਹਨ। ਹੌਲੀ-ਹੌਲੀ ਹੋਰ ਵਧੇਰੇ ਰੇਤ ਇਕੱਠੀ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਵਧੇਰੇ ਦਬਾਓ ਕਾਰਨ ਚਟਾਨ ਬਣ ਜਾਂਦੀ ਹੈ।

ਕੁੱਝ ਮਿਲੀਅਨ ਸਾਲਾਂ ਮਗਰੋਂ ਖੇਤਰ ਵਿੱਚ ਰਹਿਣ ਵਾਲੇ ਡਾਈਨੌਸੋਰ ਮਰ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦਾ ਸ਼ਗੀਰ ਵੀ ਮਿੱਟੀ ਵਿੱਚ ਦਬ ਜਾਂਦਾ ਹੈ। ਇਹ ਮਿੱਟੀ ਵੀ ਦਬਾਓ ਕਾਰਨ ਚਟਾਨ ਬਣ ਜਾਂਦੀ ਹੈ ਜੋ ਪਹਿਲਾਂ ਵਾਲੇ ਅਰੀੜਧਾਰੀਆਂ ਦੇ ਪਥਰਾਟਾਂ ਵਾਲੀ

ਚਟਾਨ ਦੇ ਉੱਪਰ ਬਣਦੀ ਹੈ।

ਫਿਰ ਇਸ ਦੇ ਕੁੱਝ ਮਿਲੀਅਨ ਸਾਲਾਂ ਪਿੱਛੋਂ ਇਸ ਖੇਤਰ ਵਿੱਚ ਘੋੜੇ ਦੇ ਸਮਾਨ ਕੁੱਝ ਜੀਵਾਂ ਦੇ ਪਥਰਾਟ ਚਟਾਨਾਂ ਵਿੱਚ ਦਬ ਜਾਂਦੇ ਹਨ।

ਇਸ ਤੋਂ ਕਾਫੀ ਸਮੇਂ ਬਾਅਦ ਖੋਰ ਕਾਰਨ ਜਾਂ ਪਾਣੀ ਵਗਣ ਨਾਲ ਚਟਾਨਾਂ ਟੁੱਟ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਘੋੜੇ ਦੇ ਸਮਾਨ ਪਥਰਾਟ ਪ੍ਰਗਟ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਜਿਵੇਂ ਅਸੀਂ ਗਹਿਰੀ ਖੁਦਾਈ ਕਰਦੇ ਜਾਂਦੇ ਹਾਂ ਤਿਵੇਂ-ਤਿਵੇਂ ਪੁਰਾਣੇ ਅਤੇ ਹੋਰ ਪੁਰਾਣੇ ਪਥਰਾਟ ਮਿਲਦੇ ਜਾਂਦੇ ਹਨ।

9.5.3 ਵਿਕਾਸ ਦੇ ਪੜਾਅ (Evolution by stages)

ਚਿੱਤਰ 9.11 ਪਲੈਨੇਤੀਆ ਨਾਂ ਦੇ ਚਪਟੇ ਕਿਰਮ ਦੀ ਅਤਿ ਸਰਲ ਅੱਖ ਹੁੰਦੀ ਹੈ ਜੋ ਅਸਲ ਵਿੱਚ ਨੇਤਰ ਬਿੰਦੂ ਹਨ ਜੋ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਪਹਿਚਾਣ ਸਕਦਾ ਹੈ।

ਇੱਕ ਪਰਿਵਰਤਨ ਜੋ ਇੱਕ ਕੰਮ ਲਈ ਉਪਯੋਗੀ ਹੈ ਉਹ ਸਮਾਂ ਬੀਤਣ ਨਾਲ

ਕਿਸੀ ਹੋਰ ਕਾਰਜ ਲਈ ਵੀ ਉਪਯੋਗੀ ਹੋ ਸਕਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਪਰ (Feathers) ਜੋ ਸੈਭਵ ਹੈ ਠੰਢੇ ਮੌਸਮ ਵਿੱਚ ਤਾਪਰੋਧਕ (ਚਿੱਤਰ 9.12) ਵਜੋਂ ਵਿਕਸਿਤ ਹੋਏ ਸੀ ਉਹ ਸਮਾਂ ਬੀਤਣ ਨਾਲ ਉੱਡਣ ਲਈ ਵੀ ਉਪਯੋਗੀ ਹੋ ਗਏ। ਅਸਲ ਵਿੱਚ ਕੁੱਝ ਡਾਇਨੌਸੌਰ ਦੇ ਪਰ ਸਨ ਪਰ ਉਹ ਉੱਡਣ ਵਿੱਚ ਸਮਰੱਥ ਨਹੀਂ ਸਨ। ਸੰਭਵ ਹੈ ਕਿ ਬਾਅਦ ਵਿੱਚ ਪੰਛੀਆਂ ਨੇ ਪੂਰਾਂ ਨੂੰ ਉੱਡਣ ਲਈ ਅਪਣਾਇਆ। ਡਾਇਨੌਸੌਰ ਰੀਂਗਣ ਵਾਲੇ ਜਾਨਵਰ ਸਨ ਇਸ ਲਈ ਅਸੀਂ ਇਹ ਅਰਥ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਪੰਛੀ ਗੀਂਗਣ ਵਾਲੇ ਜੰਤੂਆਂ ਦੇ ਬਹੁਤ ਕਰੀਬੀ ਹਨ।

ਅਤੇ ਬਰੀਕ ਫੱਲਾਂ ਤੋਂ ਫੱਲਗੋਭੀ ਵਿਕਸਿਤ ਹੋਈ।ਕੱਝ ਨੇ ਫੱਲੇ ਹੋਏ ਭਾਗਾਂ ਦੀ ਚੋਣ ਕੀਤੀ ਅਤੇ ਗੱਠ ਗੋਭੀ ਵਿਕਸਿਤ ਕੀਤੀ। ਕੁੱਝ ਨੇ ਕੇਵਲ ਚੌੜੇ ਪੁੱਤਿਆਂ ਨੂੰ ਹੀ ਪੁਸੰਦ ਕੀਤਾ ਅਤੇ 'ਕੇਲ' (ਇੱਕ ਤਰ੍ਹਾਂ ਦੀ ਪੱਤਾ ਗੋਭੀ) ਨਾਮੀ ਸਬਜ਼ੀ ਦਾ ਵਿਕਾਸ ਕੀਤਾ। ਜੇਕਰ ਮਨੁੱਖ ਨੇ ਆਪ ਅਜਿਹਾ ਨਾ ਕੀਤਾ ਹੈਦਾ ਤਾਂ ਕੀ ਅਸੀਂ ਕਦੇ ਸੋਚ ਸਕਦੇ ਸੀ ਕਿ ਉਪਰੋਕਤ ਸਾਰੇ ਇੱਕੋ ਹੀ ਜਨਕ ਤੋਂ ਵਿਕਸਿਤ ਹੋਏ ਹਨ।

ਡਾਈਨੋਸਾਰ ਹੈ।

ਡਾਈਨੌਸਾਰ ਡਾਈਨੌਸਾਰ ਦੀ ਇਨ੍ਹਾਂ ਹੱਡੀਆਂ ਦੇ ਪਰਿਵਾਰ ਦਾ ਛੋਟਾਂ ਨਾਲ ਪਰਾਂ ਦੀ ਛਾਪ ਵੀ ਸਰੱਖਿਅਤ ਹੋ ਗਈ ਸੀ।ਸਿੱਧੇ ਅਸੀਂ ਅਗਲੀ ਬਾਂਹ ਉੱਤੇ ਸਥਿਤ ਪੂਰਾਂ ਦੀ ਛਾਪ ਵੇਖ ਸਕਦੇ ਹਾਂ

ਪਥਰਾਟ ਦੇ ਸਿਰ ਪਰਾਂ ਦਾ ਨਿਕਟ ਚਿੱਤਰ, ਇਹ ਡਾਈਨੌਸੌਰ ਉੜਨ ਵਿੱਚ ਅਸਮਰੱਥ ਸੀ। ਇਹ ਸੰਭਵ ਹੈ ਪਰਾਂ ਦੇ ਵਿਕਾਸ ਦਾ ਉਡਨ ਨਾਲ ਕੋਈ ਸੰਬੰਧ ਨਾ ਰਿਹਾ ਹੋਵੇ।

ਚਿੱਤਰ 9.12 ਡਾਈਨੌਸੌਰ ਅਤੇ ਪਰਾਂ ਦਾ ਵਿਕਾਸ

ਚਿੱਤਰ 9.13 ਜੰਗਲੀ ਗੋਭੀ ਦਾ ਵਿਕਾਸ

ਵਿਕਾਸ ਸੰਬੰਧ ਖੋਜਣ ਦਾ ਇੱਕ ਹੋਰ ਢੰਗ ਉਸ ਮੌਲਿਕ ਕਲਪਣਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਸ ਤੋਂ ਅਸੀਂ ਆਰੰਭ ਕੀਤਾ ਸੀ। ਇਹ ਵਿਚਾਰ ਸੀ ਕਿ ਜਣਨ ਦੇ ਦੌਰਾਨ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨ ਵਿਕਾਸ ਦੀ ਮੂਲ ਘਟਨਾ ਹੈ। ਜੇਕਰ ਇਹ ਸੱਚ ਹੈ ਤਾਂ ਭਿੰਨ-ਭਿੰਨ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਡੀ. ਐਨ. ਏ. ਦੀ ਰਚਨਾ ਦੀ ਤੁਲਨਾ ਤੋਂ ਅਸੀਂ ਸਿੱਧੇ ਹੀ ਇਸ ਦਾ ਨਿਰਧਾਰਨ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ ਇਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਸਪੀਸੀਏਸ਼ਨ ਦੇ ਦੌਰਾਨ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਕੀ-ਕੀ ਅਤੇ ਕਿੰਨੇ ਪਰਿਵਰਤਨ ਆਏ। ਵਿਕਾਸ ਸੰਬੰਧ ਸਥਾਪਿਤ ਕਰਨ ਵਿੱਚ ਇਸ ਵਿਧੀ ਦਾ ਵੱਡੇ ਪੱਧਰ ਤੇ ਪ੍ਯੋਗ ਹੋ ਰਿਹਾ ਹੈ।

^^^^^

ਅਣਵੀ ਜਾਤੀ ਬਿਰਤਾਂਤ (Molecular Phylogeny)

ਅਸੀਂ ਇਸ ਗੱਲ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ ਕਿ ਸੈੱਲ ਵਿਭਾਜਨ ਦੇ ਸਮੇਂ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨ ਤੋਂ ਉਸ ਪ੍ਰੋਟੀਨ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਆਵੇਗਾ ਜੋ ਨਵੇਂ ਡੀ. ਐਨ. ਏ. ਤੋਂ ਬਣੇਗਾ, ਦੂਜੀ ਗੱਲ ਇਹ ਕਿ ਇਹ ਪਰਿਵਰਤਨ ਆਉਣ ਵਾਲੀਆਂ ਪੀੜ੍ਹੀਆਂ ਵਿੱਚ ਇੱਕਠੇ ਹੁੰਦੇ ਜਾਣਗੇ। ਕੀ ਅਸੀਂ ਇਸ ਸਮੇਂ ਤੋਂ ਪਿੱਛੇ ਜਾ ਕੇ ਇਹ ਜਾਣ ਸਕਦੇ ਹਾਂ ਕਿ ਇਹ ਪਰਿਵਰਤਨ ਕਿਸ ਸਮੇਂ ਹੋਏ? ਅਣਵੀ ਜਾਤੀ ਬਿਰਤਾਂਤ ਅਸਲ ਵਿੱਚ ਇਹ ਕਰਦਾ ਹੈ। ਇਸ ਅਧਿਐਨ ਵਿੱਚ ਇਹ ਵਿਚਾਰ ਨਿਸ਼ਚਿਤ ਹੈ ਕਿ ਦੂਰ ਦੇ ਸੰਬੰਧਾਂ ਵਾਲੇ ਜੀਵਾਂ ਦੇ ਡੀ. ਐਨ. ਏ. ਵਿੱਚ ਇਹ ਭਿੰਨਤਾਵਾਂ ਜ਼ਿਆਦਾ ਸੰਖਿਆ ਵਿੱਚ ਇੱਕਠੀਆਂ ਹੋਣਗੀਆਂ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅਧਿਐਨ ਵਿਕਾਸ ਸੰਬੰਧਾਂ ਨੂੰ ਖੋਜਦੇ ਹਨ ਅਤੇ ਇਹ ਬਹੁਤ ਹੀ ਤਸੱਲੀਭਰਪੂਰ ਹੈ ਕਿ ਅਣਵੀ ਜਾਤੀ ਬਿਰਤਾਂਤ ਦੁਆਰਾ ਭਿੰਨ ਜੀਵਾਂ ਦੇ ਵਿੱਚ ਦਰਸਾਏ ਸੰਬੰਧ ਉਸ ਵਰਗੀਕਰਨ ਪ੍ਰਣਾਲੀ ਨਾਲ ਮੇਲ ਖਾਂਦੇ ਹਨ ਜਿਸ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਸੀਂ ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ।

ਪ੍ਰਸ਼ਨ

- ਉਨ੍ਹਾਂ ਲੱਛਣਾਂ ਦਾ ਇੱਕ ਉਦਾਹਰਣ ਦਿਓ ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਅਸੀਂ ਦੋ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਵਿਕਾਸ ਸੰਬੰਧਾਂ ਦੇ ਨਿਰਧਾਰਨ ਲਈ ਕਰਦੇ ਹਾਂ?
- ਕੀ ਇੱਕ ਤਿਤਲੀ ਅਤੇ ਚਮਗਿੱਦੜ ਦੇ ਖੰਡਾਂ ਨੂੰ ਸਮਜਾਤ ਅੰਗ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?
- ਪਥਰਾਟ ਕੀ ਹਨ? ਇਹ ਜੀਵ ਵਿਕਾਸ ਦੀ ਪ੍ਰਕਿਰਿਆ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਕੀ ਦਰਸਾਉਂਦੇ ਹਨ?

9.6 ਵਿਕਾਸ ਨੂੰ ਤਰੱਕੀ ਦੇ ਸਮਾਨ ਨਹੀਂ ਮੰਨਣਾ ਚਾਹੀਦਾ (Evolution Should Not Be Equated With 'Progress')

ਸਪੀਸ਼ੀਜ਼ ਦੇ ਵੰਸ਼ ਰੁੱਖ (Family Trees) ਦੀਆਂ ਕੜੀਆਂ ਲੱਭਣ ਦੇ ਯਤਨ ਕਰਦਿਆਂ ਸਾਨੂੰ ਕੁੱਝ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਪਹਿਲੀ, ਇਸ ਪ੍ਕਿਰਿਆ ਦੇ ਹਰ ਇੱਕ ਪੱਧਰ ਉੱਤੇ ਅਨੇਕ ਸ਼ਾਖਾਵਾਂ ਸੰਭਵ ਹਨ। ਇਸ ਲਈ ਇਹ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਨਵੀਂ ਸਪੀਸ਼ੀਜ਼ ਦੀ ਉਤਪਤੀ ਲਈ ਪਹਿਲੀ ਸਪੀਸ਼ੀਜ਼ ਲੁਪਤ ਹੋ ਜਾਏ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਭੰਬੀਰੀਆਂ ਦੀ ਉਦਾਹਰਣ ਵਿੱਚ ਵੇਖਿਆ ਸੀ, ਇਹ ਸਭ ਕੁੱਝ ਵਾਤਾਵਰਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਇਹ ਵੀ ਨਹੀਂ ਹੈ ਕਿ ਵਿਕਸਿਤ ਹੋਈ ਨਵੀਂ ਸਪੀਸ਼ੀਜ਼ ਆਪਣੀ ਪੂਰਵ ਸਪੀਸ਼ੀਜ਼ ਤੋਂ ਉੱਤਮ ਹੀ ਹੋਵੇ। ਕੇਵਲ ਕੁਦਰਤੀ ਚੋਣ ਅਤੇ ਅਨੁਵੈਸ਼ਿਕ ਵਿਚਲਣ ਦੇ ਸਾਂਝੇ ਪ੍ਰਭਾਵ ਤੋਂ ਅਜਿਹੀ ਜਨਸੰਖਿਆ ਬਣੀ ਜਿਸ ਦੇ ਮੈੱਬਰ ਅਸਲ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਨਾਲ ਜਣਨ ਵਿੱਚ ਅਸਮਰੱਥ ਹਨ। ਇਸ ਲਈ, ਉਦਾਹਰਣ ਵਜੋਂ, ਇਹ ਸੱਚ ਨਹੀਂ ਹੈ ਕਿ ਮਨੁੱਖ ਦਾ ਵਿਕਾਸ ਚਿਮਪੈਂਜੀ ਤੋਂ ਹੋਇਆ। ਸਗੋਂ ਮਨੁੱਖ ਅਤੇ ਚਿਮਪੈਂਜੀ ਦੋਵਾਂ ਦੇ ਪੂਰਵਜ ਬਹੁਤ ਸਮਾਂ ਪਹਿਲਾਂ ਸਮਾਨ ਸਨ ਅਤੇ ਇਹ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਉਹ ਨਾ ਚਿਮਪੈਂਜੀ ਵਰਗੇ ਸਨ ਅਤੇ ਨਾ ਮਾਨਵ ਵਰਗੇ। ਇਹ ਵੀ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਪੂਰਵਜਾਂ ਤੋਂ ਅਲੱਗ ਹੋ ਕੇ ਪਹਿਲੇ ਚਰਨ ਵਿੱਚ ਹੀ ਆਧੁਨਿਕ ਚਿਮਪੈਂਜੀ ਜਾਂ ਮਨੁੱਖ ਦੀ ਉਤਪਤੀ ਹੋ ਗਈ ਹੋਵੇ। ਪਰ ਇਸ ਗੱਲ ਦੀ ਸੰਭਾਵਨਾ ਵਧੇਰੇ ਹੈ ਕਿ ਦੋਵੇਂ ਸਪੀਸ਼ੀਜ਼ ਦਾ ਵਿਕਾਸ ਵੱਖ ਵੱਖ ਢੰਗ ਨਾਲ ਭਿੰਨ ਪੜਾਵਾਂ 'ਤੇ ਆਪਣੇ ਆਪਣੇ ਤਰੀਕੇ ਨਾਲ ਹੋਇਆ ਹੋਵੇਗਾ ਜਿਸ ਨਾਲ ਆਧੁਨਿਕ ਸਪੀਸ਼ੀਜ਼ ਦਾ ਵਰਤਮਾਨ ਸਰੂਪ ਬਣਿਆ ਹੈ।

ਅਸਲ ਵਿੱਚ ਜੀਵ ਵਿਕਾਸ ਦੇ ਸਿਧਾਂਤ ਦਾ ਅਰਥ ਕੋਈ ਵਾਸਤਵਿਕ ਤਰੱਕੀ ਨਹੀਂ ਹੈ। ਭਿੰਨਤਾਵਾਂ ਦੀ ਉਤਪਤੀ ਅਤੇ ਕੁਦਰਤੀ ਚੋਣ ਦੁਆਰਾ ਉਸੇ ਉਤਪਤੀ ਨੂੰ ਸਵਰੂਪ ਦੇਣਾ ਹੀ ਵਿਕਾਸ ਹੈ। ਜੀਵ ਵਿਕਾਸ ਵਿੱਚ ਤਰੱਕੀ ਦਾ ਰੁਝਾਨ ਕੇਵਲ ਸਮੇਂ ਦੇ ਨਾਲ-ਨਾਲ ਸਰੀਰਕ ਬਣਤਰ ਦੀ ਗੁੰਝਲਤਾ ਵਿੱਚ ਵਾਧਾ, ਹੋਣ ਵਿੱਚ ਹੀ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ ਪਰ ਇਸ ਦਾ ਇਹ ਭਾਵ ਕਦੇ ਵੀ ਨਹੀਂ ਹੈ ਕਿ ਪੁਰਾਣੀਆਂ ਬਣਤਰਾਂ ਅਨੁਕੂਲ ਨਹੀਂ ਹਨ। ਬਹੁਤ ਸਾਰੇ ਪੁਰਾਤਨ ਅਤੇ ਸਰਲ ਡਿਜ਼ਾਇਨ ਅੱਜ ਵੀ ਜੀਵਤ ਹਨ। ਜੀਵਨ ਦਾ ਸਭ ਤੋਂ ਸਰਲ ਰੂਪ ਇੱਕ ਬੈਕਟੀਰੀਆ ਬਿਖਮ ਵਾਤਾਵਰਨ ਜਿਵੇਂ ਕਿ ਗਰਮ ਪਾਣੀ ਦੇ ਝਰਨੇ, ਡੂੰਘੇ ਸਮੁੰਦਰ ਦੇ ਗਰਮ ਸ੍ਰੋਤ ਅਤੇ ਐਂਟਰਾਕਟਿਕਾ ਦੀ ਬਰਫ ਵਿੱਚ ਵੀ ਪਾਏ ਜਾਂਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਮਨੁੱਖ ਜੀਵ-ਵਿਕਾਸ ਦੇ ਸਿਖਰ ਉੱਤੇ ਨਹੀਂ ਹੈ ਸਗੋਂ ਜੀਵ-ਵਿਕਾਸ ਲੜੀ ਵਿੱਚ ਪੈਦਾ ਇੱਕ ਹੋਰ ਸਪੀਸ਼ੀਜ਼ ਹੈ।

9.6.1 ਮਨੁੱਖੀ ਵਿਕਾਸ (Human Evolution)

ਮਨੁੱਖੀ ਵਿਕਾਸ ਦੇ ਅਧਿਐਨ ਲਈ ਵੀ ਉਨ੍ਹਾਂ ਸਾਧਨਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਗਿਆ ਹੈ ਜਿਨ੍ਹਾਂ ਦਾ

ਚਿੱਤਰ 9.14

ਜੀਵ ਵਿਕਾਸ ਦੇ ਲਈ ਕੀਤਾ ਸੀ, ਜਿਵੇਂ ਕਿ ਖੁਦਾਈ, ਸਮਾਂ ਨਿਰਧਾਰਨ ਅਤੇ ਪਥਰਾਟ ਅਧਿਐਨ ਦੇ ਨਾਲ ਡੀ. ਐਨ. ਏ. ਕ੍ਰਮ ਦਾ ਨਿਰਧਾਰਨ ਵੀ। ਇਸ ਗ੍ਰਹਿ ਉੱਤੇ ਮਨੁੱਖ ਦੇ ਰੰਗ ਰੂਪ ਅਤੇ ਆਕਾਰ ਵਿੱਚ ਬਹੁਤ ਭਿੰਨਤਾਵਾਂ ਦਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ। ਇਹ ਭਿੰਨਤਾਵਾਂ ਇੰਨੀਆਂ ਜ਼ਿਆਦਾ ਹਨ ਕਿ ਲੰਬੇ ਸਮੇਂ ਤੋਂ ਲੋਕ ਮਨੁੱਖੀ ਨਸਲਾਂ ਦੀ ਗੱਲ ਕਰਦੇ ਰਹੇ ਹਨ। ਆਮ ਕਰਕੇ ਚਮੜੀ ਦੇ ਰੰਗ ਨੂੰ ਅਜਿਹੀ ਨਸਲ ਦੀ ਪਹਿਚਾਣ ਦੇ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਸੀ। ਕੁੱਝ ਨੂੰ ਪੀਲਾ, ਕੁੱਝ ਨੂੰ ਕਾਲਾ, ਸਫੇਦ ਜਾਂ ਭੂਰਾ ਕਿਹਾ ਜਾਂਦਾ ਸੀ। ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਇਹ ਬਹਿਸ ਚਲਦੀ ਰਹੀ ਕਿ ਕੀ ਇਨ੍ਹਾਂ ਅਭਾਸੀ ਗਰੁੱਪਾਂ ਦਾ ਵਿਕਾਸ ਵੱਖ-ਵੱਖ ਹੋਇਆ ਹੈ? ਪਿਛਲੇ ਕੁੱਝ ਸਾਲਾਂ ਵਿੱਚ ਪ੍ਰਮਾਣ ਬਹੁਤ ਸਪਸ਼ਟ ਹੋ ਗਏ ਹਨ। ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇਨ੍ਹਾਂ ਆਭਾਸੀ ਨਸਲਾਂ ਦਾ ਕੋਈ ਜੈਵਿਕ ਆਧਾਰ ਨਹੀਂ ਹੈ। ਸਾਰੇ ਮਨੁੱਖ ਇੱਕ ਹੀ ਸਪੀਸ਼ੀਜ਼ ਹਨ।

ਕੇਵਲ ਇਹ ਨਹੀਂ, ਭਾਵੇਂ ਅਸੀਂ ਪਿਛਲੇ ਕਿੰਨੇ ਹਜ਼ਾਰ ਸਾਲਾਂ ਤੋਂ ਕਿਤੇ ਵੀ ਰਹਿ ਰਹੇ ਹਾਂ ਫੇਰ ਵੀ ਅਸੀਂ ਸਾਰੇ ਅਫਰੀਕਾ ਤੋਂ ਆਏ ਹਾਂ। ਸਭ ਤੋਂ ਪੁਰਾਤਨ ਮਨੁੱਖੀ ਸਪੀਸ਼ੀਜ਼ 'ਹੌਮ ਸੇਪੀਅਨਜ਼' ਦਾ ਪਿਛੋਕੜ ਉੱਥੋਂ ਦਾ ਹੀ ਹੈ। ਕਈ ਹਜ਼ਾਰ ਸਾਲ ਪਹਿਲਾਂ ਸਾਡੇ ਪੂਰਵਜਾਂ ਨੇ ਅਫਰੀਕਾ ਛੱਡ ਦਿੱਤਾ ਜਦੋਂ ਕਿ ਕੁੱਝ ਉੱਥੇ ਹੀ ਰਹਿ ਗਏ। ਉੱਥੋਂ ਦੇ ਮੂਲ ਨਿਵਾਸੀ ਪੂਰੇ ਅਫਰੀਕਾ ਵਿੱਚ ਅਤੇ ਪਰਵਾਸੀ ਹੌਲੇ-ਹੌਲੇ ਸਾਰੀ ਧਰਤੀ 'ਤੇ ਫੈਲ ਗਏ। ਅਫਰੀਕਾ ਤੋਂ ਪੱਛਮੀ ਏਸ਼ੀਆ, ਫਿਰ ਮੱਧ ਏਸ਼ੀਆ, ਯੂਰੇਸ਼ੀਆ, ਦੱਖਣੀ ਏਸ਼ੀਆ ਅਤੇ ਪੂਰਵ ਏਸ਼ੀਆ। ਉਨ੍ਹਾਂ ਨੇ ਇੰਡੋਨੇਸ਼ੀਆ ਦੇ ਦੀਪਾਂ ਅਤੇ ਫਿਲੀਪੀਂਸ ਤੋਂ ਆਸਟ੍ਰੇਲੀਆ ਤੱਕ ਦਾ ਸਫਰ ਕੀਤਾ ਅਤੇ ਉਹ ਬੈਰਿੰਗ ਲੈਂਡ ਬ੍ਰਿਜ ਨੂੰ ਪਾਰ ਕਰਕੇ ਅਮੇਰਿਕਾ ਪਹੁੰਚੇ। ਕਿਉਂਕਿ ਉਹ ਯਾਤਰਾ ਦੇ ਉਦੇਸ਼ ਨਾਲ ਸਫਰ ਨਹੀਂ ਕਰ ਰਹੇ ਸੀ ਇਸ ਲਈ ਉਨ੍ਹਾਂ ਦੇ ਇੱਕ ਹੀ ਮਾਰਗ ਦੀ ਚੋਣ ਨਹੀਂ ਕੀਤੀ। ਉਹ ਭਿੰਨ ਸਮੂਹਾਂ ਵਿੱਚ ਕਦੇ ਅੱਗੇ ਕਦੇ ਪਿੱਛੇ ਗਏ। ਸਮੂਹ ਕਈ ਵਾਰ ਇੱਕ ਦੂਜੇ ਤੋਂ ਵਿਛੜ ਗਏ। ਕਦੇ–ਕਦੇ ਵੱਖ ਹੋ ਕੇ ਭਿੰਨ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਅੱਗੇ ਵੱਧ ਗਏ ਜਦੋਂ ਕਿ ਕੁੱਝ ਵਾਪਸ ਆ ਕੇ ਆਪਸ ਵਿੱਚ ਮਿਲ ਗਏ? ਜਾਣ–ਆਉਣ ਦਾ ਇਹ ਸਿਲਸਿਲਾ ਚਲਦਾ ਰਿਹਾ। ਇਸ ਗ੍ਰਹਿ ਦੀਆਂ ਦੂਜੀਆਂ ਉਨ੍ਹਾਂ ਸਪੀਸ਼ੀਜ਼ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਜਿਨ੍ਹਾਂ ਦੀ ਉਤਪਤੀ ਜੀਵ ਵਿਕਾਸ ਦੀ ਇੱਕ ਘਟਨਾ ਮਾਤਰਾ ਹੀ ਸੀ ਅਤੇ ਉਹ ਆਪਣਾ ਜੀਵਨ ਸਰਵੌਤਮ ਤਰੀਕੇ ਨਾਲ ਜਿਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਰਹੇ ਸਨ।

ਪ੍ਰਸ਼ਨ

- ਕੀ ਕਾਰਨ ਹੈ ਕਿ ਆਕਾਰ ਰੈਗ-ਰੂਪ ਅਤੇ ਦਿੱਖ ਇੰਨੇ ਭਿੰਨ ਵਿਖਾਈ ਦੇਣ ਵਾਲੇ ਮਨੁੱਖ ਇੱਕ ਹੀ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਮੈਂਬਰ ਹਨ?
- ਵਿਕਾਸ ਦੇ ਆਧਾਰ ਤੇ ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਬੈਕਟੀਰੀਆ, ਮੱਕੜੀ, ਮੱਛੀ ਅਤੇ ਚਿਮਪੈਂਜੀ ਵਿੱਚੋਂ ਕਿਸ ਦੀ ਸਰੀਰਕ ਬਣਤਰ ਉੱਤਮ ਹੈ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।

?

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਜਣਨ ਦੇ ਸਮੇਂ ਪੈਦਾ ਭਿੰਨਤਾਵਾਂ ਅਨੁਵੈਸ਼ਿਕ ਹੋ ਸਕਦੀਆਂ ਹਨ।
- ਇਹਨਾਂ ਭਿੰਨਤਾਵਾਂ ਦੇ ਕਾਰਨ ਜੀਵ ਦੇ ਵਿੱਚ ਵਿਧੀ ਹੋ ਸਕਦੀ ਹੈ।
- ਲਿੰਗੀ ਜਣਨ ਵਾਲੇ ਜੀਵਾਂ ਵਿੱਚ ਇੱਕ ਲੱਛਣ (Trait) ਵਾਲੇ ਜੀਨ ਦੀਆਂ ਦੋ (Copies) ਕਾਪੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਕਾਪੀਆਂ ਦੇ ਇੱਕ ਸਮਾਨ ਨਾ ਹੋਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਜੋ ਲੱਛਣ ਵਿਅਕਤ ਹੁੰਦਾ ਹੈ ਉਸਨੂੰ ਪ੍ਰਭਾਵੀ ਲੱਛਣ ਅਤੇ ਦੂਜੇ ਨੂੰ ਅਪਭਾਵੀ ਲੱਛਣ ਕਹਿੰਦੇ ਹਨ।
- ਭਿੰਨ ਲੱਛਣ ਕਿਸੇ ਜੀਵ ਨੂੰ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਵਿਰਾਸਤ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਲਿੰਗੀ ਜਣਨ ਤੋਂ ਉਤਪੰਨ ਹੋਈ ਸੰਤਾਨ ਵਿੱਚ ਲੱਛਣਾਂ ਦੇ ਨਵੇਂ ਜੋੜ ਪੈਂਦਾ ਹੁੰਦੇ ਹਨ।
- ਭਿੰਨ ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਲਿੰਗ ਨਿਰਧਾਰਣ ਦੇ ਕਾਰਕ ਵੀ ਭਿੰਨ ਹੁੰਦੇ ਹਨ।ਮਨੁੱਖ ਵਿੱਚ ਸੰਤਾਨ ਦਾ ਲਿੰਗ ਨਿਰਧਾਰਣ ਇਸ ਗੱਲ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਮਾਤਾ ਪਿਤਾ ਤੋਂ ਮਿਲਣ ਵਾਲੇ ਗੁਣਸੂਤਰ 'X' (ਲੜਕੀਆਂ ਦੇ ਲਈ) ਹੈ ਜਾਂ 'Y' (ਲੜਕਿਆਂ ਦੇ ਲਈ)।

- ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਭਿੰਨਤਾਵਾਂ ਉਸ ਨੂੰ ਜੀਊਂਦੇ ਰੱਖਣ ਵਿੱਚ ਮਦਦਗਾਰ ਹੋ ਸਕਦੀਆਂ ਹਨ ਜਾਂ ਕੇਵਲ ਅਨੁਵੰਸ਼ਿਕ ਵਿਚਲਣ ਵਿੱਚ ਹੀ ਯੋਗਦਾਨ ਦਿੰਦੀਆਂ ਹਨ।
- ਜਣਨ ਨਾ ਕਰਨ ਵਾਲੇ ਟਿਸ਼ੂਆਂ (Non-Rerproductive Tissues) ਵਿੱਚ ਵਾਤਾਵਰਨ ਦੁਆਰਾ ਪੈਂਦਾ ਕੀਤੇ ਪਰਿਵਰਤਨ ਵੰਸ਼ਾਨਗਤ ਨਹੀਂ ਹੁੰਦੇ ਹਨ।
- ਭਿੰਨਤਾਵਾਂ ਦੇ ਭੂਗੋਲਿਕ ਨਿਖੇੜ (Isolation) ਦੇ ਕਾਰਨ ਸਪੀਸੀਏਸ਼ਨ ਹੋ ਸਕਦਾ ਹੈ।
- ਵਿਕਾਸ ਸੰਬੰਧਾਂ ਨੂੰ ਜੀਵਾਂ ਦੇ ਵਰਗੀਕਰਨ ਰਾਹੀਂ ਲੱਭਿਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਸਮੇਂ ਵਿੱਚ ਪਿੱਛੇ ਜਾ ਕੇ ਸਮਾਨ ਪੂਰਵਜਾਂ ਸੰਬੰਧੀ ਖੋਜ ਤੋਂ ਸਾਨੂੰ ਅੰਦਾਜ਼ਾ ਹੁੰਦਾ ਹੈ ਕਿ ਸਮੇਂ ਦੇ ਕਿਸੇ ਪੜਾਅ ਤੇ ਜੀਵਨ ਦੀ ਉਤਪਤੀ ਅਜੈਵਿਕ ਪਦਾਰਥਾਂ ਤੋਂ ਹੋਈ।
- ਜੀਵ ਵਿਕਾਸ ਨੂੰ ਸਮਝਣ ਲਈ ਕੇਵਲ ਵਰਤਮਾਨ ਸਪੀਸ਼ੀਜ਼ ਦਾ ਅਧਿਐਨ ਕਾਫੀ ਨਹੀਂ ਹੈ ਸਗੋਂ ਪਥਰਾਟਾਂ ਦਾ ਅਧਿਐਨ ਵੀ ਜ਼ਰੂਰੀ ਹੈ।
- ਮੱਧਵਰਤੀ ਸਪੀਸ਼ਿਜ਼ ਵਲੋਂ ਜ਼ਿੰਦਾ ਰਹਿਣ ਦੇ ਲਾਭ ਲੈਣ ਲਈ ਜਟਿਲ ਅੰਗਾਂ ਦਾ ਵਿਕਾਸ ਹੋਇਆ।
- ਜੀਵ ਵਿਕਾਸ ਦੇ ਸਮੇਂ ਅੰਗ ਨਵੇਂ ਕੰਮ ਲਈ ਅਨੁਕੂਲਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ ਖੰਭ ਜੋ ਆਰੰਭ ਵਿੱਚ ਤਾਪ ਦੇਣ ਲਈ ਵਿਕਸਿਤ ਹੋਏ ਸਨ, ਸਮਾਂ ਬੀਤਣ ਨਾਲ ਉੱਡਣ ਲਈ ਅਨੁਕੁਲਿਤ ਹੋ ਗਏ।
- ਵਿਕਾਸ ਨੂੰ ਸਰਲ ਰੂਪ ਤੋਂ ਉਚੇਰੇ ਰੂਪ ਤੱਕ ਤਰੱਕੀ ਨਹੀਂ ਕਿਹਾ ਜਾ ਸਕਦਾ ਸਗੋਂ ਇਹ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ ਕਿ ਵਿਕਾਸ ਨੇ ਜ਼ਿਆਦਾ ਜਟਿਲ ਸਰੀਰਕ ਲੱਛਣ ਪੈਂਦਾ ਕੀਤੇ ਹਨ ਜਦੋਂ ਕਿ ਸਰਲਤਮ ਸਰੀਰਕ ਲੱਛਣਾਂ ਨੇ ਭਲੀ ਭਾਂਤ ਆਪਣੀ ਹੋਂਦ ਬਣਾਈ ਹੋਈ ਹੈ।
- ਮਨੁੱਖ ਦੇ ਵਿਕਾਸ ਦੇ ਅਧਿਐਨ ਤੋਂ ਸਾਨੂੰ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਅਸੀਂ ਸਾਰੇ ਇੱਕ ਹੀ ਸਪੀਸ਼ੀਜ਼ ਨਾਲ ਸੰਬੰਧ ਰੱਖਦੇ ਹਾਂ।
 ਜਿਸ ਦਾ ਆਰੰਭ ਅਫਰੀਕਾ ਵਿੱਚ ਹੋਇਆ ਅਤੇ ਉਹ ਪੜਾਅ ਵਾਰ ਦੇ ਭਿੰਨ−ਭਿੰਨ ਭਾਗਾਂ ਵਿੱਚ ਫੈਲ ਗਏ।

ਅਭਿਆਸ

- ਮੈਂਡਲ ਦੇ ਇੱਕ ਪ੍ਰਯੋਗ ਵਿੱਚ ਲੰਬੇ ਮਟਰ ਦੇ ਪੌਦੇ ਜਿਨ੍ਹਾਂ ਦੇ ਬੈਂਗਨੀ ਫੁੱਲ ਸਨ, ਦਾ ਸੰਕਰਣ ਬੋਨੇ ਪੌਦਿਆਂ ਜਿਨ੍ਹਾਂ ਦੇ ਸਫੈਦ ਫੁੱਲ ਸਨ, ਨਾਲ ਕਰਾਇਆ ਗਿਆ। ਇਹਨਾਂ ਦੀ ਸੰਤਾਨ ਦੇ ਸਾਰੇ ਪੌਦਿਆਂ ਵਿੱਚ ਫੁੱਲ ਬੈਂਗਣੀ ਰੰਗ ਦੇ ਸਨ? ਪਰ ਉਹਨਾਂ ਵਿੱਚੋਂ ਲੱਗਪਗ ਅੱਧੇ ਬੋਨੇ ਸਨ। ਇਸ ਤੋਂ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਲੰਬੇ ਜਨਕ ਪੌਦਿਆਂ ਦੀ ਅਨੁਵੰਸ਼ਿਕ ਰਚਨਾ ਨਿਮਨ ਸੀ:
 - (B) TIWW
 - (M) TTww
 - WWIT (S)
 - (FI) TtWw
- ਸਮਜਾਤ ਅੰਗਾਂ ਦਾ ਉਦਹਾਰਣ ਹੈ :-
 - (ੳ) ਸਾਡਾ ਹੱਥ ਅਤੇ ਕੁੱਤੇ ਦਾ ਅਗਲਾ ਪੈਰ
 - (ਅ) ਸਾਡੇ ਦ<mark>ੈ</mark>ਦ ਅਤੇ ਹਾਸੀ ਦੇ ਦ<mark>ੈ</mark>ਦ
 - (E) ਆਲੂ ਅਤੇ ਘਾਹ ਦੀਆਂ ਤਿੜਾ<u>ਂ</u>
 - (ਸ) ਉਪਰੋਕਤ ਸਾਰੇ

- 3. ਵਿਕਾਸ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਸਾਡੀ ਕਿਸ ਨਾਲ ਵਧੇਰੇ ਸਮਾਨਤਾ ਹੈ
 - (a) ਚੀਨ ਦੇ ਵਿਦਿਆਰਥੀ
 - (b) ਚਿਮਪੌਂਜੀ
 - (c) ਮੁੱਕੜੀ
 - (d) ਬੈਕਟੀਰੀਆ
- 4. ਇੱਕ ਅਧਿਐਨ ਤੋਂ ਪਤਾ ਲੱਗਿਆ ਕਿ ਹਲਕੇ ਰੰਗ ਦੀਆਂ ਅੱਖਾਂ ਵਾਲੇ ਬੱਚਿਆਂ ਦੇ (ਮਾਤਾ-ਪਿਤਾ) ਦੀਆਂ ਅੱਖਾਂ ਵੀ ਹਲਕੇ ਰੰਗ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਆਧਾਰ ਉੱਤੇ ਕੀ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਅੱਖਾਂ ਦੇ ਹਲਕੇ ਰੰਗ ਦਾ ਲੱਛਣ ਪ੍ਰਭਾਵੀ ਹੈ ਜਾਂ ਅਪ੍ਰਭਾਵੀ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 5. ਜੀਵ ਵਿਕਾਸ ਅਤੇ ਵਰਗੀਕਰਣ ਦੇ ਅਧਿਐਨ ਖੇਤਰ ਆਪਸ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਸੰਬੰਧਿਤ ਹਨ?
- 6. ਸਮਜਾਤ ਅਤੇ ਸਮਰੂਪ ਅੰਗਾਂ ਦੀ ਉਦਾਹਰਣ ਦੇ ਕੇ ਸਮਝਾਓ।
- 7. ਕੁੱਤੇ ਦੀ ਚਮੜੀ ਦਾ ਪ੍ਰਭਾਵੀ ਰੰਗ ਪਤਾ ਕਰਨ ਦੇ ਉਦੇਸ਼ ਨੂੰ ਮੁੱਖ ਰੱਖ ਕੇ ਇੱਕ ਪ੍ਰੋਜੈਕਟ ਤਿਆਰ ਕਰੋ।
- 8. ਵਿਕਾਸੀ ਸੰਬੰਧ ਸਥਾਪਿਤ ਕਰਨ ਵਿੱਚ ਪਥਰਾਟਾਂ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ?
- 9. ਕਿਹੜੇ ਪ੍ਰਮਾਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜੀਵਨ ਦੀ ਉਤਪਤੀ ਅਜੈਵਿਕ ਪਦਾਰਥਾਂ ਤੋਂ ਹੋਈ ਹੈ।
- 16. ਅਲਿੰਗੀ ਜਣਨ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਲਿੰਗੀ ਜਣਨ ਦੁਆਰਾ ਪੈਦਾ ਭਿੰਨਤਾਵਾਂ ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦੀਆਂ ਹਨ, ਵਿਆਖਿਆ ਕਰੋ। ਇਹ ਲਿੰਗੀ ਜਣਨ ਕਰਨ ਵਾਲੇ ਜੀਵਾਂ ਦੇ ਵਿਕਾਸ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ?
- 11. ਸੰਤਾਨ ਵਿੱਚ ਨਰ ਅਤੇ ਮਾਦਾ ਜਨਕ ਦੁਆਰਾ ਅਨੁਵੰਸ਼ਿਕ ਯੋਗਦਾਨ ਵਿੱਚ ਬਰਾਬਰ ਦੀ ਭਾਗਦਾਰੀ ਕਿਸ ਪ੍ਰਕਾਰ ਨਿਸ਼ਚਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ?
- 12. ਕੇਵਲ ਉਹ ਭਿੰਨਤਾਵਾਂ ਜੋ ਕਿਸੇ ਇਕੱਲੇ ਜੀਵ ਦੇ ਲਈ ਉਪਯੋਗੀ ਹੁੰਦੀਆਂ ਹਨ, ਜਨਸੰਖਿਆ ਵਿੱਚ ਆਪਣੀ ਹੋਂਦ ਬਣਾਈ ਰੱਖਦੀਆਂ ਹਨ। ਕੀ ਤੁਸੀਂ ਇਸ ਕਥਨ ਨਾਲ ਸਹਿਮਤ ਹੈ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?

ਪ੍ਰਕਾਸ਼ – ਪਰਾਵਰਤਨ ਅਤੇ ਅਪਵਰਤਨ

Light-Reflection and Refractio

ਸੀਂ ਇਸ ਸੰਸਾਰ ਵਿੱਚ ਆਪਣੇ ਚਾਰੇ ਪਾਸੇ ਅਨੌਕ ਪ੍ਕਾਰ ਦੀਆਂ ਵਸਤੂਆਂ ਵੇਖਦੇ ਹਾਂ। ਪਰ ਕਿਸੇ ਹਨੇਰੇ ਕਮਰੇ ਵਿੱਚ ਅਸੀਂ ਕੁੱਝ ਵੀ ਵੇਖਣ ਲਈ ਅਸਮਰੱਥ ਹੁੰਦੇ ਹਾਂ। ਕਮਰੇ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਕਰਨ ਨਾਲ ਵਸਤੂਆਂ ਵਿਖਾਈ ਦੇਣ ਲਗਦੀਆਂ ਹਨ। ਇਹ ਕੀ ਹੈ ਜੋ ਵਸਤੂਆਂ ਨੂੰ ਵੇਖਣਯੋਗ ਬਣਾਉਂਦਾ ਹੈ? ਦਿਨ ਵੇਲੇ ਸੂਰਜ ਦਾ ਪ੍ਕਾਸ਼ ਵਸਤੂਆਂ ਨੂੰ ਵੇਖਣ ਵਿੱਚ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਕੋਈ ਵਸਤੂ ਉਸ ਉੱਤੇ ਪੈਣ ਵਾਲੇ ਪ੍ਕਾਸ਼ ਨੂੰ ਪਰਾਵਰਤਿਤ ਕਰਦੀ ਹੈ। ਇਹ ਪਰਾਵਰਤਿਤ ਪ੍ਕਾਸ਼ ਜਦੋਂ ਸਾਡੀਆਂ ਅੱਖਾਂ ਦੁਆਰਾ ਗ੍ਰਹਿਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸਾਨੂੰ ਵਸਤੂਆਂ ਨੂੰ ਵੇਖਣਯੋਗ ਬਣਾਉਂਦਾ ਹੈ।ਅਸੀਂ ਕਿਸੇ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮ ਦੇ ਆਰ ਪਾਰ ਵੇਖ ਸਕਦੇ ਹਾਂ ਕਿਉਂਕਿ ਪ੍ਕਾਸ਼ ਇਸ ਵਿੱਚੋਂ ਪਾਰ ਲੰਘ ਜਾਂਦਾ ਹੈ। ਪ੍ਕਾਸ਼ ਨਾਲ ਸੰਬੰਧਿਤ ਅਨੌਕ ਸਾਧਾਰਨ ਅਤੇ ਅਦਭੁਤ ਘਟਨਾਵਾਂ ਹਨ, ਜਿਵੇਂ ਕਿ ਦਰਪਣਾਂ ਦੁਆਰਾ ਪ੍ਤਿਬੰਬਾਂ ਦਾ ਬਣਨਾ, ਤਾਰਿਆਂ ਦਾ ਟਿਮਟਿਮਾਉਣਾ, ਸਤਰੰਗੀ ਪੀਂਘ ਦੇ ਸੁੰਦਰ ਰੰਗ, ਕਿਸੇ ਮਾਧਿਅਮ ਦੁਆਰਾ ਪ੍ਕਾਸ਼ ਨੂੰ ਮੋੜਨਾ ਆਦਿ। ਪ੍ਕਾਸ਼ ਦੇ ਗੁਣਾਂ ਦਾ ਅਧਿਐਨ ਇਹਨਾਂ ਬਾਰੇ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰੇਗਾ।

ਅਸੀਂ ਚਾਰੇ ਪਾਸੇ ਕੁੱਝ ਸਾਧਾਰਨ ਪ੍ਕਾਸ਼ੀ ਵਰਤਾਰਿਆਂ ਨੂੰ ਦੇਖ ਕੇ ਇਹ ਨਤੀਜਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਪ੍ਕਾਸ਼ ਸਰਲ ਰੇਖਾਵਾਂ ਵਿੱਚ ਚਲਦਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਤੱਥ ਕਿ ਇੱਕ ਛੋਟਾ ਪ੍ਕਾਸ਼ ਸ੍ਰੋਤ ਕਿਸੇ ਅਪਾਰਦਰਸ਼ੀ ਵਸਤੂ ਦੀ ਤਿੱਖੀ ਛਾਂ ਬਣਾਉਂਦਾ ਹੈ, ਪ੍ਕਾਸ਼ ਦੇ ਸਰਲ ਰੇਖੀ ਪੱਥ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ; ਜਿਸ ਨੂੰ ਆਮ ਕਰਕੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਕਹਿੰਦੇ ਹਨ।

999999**999999999999999999999**

ਜੇਕਰ ਪ੍ਰਕਾਸ਼ ਦੇ ਪੱਥ ਵਿੱਚ ਰੱਖੀ ਅਪਾਰਦਰਸ਼ੀ ਵਸਤੂ ਅਤਿਅੰਤ ਛੋਟੀ ਹੋਵੇ ਤਾਂ ਪ੍ਰਕਾਸ਼ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਚੱਲਣ ਦੀ ਬਜਾਏ ਇਸ ਦੇ ਕਿਨਾਰਿਆਂ ਉੱਤੇ ਮੁੜਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਦਰਸਾਉਂਦਾ ਹੈ-ਇਸ ਪ੍ਰਭਾਵ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਦਾ ਵਿਵਰਤਨ ਆਖਦੇ ਹਨ। ਤਦ ਉਹ ਪ੍ਰਕਾਸ਼ੀ ਯੰਤਰ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਰਲ ਰੇਖੀ ਵਿਵਹਾਰ ਦੇ ਆਧਾਰ ਤੇ ਕਿਰਨਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ ਅਸਫਲ ਹੋਣ ਲਗਦੇ ਹਨ। ਵਿਵਰਤਨ ਜਿਹੇ ਵਰਤਾਰਿਆਂ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਲਈ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਤਰੰਗ ਦੇ ਰੂਪ ਵਿੱਚ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦਾ ਵਿਸਤਾਰ ਸਹਿਤ ਅਧਿਐਨ ਤੁਸੀਂ ਉੱਚ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਕਰੋਗੇ। ਵੀਹਵੀਂ ਸਦੀ ਦੇ ਆਰੰਭ ਵਿੱਚ ਇਹ ਸਪਸ਼ਟ ਹੋ ਗਿਆ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਮਾਦੇ ਨਾਲ ਆਪਸੀ ਕਿਰਿਆ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦਾ ਤਰੰਗ ਸਿਧਾਂਤ ਨਾਂਕਾਫ਼ੀ (ਅਪੂਰਨ) ਹੈ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਕਣਾਂ ਦੇ ਵਹਾਅ ਦੀ ਤਰ੍ਹਾਂ ਵਿਵਹਾਰ ਕਰਦਾ ਹੈ। ਪ੍ਰਕਾਸ਼ ਦੀ ਸਹੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਬਾਰੇ ਵਿੱਚ ਇਹ ਉਲਝਣ ਕੁੱਝ ਸਾਲਾਂ ਤੱਕ ਚਲਦੀ ਰਹੀ ਜਦੋਂ ਤੱਕ ਕਿ ਪ੍ਰਕਾਸ਼ ਦਾ ਆਧੁਨਿਕ ਕੁਆਂਟਮ ਸਿਧਾਂਤ ਉੱਭਰ ਕੇ ਸਾਹਮਣੇ ਨਹੀਂ ਆਇਆ ਜਿਸ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਨਾ ਤਾਂ 'ਤਰੰਗ' ਮੰਨਿਆ ਗਿਆ ਅਤੇ ਨਾ ਹੀ 'ਕਣ'। ਇਸ ਨਵੇਂ ਸਿਧਾਂਤ ਨੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਕਣ ਸੰਬੰਧੀ ਗੁਣਾਂ ਅਤੇ ਤਰੰਗ ਪ੍ਰਕਰਤੀ ਵਿਚਕਾਰ ਮੇਲ ਸਥਾਪਿਤ ਕੀਤਾ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਪ੍ਕਾਸ਼ ਦੇ ਪਰਾਵਰਤਨ ਅਤੇ ਅਪਵਰਤਨ ਵਰਤਾਰਿਆਂ ਦਾ, ਪ੍ਕਾਸ਼ ਦੇ ਸਰਲ ਰੇਖੀ ਚਲਣ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਅਧਿਐਨ ਕਰਾਂਗੇ।ਇਹ ਮੂਲ ਧਾਰਨਾਵਾਂ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਕੁੱਝ ਪ੍ਕਾਸ਼ੀ ਵਰਤਾਰਿਆਂ ਦੇ ਅਧਿਅਨ ਵਿੱਚ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰਨਗੀਆਂ।ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਗੋਲ ਦਰਪਣਾਂ ਦੁਆਰਾ ਪ੍ਕਾਸ਼ ਦੇ ਅਪਵਰਤਨ ਅਤੇ ਪ੍ਕਾਸ਼ ਦੇ ਪਰਾਵਰਤਨ ਅਤੇ ਵਾਸਤਵਿਕ ਜੀਵਨ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਉਪਯੋਗਾਂ ਨੂੰ ਸਮਝਣ ਦਾ ਯਤਨ ਕਰਾਂਗੇ।

10.1 ਪ੍ਰਕਾਸ਼ ਦਾ ਪਰਾਵਰਤਨ

ਉੱਚ ਕੋਟੀ ਦੀ ਪਾਲਿਸ਼ ਕੀਤੀ ਸਤਹ ਜਿਵੇਂ ਕਿ ਦਰਪਣ, ਆਪਣੇ ਉੱਪਰ ਪੈਣ ਵਾਲੇ ਬਹੁਤ ਸਾਰੇ ਪ੍ਕਾਸ਼ ਨੂੰ ਪਰਾਵਰਤਿਤ ਕਰ ਦਿੰਦੀ ਹੈ। ਤੁਸੀਂ ਪ੍ਕਾਸ਼ ਦੇ ਪਰਾਵਰਤਨ ਦੇ ਨਿਯਮਾਂ ਬਾਰੇ ਪਹਿਲਾਂ ਹੀ ਜਾਣੂ ਹੋ। ਆਓ। ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਨੂੰ ਮੁੜ ਯਾਦ ਕਰੀਏ :

- (i) ਆਪਤਨ ਕੋਣ, ਪਰਾਵਰਤਨ ਕੋਣ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ, ਅਤੇ
- (ii) ਆਪਤਿਤ ਕਿਰਨ, ਦਰਪਣ ਦੇ ਆਪਤਨ ਬਿੰਦੂ ਉੱਤੇ ਲੰਬ ਅਤੇ ਪਰਾਵਰਤਿਤ ਕਿਰਨ ਸਾਰੇ ਹੀ ਇੱਕ ਤਲ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

ਪਰਾਵਰਤਨ ਦੇ ਇਹ ਨਿਯਮ ਗੋਲਾਕਾਰ ਪਰਾਵਰਤਕ ਸਤ੍ਹਾ ਦੇ ਨਾਲ ਨਾਲ ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਸਾਰੀਆਂ ਪਰਾਵਰਤਕ ਸਤ੍ਹਾਵਾਂ ਲਈ ਲਾਗੂ ਹੁੰਦੇ ਹਨ। ਤੁਸੀਂ ਸਮਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਦੇ ਬਣਨ ਤੋਂ ਜਾਣ ਹੈ। ਇਸ ਪ੍ਰਤਿਬਿੰਬ ਦੀਆਂ ਕੀ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਹਨ?

ਸਮਤਲ ਦਰਪਣ ਦੁਆਰਾ ਬਣਿਆ ਪ੍ਰਤਿਬਿੰਬ ਸਦਾ ਆਭਾਸੀ ਅਤੇ ਸਿੱਧਾ ਬਣਦਾ ਹੈ।ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਆਕਾਰ ਵਸਤੂ ਦੇ ਆਕਾਰ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਤਿਬਿੰਬ ਦਰਪਣ ਦੇ ਪਿੱਛੇ ਉੱਨੀ ਹੀ ਦੂਰੀ ਉੱਤੇ ਬਣਦਾ ਹੈ ਜਿੰਨੀ ਦੂਰੀ ਤੇ ਦਰਪਣ ਦੇ ਸਾਹਮਣੇ (ਵਸਤੂ) ਰੱਖੀ ਗਈ ਹੈ। ਇਸ ਦੇ ਇਲਾਵਾ ਪ੍ਰਤਿਬਿੰਬ ਪਾਸਵਾਂ ਪਰਾਵਰਤਨ (Lateral Inversion) ਹੁੰਦਾ ਹੈ।ਜੇਕਰ ਪਰਾਵਰਤਕ ਸਤਹ ਗੋਲਾਕਾਰ ਹੋਵੇ ਤਾਂ ਪ੍ਰਤਿਬਿੰਬ ਕਿਵੇਂ ਬਣੇਗਾ? ਆਓ ਵੇਖੀਏ।

ਕਿਰਿਆ 10.1

- ਇੱਕ ਵੱਡੀ ਚਮਕਦਾਰ ਚਮਚ ਲਓ। ਇਸ ਦੀ ਗੋਲਾਕਾਰ ਸਤਹ ਵਿੱਚ ਆਪਣਾ ਚਿਹਰਾ ਵੇਖਣ ਦਾ ਯਤਨ ਕਰੋ।
- ਕੀ ਤੁਸੀਂ ਪ੍ਰਤੀਬਿੰਬ ਵੇਖ ਸਕਦੇ ਹੋ? ਇਹ ਛੋਟਾ ਹੈ ਜਾਂ ਵੱਡਾ?
- ਚਮਚ ਨੂੰ ਹੌਲੇ ਹੌਲੇ ਆਪਣੇ ਚਿਹਰੇ ਤੋਂ ਪਰ੍ਹੋ ਲੈ ਜਾਓ।ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਵੇਖਦੇ ਰਹੋ।ਇਹ ਕਿਵੇਂ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ?
- ਚਮਚ ਨੂੰ ਉਲਟਾ ਕਰੋ ਅਤੇ ਦੂਜੀ ਸਤਹ ਤੋਂ ਕਿਰਿਆ ਨੂੰ ਦੁਹਰਾਓ।ਹੁਣ ਪ੍ਰਤਿਬਿੰਬ ਕਿਹੋ ਜਿਹਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ?
- 😱 ਦੋਵੇਂ ਸਤਹ ਉੱਤੇ ਪ੍ਰਤਿਬਿੰਬ ਦੇ ਲੱਛਣਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਚਮਕਦਾਰ ਚਮਚ ਦੀ ਗੋਲਾਕਾਰ ਸਤਹ ਨੂੰ ਇੱਕ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਤਰ੍ਹਾਂ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਸਭ ਤੋਂ ਵੱਧ ਉਪਯੋਗ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਸਾਧਾਰਨ ਗੋਲਾਕਾਰ ਦਰਪਣ ਨੂੰ ਕਿਸੇ ਗੋਲੇ ਦੀ ਸਤਹ ਦਾ ਇੱਕ ਭਾਗ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਜਿਹੇ ਦਰਪਣ ਜਿਨ੍ਹਾਂ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਗੋਲਾਕਾਰ ਹੈ ਉਹਨਾਂ ਨੂੰ ਗੋਲਾਕਾਰ ਦਰਪਣ ਕਹਿੰਦੇ ਹਨ। ਹੁਣ ਅਸੀਂ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਸਤਾਰ ਸਹਿਤ ਅਧਿਅਨ ਕਰਾਂਗੇ। ੍ਰਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਅੰਦਰ ਵੱਲ ਜਾਂ ਬਾਹਰ ਵੱਲ ਵਕਰ ਹੋ ਸਕਦੀ ਹੈ। ਗੋਲਾਕਾਰ ਦਰਪਣ ਜਿਸ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਅੰਦਰ ਵੱਲ ਭਾਵ ਗੋਲੇ ਦੇ ਕੇਂਦਰ ਦੇ ਵੱਲ ਵਕਰ ਹੈ ਉਹ ਅਵਤਲ ਦਰਪਣ ਕਹਾਉਂਦਾ ਹੈ।ਉਹ ਗੋਲਾਕਾਰ ਦਰਪਣ ਜਿਸ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਬਾਹਰ ਵੱਲ ਵਕਰ ਹੈ ਉਹ ਉੱਤਲ ਦਰਪਣ ਅਖਵਾਉਂਦਾ ਹੈ।ਇਹਨਾਂ ਦਰਪਣਾਂ ਦਾ ਰੇਖਾ ਚਿੱਤਰ 10.1 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।ਇਹਨਾਂ ਚਿੱਤਰਾਂ ਵਿੱਚ ਨੋਟ ਕਰੋ ਕਿ ਦਰਪਣਾਂ ਦੀ ਇੱਕ ਸਤਹ ਨੂੰ ਪਾਲਿਸ਼ ਕੀਤਾ ਹੋਇਆ ਹੈ।

ਹੁਣ ਤੁਸੀਂ ਸਮਝ ਸਕਦੇ ਹੋ ਕਿ ਚਮਚ ਦੀ ਅੰਦਰਲੇ ਪਾਸੇ ਵਾਲੀ ਗੋਲਾਕਾਰ ਸਤਹ ਲਗਭਗ ਅਵਤਲ ਦਰਪਣ ਵਰਗੀ ਹੈ ਅਤੇ ਚਮਚ ਦੀ ਬਾਹਰ ਦੇ ਵੱਲ ਦੀ ਉੱਭਰੀ ਹੋਈ ਸਤਹ ਲਗਭਗ ਉੱਤਲ ਦਰਪਣ ਵਰਗੀ ਹੈ।

ਗੋਲਾਕਾਰ ਦਰਪਣ ਬਾਰੇ ਹੋਰ ਵਧੇਰੇ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਆਓ ਅਸੀਂ ਕੁੱਝ ਸ਼ਬਦਾਂ ਅਤੇ ਪਦਾਂ ਬਾਰੇ (terms) ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰੀਏ ਅਤੇ ਉਹਨਾਂ ਦਾ ਭਾਵ ਸਮਝੀਏ। ਇਹ ਸ਼ਬਦ ਗੋਲਾਕਾਰ ਦਰਪਣ ਬਾਰੇ ਚਰਚਾ ਕਰਦੇ ਸਮੇਂ ਆਮ ਕਰਕੇ ਵਰਤੋਂ ਵਿੱਚ ਆਉਂਦੇ ਹਨ।

ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਦੇ ਕੇਂਦਰ ਨੂੰ ਦਰਪਣ ਦਾ ਧਰੁਵ P ਕਹਿੰਦੇ ਹਨ। ਇਹ ਦਰਪਣ ਦੀ ਸਤਹ ਉੱਤੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ। ਧਰੁਵ ਨੂੰ ਆਮ ਕਰਕੇ P ਅੱਖਰ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਇੱਕ ਗੋਲੇ ਦਾ ਭਾਗ ਹੈ। ਇਸ ਗੋਲੇ ਦਾ ਕੇਂਦਰ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦਾ ਵਕਰਤਾ ਕੇਂਦਰ ਕਹਾਉਂਦਾ ਹੈ। ਇਹਨੂੰ ਅੱਖਰ C ਦੁਆਰਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਕ੍ਰਿਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਵਕਰਤਾ ਕੇਂਦਰ ਦਰਪਣ ਦਾ ਭਾਗ ਨਹੀਂ ਹੈ। ਇਹ ਪਰਾਵਰਤਕ ਸਤਹ ਤੋਂ ਬਾਹਰ ਸਥਿਤ ਹੈ। ਅਵਤਲ ਦਰਪਣ ਦਾ ਵਕਰਤਾ ਕੇਂਦਰ ਪਰਾਵਰਤਕ ਸਤਹ ਦੇ ਸਾਹਮਣੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ।ਪਰ ਉੱਤਲ ਦਰਪਣ ਦਾ ਵਕਰਤਾ ਕੇਂਦਰ ਪਰਾਵਰਤਕ ਸਤਹ ਦੇ ਪਿੱਛੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ।ਇਹ ਤੱਥ ਤੁਸੀਂ ਚਿੱਤਰ 10.2 (a) ਅਤੇ 10.2 (b) ਵਿੱਚ ਨੌਟ ਕਰ ਸਕਦੇ ਹੋ।ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਜਿਸ ਗੋਲੇ ਦਾ ਭਾਗ ਹੈ ਉਸ ਦਾ ਅਰਧ ਵਿਆਸ ਦਰਪਣ ਦਾ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ ਕਹਾਉਂਦਾ ਹੈ।ਇਸ ਨੂੰ ਅੱਖਰ R ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।ਧਿਆਨ ਦਿਓ ਕਿ PC ਦੂਰੀ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ ਦੇ ਬਰਾਬਰ ਹੈ। ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੇ ਧਰੁਵ ਅਤੇ ਵਕਰਤਾ ਕੇਂਦਰ ਵਿੱਚੋਂ ਲੰਘਦੀ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਦੀ ਕਲਪਨਾ ਕਰੋ। ਇਸ ਰੇਖਾ ਨੂੰ ਦਰਪਣ ਦਾ ਮੁੱਖ ਧਰਾ ਕਹਿੰਦੇ ਹਨ।ਯਾਦ ਕਰੋ ਕਿ ਮੁੱਖ ਧੁਰਾ ਦਰਪਣ ਦੇ ਧਰੁਵ ਉੱਤੇ ਲੰਬ ਹੈ।ਆਓ ਦਰਪਣ ਨਾਲ ਸੰਬੰਧਿਤ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸ਼ਬਦ ਨੂੰ ਇੱਕ ਕਿਰਿਆ ਦੁਆਰਾ ਸਮਝੀਏ।

ਚਿੱਤਰ 10.1 ਗੋਲਾਕਾਰ ਦਰਪਣ ਦਾ ਰੇਖਾ ਚਿੱਤਰ। ਪਾਲਿਸ਼ ਕੀਤਾ ਭਾਗ ਪਰਾਵਰਤਕ ਨਹੀਂ

ਕਿਰਿਆ 10.2

ਚੇਤਾਵਨੀ : ਸੂਰਜ ਵੱਲ ਜਾਂ ਦਰਪਣ ਦੁਆਰਾ ਪਰਾਵਰਤਿਤ ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਵੱਲ ਜਿੱਤਾ ਕਦੇ ਨਾ ਵੇਖੋ। ਇਹ ਤੁਹਾਡੀਆਂ ਅੱਖਾਂ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾ ਸਕਦਾ ਹੈ।

- ਇੱਕ ਅਵਤਲ ਦਰਪਣ ਨੂੰ ਆਪਣੇ ਹੱਥ ਵਿੱਚ ਫੜੋ ਅਤੇ ਇਸ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਨੂੰ ਸੂਰਜ ਵੱਲ ਕਰੋ।
- 💌 ਦਰਪਣ ਦੁਆਰਾ ਪਰਾਵਰਤਿਤ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਦਰਪਣ ਦੇ ਲਾਗੇ ਰੱਖੀ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਪਾਓ।
- ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਨੂੰ ਸਹਿਜੇ ਸਹਿਜੇ ਅੱਗੇ ਪਿੱਛੇ ਕਰੋ ਜਦੋਂ ਤੱਕ ਤੁਹਾਨੂੰ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਇੱਕ ਚਮਕਦਾ ਤਿੱਖਾ, ਬਿੰਦੂ ਪ੍ਰਾਪਤ ਨਾ ਹੋ ਜਾਵੇ।
- ਦਰਪਣ ਅਤੇ ਕਾਗਜ਼ ਨੂੰ ਕੁੱਝ ਮਿੰਟਾਂ ਲਈ ਉਸੇ ਸਥਿਤੀ ਵਿੱਚ ਫੜ ਕੇ ਰੱਖੋ। ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ?

ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਾਗਜ਼ ਸੁਲਗਣਾ ਆਰੰਭ ਕਰਦਾ ਹੈ ਅਤੇ ਧੂੰਆਂ । ਉੱਠਣ ਲਗਦਾ ਹੈ। ਅੰਤ ਵਿੱਚ ਕਾਗਜ਼ ਅੱਗ ਵੀ ਫੜ ਸਕਦਾ ਹੈ। ਇਹ ਕਿਉਂ ਜਲਦਾ ਹੈ? ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲਾ ਪ੍ਰਕਾਸ਼ ਦਰਪਣ ਦੁਆਰਾ ਇੱਕ ਤਿੱਖੇ ਚਮਕਦਾਰ ਬਿੰਦੂ ਦੇ ਰੂਪ ਵਿੱਚ ਕੇਂਦਰਿਤ ਹੁੰਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਇਹ ਬਿੰਦੂ ਸੂਰਜ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਹੈ। ਇਹ ਬਿੰਦੂ ਅਵਤਲ ਦਰਪਣ ਦਾ ਫੋਕਸ ਹੈ। ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਕੇਂਦਰਣ ਤੋਂ ਉਤਪੰਨ ਤਾਪ ਦੇ ਕਾਰਨ ਕਾਗਜ਼ ਬਲਦਾ ਹੈ। ਦਰਪਣ ਦੀ ਸਥਿਤੀ ਤੋਂ ਇਸ ਪਤਿਬਿੰਬ ਦੀ ਦਰੀ, ਦਰਪਣ ਦੀ ਲਗਭਗ ਫੋਕਸ ਦਰੀ ਹੁੰਦੀ ਹੈ।

ਆਓ ਇਸ ਪ੍ਰੇਖਣ ਨੂੰ ਇੱਕ ਕਿਰਨ ਚਿੱਤਰ ਨਾਲ ਸਮਝਣ ਦਾ ਯਤਨ ਕਰੀਏ।

ਚਿੱਤਰ 10.2 (a) ਨੂੰ ਧਿਆਨਪੂਰਵਕ ਵੇਖੋ।ਅਵਤਲ ਦਰਪਣ ਉੱਤੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਅੰਤਰ ਕੁੱਝ ਕਿਰਨਾਂ ਆਪਤਿਤ ਹੋ ਗਈਆਂ ਹਨ। ਪਰਾਵਰਤਿਤ ਕਿਰਨਾਂ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।ਉਹ ਸਾਰੀਆਂ ਦਰਪਣ ਦੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਇੱਕ ਬਿੰਦੂ ਉੱਤੇ ਮਿਲ ਰਹੀਆਂ ਹਨ।ਇਹ ਬਿੰਦੂ ਅਵਤਲ ਦਰਪਣ ਦਾ ਮੁੱਖ ਫੋਕਸ ਕਹਾਉਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਚਿੱਤਰ 10.2 (b) ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ।ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਅੰਤਰ ਕਿਰਨਾਂ

ਚਿੱਤਰ 10.2 (a) ਅਵਤਲ ਦਰਪਣ (b) ਉੱਤਲ ਦਰਪਣ

ਕਿਸ ਪ੍ਰਕਾਰ ਪਰਾਵਰਤਿਤ ਹੁੰਦੀਆਂ ਹਨ? ਪਰਾਵਰਤਿਤ ਕਿਰਨਾਂ ਮੁੱਖ ਧੁਰੇ ਉੱਤੇ ਇੱਕ ਬਿੰਦੂ ਤੋਂ ਆਉਂਦੀਆਂ ਪ੍ਰਤੀਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਬਿੰਦੂ ਉੱਤਲ ਦਰਪਣ ਦਾ ਮੁੱਖ ਫੋਕਸ ਕਹਾਉਂਦਾ ਹੈ। ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੇ ਧਰੁਵ ਅਤੇ ਮੁੱਖ ਫੋਕਸ ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ ਫੋਕਸ ਦੂਰੀ ਕਹਾਉਂਦੀ ਹੈ।ਉਸ ਨੂੰ ਅੱਖਰ ਨੂੰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਵਧੇਰੇ ਕਰਕੇ ਗੋਲਾਕਾਰ ਹੀ ਹੁੰਦੀ ਹੈ।ਇਸ ਮਤਹ ਦੀ ਗੋਲਾਕਾਰ ਸੀਮਾ ਰੇਖਾ ਹੁੰਦੀ ਹੈ।ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਦਾ ਵਿਆਸ ਦਰਪਣ ਦਾ ਦੁਆਰਕ (aperture) ਕਹਾਉਂਦਾ ਹੈ।ਚਿੱਤਰ 10.2 ਵਿੱਚ ਦੂਰੀ MN ਦੁਆਰਕ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।ਅਸੀਂ ਆਪਣੀ ਚਰਚਾ ਵਿੱਚ ਕੇਵਲ ਉਹਨਾਂ ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਬਾਰੇ ਵਿਚਾਰ ਕਰਾਂਗੇ, ਜਿਨ੍ਹਾਂ ਦਾ ਦੁਆਰਕ ਉਹਨਾਂ ਦੇ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ ਤੋਂ ਬਹੁਤ ਛੋਟਾ ਹੈ।

ਕੀ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੇ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ, R ਅਤੇ ਫੋਕਸ ਦੂਰੀ \int ਵਿਚਕਾਰ ਕੋਈ ਸੰਬੰਧ ਹੈ? ਛੋਟੇ ਦੁਆਰਕ ਵਾਲੇ ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਲਈ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ ਫੋਕਸ ਦੂਰੀ ਤੋਂ ਦੁਗਣਾ ਹੁੰਦਾ ਹੈ।ਅਸੀਂ ਇਸ ਸੰਬੰਧ ਨੂੰ $R = 2\int$ ਦੁਆਰਾ ਦਰਸਾ ਸਕਦੇ ਹਾਂ।ਇਸ ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਕਿਸੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦਾ ਮੁੱਖ ਫੋਕਸ, ਉਸ ਦੇ ਧਰੁਵ ਅਤੇ ਵਕਰਤਾ ਕੇਂਦਰ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ ਦਾ ਮੁੱਧ ਬਿੰਦੂ ਹੁੰਦਾ ਹੈ।

10.2.1 ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨਾ

ਤੁਸੀਂ ਅਵਤਲ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰਨ ਦੀ ਵਿਧੀ ਪਹਿਲਾਂ ਹੀ ਸਿੱਖ ਚੁੱਕੇ ਹੋ। ਤੁਸੀਂ ਉਹਨਾਂ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਆਕਾਰ (Size) ਬਾਰੇ ਵੀ ਜਾਣਦੇ ਹੈ। ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤੀਬਿੰਬ ਕਿਹੋ ਜਿਹੇ ਹੁੰਦੇ ਹਨ? ਕਿਸੇ ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਵਸਤੂ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਸਥਿਤੀਆਂ ਲਈ ਬਣੇ ਪ੍ਰਤੀਬਿੰਬਾਂ ਦੀ ਸਥਿਤੀ ਦਾ ਨਿਰਧਾਰਨ ਅਸੀਂ ਕਿਵੇਂ ਕਰ ਸਕਦੇ ਹਾਂ? ਇਹ ਪ੍ਰਤਿਬਿੰਬ ਵਾਸਤਵਿਕ ਹੈ ਜਾਂ ਆਭਾਸੀ? ਕੀ ਇਹ ਵੱਡੇ ਹਨ, ਛੋਟੇ ਹਨ ਜਾਂ ਬਰਾਬਰ ਆਕਾਰ (Size) ਦੇ ਹਨ? ਅਸੀਂ ਇੱਕ ਕਿਰਿਆ ਦੁਆਰਾ ਇਸ ਬਾਰੇ ਪਤਾ ਕਰਾਂਗੇ।

ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਈਜ਼ ਬਿੰਦੂ P. F ਅਤੇ C ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਬਿੰਬ ਦੀ ਸਥਿਤੀ ਉੱਤੇ ਨਿਰਭਰ

ਕਿਰਿਆ 10.3

- ਤੁਸੀਂ ਅਵਤਲ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰਨ ਦੀ ਵਿਧੀ ਪਹਿਲਾਂ ਹੀ ਸਿੱਖ ਚੁੱਕੇ ਹੋ? ਕਿਰਿਆ 10.2 ਵਿੱਚ ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਕਾਗਜ਼ ਉੱਤੇ ਪ੍ਰਾਪਤ ਪ੍ਰਕਾਸ਼ ਦਾ ਤਿੱਖਾ, ਚਮਕਦਾਰ ਬਿੰਦੂ ਅਸਲ ਵਿੱਚ ਸੂਰਜ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਸੀ। ਇਹ ਬਹੁਤ ਛੋਟਾ, ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ ਸੀ, ਦਰਪਣ ਤੋਂ ਇਸ ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਦੂਰੀ ਮਾਪ ਕੇ ਤੁਸੀਂ ਅਵਤਲ ਦਰਪਣ ਦੀ ਲਗਭਗ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕੀਤੀ ਸੀ।
- ਇੱਕ ਅਵਤਲ ਦਰਪਣ ਲਓ।ਉੱਪਰ ਵਰਣਨ ਕੀਤੀ ਵਿਧੀ ਦੁਆਰਾ ਇਸ ਦੀ ਲਗਭਗ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰੋ।ਫੋਕਸ ਦੂਰੀ ਦਾ ਮਾਨ ਨੋਟ ਕਰੋ।(ਤੁਸੀਂ ਕਿਸੇ ਦੂਰ ਦੀ ਵਸਤੂ ਦਾ ਪ੍ਰਤਿਸ਼ਿੰਬ ਇੱਕ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਪ੍ਰਾਪਤ ਕਰਕੇ ਵੀ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰ ਸਕਦੇ ਹੋ)
- ਮੇਜ਼ ਉੱਤੇ ਚਾਕ ਨਾਲ ਇੱਕ ਲਾਈਨ ਲਗਾਓ। ਅਵਤਲ ਦਰਪਣ ਨੂੰ ਇੱਕ ਸਟੈਂਡ ਉੱਤੇ ਰੱਖ।ਸਟੈਂਡ ਨੂੰ ਲਾਈਨ ਉੱਤੇ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋ ਕਿ ਦਰਪਣ ਦਾ ਧਰੁਵ ਇਸ ਲਾਈਨ ਉੱਤੇ ਸਥਿਤ ਹੋਵੇਂ।
- ਪਹਿਲੀ ਲਾਈਨ ਦੇ ਸਮਾਨ-ਅੰਤਰ ਅਤੇ ਇਸ ਤੋਂ ਅੱਗੇ ਦੋ ਲਾਈਨਾਂ ਇਸ ਪ੍ਰਕਾਰ ਖਿੱਚੋਂ ਕਿ ਕਿਸੇ ਦੋ ਕ੍ਮ-ਅਨੁਸਾਰ ਲਾਈਨਾਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ ਦੇ ਬਰਾਬਰ ਹੋਵੇ। ਇਹ ਲਾਈਨਾਂ ਹੁਣ ਕ੍ਰਮਵਾਰ ਬਿੰਦੂ P, F ਅਤੇ C ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਪਦ ਅਨੁਰੂਪੀ ਹੋਣਗੀਆਂ। ਯਾਦ ਰੱਖੋਂ ਛੋਟੇ ਦੁਆਰਕ ਵਾਲੇ ਗਲਾਕਾਰ ਦਰਪਣ ਦੇ ਲਈ F ਧਰੁਵ P ਅਤੇ ਵਕਰਤਾ ਕੇਂਦਰ C ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ ਦੇ ਮੱਧ ਬਿੰਦੂ ਤੇ ਮੁੱਖ ਫੋਕਸ ਹੈਦਾ ਹੈ।
- ਇੱਕ ਚਮਕੀਲਾ ਬਿੰਬ (ਵਸਤੂ) ਜਿਵੇਂ ਕਿ ਬਲਦੀ ਹੋਈ ਮੋਮਬੱਤੀ C ਤੋਂ ਬਹੁਤ ਦੂਰ ਕਿਸੇ ਸਥਿਤੀ ਉੱਤੇ ਰੱਖੋ। ਇੱਕ ਕਾਗਜ਼ ਦਾ ਪਰਦਾ ਰੱਖੋ ਅਤੇ ਇਸ ਨੂੰ ਦਰਪਣ ਦੇ ਸਾਹਮਣੇ ਅੱਗੇ ਪਿੱਛੇ ਤਦ ਤੱਕ ਖਿਸਕਾਓ ਜਦੋਂ ਤੱਕ ਕਿ ਤੁਹਾਨੂੰ ਇਸ ਉੱਤੇ ਮੋਮਬੱਤੀ ਦੀ ਲਾਟ ਦਾ ਤਿੱਖਾ ਅਤੇ ਚਮਕੀਲਾ ਪ੍ਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਨਾ ਹੋ ਜਾਵੇ।
- ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ। ਇਸ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਬਿੰਬ ਦੇ ਆਕਾਰ ਦੇ ਸਾਪੇਖ ਇਸ ਦਾ ਸਾਪੇਖੀ ਸਾਈਜ਼ ਨੌਟ ਕਰੋ।
- ਇਸ ਕਿਰਿਆ ਨੂੰ ਮੋਮਬੱਤੀ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਸਥਿਤੀਆਂ ਲਈ ਦੁਹਰਾਓ : –
 (a) C ਤੋਂ ਥੋੜ੍ਹੀ ਦੂਰ, (b) C ਉੱਤੇ, (c) C ਅਤੇ F ਦੇ ਵਿਚਕਾਰ, (d) F ਉੱਤੇ (e) F ਅਤੇ P ਵਿਚਕਾਰ
- ਇਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਸਥਿਤੀ ਵਿੱਚ ਤੁਸੀਂ ਪਰਦੇ ਉੱਤੇ ਪ੍ਰਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਨਹੀਂ ਕਰ ਸਕੋਗੇ।
 ਇਸ ਅਵੱਸਥਾ ਵਿੱਚ ਬਿੰਬ ਦੀ ਸਥਿਤੀ ਨਿਰਧਾਰਿਤ ਕਰੋ। ਤਦ, ਇਸ ਦੇ ਆਭਾਸੀ ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਸਿੱਧਾ ਦਰਪਣ ਵਿੱਚ ਵੇਖੋ।
- 🔳 ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਨੋਟ ਕਰੋ ਅਤੇ ਸਾਰਣੀ ਵਿੱਚ ਲਿਖੋ।

ਕਰਦੇ ਹਨ। ਵਸਤੂ ਦੀਆਂ ਕੁੱਝ ਸਥਿਤੀਆਂ ਲਈ ਬਣਨ ਵਾਲੇ ਪ੍ਰਤਿਬਿੰਬ ਵਾਸਤਵਿਕ ਹਨ। ਵਸਤੂ ਦੀਆਂ ਕੁੱਝ ਦੂਜੀਆਂ ਸਥਿਤੀਆਂ ਲਈ ਇਹ ਆਭਾਸ਼ੀ ਹਨ। ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਅਨੁਸਾਰ ਹੀ ਪ੍ਰਤਿਬਿੰਬ ਵੱਡਾ, ਛੋਟਾ ਜਾਂ ਬਰਾਬਰ ਸਾਈਜ਼ ਦਾ ਹੁੰਦਾ ਹੈ। ਇਹਨਾਂ ਪ੍ਰੇਖਣਾਂ ਦਾ ਸੰਖੇਪ ਵਰਣਨ ਤੁਹਾਡੇ ਨਿਰਦੇਸ਼ਨ ਲਈ ਸਾਰਨੀ 10.1 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਸਾਰਨੀ 10.1 ਕਿਸੇ ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਵਸਤੂ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਸਥਿਤੀਆਂ ਦੇ ਲਈ ਬਣੇ ਪ੍ਤਿਬਿੰਬ

ਬਿਬ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦਾ ਆਕਾਰ	ਪ੍ਰਤੀਬਿਬ ਦੀ ਪ੍ਰਕਿਰਤੀ
ਅਨੰਤ ਉੱਤੇ	ਫੋਕਸ ਸ ਉੱਤੇ	ਬਹੁਤ ਛੋਟਾ, ਬਿੰਦੂ ਦੇ ਆਕਾਰ (Size) ਦਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
C ਤੋਂ ਪਰ੍ਹੇ	F ਅਤੇ C ਦੇ ਵਿਚਕਾਰ	ਛੋਟਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
C 8.3	C ĝ .₃	ਬਰਾਬਰ ਆਕਾਰ (Size)	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
C ਅਤੇ F ਵਿਚਕਾਰ	C ਤੋਂ ਪਰ੍ਹੇ	ਵੱਡਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
г ў́ з	ਅਨੰਤ ਉੱਤੇ	ਬਹੁਤ ਵੱਡਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
F ਅਤੇ P ਵਿਚਕਾਰ	ਦਰਪਣ ਦੇ ਪਿੱਛੇ	ਵੱਡਾ	ਆਭਾਸੀ ਅਤੇ ਸਿੱਧਾ

10.2.2 ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰਾਂ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਨੂੰ ਦਰਸਾਉਣਾ

ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੁਆਰਾ ਪ੍ਰਤੀਬਿੰਬਾਂ ਦੇ ਬਣਨ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾ ਕੇ ਵੀ ਕਰ ਸਕਦੇ ਹਾਂ।ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੇ ਸਾਹਮਣੇ ਰੱਖੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਆਕਾਰ ਦੀ ਵਿਸਤਾਰਿਤ ਵਸਤੂ ਤੇ ਵਿਚਾਰ ਕਰੋ। ਇਸ ਵਸਤੂ ਦਾ ਹਰੇਕ ਛੋਟਾ ਭਾਗ ਇੱਕ ਬਿੰਦੂ ਆਕਾਰ ਵਸਤੂ ਦੀ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਹਨਾਂ ਬਿੰਦੂਆਂ ਵਿੱਚ ਹਰੇਕ ਬਿੰਦੂ ਤੋਂ ਅਨੰਤ ਕਿਰਨਾਂ ਉਤਪੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਵਸਤੂ ਦਾ ਪ੍ਤਿਬਿੰਬ ਦੇ ਸਥਾਨ ਨਿਰਧਾਰਨ ਕਰਨ ਲਈ, ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾਉਂਦੇ ਸਮੇਂ ਕਿਸੇ ਬਿੰਦੂ ਤੋਂ ਨਿਕਲਣ ਵਾਲੀਆਂ ਕਿਰਨਾਂ ਦੀ ਵਿਸ਼ਾਲ ਸੰਖਿਆ ਵਿੱਚੋਂ ਸੁਵਿਧਾ ਅਨੁਸਾਰ ਕੁੱਝ ਨੂੰ ਚੁਣਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਫਿਰ ਵੀ, ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਦੀ ਸਪਸ਼ਟਤਾ ਲਈ ਦੋ ਕਿਰਨਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨਾ ਵਧੇਰੇ ਸੁਵਿਧਾ ਜਨਕ ਹੈ। ਇਹ ਕਿਰਨਾਂ ਅਜਿਹੀਆਂ ਹੋਣ ਕਿ ਦਰਪਣ ਤੋਂ ਪਰਾਵਰਤਨ ਤੋਂ ਬਾਅਦ ਉਹਨਾਂ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਨੂੰ ਜਾਨਣਾ ਆਸਾਨ ਹੋਵੇ।

ਘੱਟ ਤੋਂ ਘੱਟ ਦੋ ਪਰਾਵਰਤਿਤ ਕਿਰਨਾਂ ਕੱਟਣ ਨਾਲ ਕਿਸੇ ਬਿੰਦੂ ਆਕਾਰ ਵਸਤੂ ਦੇ ਪ੍ਤੀਬਿੰਬ ਦੀ ਸਥਿਤੀ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਪ੍ਤਿਬਿੰਬ ਦੇ ਸਥਾਨ ਨਿਰਧਾਰਨ ਦੇ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਦੋ ਕਿਰਨਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

(i) ਦਰਪਣ ਦੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਅੰਤਰ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ, ਪਰਾਵਰਤਨ ਤੋਂ ਬਾਅਦ ਅਵਤਲ ਦਰਪਣ ਦੇ ਮੁੱਖ ਫੋਕਸ ਵਿੱਚੋਂ ਲੰਘੇਗੀ ਜਾਂ ਉੱਤਲ ਦਰਪਣ ਦੇ ਮੁੱਖ ਫੋਕਸ ਤੋਂ ਅਪਸਰਿਤ (diverge) ਹੁੰਦੀ ਪ੍ਰਤੀਤ ਹੋਵੇਗੀ।ਇਹ

ਚਿੱਤਰ 10.3 (a) ਅਤੇ (b) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

(ii) ਅਵਤਲ ਦਰਪਣ ਦੇ ਮੁੱਖ ਫੋਕਸ ਵਿੱਚੋਂ ਲੰਘਦੀ ਕਿਰਨ ਜਾਂ ਉੱਤਲ ਦਰਪਣ ਦੇ ਮੁੱਖ ਫੋਕਸ ਦੇ ਵੱਲ ਜਾਂਦੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਪਰਾਵਰਤਨ ਤੋਂ ਬਾਅਦ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਅੰਤਰ ਹੋ ਜਾਵੇਗੀ।ਇਸ ਨੂੰ ਚਿੱਤਰ 10.4 (a) ਅਤੇ 10.4 (b) ਵਿੱਚ

ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।
(iii) ਅਵਤਲ ਦਰਪਣ ਦੇ ਵਕਰਤਾ ਕੇਂਦਰ ਵਿੱਚੋਂ ਗੁਜ਼ਰਨ ਵਾਲੀਆਂ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਜਾਂ ਉੱਤਲ ਦਰਪਣ ਦੇ ਵਕਰਤਾ ਕੇਂਦਰ ਦੇ ਵੱਲ ਜਾਂਦੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਪਹਾਵਰਤਨ ਤੋਂ ਬਾਅਦ ਉਸੇ ਪੱਥ ਤੇ ਵਾਪਸ ਪਰਾਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਚਿੱਤਰ 10.5 (a) ਅਤੇ 10.5 (b) ਵਿੱਚ

ਚਿੱਤਰ 10.5 (a) ਅਤੇ 10.5 (b) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਕਿਰਨਾਂ ਉਸੇ ਪੱਥ ਉੱਤੇ ਇਸ ਲਈ ਵਾਪਸ ਜਾਂਦੀਆਂ ਹਨ ਕਿਉਂਕਿ ਆਪਤਿਤ ਕਿਰਨਾਂ ਦਰਪਣ ਦੀ ਪਰਾਵਰਤਕ ਸਤਹ ਤੇ ਲੈਬ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ

ਪੈਂਦੀਆਂ ਹਨ।

(iv) ਅਵਤਲ ਦਰਪਣ ਵਿੱਚ 10.6 (a) ਜਾਂ ਉੱਤਲ ਦਰਪਣ ਚਿੱਤਰ 10.6 (b) ਦੇ ਬਿੰਦੂ P (ਦਰਪਣ ਦਾ ਧਰੁਵ) ਦੇ ਵੱਲ ਮੁੱਖ ਧੁਰੇ ਤੋਂ ਤਿਰਛੀ ਦਿਸ਼ਾ ਵਿੱਚ ਅਪਾਤੀ ਕਿਰਨ ਤਿਰਛੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੀ ਪਰਾਵਰਤਿਤ ਹੁੰਦੀ ਹੈ। ਅਪਾਤੀ ਅਤੇ ਪਰਾਵਰਤਿਤ ਕਿਰਨਾਂ ਅਪਾਤੀ ਬਿੰਦੂ (ਬਿੰਦੂ P) ਉੱਤੇ ਮੁੱਖ ਧੁਰੇ ਨਾਲ ਬਰਾਬਰ ਕੋਣ ਬਣਾਉਂਦੀਆਂ ਹੋਈਆਂ ਪਰਾਵਰਤਨ ਦੇ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਕਰਦੀਆਂ ਹਨ। ਯਾਦ ਰੱਖੋ ਕਿ ਉਪਰੋਕਤ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਪਰਾਵਰਤਨ ਦੇ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਹੁੰਦਾ ਹੈ।ਅਪਾਤੀ ਬਿੰਦੂ ਉੱਤੇ ਅਪਾਤੀ ਕਿਰਨ ਇਸ ਪ੍ਰਕਾਰ ਪਰਾਵਰਤਿਤ ਹੁੰਦੀ ਹੈ ਕਿ ਪਰਾਵਰਤਨ ਕੋਣ ਦਾ ਮਾਪ ਸਦਾ ਹੀ ਆਪਤਨ ਕੋਣ ਦੇ ਮਾਨ ਦੇ ਬਰਾਬਰ ਹੋਵੇ।

(a) ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ

ਬਣਨਾ ਚਿੱਤਰ 10.7 (a) ਤੋਂ (l) ਵਿੱਚ ਵਸਤੂ ਦੀਆਂ ਭਿੰਨ ਸਥਿਤੀਆਂ ਦੇ ਲਈ

ਕਿਰਿਆ 10.4

ਚਿੱਤਰ 10.6

(b)

- ਸਾਰਣੀ 10.1 ਵਿੱਚ ਦਰਸਾਈ ਗਈ ਵਸਤੂ ਦੀ ਹਰ ਇੱਕ ਸਥਿਤੀ ਦੇ ਲਈ ਸਾਫ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾਓ।
- ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਸਥਾਨ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਤੁਸੀਂ ਪਹਿਲਾਂ ਦਿੱਤੇ ਅਨੁਛੇਦ ਵਿੱਚ ਵਰਣਿਤ ਕੋਈ ਦੋ ਕਿਰਨਾਂ ਲੈ ਸਕਦੇ ਹੋ।
- 🔹 ਆਪਣੇ ਚਿੱਤਰਾਂ ਦੀ ਤੁਲਨਾ ਚਿੱਤਰ 10.7 ਵਿੱਚ ਦਿੱਤੇ ਚਿੱਤਰਾਂ ਨਾਲ ਕਰੋ।
- ਹਰ ਕੇਸ ਵਿੱਚ ਬਣਨ ਵਾਲੇ ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ ਸਥਿਤੀ ਅਤੇ ਆਕਾਰ (Size) ਦਾ ਵਰਨਣ ਕਰੋ।
- 🏮 ਆਪਣੇ ਪਰਿਣਾਮਾਂ ਨੂੰ ਸੂਵਿਧਾਜਨਕ ਰੂਪ ਵਿੱਚ ਸਾਰਨੀਬੱਧ ਕਰੋ।

(a)

ਚਿੱਤਰ 10.7 ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਬਣਨਾ ਦਰਸਾਉਣ ਲਈ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ

ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦਾ ਬਣਨਾ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਅਵਤਲ ਦਰਪਣ ਦੇ ਉਪਯੋਗ

ਅਵਤਲ ਦਰਪਣ ਦਾ ਉਪਯੋਗ ਆਮ ਕਰਕੇ ਟਾਰਚਾਂ, ਸਰਚ ਲਾਈਟਾਂ ਅਤੇ ਵਾਹਨਾਂ ਦੀਆਂ ਹੈੱਡ ਲਾਈਟਾਂ (headlights) ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦਾ ਸ਼ਕਤੀਸ਼ਾਲੀ ਸਮਾਨ ਅੰਤਰ ਕਿਰਨ ਪੁੰਜ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਇਹਨਾਂ ਨੂੰ ਚਿਹਰੇ ਦਾ ਵੱਡਾ ਪ੍ਰਤਿਬਿੰਬ ਦੇਣ ਲਈ ਸ਼ੇਵਿੰਗ ਦਰਪਣ (shaving mirrors) ਦੇ ਰੂਪ ਵਿੱਚ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਦੰਦਾਂ ਦੇ ਡਾਕਟਰ ਅਵਤਲ ਦਰਪਣ ਦਾ ਉਪਯੋਗ ਮਰੀਜਾਂ ਦੇ ਦੰਦਾਂ ਦਾ ਵੱਡਾ ਪ੍ਰਤੀਬਿੰਬ ਦੇਖਣ ਲਈ ਕਰਦੇ ਹਨ। ਸੂਰਜੀ ਭੱਠੀਆਂ ਵਿੱਚ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਵੱਡੇ ਅਵਤਲ ਦਰਪਣ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

(b) ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨਾ

ਕਿਰਿਆ 10.5

ਅਸੀਂ ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਹੁਣ ਅਸੀਂ ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰਾਂਗੇ।

- 🔹 ਇੱਕ ਉੱਤਲ ਦਰਪਣ ਲਓ। ਇਸ ਨੂੰ ਇੱਕ ਹੱਥ ਵਿੱਚ ਫੜੋ।
- 🎍 ਦੂਜੇ ਹੱਥ ਵਿੱਚ ਇੱਕ ਸਿੱਧੀ ਖੜੀ ਪੈਂਸਿਲ ਫੜੇ।

- ਦਰਪਣ ਵਿੱਚ ਪੈਂਸਿਲ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਵੇਖੋ। ਪ੍ਰਤਿਬਿੰਬ ਸਿੱਧਾ ਹੈ ਜਾਂ ਉਲਟਾ? ਕੀ ਇਹ ਛੋਟਾ ਹੈ ਜਾਂ ਵੱਡਾ?
- 😱 ਪੈਂਸਿਲ ਨੂੰ ਹੌਲੀ–ਹੌਲੀ ਦਰਪਣ ਤੋਂ ਪਰ੍ਹੇ ਲੈ ਜਾਓ।ਕੀ ਪ੍ਰਤਿਬਿੰਬ ਛੋਟਾ ਹੋ ਜਾਂਦਾ ਹੈ ਜਾਂ ਵੱਡਾ?
- ┎ ਕਿਰਿਆ ਨੂੰ ਧਿਆਨਪੁਰਵਕ ਦੂਹਰਾਓ। ਦੱਸੋ ਕਿ ਜਦੋਂ ਵਸਤੂ ਨੂੰ ਦਰਪਣ ਤੋਂ ਪਰ੍ਹੇ ਲੈ ਜਾਂਦੇ

ਹਾਂ ਤਾਂ ਪ੍ਰਤਿਬਿੰਬ ਫੋਕਸ ਦੇ ਨੇੜੇ ਆਉਂਦਾ ਹੈ ਜਾਂ ਇਸ ਤੋਂ ਹੋਰ ਦੂਰ ਚਲਾ ਜਾਂਦਾ ਹੈ?

ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਅਧਿਐਨ ਕਰਨ ਲਈ ਅਸੀਂ ਵਸਤੂ ਨੂੰ ਦੋ ਸਥਿਤੀਆਂ ਉੱਤੇ ਰੱਖਣ ਬਾਰੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ।ਪਹਿਲੀ ਸਥਿਤੀ ਵਿੱਚ ਵਸਤੂ ਅਨੰਤ ਦੂਰੀ ਉੱਤੇ ਅਤੇ ਦੂਜੀ ਸਥਿਤੀ ਵਿੱਚ ਵਸਤੂ ਦਰਪਣ ਤੋਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਉੱਤੇ ਹੈ।ਵਸਤੂ ਦੀਆਂ ਇਹਨਾਂ ਦੋ ਸਥਿਤੀਆਂ ਲਈ ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੇ ਰੇਖਾ ਚਿੱਤਰ 10.8 (a) ਅਤੇ 10.8 (b) ਵਿੱਚ ਕਮਵਾਰ ਵਿਖਾਏ ਗਏ ਹਨ।

ਸਾਰਨੀ : 10.2 ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਆਕਾਰ (Size)

ਬਿੰਬ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦਾ ਆਕਾਰ (Size)	ਪ੍ਰਭੀਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ
ਅਨੰਤ ਉੱਤੇ	ਫੋਕਸ F ਉੱਤੇ ਦਰਪਣ ਦੇ ਪਿੱਛੇ	ਬਹੁਤ ਹੀ ਛੋਟਾ ਬਿੰਦੂ ਦੇ ਸਾਈਜ਼ ਦਾ	ਆਭਾਸੀ ਅਤੇ ਸਿੱਧਾ
ਅਨੰਤ ਅਤੇ ਦਰਪਣ ਦੇ ਧਰੁਵਾਂ P ਦੇ ਵਿਚਕਾਰ	P ਅਤੇ P ਦੇ ਵਿਚਕਾਰ ਦਰਪਣ ਦੇ ਪਿੱਛੇ	ਛੋਟਾ	ਆਭਾਸ਼ੀ ਅਤੇ ਸਿੱਧਾ

ਹੁਣ ਤੱਕ ਤੁਸੀਂ ਸਮਤਲ ਦਰਪਣ, ਅਵਤਲ ਦਰਪਣ ਅਤੇ ਉੱਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪ੍ਰਤੀਬਿੰਬ ਬਣਾਉਣ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਦਰਪਣ ਵੱਡੀ ਵਸਤੂ ਦਾ ਪੂਰਾ ਪ੍ਰਤੀਬਿੰਬ ਬਣਾਏਗਾ? ਆਓ ਇੱਕ ਕਿਰਿਆ ਦੁਆਰਾ ਇਸ ਦਾ ਅਧਿਐਨ ਕਰੀਏ।

ਕਿਰਿਆ 10,6

- ਸਮਤਲ ਦਰਪਣ ਵਿੱਚ ਕਿਸੇ ਦੂਰ ਸਥਿਤ ਵਸਤੂ ਜਿਵੇਂ ਕਿ ਕੋਈ ਦੂਰ ਸਥਿਤ ਰੁੱਖ ਦਾ ਪਤਿਬਿੰਬ ਵੇਖੋ।
- 🝙 ਕੀ ਤੁਸੀਂ ਪੂਰੀ ਲੰਬਾਈ (full-length) ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਵੇਖ ਸਕਦੇ ਹੋ?
- ਭਿੰਨ ਆਕਾਰ ਦੇ ਸਮਤਲ ਦਰਪਣ ਲੈ ਕੇ ਪ੍ਰਯੋਗ ਦੁਹਰਾਓ। ਕੀ ਤੁਸੀਂ ਦਰਪਣ ਵਿੱਚ ਵਸਤੁ ਦਾ ਸੰਪੂਰਨ ਪਤਿਬਿੰਬ ਵੇਖ ਸਕਦੇ ਹੋ?

- ਇਸ ਕਿਰਿਆ ਨੂੰ ਅਵਤਲ ਦਰਪਣ ਲੈ ਕੇ ਦੁਹਰਾਓ। ਕੀ ਇਹ ਦਰਪਣ ਵਸਤੂ ਦੀ ਪੂਰੀ ਲੰਬਾਈ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾ ਸਕਿਆ ਹੈ?
- ਹੁਣ ਇੱਕ ਉੱਤਲ ਦਰਪਣ ਲੈ ਕੇ ਇਸ ਪ੍ਰਯੋਗ ਨੂੰ ਦੁਹਰਾਓ। ਕੀ ਤੁਹਾਨੂੰ ਸਫਲਤਾ ਪ੍ਰਾਪਤ ਹੋਈ? ਆਪਣੇ ਪ੍ਰਯੋਗਾਂ ਦੀ ਕਾਰਨ ਸਹਿਤ ਵਿਆਖਿਆ ਕਰੋ।

ਤੁਸੀਂ ਇੱਕ ਛੋਟੇ ਉੱਤਲ ਦਰਪਣ ਵਿੱਚ ਕਿਸੇ ਉੱਚੇ ਭਵਨ/ਰੁੱਖ ਦੀ ਪੂਰਨ ਲੰਬਾਈ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਵੇਖ ਸਕਦੇ ਹੋ।ਆਗਰਾ ਕਿਲ੍ਹੇ ਦੀ ਇੱਕ ਦੀਵਾਰ ਵਿੱਚ ਅਜਿਹਾ ਹੀ ਇੱਕ ਦਰਪਣ ਲੱਗਿਆ ਹੋਇਆ ਹੈ।ਜੇਕਰ ਤੁਸੀਂ ਕਦੇ ਆਗਰਾ ਕਿਲ੍ਹਾ ਵੇਖਣ ਗਏ ਤਾਂ ਦੀਵਾਰ ਵਿੱਚ ਲੱਗੇ ਇਸ ਦਰਪਣ ਵਿੱਚ ਕਿਸੇ ਦੂਰ ਸਥਿਤ ਉੱਚੀ ਇਮਾਰਤ/ਮਕਬਰੇ ਦੇ ਪੂਰੇ ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਵੇਖਣ ਦਾ ਯਤਨ ਕਰਨਾ। ਮਕਬਰੇ ਨੂੰ ਸਪਸ਼ਟ ਵੇਖਣ ਲਈ ਤੁਹਾਨੂੰ ਦੀਵਾਰ ਦੇ ਨਾਲ ਬਣੀ ਛੱਤ ਉੱਤੇ ਉੱਚਿਤ ਸਥਾਨ ਉੱਤੇ ਖੜਾ ਹੋਣਾ ਪਵੇਗਾ।

ਉੱਤਲ ਦਰਪਣ ਦੇ ਉਪਯੋਗ

ਉੱਤਲ ਦਰਪਣ ਦਾ ਉਪਯੋਗ ਆਮ ਕਰਕੇ ਵਾਹਨਾਂ ਵਿੱਚ ਪਿੱਛੇ ਦੀ ਆਵਾਜਾਈ ਦੇਖਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਦਰਪਣ ਵਾਹਨ ਦੇ ਪਾਸਿਆਂ ਵਿੱਚ ਲੱਗੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਡਰਾਈਵਰ ਆਪਣੇ ਤੋਂ ਪਿੱਛੇ ਦੇ ਵਾਹਨਾਂ ਨੂੰ ਵੇਖ ਸਕਦਾ ਹੈ ਤਾਂ ਜੋ ਉਹ ਸੁਰੱਖਿਅਤ ਰੂਪ ਵਿੱਚ ਵਾਹਨ ਚਲਾ ਸਕੇ। ਉੱਤਲ ਦਰਪਣਾਂ ਨੂੰ ਇਸ ਲਈ ਵੀ ਪਹਿਲ ਦਿੰਦੇ ਹਾਂ ਕਿਉਂਕਿ ਇਹ ਸਦਾ ਹੀ ਸਿੱਧਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾਉਂਦੇ ਹਨ ਭਾਵੇਂ ਉਹ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਦ੍ਰਿਸ਼ਟੀ ਖੇਤਰ ਬਹੁਤ ਵੱਧ ਹੈ ਕਿਉਂਕਿ ਇਹ ਬਾਹਰ ਦੀ ਵੱਲ ਵਕਰ ਹੁੰਦੇ ਹਨ। ਸਮਤਲ ਦਰਪਣ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉੱਤਲ ਦਰਪਣ ਡਰਾਈਵਰਾਂ ਨੂੰ ਆਪਣੇ ਪਿੱਛੇ ਦੇ ਬਹੁਤ ਵੱਡੇ ਖੇਤਰ ਨੂੰ ਵੇਖਣ ਵਿੱਚ ਸਮਰੱਥ ਬਣਾਉਂਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

- 1. ਅਵਤਲ ਦਰਪਣ ਦੇ ਮੁੱਖ ਫੋਕਸ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ।
- 2. ਇੱਕ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦਾ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ 20 cm ਹੈ। ਉਸ ਦੀ ਫੋਕਸ ਦੂਰੀ ਕੀ ਹੋਵੇਗੀ?
- 3. ਉਸ ਦਰਪਣ ਦਾ ਨਾਂ ਦੱਸੋ ਜੋ ਵਸਤੂ ਦਾ ਸਿੱਧਾ ਅਤੇ ਵੱਡਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾ ਸਕੇ।
- 4. ਅਸੀਂ ਵਾਹਨਾਂ ਵਿੱਚ ਉੱਤਲ ਦਰਪਣ ਨੂੰ ਪਿੱਛੇ ਦੀ ਆਵਾਜਾਈ ਦੇਖਣ ਵਾਲੇ ਦਰਪਣ ਦੇ ਰੂਪ ਵਿੱਚ ਪਹਿਲ ਕਿਉਂ ਦਿੰਦੇ ਹਾਂ?

?

10.2.3 ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੁਆਰਾ ਪਰਾਵਰਤਨ ਲਈ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ

ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਦੇ ਪਰਾਵਰਤਨ ਬਾਰੇ ਵਿਚਾਰ ਕਰਦੇ ਸਮੇਂ ਅਸੀਂ ਇੱਕ ਨਿਸ਼ਚਿਤ । ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਦੀ ਪਾਲਣਾ ਕਰਾਂਗੇ। ਜਿਸ ਨੂੰ ਨਵੀਂ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਪਰੰਪਰਾ ਵਿੱਚ ਦਰਪਣ ਦੇ ਧਰੁਵ (P) ਨੂੰ ਮੂਲ ਬਿੰਦੂ ਮੰਨਦੇ ਹਨ। ਇਹ ਪਰੰਪਰਾ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ :

- ਵਸਤੂ ਸਦਾ ਹੀ ਦਰਪਣ ਦੇ ਖੱਬੇ ਪਾਸੇ ਰੱਖੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਦਰਪਣ ਉੱਤੇ ਵਸਤੂ ਤੋਂ ਪ੍ਕਾਸ਼ ਖੱਬੇ ਪਾਸੇ ਤੋਂ ਆਪਤਿਤ ਹੁੰਦਾ ਹੈ।
- (ii) ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨ ਅੰਤਰ ਸਾਰੀਆਂ ਦੂਰੀਆ ਦਰਪਣ ਦੇ ਧਰੁਵ ਤੋਂ ਮਾਪੀਆਂ ਜਾਂਦੀਆ<mark>ਂ</mark> ਹਨ।
- (iii) ਮੂਲ ਬਿੰਦੂ ਦੇ ਸੱਜੇ ਪਾਸੇ (+ x-ਧੁਰੇ ਨਾਲ) ਮਾਪੀਆਂ ਗਈਆਂ ਸਾਰੀਆਂ ਦੂਰੀਆਂ ਧਨਾਤਮਕ ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਜਦੋਂ ਕਿ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਖੱਬੇ ਪਾਸੇ (– x-ਧੁਰੇ ਨਾਲ) ਮਾਪੀਆਂ ਗਈਆਂ ਦੂਰੀਆਂ ਰਿਣਾਤਮਕ (–) ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 10.9 ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੇ ਲਈ ਕਾਰਟੀਜ਼ੀਅਨ ਪਰੰਪਰਾ

(iv) ਮੂਲ ਬਿੰਦੂ ਦੇ ਉਪਰਲੇ ਪਾਸੇ (y-ਧੁਰੇ ਨਾਲ) ਮਾਪੀਆਂ ਗਈਆਂ ਸਾਰੀਆਂ ਦੂਰੀਆਂ ਧਨਾਤਮਕ (+y) ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਹੇਠਲੇ ਪਾਸੇ (-yਧੁਰੇ ਨਾਲ)ਮਾਪੀਆਂ ਗਈਆਂ ਦੂਰੀਆਂ ਰਿਣਾਤਮਕ(y) ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਉੱਪਰ ਵਰਣਿਤ ਨਵੀਂ ਕਾਰਟੀਜ਼ੀਅਨ (cartesion) ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਤੁਹਾਡੇ ਹਵਾਲੇ ਲਈ ਚਿੱਤਰ 10.9 ਵਿੱਚ ਦਰਸਾਈ ਗਈ ਹੈ। ਇਹ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਦਰਪਣ ਦਾ ਸੂਤਰ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਸੰਬੰਧਿਤ ਅੰਕਿਤ ਪ੍ਰਸ਼ਨ ਹੱਲ ਕਰਨ ਲਈ ਢੁੱਕਵੀਂ ਹੈ।

10.2.4 ਦਰਪਣ ਸੂਤਰ ਅਤੇ ਵਡਦਰਸ਼ਨ (Mirror Formula and Magnification)

ਗੋਲਾਕਾਰ ਦਰਪਣ ਵਿੱਚ ਇਸ ਦੇ ਧਰੁਵ ਤੋਂ ਵਸਤੂ ਦੀ ਦੂਰੀ, ਵਸਤੂ ਦੂਰੀ (u) ਕਹਾਉਂਦੀ ਹੈ। ਦਰਪਣ ਦੇ ਧਰੁਵ ਤੋਂ ਪ੍ਤਿਬਿੰਬ ਦੀ ਦੂਰੀ, ਪ੍ਰਤਿਬਿੰਬ ਦੂਰੀ (v) ਕਹਾਉਂਦੀ ਹੈ। ਤੁਹਾਨੂੰ ਪਹਿਲਾਂ ਹੀ ਪਤਾ ਹੈ ਕਿ ਧਰੁਵ ਤੋਂ ਮੁੱਖ ਫੋਕਸ ਦੀ ਦੂਰੀ, ਫੋਕਸ ਦੂਰੀ (f) ਕਹਾਉਂਦੀ ਹੈ। ਇਹਨਾਂ ਤਿੰਨਾਂ ਰਾਸ਼ੀਆਂ ਦੇ ਵਿਚਕਾਰ ਇੱਕ ਸੰਬੰਧ ਹੈ ਜਿਸ ਨੂੰ ਦਰਪਣ ਸੂਤਰ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਸੂਤਰ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਪ੍ਰਗਟ ਕਰਦੇ ਹਨ:

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \tag{10.1}$$

ਇਹ ਸੰਬੰਧ ਹਰ ਤਰ੍ਹਾਂ ਦੇ ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਲਈ ਅਤੇ ਵਸਤੂਆਂ ਦੀਆਂ ਸਾਰੀਆਂ ਅਵਸਥਾਵਾਂ ਦੇ ਲਈ ਮੰਨਣਯੋਗ ਹੈ (ਨੁਮੈਰੀਕਲ) ਪ੍ਰਸ਼ਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨੇ ਸਮੇਂ ਜਦੋਂ ਤੁਸੀਂ ਸੂਤਰ ਵਿੱਚ u,v,f ਅਤੇ R ਦੇ ਮਾਨ ਭਰੋ ਤਾਂ ਤੁਹਾਨੂੰ ਨਵੀਂ ਕਾਰਟੀਜ਼ੀਅਨ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਦਾ ਪ੍ਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

ਵਡਦਰਸ਼ਨ (Magnification)

ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੁਆਰਾ ਉਤਪੰਨ ਵਡਦਰਸ਼ਨ ਉਹ ਸਾਪੇਖਕ ਵਿਸਤਾਰ ਹੈ ਜਿਸ ਤੋਂ ਗਿਆਤ ਹੁੰਦਾ ਹੈ, ਕਿ ਕੋਈ ਪ੍ਤਿਬਿੰਬ ਵਸਤੂ ਤੋਂ ਕਿੰਨ੍ਹਾਂ ਵੱਡਾ ਹੈ? ਵਡਦਰਸ਼ਨ ਨੂੰ ਪ੍ਤੀਬਿੰਬ ਦੀ ਉਚਾਈ ਅਤੇ ਵਸਤੂ ਦੀ ਉਚਾਈ ਦੇ ਅਨੁਪਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਆਮ ਕਰਕੇ ਅੱਖਰ m ਦੁਆਰਾ ਪ੍ਰਗਟ ਕਰਦੇ ਹਨ। ਜੇਕਰ h ਵਸਤੂ ਦੀ ਉੱਚਾਈ ਹੋਵੇ ਅਤੇ h' ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਉੱਚਾਈ ਹੋਵੇ ਤਾਂ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੁਆਰਾ ਉਤਪੰਨ ਵਡਦਰਸ਼ਨ (m) ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੋਵੇਗਾ:

$$m = rac{ ext{ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਉਚਾਈ (h')}}{ ext{ਵਸਤੂ ਦੀ ਉਚਾਈ (h)}}$$
 $m = rac{h'}{h}$ (10.2)

ਵੱਡਦਰਸ਼ਨ (m) ਵਸਤੂ ਦੂਰੀ (u) ਅਤੇ ਪ੍ਰਤਿਬਿੰਬ ਦੂਰੀ (v) ਨਾਲ ਵੀ ਸੰਬੰਧਿਤ ਹੈ। ਉਸ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ :

ਵਡਦਰਸ਼ਨ (m) =
$$\frac{h^*}{h} = -\frac{v}{u}$$
 (10.3)

ਧਿਆਨ ਦਿਓ ਕਿ ਵਸਤੂ ਦੀ ਉਚਾਈ ਧਨਾਤਮਕ ਲਈ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਵਸਤੂ ਆਮ ਤੌਰ ਤੇ ਮੁੱਖ ਧੁਰੇ ਉੱਪਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।ਆਭਾਸੀ ਪ੍ਰਤਿਬਿੰਬ ਲਈ ਉਚਾਈ ਧਨਾਤਮਕ ਲੈਣੀ ਚਾਹੀਦੀ ਹੈ। ਜਦ ਕਿ ਵਾਸਤਵਿਕ ਪ੍ਰਤਿਬਿੰਬ ਦੇ ਲਈ ਇਹਨੂੰ ਰਿਣਾਤਮਕ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ।ਵਡਦਰਸ਼ਨ (m) ਦੇ ਮਾਨ ਵਿੱਚ ਰਿਣਾਤਮਕ ਚਿੰਨ੍ਹ ਤੋਂ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਪ੍ਰਤਿਬਿੰਬ ਵਾਸਤਵਿਕ ਹੈ।ਵਡਦਰਸ਼ਨ (m) ਦੇ ਮਾਨ ਵਿੱਚ ਧਨਾਤਮਕ ਚਿੰਨ੍ਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪ੍ਰਤਿਬਿੰਬ ਆਭਾਸੀ ਹੈ।

ਉਦਾਹਰਨ 10.1

ਕਿਸੇ ਆਟੋਮੋਬਾਇਲ ਵਿੱਚ ਪਿੱਛੇ ਦਾ ਦ੍ਰਿਸ਼ ਵੇਖਣ ਲਈ ਉਪਯੋਗ ਹੋਣ ਵਾਲੇ ਉੱਤਲ ਦਰਪਣ ਦਾ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ 3.00 m ਹੈ। ਜੇਕਰ ਇੱਕ ਬੱਸ ਇਸ ਦਰਪਣ ਤੋਂ 5.00 m ਦੀ ਦੂਰੀ ਉੱਤੇ ਸਥਿਤ ਹੈ ਤਾਂ ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਸਥਿਤੀ, ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਆਕਾਰ (Size) ਗਿਆਤ ਕਰੋ।

ਹੱਲ

ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ, R = + 3.00 m;

ਵਸਤੂ ਦੂਰੀ (u) = - 5.00 m;

ਪ੍ਰਤੀਬਿੰਬ ਦੂਰੀ , (v) = ?

ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਉਚਾਈ (h') = ?

ਫੋਕਸ ਦੂਰੀ
$$f = R/2 = + \frac{3.00 \text{ m}}{2} = + 1.50 \text{ m}$$

ਕਿਉਂਕਿ
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = + \frac{1}{1.50} - \frac{1}{(-5.00)} = \frac{1}{1.50} + \frac{1}{5.00}$$

$$=\frac{5.00+1.50}{7.50}$$

$$v = \frac{+7.50}{6.50} = +1.15 \text{ m}$$

ਪ੍ਰਤੀਬਿੰਬ ਦਰਪਣ ਦੇ ਪਿੱਛੇ 1.15 m ਦੀ ਦੂਰੀ ਤੇ ਹੈ।

ਵਡਦਰਸ਼ਨ
$$(m) = \frac{h'}{h} = -\frac{v}{u} = -\frac{1.15 \text{ m}}{-5.00 \text{ m}}$$

$$= +0.23$$

ਪ੍ਰਤਿਬਿੰਬ ਆਭਾਸੀ, ਸਿੱਧਾ ਅਤੇ ਆਕਾਰ (Size) ਵਿੱਚ ਵਸਤੂ ਤੋਂ ਛੋਟਾ (0.23 ਗੁਣਾ) ਹੈ।

ਉਦਾਹਰਨ 10.2

ਇੱਕ 4.0 cm ਸਾਈਜ਼ ਦੀ ਵਸਤੂ 15.0 cm ਫੋਕਸ ਦੂਰੀ ਦੇ ਅਵਤਲ ਦਰਪਣ ਤੋਂ 25.0 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖੀ ਗਈ ਹੈ ਤਾਂ ਜੋ ਸਪਸ਼ਟ ਪ੍ਰਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਹੋਵੇ। ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਸਾਈਜ਼ ਗਿਆਤ ਕਰੋ।

ਹੱਲ

ਵਸਤੂ ਦਾ ਆਕਾਰ, (h) = +4.0 cm;

ਵਸਤੂ ਦੀ ਦੂਰੀ, (u) = -25.0 cm;

ਫੋਕਸ ਦੂਰੀ (f) = -15.0 cm;

ਪ੍ਰਤੀਬਿੰਬ ਦੂਰੀ, (v) = ?

ਪਤੀਬਿੰਬ ਆਕਾਰ, (h') = ?

ਸਮੀਕਰਨ (10.1) ਤੋਂ

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\overrightarrow{H}^{\dagger}$$
 $\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-15.0} - \frac{1}{-25.0} = -\frac{1}{15.0} + \frac{1}{25.0}$

$$\overrightarrow{H}^{\dagger}$$
 $\frac{1}{v} = \frac{-5.0 + 3.0}{75.0} = \frac{-2.0}{75.0}$ $\overrightarrow{H}^{\dagger}$, $v = -37.5$ cm

ਪਰਦੇ ਨੂੰ ਦਰਪਣ ਤੋਂ 37.5 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ।ਪ੍ਰਤੀਬਿੰਬ ਵਾਸਤਵਿਕ ਹੈ।

ਵੱਡਦਰਸ਼ਨ,
$$(m)$$
 $\frac{h'}{h} = -\frac{v}{u}$

$$\vec{H}^{\dagger} h' = -\frac{vh}{u} = -\frac{(-37.5 \text{ cm}) (+4.0 \text{ cm})}{(-25.0 \text{ cm})}$$

ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਉਚਾਈ (h') = -6.0 cmਪ੍ਰਤੀਬਿੰਬ ਉਲਟਾ ਅਤੇ ਵੱਡਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਉਸ ਉੱਤਲ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰੋ ਜਿਸ ਦਾ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ 32 cm ਹੈ।
- ਇੱਕ ਅਵਤਲ ਦਰਪਣ ਆਪਣੇ ਸਾਹਮਣੇ 10 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖੇ ਇੱਕ ਬਿੰਬ ਦਾ ਤਿੰਨ ਗੁਣਾ ਵੱਡਾ ਵਾਸਤਵਿਕ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾਉਂਦਾ ਹੈ। ਪ੍ਰਤਿਬਿੰਬ ਦਰਪਣ ਤੋਂ ਕਿੰਨੀ ਦੂਰੀ ਉੱਤੇ ਹੈ?

10.3 ਪ੍ਰਕਾਸ਼ ਦਾ ਅਪਵਰਤਨ

ਕਿਸੇ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਚੱਲਦਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਇੱਕ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮ ਤੋਂ ਦੂਜੇ ਮਾਧਿਅਮ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ? ਕੀ ਇਹ ਹੁਣ ਵੀ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਚਲਦਾ ਹੈ ਜਾਂ ਆਪਣੀ ਦਿਸ਼ਾ ਬਦਲ ਲੈਂਦਾ ਹੈ? ਆਓ ਅਸੀਂ ਆਪਣੇ ਦਿਨ ਪ੍ਰਤਿਦਿਨ ਦੇ ਕੁੱਝ ਅਨੁਭਵਾਂ ਨੂੰ ਯਾਦ ਕਰੀਏ। ਤੁਸੀਂ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਪਾਣੀ ਨਾਲ ਭਰੇ ਇੱਕ ਟੈਂਕ ਜਾਂ ਤਲਾਬ ਜਾਂ ਟੋਭੇ ਦਾ ਬੱਲਾ ਉੱਠਿਆ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ, ਜਦੋਂ ਕੋਈ, ਮੋਟੀ ਕੱਚ ਦੀ (glass) ਸਲੈਂਬ ਕਿਸੇ ਛਪੀ ਹੋਈ ਸਮੱਗਰੀ ਉੱਤੇ ਰੱਖੀ ਜਾਵੇ ਤਾਂ ਕੱਚ ਦੀ ਸਲੈਂਬ ਦੇ ਉੱਪਰ ਤੋਂ ਵੇਖਣ ਤੇ ਅੱਖਰ ਉੱਪਰ ਉੱਠੇ ਹੋਏ ਪ੍ਰਤੀਤ ਹੁੰਦੇ ਹਨ। ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਕੀ ਤੁਸੀਂ ਕਿਸੇ ਕੱਚ ਦੇ ਭਾਂਡੇ ਵਿੱਚ ਰੱਖੇ ਪਾਣੀ ਵਿੱਚ ਵਿੱਚ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਡੁੱਬੀ ਪੈਂਸਿਲ ਨੂੰ ਵੇਖਿਆ ਹੈ? ਇਹ ਹਵਾ ਅਤੇ ਪਾਣੀ ਦੀ ਅੰਤਰ ਸਤਹ ਤੋਂ ਉੱਤੇ ਟੇਢੀ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ। ਤੁਸੀਂ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਪਾਣੀ ਨਾਲ ਭਰੇ ਕੱਚ ਦੇ ਬਰਤਨ ਵਿੱਚ ਰੱਖੇ ਨਿੱਥੂ ਇੱਕ ਸਾਈਡ (side) ਤੋਂ ਵੇਖਣ ਤੇ ਆਪਣੇ ਵਾਸਤਵਿਕ ਸਾਈਜ਼ ਤੋਂ ਵੱਡੇ ਪ੍ਰਤੀਤ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਅਨੁਭਵਾਂ ਦੀ ਵਿਆਖਿਆ ਤੁਸੀਂ ਕਿਵੇਂ ਕਰੋਗੇ?

ਆਓ ਪਾਣੀ ਵਿੱਚ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਡੁੱਬੀ ਪੈਂਸਿਲ ਦੇ ਮੁੜੇ ਹੋਣ ਦੀ ਘਾਟ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਪਾਣੀ ਵਿੱਚ ਡੁੱਬੇ ਪੈਂਨਸਿਲ ਦੇ ਭਾਗ ਤੋਂ ਤੁਹਾਡੇ ਕੋਲ ਪਹੁੰਚਣ ਵਾਲਾ ਪ੍ਰਕਾਸ਼, ਪਾਣੀ ਤੋਂ ਬਾਹਰ ਦੇ ਪੈਂਨਸਿਲ ਦੇ ਭਾਗ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਭਿੰਨ ਦਿਸ਼ਾ ਵਿੱਚ ਆਉਂਦਾ ਹੋਇਆ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਕਾਰਨ ਪੈਂਨਸਿਲ ਮੁੜੀ ਹੋਈ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ। ਇਹਨਾਂ ਕਾਰਨਾਂ ਤੋਂ ਜਦ ਅੱਖਰਾਂ ਦੇ ਉੱਪਰ ਕੱਚ ਦੀ ਸਲੈਬ ਰੱਖ ਕੇ ਵੇਖਦੇ ਹਾਂ ਤਾਂ ਉਹ ਉੱਪਰ ਨੂੰ ਉੱਠੇ ਹੋਏ ਪ੍ਰਤੀਤ ਹੁੰਦੇ ਹਨ।

ਜੇਕਰ ਅਸੀਂ ਪਾਣੀ ਦੀ ਥਾਂ ਕੋਈ ਹੋਰ ਦ੍ਵ ਜਿਵੇਂ ਕਿ ਕੈਰੋਸੀਨ/ਮਿੱਟੀ ਜਾਂ ਤਾਰਪੀਨ ਦਾ ਤੇਲ ਪ੍ਯੋਗ ਕਰੀਏ ਤਾਂ ਕੀ ਫਿਰ ਵੀ ਪੈਂਨਸਿਲ ਮੁੜੀ ਹੋਈ ਵਿਖਾਈ ਦੇਵੇਗੀ? ਜੇਕਰ ਅਸੀਂ ਕੱਚ ਦੀ ਸਲੈਂਬ ਨੂੰ ਪਾਰਦਰਸ਼ੀ ਪਲਾਸਟਿਕ ਦੀ ਸਲੈਂਬ ਨਾਲ ਬਦਲ ਦੇਈਏ, ਕੀ ਫਿਰ ਵੀ ਅੱਖਰ ਉਸੇ ਉਚਾਈ ਤੀਕ ਉੱਠੇ ਹੋਏ ਪ੍ਰਤੀਤ ਹੋਣਗੇ? ਤੁਸੀਂ ਵੇਖੋ ਕਿ ਵੱਖ ਵੱਖ ਮਾਧਿਅਮ ਦੇ ਜੋੜਿਆਂ ਦੇ ਵਾਸਤੇ ਇਹਨਾਂ ਪ੍ਰਭਾਵਾਂ ਦਾ ਵਿਸਤਾਰ ਭਿੰਨ ਭਿੰਨ ਹੈ। ਇਹ ਪ੍ਰੇਖਣ ਸੂਚਿਤ ਕਰਦੇ ਹਨ ਕਿ ਪ੍ਰਕਾਸ਼ ਸਾਰੇ ਮਾਧਿਅਮਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਨਹੀਂ ਚਲਦਾ।ਅਜਿਹਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ ਕਿ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਇੱਕ ਮਾਧਿਅਮ ਤੋਂ ਦੂਜੇ ਮਾਧਿਅਮ ਵਿੱਚ ਤਿਰਛਾ ਹੋ ਕੇ ਜਾਂਦਾ ਹੈ ਤਾਂ ਦੂਜੇ ਮਾਧਿਅਮ ਵਿੱਚ ਜਾ ਕੇ ਚਲਣ ਦੀ ਦਿਸ਼ਾ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਵਰਤਾਰੇ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਦਾ ਅਪਵਰਤਨ ਆਖਦੇ ਹਨ।ਆਓ ਅਸੀਂ ਇਸ ਵਰਤਾਰੇ ਨੂੰ ਹੋਰ ਵਧੇਰੇ ਕੁੱਝ ਕਿਰਿਆਵਾਂ ਕਰਕੇ ਸਮਝੀਏ।

ਕਿਰਿਆ 10.7

- 👞 ਪਾਣੀ ਨਾਲ ਭਰੀ ਇੱਕ ਬਾਲਟੀ ਅੰਦਰ ਦੇ ਥੱਲੇ ਉੱਤੇ ਇੱਕ ਸਿੱਕਾ ਰੱਖੋ।
- ਆਪਣੀ ਅੱਖ ਨੂੰ ਪਾਣੀ ਦੇ ਉੱਪਰ ਕਿਸੇ ਪਾਸੇ ਰੱਖ ਕੇ ਸਿੱਕੇ ਨੂੰ ਇੱਕ ਬਾਰ ਵਿੱਚ ਚੁੱਕਣ ਦਾ ਯਤਨ ਕਰੋ। ਕੀ ਤੁਸੀਂ ਸਿੱਕਾ ਚੁੱਕਣ ਵਿੱਚ ਸਫਲ ਹੋ ਜਾਂਦੇ ਹੋ?
- ਇਸ ਕਿਰਿਆ ਨੂੰ ਦੁਹਰਾਓ। ਤੁਸੀਂ ਇਸ ਨੂੰ ਇੱਕ ਬਾਰ ਵਿੱਚ ਕਰਨ ਵਿੱਚ ਕਿਉਂ ਸਫਲ ਨਹੀਂ ਹੋਏ।
- ਆਪਣੇ ਮਿੱਤਰਾਂ ਨੂੰ ਇਹ ਕਰਨ ਲਈ ਕਹੋ। ਉਹਨਾਂ ਨਾਲ ਆਪਣੇ ਅਨੁਭਵ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਕਿਰਿਆ 10.8

- 📕 ਕਿਸੇ ਮੇਜ਼ ਉੱਤੇ ਇੱਕ ਵੱਡਾ ਘੱਟ ਡੂੰਘਾ ਟੱਬ ਰੱਖੋ ਅਤੇ ਉਸ ਦੇ ਥੱਲੇ ਉੱਤੇ ਇੱਕ ਸਿੱਕਾ ਰੱਖੋ।
- ਟੱਬ ਤੋਂ ਹੌਲੇ ਹੌਲੇ ਦੂਰ ਹਟੋ।ਜਦੋਂ ਸਿੱਕਾ ਅਜੇ ਵਿਖਾਈ ਦੇਣ ਤੋਂ ਬੰਦ ਹੋਇਆ ਹੋਵੇ ਤਾਂ ਰੁਕ ਜਾਓ।
- 🛾 ਆਪਣੇ ਮਿੱਤਰ ਨੂੰ ਕਹੋ ਕਿ ਸਿੱਕੇ ਨੂੰ ਹਿਲਾਏ ਬਿਨਾਂ ਟੱਬ ਵਿੱਚ ਪਾਣੀ ਪਾਵੇ।
- ਆਪਣੀ ਸਥਿਤੀ ਤੋਂ ਸਿੱਕੇ ਨੂੰ ਵੇਖਣ ਦਾ ਯਤਨ ਕਰਦੇ ਰਹੋ। ਕੀ ਸਿੱਕਾ ਤੁਹਾਡੀ ਉਸੇ ਸਥਿਤੀ ਤੋਂ ਮੁੜ ਵਿਖਾਈ ਦੇਣ ਲੱਗ ਗਿਆ ਹੈ? ਇਹ ਕਿਵੇਂ ਸੰਭਵ ਹੋਇਆ ਹੈ।

ਟੱਬ ਵਿੱਚ ਪਾਣੀ ਪਾਉਣ ਨਾਲ ਸਿੱਕਾ ਮੁੜ ਵਿਖਾਈ ਦੇਣ ਲਗਦਾ ਹੈ। ਪ੍ਕਾਸ਼ ਦੇ ਅਪਵਰਤਨ ਦੇ ਕਾਰਨ ਸਿੱਕਾ ਆਪਣੀ ਵਾਸਤਵਿਕ ਸਥਿਤੀ ਤੋਂ ਥੋੜ੍ਹਾ ਜਿਹਾ ਉੱਠਿਆ ਹੋਇਆ ਪ੍ਤੀਤ ਹੁੰਦਾ ਹੈ।

ਕਿਰਿਆ 10.9

- ਮੇਜ਼ ਉੱਤੇ ਰੱਖੇ ਇੱਕ ਚਿੱਟੇ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਇੱਕ ਮੋਟੀ ਸਿੱਧੀ ਲਾਈਨ ਖਿੱਚੋ।
- ਇਸ ਲਾਈਨ ਦੇ ਉੱਪਰ ਇੱਕ ਕੱਚ ਦੀ ਸਲੈਬ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋ ਕਿ ਇਸ ਦੀ ਇੱਕ ਕੋਰ ਇਸ ਰੇਖਾ ਨਾਲ ਕੋਈ ਕੋਣ ਬਣਾਵੇ।
- ਸਲੈਂਬ ਦੇ ਹੇਠਾਂ ਆਈ ਲਾਈਨ ਦੇ ਭਾਗ ਨੂੰ ਇੱਕ ਪਾਸੇ ਤੋਂ ਵੇਖੋ। ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਕੀ ਕੱਚ ਦੀ ਸਲੈਂਬ ਦੇ ਹੇਠਾਂ (side) ਦੀ ਲਾਈਨ ਕੋਰਾਂ (edges) ਦੇ ਪਾਸੇ ਤੋਂ ਮੁੜੀ ਹੋਈ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ?
- ਹੁਣ ਕੱਚ ਦੀ ਸਲੈਬ ਨੂੰ ਇਸ ਪ੍ਕਾਰ ਰੱਖੋ ਕਿ ਇਹ ਰੇਖਾ ਤੋਂ ਲੰਬ ਸਥਿਤੀ ਵਿੱਚ ਹੋਵੇ।ਹੁਣ ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਕੀ ਕੱਚ ਦੀ ਸਲੈਬ ਦੇ ਹੇਠਾਂ ਦੀ ਲਾਈਨ ਦਾ ਭਾਗ ਮੁੜਿਆ ਹੋਇਆ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ?
- ਲਾਈਨ ਨੂੰ ਕੱਚ ਦੀ ਸਲੈਂਬ ਦੇ ਉੱਪਰ ਤੋਂ ਵੇਖੋ। ਕੀ ਸਲੈਂਬ ਦੇ ਹੇਠਾਂ ਦੀ ਲਾਈਨ ਦਾ ਭਾਗ ਉੱਠਿਆ ਹੋਇਆ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ? ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ?

10.3.1 ਕੱਚ ਦੀ ਆਇਤਾਕਾਰ ਸਲੈਬ ਵਿੱਚੋਂ ਅਪਵਰਤਨ

ਕੱਚ ਦੀ ਸਲੈਬ ਵਿੱਚੋਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਅਪਵਰਤਨ ਨੂੰ ਸਮਝਣ ਲਈ ਆਓ ਇੱਕ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ 10.10

- ਇੱਕ ਡ੍ਰਾਇੰਗ ਬੋਰਡ ਉੱਤੇ ਚਿੱਟੇ ਕਾਗਜ਼ ਦੀ ਇੱਕ ਸ਼ੀਟ ਡਰਾਇੰਗ ਪਿੰਨਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਲਗਾਓ।
- 🔹 ਸ਼ੀਟ ਦੇ ਉੱਪਰ ਮੱਧ ਵਿੱਚ ਕੱਚ ਦੀ ਇੱਕ ਆਇਤਾਕਾਰ ਸਲੈਬ ਰੱਖੋ।
- ਪੈੱਸਿਲ ਨਾਲ ਸਲੈਬ ਦੀ ਰੂਪ ਰੇਖਾ ਖਿੱਚੋ। ਇਸ ਰੂਪ ਰੇਖਾ ਦਾ ਨਾਂ ABCD ਰੱਖੋ।
- 🔹 ਚਾਰ ਇੱਕ ਸਮਾਨ ਪਿੰਨ ਲਓ।
- ਦੋ ਪਿੰਨਾਂ, ਮੰਨ ਲਓ E ਅਤੇ F ਖੜ੍ਹਵੇਂ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਲਗਾਓ ਕਿ ਪਿੰਨਾਂ ਨੂੰ ਮਿਲਾਉਂਦੀ ਹੋਈ ਰੇਖਾ ਕੋਰ AB ਨਾਲ ਕੋਈ ਕੋਣ ਬਣਾਉਂਦੀ ਹੋਵੇ।
- ਪਿੰਨ E ਅਤੇ F ਦੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਨੂੰ ਉਲਟ ਪਾਸੇ ਤੋਂ ਵੇਖੋ। ਦੂਜੀਆਂ ਦੋ ਪਿੰਨਾਂ ਮੰਨ ਲਓ G ਅਤੇ H, ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਲਗਾਓ ਕਿ ਇਹ ਪਿੰਨਾਂ E ਅਤੇ F ਦੇ ਪ੍ਰਤੀਬੰਬ ਇੱਕ ਸਿੱਧੀ ਲਾਈਨ ਉੱਤੇ ਸਥਿਤ ਹੋਣ।
- 💂 ਪਿੰਨਾਂ ਅਤੇ ਸਲੈਬ ਨੂੰ ਹਟਾ ਦਿਓ।
- ਪਿੰਨ E ਅਤੇ F ਦੀਆਂ ਸਥਿਤੀਆਂ (tip) ਨੂੰ ਮਿਲਾਓ ਅਤੇ ਇਸ ਲਾਈਨ ਨੂੰ AB ਤੱਕ ਵਧਾਓ।ਮੰਨ ਲਓ EF, AB ਨੂੰ ਬਿੰਦੂ O ਉੱਤੇ ਮਿਲਦੀ ਹੈ।ਇਸੇ ਪ੍ਕਾਰ ਪਿੰਨ G ਅਤੇ H ਦੀਆਂ ਸਥਿਤੀਆਂ ਨੂੰ ਮਿਲਾਓ ਅਤੇ ਇਸ ਲਾਈਨ ਨੂੰ ਕੋਰ CD ਤੱਕ ਵਧਾਓ।ਮੰਨ ਲਓ, HG, CD ਨੂੰ O' ਤੇ ਮਿਲਦੀ ਹੈ।
- O ਅਤੇ O' ਨੂੰ ਮਿਲਾਓ। EF ਨੂੰ P ਤੱਕ ਵਧਾਓ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 10.10 ਬਿੰਦੂਆਂ ਵਾਲੀ ਰੇਖਾ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਤੁਸੀਂ ਨੋਟ ਕਰੋਗੇ ਕਿ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਨੇ ਆਪਣੀ ਦਿਸ਼ਾ ਬਿੰਦੂ O ਅਤੇ O' ਉੱਤੇ ਪਰਿਵਰਤਿਤ ਕੀਤੀ ਹੈ। ਨੋਟ ਕਰੋ ਕਿ ਦੋਵੇਂ ਬਿੰਦੂ O ਅਤੇ O' ਦੋਵੇਂ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮਾਂ ਦੇ ਵੱਖ ਕਰਨ ਵਾਲੀਆਂ ਸਤਾਵਾਂ ਉੱਤੇ ਸਥਿਤ ਹਨ।। AB ਦੇ ਬਿੰਦੂ O ਉੱਤੇ ਇੱਕ ਲੰਬ NN' ਖਿੱਚੋਂ ਅਤੇ ਦੂਜਾ ਲੰਬ MM', CD ਦੇ ਬਿੰਦੂ O' ਉੱਤੇ ਖਿੱਚੋ। ਬਿੰਦੂ O ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਵਿਰਲੇ ਮਾਧਿਅਮ ਤੋਂ ਸੰਘਣੇ ਮਾਧਿਅਮ ਵਿੱਚ ਭਾਵ ਹਵਾ ਤੋਂ ਕੱਚ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰ ਰਹੀ ਹੈ। ਨੋਟ ਕਰੋ ਕਿ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਲੰਬ ਵੱਲ ਝੁਕ ਜਾਂਦੀ ਹੈ। ਬਿੰਦੂ O' ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਲੰਬ ਵੱਲ ਝੁਕ ਜਾਂਦੀ ਹੈ। ਬਿੰਦੂ O' ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਸੰਘਣੇ ਮਾਧਿਅਮ ਤੋਂ ਵਿਰਲੇ ਮਾਧਿਅਮ ਵਿੱਚ, ਭਾਵ ਕੱਚ ਤੋਂ ਹਵਾ ਵਿੱਚ ਦਾਖਲ ਹੁੰਦੀ ਹੈ। ਨੋਟ ਕਰੋ ਕਿ ਇਸ ਭਾਗ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਲੰਬ ਤੋਂ ਪਰੇ ਮੁੜ ਜਾਂਦੀ ਹੈ। ਦੋਵੇਂ ਅਪਵਰਤਕ ਸਤਹ AB ਅਤੇ CD ਉੱਤੇ ਅਪਾਤੀ ਕੋਣ ਅਤੇ ਅਪਵਰਤਨ ਕੋਣ ਦੇ ਮਾਨਾਂ ਦੀ ਤਲਨਾ ਕਰੋ।

ਚਿੱਤਰ 10.10 ਕੱਚ ਦੀ ਆਇਤਾਕਾਰ ਸਲੈਬ ਵਿੱਚੋਂ ਅਪਵਰਤਨ

ਚਿੱਤਰ 10.10 ਵਿੱਚ EO ਆਪਾਤੀ ਕਿਰਨ ਹੈ, OO'

ਅਪਵਰਤਿਤ ਕਿਰਨ ਹੈ ਅਤੇ O'H ਨਿਰਗਾਮੀ ਕਿਰਨ ਹੈ।ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਨਿਰਗਾਮੀ ਕਿਰਨ ਅਪਾਤੀ ਕਿਰਨ ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਾਨ ਅੰਤਰ ਹੈ।ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਆਇਤਾਕਾਰ ਕੱਚ ਦੀ ਸਲੈਂਬ ਦੇ ਵਿਪਰੀਤ ਪਾਸੇ AB (ਹਵਾ-ਕੱਚ ਅੰਤਰ ਸਤਹ) ਅਤੇ CD (ਕੱਚ-ਹਵਾ ਅੰਤਰ ਸਤਹ) ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਦੇ ਮੁੜਨ ਦੀ ਮਾਤਰਾ ਬਰਾਬਰ ਅਤੇ ਵਿਪਰੀਤ ਹੈ।ਇਸੇ ਕਾਰਨ ਨਿਰਗਮਨੀ ਕਿਰਨ ਆਪਾਤੀ ਕਿਰਨ ਦੇ ਸਮਾਨ ਅੰਤਰ ਨਿਕਲਦੀ ਹੈ।ਫਿਰ ਵੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਇੱਕ ਪਾਸੇ ਵੱਲ ਥੋੜ੍ਹਾ ਜਿਹਾ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।ਜੇਕਰ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਮਾਧਿਅਮ ਦੇ ਆਪੋ ਵਿੱਚ ਮਿਲਣ ਦੀ ਸਤਹ ਦੇ ਲੰਬ ਰੂਪ ਵਿੱਚ ਆਪਤਿਤ ਹੋਵੇ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ? ਯਤਨ ਕਰੋ ਅਤੇ ਪਤਾ ਕਰੋ।

ਹੁਣ ਤੁਸੀਂ ਪ੍ਕਾਸ਼ ਦੇ ਅਪਵਰਤਨ ਬਾਰੇ ਜਾਣੂ ਹੋ ਗਏ ਹੈ। ਅਪਵਰਤਨ ਪ੍ਕਾਸ਼ ਦੇ ਇੱਕ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮ ਤੋਂ ਦੂਜੇ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਉੱਤੇ ਪ੍ਕਾਸ਼ ਦੀ ਚਾਲ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਯੋਗ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ ਕਿ ਪ੍ਕਾਸ਼ ਦਾ ਅਪਵਰਤਨ ਨਿਸ਼ਚਿਤ ਨਿਯਮਾਂ ਦੇ ਆਧਾਰ ਤੇ ਹੁੰਦਾ ਹੈ। ਅਪਵਰਤਨ ਦੇ ਨਿਯਮ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ :

- (i) ਆਪਾਤੀ ਕਿਰਨ, ਅਪਵਰਤਿਤ ਕਿਰਨ ਅਤੇ ਦੋਵੇਂ ਮਾਧਿਅਮਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਵਾਲੀ ਸਤਹ ਦੇ ਆਪਤਨ ਬਿੰਦੂ ਉੱਤੇ ਲੰਬ ਸਾਰੇ ਇੱਕ ਹੀ ਤਲ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।
- (ii) ਪ੍ਰਕਾਸ਼ ਦੇ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਰੰਗ ਅਤੇ ਨਿਸ਼ਚਿਤ ਮਾਧਿਅਮ ਦੇ ਜੋੜੇ ਦੇ ਲਈ ਆਪਾਤੀ ਕੋਣ ਦੇ ਸਾਇਨ (sine) ਅਤੇ ਅਪਵਰਤਨ ਕੋਣ ਦੇ ਸਾਇਨ (sine) ਦਾ ਅਨੁਪਾਤ ਸਥਿਰ ਹੁੰਦਾ ਹੈ। ਇਸ ਨਿਯਮ ਨੂੰ ਸਨੈੱਲ ਦਾ ਅਪਵਰਤਨ ਨਿਯਮ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਜੇਕਰ । ਆਪਾਤੀ ਕੋਣ ਹੋਵੇ ਅਤੇ r ਅਪਵਰਤਨ ਕੋਣ ਹੋਵੇ ਤਾਂ:

$$\frac{\sin i}{\sin r} = ਸਥਿਰ ਅੰਕ$$
 (10.4)

ਇਸ ਸਥਿਰ ਅੰਕ ਦੇ ਮਾਨ ਨੂੰ ਦੂਜੇ ਮਾਧਿਅਮ ਦਾ ਪਹਿਲੇ ਮਾਧਿਅਮ ਦੇ ਸਾਪੇਖਕ ਅਪਵਰਤਨ ਅੰਕ (refractive index) ਕਹਿੰਦੇ ਹਨ। ਆਓ ਅਪਵਰਤਨ ਬਾਰੇ ਵਿੱਚ ਕੁੱਝ ਵਿਸਤਾਰ ਨਾਲ ਅਧਿਐਨ ਕਰੀਏ।

10.3.2 ਅਪਵਰਤਨ ਅੰਕ (The Refractive Index)

ਤੁਸੀਂ ਪਹਿਲਾਂ ਹੀ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹੋ ਕਿ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਨ ਤਿਰਛੀ ਚਲਦੀ ਹੋਈ ਇੱਕ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮ ਤੋਂ ਦੂਜੇ ਮਾਧਿਅਮ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੀ ਹੈ ਤਾਂ ਇਹ ਦੂਜੇ ਮਾਧਿਅਮ ਵਿੱਚ ਆਪਣੀ ਦਿਸ਼ਾ ਪਰਵਰਤਿਤ ਕਰ ਲੈਂਦੀ ਹੈ। ਦਿੱਤੇ ਹੋਏ ਮਾਧਿਅਮ ਦੇ ਜੋੜੇ ਲਈ ਹੋਣ ਵਾਲੇ ਦਿਸ਼ਾ ਪਰਿਵਰਤਨ ਦੀ ਮਾਤਰਾ ਨੂੰ ਅਪਵਰਤਨ ਅੰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਸਮੀਕਰਨ 10.4 ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਪ੍ਰਗਟ ਹੋਣ ਵਾਲਾ ਸਥਿਰ ਅੰਕ ਹੈ।

ਅਪਵਰਤਨ ਅੰਕ ਨੂੰ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਭੌਤਿਕ ਰਾਸ਼ੀ, ਭਿੰਨ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੰਚਾਰਨ ਦੀ ਸਾਪੇਖਕ ਚਾਲ ਨਾਲ ਸੰਬੰਧਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਭਿੰਨ-ਭਿੰਨ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਵੱਖ-ਵੱਖ ਚਾਲਾਂ ਨਾਲ ਚਲਦਾ ਹੈ। ਨਿਰਵਾਯੂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ $3 \times 10^8 \text{ m/s}$ ਦੀ ਸਭ ਤੋਂ ਵੱਧ ਚਾਲ ਨਾਲ ਚਲਦਾ ਹੈ। ਹਵਾ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਨਿਰਵਾਯੂ ਵਿੱਚ ਚਾਲ ਦੇ ਮੁਕਾਬਲੇ ਥੋੜ੍ਹੀ ਜਿਹੀ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਕੱਚ ਜਾਂ ਪਾਣੀ ਵਿੱਚ ਇਹ ਕਾਫੀ ਘੱਟ ਜਾਂਦੀ ਹੈ। ਦੋ ਮਾਧਿਅਮ ਦੇ ਜੋੜੇ ਲਈ ਅਪਵਰਤਨ ਅੰਕ ਦੇ ਮਾਨ ਦੋਵੇਂ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 10.22 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇੱਕ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਨ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜੋ ਮਾਧਿਅਮ 1 ਤੋਂ ਮਾਧਿਅਮ 2 ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰ ਰਹੀ ਹੈ।ਮੰਨ ਲਓ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਮਾਧਿਅਮ 1 ਵਿੱਚ v_1 ਅਤੇ ਮਾਧਿਅਮ 2 ਵਿੱਚ v_2 ਹੈ।ਮਾਧਿਅਮ 2 ਅਤੇ ਮਾਧਿਅਮ 1 ਦਾ ਸਾਖੇਪ ਅਪਵਰਤਨ, ਮਾਧਿਅਮ 1 ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਅਤੇ ਮਾਧਿਅਮ 2 ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਦੇ ਅਨੁਪਾਤ ਦੁਆਰਾ ਪ੍ਰਗਟਾ ਕਰਦੇ ਹਨ। ਇਸ ਨੂੰ ਆਮ ਕਰਕੇ ਸੰਕੇਤ n_{21} ਦੁਆਰਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਸ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਰੂਪ ਵਿੱਚ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ:

$$n_{21} = rac{}{} + rac{}{} + rac{}{} + rac{}{}{} + rac{}{} + rac{}{} + rac{}{}{} + rac{}{}{} + rac{}{} + rac{}{$$

ਇਸੇ ਤਰ੍ਹਾਂ ਤੋਂ ਮਾਧਿਅਮ 1 ਦਾ ਮਾਧਿਅਮ 2 ਦਾ ਸਾਖੇਪਕ ਅਪਵਰਤਕ ਅੰਕ $n_{_{12}}$ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ–

$$n_{12} = \frac{\text{ਮਾਧਿਅਮ 2 ਵਿੱਚ ਪ੍ਰਕਾਸ ਦੀ ਚਾਲ}}{\text{ਮਾਧਿਅਮ 1 ਵਿੱਚ ਪ੍ਰਕਾਸ ਦੀ ਚਾਲ}} = \frac{v_2}{v_1}$$
 (10.6)

ਜੇਕਰ ਮਾਧਿਅਮ 1 ਨਿਰਵਾਯੂ ਜਾਂ ਵਾਯੂ ਹੈ ਤਾਂ ਮਾਧਿਅਮ 2 ਦਾ ਅਪਵਰਤਕ ਅੰਕ ਨਿਰਵਾਯੂ ਦੇ ਸਾਪੇਖ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਮਾਧਿਅਮ ਦਾ ਨਿਰਪੇਖ ਅਪਵਰਤਕ ਅੰਕ ਕਹਾਉਂਦਾ ਹੈ। ਇਹ ਕੇਵਲ n_2 ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਹਵਾ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ c ਹੈ ਅਤੇ ਮਾਧਿਅਮ ਵਿੱਚ v ਹੈ ਤਾਂ ਮਾਧਿਅਮ ਦਾ ਅਪਵਰਤਕ ਅੰਕ n_2 ਹੋਵੇਗਾ।

$$\Gamma_{\mu\nu} = \frac{\partial}{\partial u} = \frac{\partial}{\partial u} = \frac{\partial}{\partial u}$$
 (10.7).

ਮਾਧਿਅਮ ਦੇ ਨਿਰਪੇਖ ਅਪਵਰਤਨ ਅੰਕ ਨੂੰ ਕੇਵਲ ਅਪਵਰਤਨ ਅੰਕ ਕਹਿੰਦੇ ਹਨ ਸਾਰਨੀ 10.3 ਵਿੱਚ ਕਈ ਮਾਧਿਅਮਾਂ ਦੇ ਅਪਵਰਤਨ ਅੰਕ ਦਿੱਤੇ ਗਏ ਹਨ।ਸਾਰਨੀ ਤੋਂ ਤੁਹਾਨੂੰ ਗਿਆਤ ਹੋ ਜਾਵੇਗਾ ਕਿ ਪਾਣੀ ਦਾ ਅਪਵਰਤਨ ਅੰਕ $n_{_{\! \! w}}=1.33$ ਹੈ ।ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਹਵਾ

ਚਿੱਤਰ 10.11

ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦਾ ਵੇਗ ਅਤੇ ਜਲ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੇ ਵੇਗ ਦਾ ਅਨੁਪਾਤ 1.33 ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ ਕਰਾਊਨ ਕੱਚ ਦਾ ਅਪਵਰਤਨ ਅੰਕ, n_g =1.52 ਅਜਿਹੇ ਅੰਕੜੇ ਕਈ ਸਥਾਨਾਂ ਉੱਤੇ ਉਪਯੋਗੀ ਹਨ। ਫਿਰ ਵੀ ਤੁਹਾਨੂੰ ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਨੂੰ ਜ਼ਬਾਨੀ ਯਾਦ ਕਰਨ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ।

ਸਾਰਨੀ 10.3: ਕੁੱਝ ਪਦਾਰਥਕ ਮਾਧਿਅਮਾਂ ਦੇ ਨਿਰਪੇਖ ਅਪਵਰਤਨ ਅੰਕ

ਪਦਾਰਥਕ ਮਾਧਿਅਮ	ਅਪਵਰਤਨ ਅੰਕ	ਪਦਾਰਥਕ ਮਾਧਿਅਮ	ਅਪਵਰਤਨ ਅੰਕ
ਹਵਾ	1:0003	ਕੈਨੇਡਾ ਬਾਲਸਮ	1.53
ਬਰਫ	1.31	ਖਣਿਜ ਨਮਕ	1.54
ਪਾਣੀ	1.33	ਕਾਰਬਨਡਾਈਸਲਫਾਈਡ	1.63
ਅਲਕੋਹਲ	1.36	ਸੰਘਣਾ ਫਲਿੰਟ ਕੱਚ	1.65
ਕੈਰੋਸੀਨ/ ਮਿੱਟੀ ਦਾ ਤੇਲ	1.44	तुषी	1.71
ਸੰਘਣਿਤ ਕੁਆਰਟਜ਼	1.46	ਨੀਲਮ	1.77
ਤਾਰਪੀਨ ਦਾ ਤੋਲ	1.47	ਹੀਰਾ	2.42
ਬੇਂਜੀਨ	1,50		

ਸਾਰਨੀ 10.3 ਤੋਂ ਨੌਟ ਕਰੋ ਕਿ ਇਹ ਜਰੂਰੀ ਨਹੀਂ ਹੈ ਪ੍ਰਕਾਸ਼ੀ ਸੰਘਣੇ ਮਾਧਿਅਮ ਦੀ ਪੁੰਜ ਘਣਤਾ ਵੱਧ ਹੋਵੇ।ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ ਕੈਰੋਸੀਨ ਦਾ ਅਪਵਰਤਨ ਅੰਕ ਪਾਣੀ ਦੇ ਅਪਵਰਤਨ ਅੰਕ ਤੋਂ ਵੱਧ ਪ੍ਰੰਤੂ ਇਸ ਦੀ ਪੁੰਜ ਘਣਤਾ ਪਾਣੀ ਦੀ ਪੁੰਜ ਘਣਤਾ ਨਾਲੋਂ ਘੱਟ ਹੈ।

ਕਿਸੇ ਮਾਧਿਅਮ ਦੀ ਪ੍ਕਾਸ਼ ਨੂੰ ਅਪਵਰਤਿਤ ਕਰਨ ਦੀ ਯੋਗਤਾ ਉਸ ਦੀ ਪ੍ਕਾਸ਼ ਘਣਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਖਾਈ ਜਾ ਸਕਦੀ ਹੈ। ਪ੍ਕਾਸ਼ੀ ਘਣਤਾ ਦੀ ਇੱਕ ਨਿਸ਼ੇਚਿਤ ਪ੍ਰਗਟਾਓ (connotation) ਹੈ। ਇਹ ਪੁੰਜ ਘਣਤਾ ਤੋਂ ਭਿੰਨ ਹੈ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਵਿਰਲਾ ਮਾਧਿਅਮ' ਅਤੇ 'ਸੰਘਣਾ ਮਾਧਿਅਮ ਸ਼ਬਦਾਂ ਦਾ ਪ੍ਯੋਗ ਕੀਤਾ ਹੈ। ਵਾਸਤਵ ਵਿੱਚ ਇਸ ਦਾ ਕ੍ਰਮਵਾਰ ਅਰਥ ਪ੍ਕਾਸ਼ੀ ਵਿਰਲਾ ਮਾਧਿਅਮ ਅਤੇ ਪ੍ਕਾਸ਼ੀ ਸੰਘਣਾ ਮਾਧਿਅਮ ਹੈ। ਅਸੀਂ ਕਦੋਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇੱਕ ਮਾਧਿਅਮ ਦੀ ਪ੍ਕਾਸ਼ੀ ਘਣਤਾ ਦੂਜੇ ਦੀ ਪ੍ਕਾਸ਼ੀ ਘਣਤਾ ਨਾਲੋਂ ਵੱਧ ਹੈ? ਦੋ ਮਾਧਿਅਮਾਂ ਦੀ ਤੁਲਨਾ ਕਰਦੇ ਸਮੇਂ ਵੱਧ ਅਪਵਰਤਨ ਅੰਕ ਵਾਲਾ ਮਾਧਿਅਮ ਅਤੇ ਦੂਜੇ ਨਾਲੋਂ ਵੱਧ ਪ੍ਕਾਸ਼ੀ ਘਣਤਾ ਵਾਲਾ ਹੈ ਅਤੇ ਦੂਜਾ ਘੱਟ ਅਪਵਰਤਨ ਵਾਲਾ ਮਾਧਿਅਮ ਦੂਜੇ ਨਾਲੋਂ ਘੱਟ ਪ੍ਕਾਸ਼ੀ ਘਣਤਾ ਵਾਲਾ ਹੈ। ਵਿਰਲੇ ਮਾਧਿਅਮ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਦੀ ਚਾਲ ਸੰਘਣੇ ਮਾਧਿਅਮ ਵਿੱਚ ਦੀ ਚਾਲ ਨਾਲੋਂ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਵਿਰਲੇ ਮਾਧਿਅਮ ਤੋਂ ਸੰਘਣੇ ਮਾਧਿਅਮ ਵਿੱਚ ਚੱਲਣ ਵਾਲੀ ਪ੍ਕਾਸ਼ ਦੀ ਕਿਰਨ ਧੀਮੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਲੰਬ ਦੇ ਵੱਲ ਝੁਕ ਜਾਂਦੀ ਹੈ। ਜਦੋਂ ਇਹ ਸੰਘਣੇ ਮਾਧਿਅਮ ਤੋਂ ਵਿਰਲੇ ਮਾਧਿਅਮ ਵਿੱਚ ਚਲਦੀ ਹੈ ਤਾਂ ਇਸ ਦੀ ਚਾਲ ਵੱਧ ਜਾਂਦੀ ਹੈ ਅਤੇ ਲੰਬ ਤੋਂ ਦੂਰ ਹਟ ਜਾਂਦੀ ਹੈ।

ਪੁਸ਼ਨ

- ਹਵਾ ਵਿੱਚ ਜਾਂਦੀ ਇੱਕ ਕਿਰਨ ਪਾਣੀ ਵਿੱਚ ਤਿਰਛੀ ਪ੍ਰਵੇਸ਼ ਕਰਦੀ ਹੈ। ਕੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਲੰਬ ਵੱਲ ਝੁਕੇਗੀ ਜਾਂ ਲੰਬ ਤੋਂ ਦੂਰ ਹਟੇਗੀ? ਦੱਸੋ ਕਿਉਂ?
- ਪ੍ਰਕਾਸ਼ ਹਵਾ ਤੋਂ 1.50 ਅਪਵਰਤਨਅੰਕ ਦੀ ਕੱਚ ਦੀ ਪਲੇਟ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ। ਕੱਚ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਕਿੰਨੀ ਹੈ? ਨਿਰਵਾਯੂ ਹਵਾ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ 3×108 m/s ਹੈ।
- ਸਾਰਨੀ 10.3 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਪ੍ਰਕਾਸ਼ੀ ਘਣਤਾ ਵਾਲਾ ਮਾਧਿਅਮ ਪਤਾ ਕਰੋ। ਸਭ ਤੋਂ ਘੱਟ ਪ੍ਰਕਾਸ਼ੀ ਘਣਤਾ ਵਾਲੇ ਮਾਧਿਅਮ ਦਾ ਵੀ ਪਤਾ ਕਰੋ।
- ਤੁਹਾਨੂੰ ਕੈਰੋਸੀਨ, ਤਾਰਪੀਨ ਦਾ ਤੇਲ ਅਤੇ ਪਾਣੀ ਦਿੱਤੇ ਗਏ ਹਨ। ਇਹਨਾਂ ਵਿਚੋਂ ਕਿਸ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਸਭ ਤੋਂ ਤੀਬਰ ਗਤੀ ਨਾਲ ਚਲਦਾ ਹੈ? ਸਾਰਨੀ 10.3 ਵਿੱਚ ਦਿੱਤੇ ਹੋਏ ਅੰਕੜਿਆਂ ਦਾ ਪਯੋਗ ਕਰੋ।
- 5. ਹੀਰੇ ਦਾ ਅਪਵਰਤਨ ਅੰਕ 2.42 ਹੈ। ਇਸ ਕਥਨ ਦਾ ਕੀ ਭਾਵ ਹੈ?

10.3.3 ਗੋਲਾਕਾਰ ਲੈੱਨਜਾਂ ਦੁਆਰਾ ਅਪਵਰਤਨ

ਤੁਸੀਂ ਕੁੱਝ ਮਨੁੱਖਾਂ ਨੂੰ ਪੜ੍ਹਨ ਵਾਸਤੇ ਐਨਕ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ ਵੇਖਿਆ ਹੋਵੇਗਾ।ਘੜੀਸਾਜ਼ ਘੜੀ ਦੇ ਬਹੁਤ ਛੋਟੇ ਪੁਰਜ਼ਿਆਂ ਨੂੰ ਵੇਖਣ ਲਈ ਛੋਟੇ ਵੱਡਦਰਸ਼ੀ ਲੈੱਨਜ਼ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਕਦੇ ਵੱਡਦਰਸ਼ੀ ਲੈੱਨਜ ਦੀ ਸਤਹ ਨੂੰ ਆਪਣੇ ਹੱਥਾਂ ਨਾਲ ਛੂਹ ਕੇ ਵੇਖਿਆ ਹੈ? ਕੀ ਇਸ ਤੀ ਸਤਹ ਸਮਤਲ ਹੈ ਜਾਂ ਵਕਰਿਤ ਹੈ? ਕੀ ਇਹ ਵਿੱਚੋਂ ਮੋਟਾ ਹੈ ਜਾਂ ਕਿਨਾਰਿਆਂ ਤੋਂ, ਚਸ਼ਮਿਆਂ ਵਿੱਚ ਅਸੀਂ ਲੈੱਨਜ਼ਾਂ ਦਾ ਹੀ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਾਂ।ਘੜੀਸਾਜ਼ ਦੇ ਵੱਡਦਰਸ਼ਕ ਵਿੱਚ ਵੀ ਲੈੱਨਜ ਲੱਗਿਆ ਹੁੰਦਾ ਹੈ। ਲੈੱਨਜ ਕੀ ਹੈ? ਇਹ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਮੋੜਦਾ ਹੈ? ਇਸ ਅਨੁਛੇਦ ਵਿੱਚ ਅਸੀਂ ਇਸੇ ਵਿਸ਼ੇ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

ਦੇ ਸੜਾਵਾਂ ਨਾਲ ਘਿਰਿਆ ਹੋਇਆ ਕੋਈ ਪਾਰਦਰਸ਼ੀ ਪਦਾਰਥ ਜਿਸ ਦੀ ਇੱਕ ਜਾਂ ਦੋਵੇਂ ਸਤਹ

ਗੋਲਾਕਾਰੀ ਹੋਣ ਉਸ ਨੂੰ ਲੈੱਨਜ਼ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਲੈੱਨਜ਼ ਦੀ ਘੱਟੋ ਘੱਟ ਇੱਕ ਸਤਹ ਗੋਲਾਕਾਰ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਲੈੱਨਜ਼ਾਂ ਵਿੱਚ ਦੂਜੀ ਸਤਹ ਸਮਤਲ ਹੋ ਸਕਦੀ ਹੈ। ਕਿਸੇ ਲੈੱਨਜ਼ ਵਿੱਚ ਬਾਹਰ ਦੇ ਵੱਲ ਉਭਰੀਆਂ ਦੋਵੇਂ ਗੋਲਾਕਾਰ ਸਤ੍ਹਾਵਾਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਅਜਿਹੇ ਲੈੱਨਜ਼ ਨੂੰ ਦੋ ਪਾਸੀ ਉੱਤਲ ਲੈੱਨਜ਼ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਕੇਵਲ ਉੱਤਲ ਲੈੱਨਜ਼ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਕਿਨਾਰਿਆਂ ਦੇ ਮੁਕਾਬਲੇ ਵਿਚਕਾਰੋਂ (ਮੱਧ ਵਿੱਚ) ਮੋਟਾ ਹੁੰਦਾ ਹੈ। ਉੱਤਲ ਲੈੱਨਜ਼ ਪ੍ਕਾਸ਼ ਦੀਆਂ ਕਿਰਨਾਂ ਨੂੰ ਚਿੱਤਰ 10.12 (a) ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਅਭਿਸਾਰਿਤ ਕਰਦਾ ਹੈ। ਇਸੇ ਲਈ ਉੱਤਲ ਲੈੱਨਜ਼ ਨੂੰ ਅਭਿਸਾਰੀ ਲੈੱਨਜ਼ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਇਸੇ ਪ੍ਰਕਾਰ ਇੱਕ ਦੋ ਪਾਸੀ ਅਵਤਲ ਲੈੱਨਜ਼ ਅੰਦਰ ਵੱਲ ਵਕਰਿਤ ਦੋ ਗੋਲਾਕਾਰ ਸਤ੍ਹਾਵਾਂ ਨਾਲ ਘਿਰਿਆ ਹੁੰਦਾ ਹੈ। ਇਹ ਮੱਧ ਨਾਲੋਂ ਕਿਨਾਰਿਆਂ ਤੋਂ ਮੋਟਾ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੇ ਲੈੱਨਜ਼ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਨੂੰ ਚਿੱਤਰ 10.12 (b) ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਅਪਸਰਿਤ ਕਰਦੇ ਹਨ। ਅਜਿਹੇ ਲੈੱਨਜ਼ਾਂ ਨੂੰ ਅਪਸਾਰੀ ਲੈੱਨਜ਼ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਦੋਪਾਸੀ ਅਵਤਲ ਲੈੱਨਜ਼ ਨੂੰ ਕੇਵਲ ਅਵਤਲ ਲੈੱਨਜ਼ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਚਿੱਤਰ : 10,12 (a) ਉੱਤਲ ਲੈੱਨਜ਼ ਦੀ ਅਭਿਸਾਰੀ ਕਿਰਿਆ (b) ਅਵਤਲ ਲੈੱਨਜ਼ ਦੀ ਅਪਸਾਰੀ ਕਿਰਿਆ

ਕਿਸੇ ਲੈੱਨਜ਼ ਵਿੱਚ ਭਾਵੇਂ ਉਹ ਉੱਤਲ ਹੋਵੇਂ ਜਾਂ ਅਵਤਲ, ਦੋ ਗੋਲਾਕਾਰ ਸਤ੍ਹਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਸਤਹ ਇੱਕ ਗੋਲੇ ਦਾ ਭਾਗ ਹੁੰਦੀ ਹੈ। ਇਹਨਾਂ ਗੋਲਿਆਂ ਦੇ ਕੇਂਦਰ ਲੈਂਨਜ਼ ਦੇ ਵਕਰਤਾ ਕੇਂਦਰ ਕਹਾਉਂਦੇ ਹਨ। ਲੈੱਨਜ਼ ਦਾ ਵਕਰਤਾ ਕੇਂਦਰ ਅੱਖਰ C ਦੁਆਰਾ ਪ੍ਰਗਟਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਲੈੱਨਜ਼ ਦੇ ਦੋ ਵਕਰਤਾ ਕੇਂਦਰ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ C, ਅਤੇ C, ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਲੈੱਨਜ਼ ਦੇ ਦੋਵੇਂ ਵਕਰਤਾ ਕੇਂਦਰਾਂ ਵਿੱਚੋਂ ਲੰਘਣ ਵਾਲੀ ਇੱਕ ਕਲਪਨਿਕ ਸਿੱਧੀ ਰੇਖਾ ਲੈੱਨਜ਼ ਦਾ ਮੁੱਖ ਧੁਰਾ ਕਹਾਉਂਦੀ ਹੈ। ਲੈੱਨਜ਼ ਦਾ ਕੇਂਦਰ ਬਿੰਦੂ ਇਸ ਦਾ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ ਕਹਾਉਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅੱਖਰ O ਦੁਆਰਾ ਪ੍ਰਗਟ ਕਰਦੇ ਹਨ। ਲੈੱਨਜ਼ ਦੇ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ ਵਿੱਚੋਂ ਲੰਘਣ ਵਾਲੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਬਿਨਾਂ ਕਿਸੇ ਮੁੜਨ ਦੇ ਸਿੱਧੀ ਲੰਘ ਜਾਂਦੀ ਹੈ। ਗੋਲਾਕਾਰ ਲੈੱਨਜ਼ ਦੀ ਚੱਕਰਦਾਰ ਰੂਪ ਰੇਖਾ ਦਾ ਪ੍ਰਭਾਵੀ ਵਿਆਸ ਉਸ ਦਾ ਦੁਆਰਕ (aperture) ਕਹਾਉਂਦਾ ਹੈ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਚਰਚਾ ਕੇਵਲ ਉਹਨਾਂ ਲੈੱਨਜ਼ਾਂ ਤੀਕ ਸੀਮਤ ਰੱਖਾਂਗੇ ਜਿਨ੍ਹਾਂ ਦਾ ਦੁਆਰਕ ਉਹਨਾਂ ਦੇ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ ਤੋਂ ਬਹੁਤ ਛੋਟਾ ਹੈ। ਅਜਿਹੇ ਛੋਟੇ ਦੁਆਰਕ ਵਾਲੇ ਲੈੱਨਜ਼ ਪਤਲੇ ਲੈੱਨਜ਼ ਕਹਾਉਂਦੇ ਹਨ। ਜਦੋਂ ਕਿਸੇ ਲੈੱਨਜ਼ ਉੱਤੇ ਸਮਾਨ ਕਿਰਨਾਂ ਆਪਤਿਤ ਹੁੰਦੀਆਂ ਹਨ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ? ਇਹ ਸਮਝਣ ਲਈ ਆਓ ਇੱਕ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ 10.11

- ਚੇਤਾਵਨੀ : ਇਸ ਕਿਰਿਆ ਨੂੰ ਕਰਦੇ ਸਮੇਂ ਜਾਂ ਉਂਝ ਵੀ ਸੂਰਜ ਵੱਲ ਸਿੱਧਾ ਜਾਂ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਨਾ ਦੇਖੋ।ਜੇਕਰ ਤੁਸੀਂ ਅਜਿਹਾ ਕਰੋਗੇ ਤਾਂ ਤੁਹਾਡੀਆਂ ਅੱਖਾਂ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚ ਸਕਦਾ ਹੈ।
- ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼ ਨੂੰ ਆਪਣੇ ਹੱਥ ਵਿੱਚ ਫੜੋ। ਇਸ ਨੂੰ ਸੂਰਜ ਵੱਲ ਕਰੋ।
- ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਨੂੰ ਇੱਕ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਫੋਕਸ ਕਰੋ। ਸੂਰਜ ਦਾ ਇੱਕ ਤਿੱਖਾ ਚਮਕਦਾਰ ਪ੍ਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਕਰੋ।
- ਕਾਗਜ਼ ਅਤੇ ਲੈੱਨਜ਼ ਨੂੰ ਕੁੱਝ ਸਮੇਂ ਲਈ ਉਸੇ ਸਥਿਤੀ ਵਿੱਚ ਫੜ ਕੇ ਰੱਖੋ। ਕਾਗਜ਼ ਨੂੰ ਵੇਖਦੇ ਰਹੋ। ਕੀ ਹੁੰਦਾ ਹੈ? ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਕਿਰਿਆ 10.2 ਦੇ ਆਪਣੇ ਅਨੁਭਵਾਂ ਨੂੰ ਯਾਦ ਕਰੋ।

ਕਾਗਜ਼ ਸੁਲਗਣ ਲਗਦਾ ਹੈ ਅਤੇ ਧੂੰਆਂ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਇਹ ਅੱਗ ਵੀ ਪਕੜ ਸਕਦਾ ਹੈ। ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲੇ ਪ੍ਕਾਸ਼ ਦੀਆਂ ਕਿਰਨਾਂ ਸਮਾਨਾਂਤਰ ਹੁੰਦੀਆਂ ਹਨ।ਲੈੱਨਜ਼ ਦੁਆਰਾ ਇਹ ਕਿਰਨਾਂ ਇੱਕ ਤਿੱਖੇ ਚਮਕਦਾਰ ਬਿੰਦੂ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਗਜ਼ ਉੱਤੇ ਅਭਿਕੇਂਦਰਿਤ ਕਰ ਦਿੱਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਅਸਲ ਵਿੱਚ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਉੱਤੇ ਇਹ ਚਮਕਦਾਰ ਬਿੰਦੂ ਸੂਰਜ ਦਾ ਵਾਸਤਵਿਕ ਪ੍ਤਿਬਿੰਬ ਹੈ। ਇਸ ਬਿੰਦੂ ਉੱਪਰ ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਦਾ ਕੇਂਦਰਣ ਤਾਪ ਊਰਜਾ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਸ ਦੇ ਕਾਰਨ ਕਾਗਜ਼ ਜਲਣ ਲਗਦਾ ਹੈ।

ਹੁਣ ਅਸੀਂ ਇੱਕ ਲੈੱਨਜ਼ ਦੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਕਿਰਨਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਜਦੋਂ ਤੁਸੀਂ ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਅਜਿਹੀਆਂ ਕਿਰਨਾਂ ਨੂੰ ਕਿਸੇ ਲੈੱਨਜ਼ ਵਿੱਚੋਂ ਲੰਘਾਉਂਦੇ ਹੋ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ? ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੇ ਲਈ ਇਸੇ ਚਿੱਤਰ 10.12 (a) ਵਿੱਚ ਅਤੇ ਅਵਤਲ ਲੈੱਨਜ਼ ਲਈ ਚਿੱਤਰ 10.12 (b) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 10.12 (a) ਨੂੰ ਧਿਆਨਪੂਰਵਕ ਵੇਖੋ। ਉੱਤਲ ਲੈੱਨਜ਼ ਉੱਤੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਕਿਰਨਾਂ ਆਪਤਿਤ ਹਨ। ਇਹ ਕਿਰਨਾਂ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਅਪਵਰਤਨ ਤੋਂ ਬਾਅਦ ਮੁੱਖ ਧੁਰੇ ਉੱਤੇ ਇੱਕ ਬਿੰਦੂ ਤੇ ਅਭਿਸਾਰਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਮੁੱਖ ਧੁਰੇ ਉੱਪਰ ਇਹ ਬਿੰਦੂ ਲੈੱਨਜ਼ ਦਾ ਮੁੱਖ ਫੋਕਸ ਕਹਾਉਂਦਾ ਹੈ। ਆਓ ਹੁਣ ਇੱਕ ਅਵਤਲ ਲੈੱਨਜ਼ ਦਾ ਵਿਵਹਾਰ ਵੇਖੀਏ। ਚਿੱਤਰ 10.12 (b) ਨੂੰ ਧਿਆਨਪੂਰਵਕ ਵੇਖੋ। ਅਵਤਲ ਲੈਂਨਜ਼ ਉੱਤੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਅਨੇਕ ਕਿਰਨਾਂ ਆਪਤਿਤ ਹੋ ਰਹੀਆਂ ਹਨ। ਇਹ ਕਿਰਨਾਂ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਅਪਵਰਤਨ ਤੋਂ ਬਾਅਦ ਮੁੱਖ ਆਧਾਰ ਉੱਤੇ ਇੱਕ ਬਿੰਦੂ ਤੋਂ ਅਪਸਾਰਿਤ ਹੁੰਦੀਆਂ ਪ੍ਰਤੀਤ ਹੁੰਦੀਆਂ ਹਨ। ਮੁੱਖ ਧੁਰੇ ਉੱਤੇ ਇਹ ਬਿੰਦੂ ਅਵਤਲ ਲੈੱਨਜ਼ ਦਾ ਮੁੱਖ ਫੋਕਸ ਕਹਾਉਂਦਾ ਹੈ।

ਜੇਕਰ ਤੁਸੀਂ ਕਿਸੇ ਲੈੱਨਜ਼ ਦੀ ਉਲਟ ਸਤਹ ਤੋਂ ਸਮਾਨੰਤਰ ਕਿਰਨਾਂ ਨੂੰ ਲੰਘਾ ਦਿਓ ਤਾਂ ਤੁਹਾਨੂੰ ਪਹਿਲਾਂ ਤੋਂ ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਦੂਜਾ ਮੁੱਖ ਫੋਕਸ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ। ਮੁੱਖ ਫੋਕਸ ਨੂੰ F ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਲੈੱਨਜ਼ ਦੇ ਦੋ ਮੁੱਖ ਫੋਕਸ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ F, ਅਤੇ F₂ ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਲੈੱਨਜ਼ ਦੇ ਮੁੱਖ ਫੋਕਸ ਦੀ ਪ੍ਕਾਸ਼ ਕੇਂਦਰ ਤੋਂ ਦੂਰੀ ਫੋਕਸ ਦੂਰੀ ਕਹਾਉਂਦੀ ਹੈ। ਫੋਕਸ ਦੂਰੀ ਨੂੰ 'f' ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਤੁਸੀਂ ਕਿਸੇ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਕਿਸ ਪ੍ਕਾਰ ਗਿਆਤ ਕਰ ਸਕਦੇ ਹੋ? ਕਿਰਿਆ 10.11 ਨੂੰ ਯਾਦ ਕਰੋ। ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਲੈੱਨਜ਼ ਦੀ ਸਥਿਤੀ ਅਤੇ ਸੂਰਜ ਦੇ ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਸਥਿਤੀ ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ ਲੈੱਨਜ਼ ਦੀ ਲਗਭਗ ਫੋਕਸ ਦੂਰੀ ਦੱਸਦੀ ਹੈ।

10.3.4 ਲੈੱਨਜ਼ਾਂ ਦੁਆਰਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨੇ

ਲੈੱਨਜ਼ ਪ੍ਰਤਿਬਿੰਬ ਕਿਵੇਂ ਬਣਾਉਂਦੇ ਹਨ? ਲੈੱਨਜ਼ ਪ੍ਰਕਾਸ਼ ਦੇ ਅਪਵਰਤਨ ਦੁਆਰਾ ਪ੍ਰਤੀਬਿੰਬ ਬਣਾਉਂਦੇ ਹਨ।ਇਹਨਾਂ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਕੀ ਹੈ? ਆਓ ਪਹਿਲਾਂ ਉੱਤਲ ਲੈੱਨਜ਼ ਲਈ ਇਸ ਦਾ ਅਧਿਐਨ ਕਰਦੇ ਹਾਂ।

ਗਿਰਿਆ 10.12

- ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼ ਲਓ। ਕਿਰਿਆ 10.11 ਅਨੁਸਾਰ ਇਸ ਦੀ ਲਗਭਗ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰੋ।
- ਇੱਕ ਲੰਬੀ ਮੇਜ਼ ਉੱਤੇ ਚਾਕ ਨਾਲ 5 ਸਮਾਨਾਂਤਰ ਅੰਤਰ ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਇਸ ਪ੍ਰਕਾਰ ਖਿੱਚੋਂ ਕਿ ਕੋਈ ਦੋ ਕ੍ਰਮਵਾਰ ਰੇਖਾਵਾਂ ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਦੇ ਬਰਾਬਰ ਹੋਵੇ।
- ਲੈੱਨਜ਼ ਨੂੰ ਇੱਕ ਲੈੱਨਜ਼ ਸਟੈਂਡ ਉੱਤੇ ਰੱਖੋ। ਇਸ ਨੂੰ ਮੱਧ ਰੇਖਾ ਉੱਤੇ ਇਸ ਪ੍ਕਾਰ ਰੱਖੋ ਕਿ ਲੈੱਨਜ਼ ਦਾ ਪ੍ਕਾਸ਼ ਕੇਂਦਰ ਇਸ ਲਾਈਨ ਉੱਤੇ ਸਥਿਤ ਹੋਵੇ।
- ਲੈੱਨਜ਼ ਦੇ ਦੋਵੇਂ ਪਾਸੇ ਦੀਆਂ ਲਾਈਨਾਂ ਕ੍ਰਮਵਾਰ ਲੈੱਨਜ਼ ਦੇ F ਅਤੇ 2F ਅਨੁਸਾਰ ਹਨ।
 ਇਹਨਾਂ ਨੂੰ ਉੱਚਿਤ ਅੱਖਰਾਂ ਦੁਆਰਾ ਅੰਕਿਤ ਕਰੋ ਜਿਵੇਂ ਕਿ ਕ੍ਰਮਵਾਰ 2.F₁, F₂, F₃
 ਅਤੇ 2 F₃।
- ਇੱਕ ਜਲਦੀ ਹੋਈ ਮੋਮਬੱਤੀ ਨੂੰ ਖੱਬੇ ਪਾਸੇ 2 F, ਤੋਂ ਕਾਫੀ ਦੂਰ ਰੱਖੋ। ਲੈੱਨਜ਼ ਤੋਂ ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਰੱਖੋ ਇੱਕ ਪਰਦੇ ਉੱਤੇ ਇਸ ਦਾ ਸਪਸ਼ਟ ਅਤੇ ਤਿੱਖਾ ਪ੍ਰਤੀਬਿੰਬ ਪ੍ਰਾਪਤ ਕਰੋ।
- 🔹 ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਪ੍ਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਆਕਾਰ ਨੋਟ ਕਰੋ।
- ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਵਸਤੂ ਨੂੰ 2 F₁ ਤੋਂ ਥੋੜ੍ਹਾ ਦੂਰ, F₁ ਅਤੇ 2F₁ ਦੇ ਵਿਚਕਾਰ, F₁ ਉੱਤੇ F₁ ਅਤੇ ○ ਦੇ ਵਿਚਕਾਰ ਰੱਖ ਕੇ ਦੁਹਰਾਓ, ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਨੋਟ ਕਰੋ ਅਤੇ ਸਾਰਨੀਬੱਧ ਕਰੋ।

ਆਓ ਹੁਣ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣਾਏ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਸਾਈਜ਼ ਦਾ ਕਿਰਿਆ ਦੁਆਰਾ ਅਧਿਐਨ ਕਰੀਏ। ਬਿੰਬ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਸਥਿਤੀਆਂ ਦੇ ਲਈ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕ੍ਰਿਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਸਾਈਜ਼ ਦਾ ਸੰਖੇਪ ਵਿਵਰਨ ਸਾਰਨੀ 10.4 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਵਸਤੂ ਦੀ ਸਥਿਤੀ	ੰਪ੍ਰਤੀਬਿੰਬ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦਾ ਸਾਪੇਖਕ ਆਕਾਰ	ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ
1. ਅਨੰਤ ਉੱਤੇ	ਫੋਕਸ F ₂ ਉੱਤੇ	ਬਹੁਤ ਹੀ ਛੋਟਾ, ਬਿੰਦੂ ਆਕਾਰ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
2, .2F, ਤੋਂ ਪਰੇ	F, ਅਤੇ 2F, ਵਿਚਕਾਰ	ਛੋਟਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
3. 2F, ਉੱਤੇ	2F, ਉੱਤੇ	ਬਰਾਬਰ ਸਾਈਜ਼	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
4. F; ਅਤੇ 2F, ਦੇ	2F, ਤੋਂ ਪਰੇ	ਵੱਡਾ	C Manual Contraction
ਵਿਚਕਾਰ	ਅਨੰਤ ਉੱਤੇ	ਅਸੀਮਤ ਵੱਡਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
5. ਫੋਕਸ F, ਉੱਤੇ		ਜਾਂ ਬਹੁਤ ਹੀ ਵੱਡਾ	ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ
6. ਫੋਕਸ F, ਅਤੇ	ਜਿਸ ਪਾਸੇ ਵਸਤੂ ਹੈ	ਵੱਡਾ	ਅਭਾਸੀ ਅਤੇ ਸਿੱਧਾ
ਪ੍ਰਕਾਸ਼ਿਤ ਕੇਂਦਰ O ਦੇ ਵਿਚਕਾਰ	ਲੈੱਨਜ਼ ਦੇ ਉਸੀ ਪਾਸੋ		

ਆਓ ਹੁਣ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣਾਏ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਕਰਿਤੀ ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਆਕਾਰ ਦਾ ਕਿਰਿਆ ਦੁਆਰਾ ਅਧਿਐਨ ਕਰੀਏ।

ਕਿਰਿਆ 10,13

- 🏮 ਇੱਕ ਅਵੈਤਲ ਲੈੱਨਜ਼ ਲਓ। ਇਸ ਨੂੰ ਇੱਕ ਲੈੱਨਜ਼ ਸਟੈਂਡ ਉੱਤੇ ਰੱਖੋ।
- 🍙 ਲੈੱਨਜ਼ ਦੇ ਇੱਕ ਪਾਸੇ ਇੱਕ ਜਲਦੀ ਹੋਈ ਮੋਮਬੱਤੀ ਰੱਖੋ।
- ਲੈੱਨਜ਼ ਦੇ ਦੂਜੇ ਪਾਸੇ ਤੋਂ ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਜੇਕਰ ਸੰਭਵ ਹੋਵੇ ਤਾਂ ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਪਰਦੇ ਉੱਤੇ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਯਤਨ ਕਰੋ। ਜੇਕਰ ਅਜਿਹਾ ਸੰਭਵ ਨਾ ਹੋਵੇ ਤਾਂ ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਲੈੱਨਜ ਵਿੱਚੋਂ ਸਿੱਧਾ ਹੀ ਵੇਖੋ।
- 🔹 ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਾਪੇਖਕ ਆਕਾਰ ਅਤੇ ਲਗਭਗ ਸਥਿਤੀ ਨੌਟ ਕਰੋ।
- ਮੌਮਬੱਤੀ ਨੂੰ ਲੈੱਨਜ਼ ਤੋਂ ਦੂਰ ਲੈ ਜਾਓ।ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੇ ਆਕਾਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੋਟ ਕਰੋ। ਜਦੋਂ ਮੌਮਬੱਤੀ ਨੂੰ ਲੈੱਨਜ਼ ਤੋਂ ਬਹੁਤ ਦੂਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪ੍ਰਤਿਬਿੰਬ ਦੇ ਸਾਈਜ਼ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ।

ਉਪਰੋਕਤ ਕਿਰਿਆ ਦਾ ਸੰਖੇਪ ਵਿਵਰਣ ਸਾਰਨੀ 10.5 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਸਾਰਨੀ 10.5 ਬਿੰਬ ਦੀਆਂ ਭਿੰਨ ਸਥਿਤੀਆਂ ਲਈ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤੀਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਕ ਸਾਈਜ਼।

ਵਸਤੂ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਸਥਿਤੀ	ਪ੍ਰਤੀਬਿੰਬ ਦਾ ਸਾਪੇਖਕ ਆਕਾਰ	ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ
ਅਨੰਤ ਉੱਤੇ	ਫੋਕਸ F ₁ ਉੱਤੇ	ਬਹੁਤ ਹੀ ਛੋਟਾ , ਬਿੰਦੁ ਆਕਾਰ	ਆਭਾਸੀ ਅਤੇ ਸਿੱਧਾ
ਅਨੰਤ ਉੱਤੇ ਲੈੱਨਜ਼ ਦੇ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ O ਦੇ ਵਿਚਕਾਰ	ਫੋਕਸ F ਅਤੇ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ O ਦੇ ਵਿਚਕਾਰ	ਛੋਟਾ *	ਆਭਾਸੀ ਅਤੇ ਸਿੱਧਾ

ਇਸ ਕਿਰਿਆ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢਦੇ ਹੋ? ਅਵਤਲ ਲੈੱਨਜ਼ ਹਮੇਸ਼ਾ ਆਭਾਸੀ, ਸਿੱਧਾ ਅਤੇ ਛੋਟਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾਉਂਦਾ ਹੈ ਭਾਵੇਂ ਵਸਤੂ ਕਿੱਥੇ ਵੀ ਸਥਿਤ ਹੋਵੇ।

10.3.5 ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰਾਂ ਦੇ ਉਪਯੋਗ ਦੁਆਰਾ ਲੈੱਨਜ਼ ਤੋਂ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨੇ

ਅਸੀਂ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰਾਂ ਦੀ ਮੱਦਦ ਨਾਲ ਲੈੱਨਜ਼ਾਂ ਦੁਆਰਾ ਬਣਨ ਵਾਲੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਨੂੰ ਵਿਖਾ ਸਕਦੇ ਹਾਂ। ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਲੈੱਨਜ਼ਾਂ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਪੇਖਿਕ ਆਕਾਰ ਦਾ ਅਧਿਐਨ ਕਰਨ ਵਿੱਚ ਵੀ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ। ਲੈੱਨਜ਼ਾਂ ਨਾਲ ਸੰਬੰਧਿਤ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾਉਣ ਲਈ ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਦੀ ਤਰ੍ਹਾਂ ਅਸੀਂ ਨਿਮਨ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਦੋ ਕਿਰਨਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰ ਸਕਦੇ ਹਾਂ:

(i) ਵਸਤੂ ਤੋਂ ਮੁੱਖ ਧੂਰੇ ਦੇ ਸਮਾਨਅੰਤਰ ਆਉਣ ਵਾਲੀ ਕੋਈ ਪ੍ਕਾਸ਼ ਕਿਰਨ ਉੱਤਲ ਲੈੱਨਜ਼ ਤੋਂ

ਅਪਵਰਤਨ ਤੋਂ ਬਾਅਦ ਚਿੱਤਰ 10. 13 (a) ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਲੈੱਨਜ਼ ਦੇ ਦੂਜੇ ਪਾਸੇ ਮੁੱਖ ਫੋਕਸ ਵਿੱਚੋਂ ਲੰਘਦੀ ਹੈ। ਅਵਤਲ ਲੈੱਨਜ਼ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਚਿੱਤਰ 10.13 (b) ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਲੈੱਨਜ਼ ਦੇ ਉਸੇ ਪਾਸੇ ਸਥਿਤ ਮੁੱਖ ਫੋਕਸ ਤੋਂ ਅਪਸਰਿਤ ਹੋਈ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ।

(ii)ਮੁੱਖ ਫੋਕਸ ਵਿੱਚੋਂ ਲੰਘਣ ਵਾਲੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ, ਉੱਤਲ ਲੈੱਨਜ਼ ਤੋਂ ਅਪਵਰਤਨ ਤੋਂ ਬਾਅਦਾਂ ਮੁੱਖ ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਚਿੱਤਰ 10.14 (a) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਅਵਤਲ ਲੈੱਨਜ਼ ਦੇ ਮੁੱਖ ਫੌਕਸ ਤੇ ਮਿਲਦੀ ਪ੍ਤੀਤ ਹੋਣ ਵਾਲੀ ਪ੍ਕਾਸ਼ ਕਿਰਨ, ਅਪਵਰਤਨ ਤੋਂ ਬਾਅਦ ਮੁੱਖ ਧੂਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਚਿੱਤਰ 10.11 (a) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

(iii) ਲੈੱਨਜ਼ ਦੇ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ ਵਿੱਚੋਂ ਲੰਘਣ ਵਾਲੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਅਪਵਰਤਨ ਤੋਂ ਬਾਅਦ ਬਿਨਾ ਕਿਸੇ ਮੁੜਨ ਦੇ ਜਾਂਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਚਿੱਤਰ 10.15 (a) ਅਤੇ 10.15 (b) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 10.15

ਚਿੱਤਰ 10.16 ਵਿੱਚ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਵਸਤੂ ਦੀਆਂ ਕੁੱਝ ਸਥਿਤੀਆਂ ਵਿੱਚ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨ ਨੂੰ ਰੇਖਾ ਚਿੱਤਰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਚਿੱਤਰ 10.17 ਵਿੱਚ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਵਸਤੂ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਸਥਿਤੀਆਂ ਵਿੱਚ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨ ਨੂੰ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ:

ਚਿੱਤਰ 10.16 ਉੱਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਵਸਤੂ ਦੀਆਂ ਭਿੰਨ ਸਥਿਤੀਆਂ ਦੇ ਲਈ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਸਾਈਜ਼ ਅਤੇ ਪ੍ਰਕਿਰਤੀਆਂ

ਚਿੱਤਰ 10.17 ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬੰਬਾਂ ਦੀ ਪ੍ਰਕ੍ਰਿਤੀ, ਸਥਿਤੀ ਅਤੇ ਸਾਈਜ਼

10.3.6 ਗੋਲਾਕਾਰ ਲੈੱਨਜ਼ਾਂ ਦੇ ਲਈ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ (Sign Convention)

ਲੈੱਨਜ਼ਾਂ ਲਈ, ਅਸੀਂ ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਵਰਗੀ ਹੀ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਅਪਣਾਵਾਂਗੇ। ਦੂਰੀਆਂ ਦੇ ਚਿੰਨ੍ਹ ਦਰਸਾਉਣ ਲਈ ਅਸੀਂ ਇੱਥੇ ਵੀ ਉਨ੍ਹਾਂ ਨਿਯਮਾਂ ਨੂੰ ਅਪਣਾਵਾਂਗੇ, ਕੇਵਲ ਜਿੱਥੇ ਦਰਪਣਾਂ ਵਿੱਚ ਸਾਰੀਆਂ ਦੂਰੀਆਂ ਉਹਨਾਂ ਦੇ ਧਰੁਵਾਂ ਤੋਂ ਨਾਪੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਉੱਥੇ ਲੈੱਨਜ਼ਾਂ ਵਿੱਚ ਸਾਰੇ ਮਾਪ ਉਹਨਾਂ ਦੇ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ ਤੋਂ ਲਏ ਜਾਂਦੇ ਹਨ। ਪਰੰਪਰਾ ਅਨੁਸਾਰ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਧਨਾਤਮਕ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਤੁਹਾਨੂੰ ਘ v ਅਤੇ f, ਵਸਤੂ ਦੀ ਉਚਾਈ h ਅਤੇ ਪ੍ਤੀਬਿੰਬ ਉਚਾਈ h ਦੇ ਮਾਨ ਵਿੱਚ ਉੱਚਿਤ ਚਿੰਨ੍ਹਾਂ ਦੀ ਚੋਣ ਕਰਨ ਵਿੱਚ ਸਾਵਧਾਨੀ ਵਰਤਣੀ ਚਾਹੀਦੀ ਹੈ।

10.3.7 ਲੈੱਨਜ਼ ਸੂਤਰ ਅਤੇ ਵਡਦਰਸ਼ਨ

ਜਿਸ ਪ੍ਕਾਰ ਅਸੀਂ ਗੋਲਾਕਾਰ ਦਰਪਣ ਲਈ ਸੂਤਰ ਗਿਆਤ ਕੀਤਾ ਸੀ ਉਸੇ ਪ੍ਕਾਰ ਗੋਲਾਕਾਰ ਲੈੱਨਜ਼ਾਂ ਲਈ ਵੀ ਲੈੱਨਜ਼ ਸੂਤਰ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।ਇਹ ਸੂਤਰ ਵਸਤੂ ਦੂਰੀ (u), ਪ੍ਤਿਬਿੰਬ ਦੂਰੀ (v) ਅਤੇ ਫੋਕਸ ਦੂਰੀ (f) ਵਿਚਕਾਰ ਸੰਬੰਧ ਦਰਸਾਉਂਦਾ। ਲੈੱਨਜ਼ ਸੂਤਰ ਇਸ ਪ੍ਕਾਰ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ:

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \tag{10.8}$$

ਉਪਰੋਕਤ ਲੈੱਨਜ਼ ਸੂਤਰ ਵਿਆਪਕ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਗੋਲਾਕਾਰ ਲੈੱਨਜ਼ ਦੇ ਲਈ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਲਾਗੂ ਹੁੰਦਾ ਹੈ। ਲੈੱਨਜ਼ਾਂ ਨਾਲ ਸੰਬੰਧਿਤ ਸੰਖਿਆਤਮਕ ਪ੍ਸ਼ਨ ਹੱਲ ਕਰਨ ਲਈ ਲੈੱਨਜ਼ ਸੂਤਰ ਵਿੱਚ ਅੰਕਾਂ ਦੇ ਮਾਨ ਭਰਨ ਸਮੇਂ ਭਿੰਨ ਰਾਸ਼ੀਆਂ ਦੇ ਉੱਚਿਤ ਚਿੰਨ੍ਹਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ।

ਵੱਡਦਰਸ਼ਨ (Magnification)

ਕਿਸੇ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਉਤਪੰਨ ਵੱਡਦਰਸ਼ਨ ਕਿਸੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੁਆਰਾ ਵੱਡਦਰਸ਼ਨ ਦੀ ਹੀ ਤਰ੍ਹਾਂ ਪ੍ਤੀਬਿੰਬ ਦੀ ਉਚਾਈ ਅਤੇ ਵਸਤੂ ਦੀ ਉਚਾਈ ਦੇ ਅਨੁਪਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅੱਖਰ m ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਵਸਤੂ ਦੀ ਉਚਾਈ h ਹੋਵੇ ਅਤੇ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਪ੍ਤਿਬਿੰਬ ਦੀ ਉਚਾਈ h' ਹੋਵੇ, ਤਾਂ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਉਤਪੰਨ ਵੱਡਦਰਸ਼ਨ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ:

$$m = \frac{\text{ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਉਚਾਈ}}{\text{ਵਸਤੁ ਦੀ ਉਚਾਈ}} = \frac{h'}{h}$$
 (10.9)

ਲੈੱਨਜ਼ ਦੁਆਰਾ ਵੱਡਦਰਸ਼ਨ, ਵਸਤੂ ਦੀ ਦੂਰੀ u ਅਤੇ ਪ੍ਤੀਬਿੰਬਾਂ ਦੂਰੀ v ਨਾਲ਼ ਵੀ ਸੰਬੰਧਿਤ ਹੈ। ਇਸ ਸੰਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ :

ਵੱਡਦਰਸ਼ਨ (m) =
$$\frac{h'}{h} = \frac{v}{u}$$
 (10.10)

ਉਦਾਹਰਨ 10,3

ਕਿਸੇ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ 15 cm ਹੈ। ਬਿੰਬ ਨੂੰ ਲੈੱਨਜ਼ ਤੋਂ ਕਿੰਨੀ ਦੂਰੀ ਉੱਤੇ ਰੱਖਿਆ ਜਾਵੇ ਕਿ ਇਸ ਦੁਆਰਾ ਬਿੰਬ ਦਾ ਲੈੱਨਜ਼ ਤੋਂ 10 cm ਦੂਰੀ ਉੱਤੇ ਪ੍ਰਤੀਬਿੰਬ ਬਣੇ। ਲੈੱਨਜ਼ ਦੁਆਰਾ ਉਤਪੰਨ ਵੱਡਦਰਸ਼ਨ ਵੀ ਗਿਆਤ ਕਰੋ।

र्गेल

ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਸਦਾ ਹੀ ਆਭਾਸੀ ਸਿੱਧਾ ਪ੍ਰਤਿਬਿੰਬ ਲੈੱਨਜ਼ ਦੇ ਉਸੇ ਪਾਸੇ ਬਣਦਾ ਹੈ ਜਿਸ ਪਾਸੇ ਵਸਤੂ ਰੱਖੀ ਹੁੰਦੀ ਹੈ।

ਪ੍ਰਤੀਬਿੰਬ-ਦੂਰੀ $v=-10\,\mathrm{cm}$

ਫੋਕਸ ਦੂਰੀ $f=-15~\mathrm{cm}$

ਵਸਤੂ u = ?

ਕਿਉਂਕਿ : $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

ਇਸ ਲਈ $\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$

$$\frac{1}{u} = \frac{1}{-10} - \frac{1}{(-15)} = -\frac{1}{10} + \frac{1}{15}$$

$$\frac{1}{u} = \frac{-3+2}{30} = \frac{1}{-30}$$

ਜ† u = -30 cm

ਇਸ ਲਈ ਵਸਤੂ ਦੀ ਦੂਗੀ 30 cm ਹੈ।

ਵੱਡਦਰਸ਼ਨ, $m = \frac{v}{u}$

$$m = \frac{-10 \text{ cm}}{-30 \text{ cm}} = \frac{1}{3} = +0.33$$

ਇੱਥੇ ਧਨਾਤਮਕ ਚਿੰਨ੍ਹ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪ੍ਰਤਿਬਿੰਬ ਅਭਾਸੀ ਹੈ। ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਆਕਾਰ ਵਸਤੂ ਦੇ ਆਕਾਰ ਨਾਲੋਂ ਇੱਕ ਤਿਹਾਈ ਹੈ।

ਉਦਾਹਰਨ 10.4

2.0 cm ਲੰਬੀ ਵਸਤੂ 10 cm ਫੋਕਸ ਦੂਰੀ ਦੇ ਕਿਸੇ ਲੈੱਨਜ਼ ਦੇ ਮੁੱਖ ਧੁਰੇ ਦੇ ਲੰਬਵੱਤ ਰੱਖਿਆ ਹੈ। ਬਿੰਬ ਦੀ ਲੈੱਨਜ਼ ਤੋਂ ਦੂਰੀ 15 cm ਹੈ। ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਆਕਾਰ ਗਿਆਤ ਕਰੋ। ਇਸ ਦਾ ਵੱਡਦਰਸ਼ਨ ਵੀ ਗਿਆਤ ਕਰੋ।

ਹੱਲ

ਵਸਤੂ ਦੀ ਉਚਾਈ, h = +2.0 cm

 $\ddot{\delta}$ ਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ, $f=+10~\mathrm{cm}$

ਵਸਤੂ ਦੀ ਦੂਰੀ, *u* = −15 cm

ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਦੂਰੀ v = ?

ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਉਚਾਈ, h' = ?

$$\frac{1}{H^{\dagger}} = \frac{1}{u} + \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{(-15)} + \frac{1}{10} = -\frac{1}{15} + \frac{1}{10}$$

$$\frac{1}{v} = \frac{-2+3}{30} = \frac{1}{30}$$

ਜਾਂ u = +30 cm

v ਦਾ ਧਨਾਤਮਕ ਚਿੰਨ੍ਹ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪ੍ਰਤਿਬਿੰਬ ਲੈੱਨਜ਼ ਦੇ ਪ੍ਕਾਸ਼ ਕੇਂਦਰ ਤੋਂ 30 m cm ਦੀ ਦੂਰੀ ਤੇ ਦੂਜੇ ਪਾਸੇ ਬਣਿਆ ਹੈ।ਪ੍ਰਤਿਬਿੰਬ ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ ਹੈ।

ਵੱਡਦਰਸ਼ਨ,
$$m = \frac{h'}{h} = \frac{v}{u}$$

ਅਤੇ
$$h' = h\left(\frac{v}{u}\right)$$

ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਉਚਾਈ
$$h' = (2.0) \left(+ \frac{30}{-15} \right) = -4.0 \text{ cm}$$

ਵੱਡਦਰਸ਼ਨ
$$m = \frac{+30 \,\mathrm{cm}}{-15 \,\mathrm{cm}} = -2$$

m ਅਤੇ h' ਦੇ ਰਿਣ ਚਿੰਨ੍ਹ, ਇਹ ਦਰਸਾਉਂਦੇ ਹਨ ਕਿ ਉਪਰੋਕਤ ਵਰਣਨ ਅਨੁਸਾਰ ਪ੍ਤੀਬਿੰਬ ਉਲਟਾ ਅਤੇ ਵਾਸਤਵਿਕ ਹੈ। ਇਹ ਮੁੱਖ ਧੁਰੇ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਬਣਿਆ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਇੱਕ ਵਾਸਤਵਿਕ ਉਲਟਾ $4.0~\mathrm{cm}$ ਲੰਬਾ ਪ੍ਤਿਬਿੰਬ ਲੈੱਨਜ਼ ਤੇ ਸੱਜੇ ਪਾਸੇ ਲੈੱਨਜ਼ ਤੋਂ $30~\mathrm{cm}$ ਦੂਰੀ ਉੱਤੇ ਬਣਦਾ ਹੈ। ਇਹ ਪ੍ਤਿਬਿੰਬ ਦੁੱਗਣਾ ਵੱਡਾ ਹੈ।

10.3.8 ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ (Power of a Lens)

ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਿਸੇ ਲੈੱਨਜ਼ ਦੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਨੂੰ ਅਭਿਸਰਿਤ ਕਰਨ ਜਾਂ ਅਪਸਰਿਤ ਕਰਨ ਦੀ ਕਿਸੇ ਸ਼ਕਤੀ ਉਸ ਦੀ ਫੋਕਸ ਦੂਰੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਨ ਲਈ ਘੱਟ ਫੋਕਸ ਦੂਰੀ ਦਾ ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਨੂੰ ਵੱਡੇ ਕੋਣ ਤੋਂ ਮੋੜ ਕੇ ਉਹਨਾਂ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ ਦੇ ਨੇੜੇ ਫੋਕਸ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ ਘੱਟ ਫੋਕਸ ਦੂਰੀ ਦਾ ਇੱਕ ਅਵਤਲ ਲੈੱਨਜ਼ ਵੱਧ ਫੋਕਸ ਦੂਰੀ ਵਾਲੇ ਲੈੱਨਜ਼ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਨੂੰ ਵਧੇਰੇ ਅਪਸਰਿਤ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਨੂੰ ਅਭਿਸਰਿਤ ਜਾਂ ਅਪਸਰਿਤ ਕਰਨ ਦੀ ਮਾਤਰਾ ਨੂੰ ਉਸਦੀ ਸ਼ਕਤੀ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਗਟਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅੱਖਰ P ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ƒ ਫੋਕਸ ਦੂਰੀ ਦੇ ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ:

$$P = \frac{1}{f} \tag{10.11}$$

ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਦੀ ਐਸ.ਆਈ. SI ਇਕਾਈ (ਮਾਤਰਕ) 'ਡਾਈਆੱਪਟਰ' (Dioptre) ਹੈ। ਇਸ ਨੂੰ ਅੱਖਰ D ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੇਕਰ f ਮੀਟਰਾਂ ਵਿੱਚ ਹੋਵੇ ਤਾਂ ਸ਼ਕਤੀ ਨੂੰ **ਡਾਈਆੱਪਟਰ ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਨ**। ਇਸ ਪ੍ਰਕਾਰ 1 ਡਾਈਆੱਪਟਰ ਉਸ ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਹੈ ਜਿਸ ਦੀ ਫੋਕਸ ਦੂਰੀ 1 ਮੀਟਰ ਹੋਵੇ। $1D = 1m^{-1}$ । ਤੁਸੀਂ ਨੋਟ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਧਨਾਤਮਕ ਅਤੇ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ।

ਐਨਕ ਬਣਾਉਣ ਵਾਲੇ ਜਦੋਂ ਜੁੜਵਾਂ ਲੈੱਨਜ਼ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਨ ਤਾਂ ਉਸ ਦੀ ਸ਼ਕਤੀ ਦਾ ਪ੍ਰਗਟਾਵਾ ਕਰਦੇ ਹਨ।ਮੰਨ ਲਓ, ਨਿਰਧਾਰਿਤ, ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ + 2.0 D ਹੈ ਤਾਂ ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਨਿਰਧਾਰਿਤ ਲੈੱਨਜ਼ ਉੱਤਲ ਹੈ ਅਤੇ ਉਸ ਦੀ ਫੋਕਸ ਦੂਰੀ + 0.50 m ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ – 2.5 D ਸ਼ਕਤੀ ਦੇ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ +0.40 m ਹੁੰਦੀ ਹੈ। ਇਹ ਲੈੱਨਜ਼ ਅਵਤਲ ਹੈ।

^^^^

ਅਨੇਕ ਪ੍ਕਾਸ਼ੀ ਯੰਤਰਾਂ ਵਿੱਚ ਕਈ ਲੈੱਨਜ਼ ਲੱਗੇ ਹੁੰਦੇ ਹਨ। ਉਹਨਾਂ ਨੂੰ ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਵਧੇਰੇ ਵੱਡਦਰਸ਼ਨ ਕਰਨ ਅਤੇ ਸਪਸ਼ਟ ਪ੍ਤੀਬਿੰਬ ਬਨਾਉਣ ਲਈ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਜੋੜੇ ਗਏ ਲੈੱਨਜ਼ਾਂ ਦੀ ਕੁੱਲ ਸ਼ਕਤੀ (P) ਉਹਨਾਂ ਲੈੱਨਜ਼ਾਂ ਦੀਆਂ ਵਿਅਕਤੀਗਤ ਸ਼ਕਤੀਆਂ $(P_1, P_2, P_3, ...$ ਆਦਿ), ਦਾ ਬੀਜ ਗਣਿਤਕ ਜੋੜ ਹੈ, ਕਿਉਂਕਿ $P = P_1 + P_2 + P_3 + ...$

ਐਨਕ ਬਣਾਉਣ ਵਾਲੇ ਲਈ, ਲੈੱਨਜ਼ਾਂ ਦੀ ਫੋਕਸ ਦੂਰੀ ਦੇ ਜਾਂ ਸ਼ਕਤੀ ਦਾ ਉਪਯੋਗ ਕਰਨਾ ਕਾਫੀ ਸੁਵਿਧਾਜਨਕ ਹੈ। ਨਜ਼ਰ ਟੈੱਸਟ ਕਰਦੇ ਸਮੇਂ ਚਸ਼ਮਾ ਬਣਾਉਣ ਵਾਲਾ ਗਿਆਤ ਸਮਰੱਥਾ ਵਾਲੇ ਜੁੜਵਾਂ ਲੈੱਨਜ਼ਾਂ ਦੇ ਅਨੇਕ ਵੱਖ ਵੱਖ ਜੋੜਿਆਂ ਨੂੰ ਸੈਪਰਕ ਵਿੱਚ ਰੱਖ ਕੇ ਚਸ਼ਮਿਆਂ ਨੂੰ ਟੈੱਸਟ ਕਰਨ ਵਾਲੇ ਫ੍ਰੇਮ ਦੇ ਅੰਦਰ ਰੱਖਦਾ ਹੈ। ਚਸ਼ਮਾ ਬਣਾਉਣ ਵਾਲਾ ਲੋੜੀਂਦੇ ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਦੀ ਗਣਨਾ ਸਰਲ ਬੀਜ ਗਣਿਤਕ ਜੋੜਾਂ ਦੁਆਰਾ ਕਰ ਲੈਂਦਾ ਹੈ। ਉਦਾਹਰਨ ਲਈ +2.0 D ਅਤੇ +0.25 D ਸ਼ਕਤੀ ਵਾਲੇ ਦੇ ਲੈੱਨਜ਼ਾਂ ਦਾ ਸੰਯੋਜਨ + 2.25 D ਸ਼ਕਤੀ ਦੇ ਇੱਕ ਲੈੱਨਜ਼ ਦੇ ਬਰਾਬਰ ਹੈ। ਲੈੱਨਜ਼ਾਂ ਦੀਆਂ ਸ਼ਕਤੀਆਂ ਦੇ ਜੋੜਤਾ ਦੇ ਇਸ ਗੁਣ ਧਰਮ ਦਾ ਉਪਯੋਗ ਇਕੱਲੇ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਬਣੇ ਪ੍ਰਤਿਬਿੰਬਾਂ ਵਿੱਚ ਕੁੱਝ ਦੋਸ਼ਾਂ ਨੂੰ ਘੱਟ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਈ ਲੈੱਨਜ਼ਾਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰੱਖ ਕੇ ਬਣਾਏ ਗਏ ਲੈੱਨਜ਼ ਸਿਸਟਮਾਂ ਦਾ ਉਪਯੋਗ ਆਮ ਕਰਕੇ ਕੈਮਰਿਆਂ ਦੇ ਲੈੱਨਜ਼ਾਂ ਅਤੇ ਸੂਖ਼ਮਦਰਸ਼ੀਆਂ ਅਤੇ ਦੂਰਦਰਸ਼ੀਆਂ ਦੇ ਵਸਤੂ ਲੈੱਨਜ਼ਾਂ (ਆੱਬਜੈਕਟਿਵਜ਼) (objectives) ਦੇ ਡਿਜ਼ਾਇਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਕਿਸੇ ਲੈੱਨਜ਼ ਦੀ ਇੱਕ ਡਾਈਆਪਟਰ ਸ਼ਕਤੀ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ।
- ਕੋਈ ਉੱਤਲ ਲੈੱਨਜ਼ ਇੱਕ ਸੂਈ ਦਾ ਵਾਸਤਵਿਕ ਅਤੇ ਉਲਟਾ ਪ੍ਰਤਿਬਿੰਬ ਉਸ ਲੈੱਨਜ਼ ਤੋਂ 50 cm ਦੂਰ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਸੂਈ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੇ ਸਾਹਮਣੇ ਕਿੱਥੇ ਰੱਖੀ ਹੋਈ ਹੈ? ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਵੀ ਗਿਆਤ ਕਰੋ।
- 3. 2 m ਫੋਕਸ ਦੂਰੀ ਵਾਲੇ ਕਿਸੇ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਗਿਆਤ ਕਰੇ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਪ੍ਰਕਾਸ਼ ਸਰਲ ਰੇਖਾਵਾਂ ਵਿੱਚ ਚਲਦਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ।
- ਦਰਪਣ ਅਤੇ ਲੈੱਨਜ਼ ਵਸਤੂਆਂ ਦੇ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾਉਂਦੇ ਹਨ।ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਅਨੁਸਾਰ ਪ੍ਰਤਿਬਿੰਬ ਵਾਸਤਵਿਕ ਜਾਂ ਆਭਾਸੀ ਹੋ ਸਕਦਾ ਹੈ।
- ਸਾਰੀਆਂ ਕਿਸਮਾਂ ਦੀਆਂ ਪਰਾਵਰਤਕ ਸਤ੍ਹਾਵਾਂ ਪਰਾਵਰਤਨ ਦੇ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਕਰਦੀਆਂ ਹਨ।ਅਪਵਰਤਕ ਸਤ੍ਹਾਵਾਂ ਅਪਵਰਤਨ ਦੇ ਨਿਯਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰਦੀਆਂ ਹਨ।

- 🏮 ਗੋਲਾਕਾਰ ਦਰਪਣਾਂ ਅਤੇ ਲੈੱਨਜ਼ਾਂ ਲਈ ਨਵੀਂ ਕਰਾਟੀਜ਼ੀਅਨ ਚਿੰਨ੍ਹ ਪਰੰਪਰਾ ਅਪਣਾਈ ਗਈ ਹੈ।
- ਦਰਪਣ ਸੂਤਰ $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ ਵਸਤੂ ਦੀ-ਦੂਰੀ (u),ਪ੍ਤੀਬਿੰਬ-ਦੂਰੀ (v) ਅਤੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ (f) ਵਿਚਕਾਰ ਸੰਬੰਧ ਦਰਸਾਉਂਦੇ ਹਨ।
- ਕਿਸੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ ਉਸ ਦੇ ਵਕਰਤਾ ਅਰਧ ਵਿਆਸ ਦਾ ਅੱਧ ਹੁੰਦੀ ਹੈ।
- ਕਿਸੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤਾ ਵਡਦਰਸ਼ਨ, ਪ੍ਤਿਬਿੰਬ ਦੀ ਉਚਾਈ ਅਤੇ ਵਸਤੂ ਦੀ ਉਚਾਈ ਦਾ ਅਨੁਪਾਤ ਹੁੰਦਾ ਹੈ।
- ਸੰਘਣੇ ਮਾਧਿਅਮ ਤੋਂ ਵਿਰਲੇ ਮਾਧਿਅਮ ਵਿੱਚ ਤਿਰਛੀ ਜਾਣ ਵਾਲੀ ਕੋਈ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਲੰਬ ਤੋਂ ਪਰੇ ਹਟ ਜਾਂਦੀ ਹੈ।ਵਿਰਲੇ ਮਾਧਿਅਮ ਤੋਂ ਸੰਘਣੇ ਮਾਧਿਅਮ ਵਿੱਚ ਤਿਰਛੀ ਜਾਂਦੀ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਲੰਬ ਵੱਲ ਮੁੜ ਜਾਂਦੀ ਹੈ।
- ਨਿਰਵਾਯੂ ਵਿੱਚ ਪ੍ਕਾਸ਼ 3×10°m s⁻¹ ਦੀ ਸਭ ਤੋਂ ਵੱਧ ਚਾਲ ਨਾਲ ਚਲਦਾ ਹੈ। ਭਿੰਨ ਭਿੰਨ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਦੀ ਚਾਲ ਵੱਖ ਵੱਖ ਹੁੰਦੀ ਹੈ।
- ਕਿਸੇ ਪਾਰਦਰਸ਼ੀ ਮਾਧਿਅਮ ਦਾ ਅਪਵਰਤਨ ਅੰਕ ਪ੍ਕਾਸ਼ ਦੀ ਨਿਰਵਾਯੂ ਵਿੱਚ ਚਾਲ ਅਤੇ ਮਾਧਿਅਮ ਵਿੱਚ ਚਾਲ ਦੀ ਅਨੁਪਾਤ ਹੁੰਦੀ ਹੈ।
- ਕਿਸੇ ਆਇਤਾਕਾਰ ਕੱਚ ਦੇ ਸਲੈਬ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਅਪਵਰਤਨ ਹਵਾ-ਕੱਚ ਅੰਤਰ ਸਤ੍ਹਾ ਅਤੇ ਕੱਚ-ਹਵਾ ਅੰਤਰ ਸਤ੍ਹਾ ਦੋਵਾਂ ਉੱਤੇ ਹੁੰਦੀ ਹੈ। ਨਿਰਗਾਨੀ ਕਿਰਨ ਦੀ ਦਿਸ਼ਾ ਆਪਤਿਤ ਕਿਰਨ ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਾਨਾਂਤਰ ਹੁੰਦੀ ਹੈ।
- ਲੈੱਨਜ਼ ਸੂਤਰ : $\frac{1}{v} \frac{1}{u} = \frac{1}{f}$ ਵਸਤੂ ਦੀ ਦੂਰੀ (u), ਪ੍ਰਤੀਬਿੰਬ ਦੂਰੀ (v) ਅਤੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਦੀ ਫੋਕਸ ਦੂਰੀ (f) ਵਿਚਕਾਰ ਸੰਬੰਧ ਦਰਸਾਉਂਦਾ ਹੈ।
- ਕਿਸੇ ਲੈੱਨਜ਼ ਦੀ ਸਮਰੱਥਾ ਉਸ ਦੀ ਫੋਕਸ ਦੂਰੀ ਦੇ ਉਲਟ ਹੁੰਦੀ ਹੈ। ਲੈੱਨਜ਼ ਦੀ ਸ਼ਕਤੀ ਦਾ SI ਯੂਨਿਟ (ਮਾਤਕ) ਡਾਈਆੱਪਟਰ ਹੈ।

ਅਭਿਆਸ

- ।. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਪਦਾਰਥ ਲੈੱਨਜ਼ ਬਣਾਉਣ ਲਈ ਨਹੀਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ?
 - (a) ਪਾਣੀ
- (b) ਕੱਚ
- (c) ਪਲਾਸਟਿਕ
- (d) **ਮਿੱਟੀ**
- ਕਿਸੇ ਵਸਤੂ ਦਾ ਅਵਤਲ ਦਰਪਣ ਦੁਆਰਾ ਬਣਿਆ ਪ੍ਰਤਿਬਿੰਬ ਆਭਾਸੀ ਸਿੱਧਾ ਅਤੇ ਵਸਤੂ ਤੋਂ ਵੱਡਾ ਸੀ। ਵਸਤੂ ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ?
 - (a) ਮੁੱਖ ਫੋਕਸ ਅਤੇ ਵਕਰਤਾ ਕੇਂਦਰ ਦੇ ਵਿਚਕਾਰ
 - (b) ਵਕਰਤਾ ਕੇਂਦਰ ਉੱਤੇ
 - (c) ਵਕਰਤਾ ਕੇਂਦਰ ਤੋਂ ਪਰੇ
 - (d) ਦਰਪਣ ਦੇ ਧਰਵ ਅਤੇ ਮੁੱਖ ਫੋਕਸ ਵਿਚਕਾਰ

- 3. ਕਿਸੇ ਵਸਤੂ ਦਾ ਵਾਸਤਵਿਕ ਅਤੇ ਸਮਾਨ ਆਕਾਰ ਪ੍ਰਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵਸਤੂ ਨੂੰ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੇ ਸਾਹਮਣੇ ਕਿੱਥੇ ਰੱਖਿਆ ਜਾਵੇ?
 - (a) ਲੈੱਨਜ਼ ਦੇ ਮੁੱਖ ਫੋਕਸ ਉੱਤੇ
 - (ь) ਫੋਕਸ ਦੂਰੀ ਦੀ ਦੁੱਗਣੀ ਦੂਰੀ ਉੱਤੇ
 - (c) ਅਨੰਤ ਉੱਤੇ
 - (d) ਲੈੱਨਜ਼ ਦੇ ਪ੍ਰਕਾਸ਼ ਕੇਂਦਰ ਅਤੇ ਮੁੱਖ ਫੋਕਸ ਦੇ ਵਿਚਕਾਰ
- 4. ਕਿਸੇ ਗੋਲਾਕਾਰ ਦਰਪਣ ਅਤੇ ਕਿਸੇ ਪਤਲੇ ਗੋਲਾਕਾਰ ਲੈੱਨਜ਼ ਦੋਵਾਂ ਦੀਆਂ ਫੋਕਸ ਦੂਰੀਆਂ –15 cm ਹਨ। ਦਰਪਣ ਅਤੇ ਲੈੱਨਜ਼ ਸੰਭਾਵਿਤ ਹਨ : –
 - (a) ਦੋਵੇਂ ਅਵਤਲ
 - (b) ਦੋਵੇਂ ਉੱਤਲ
 - (c) ਦਰਪਣ ਅਵਤਲ ਅਤੇ ਲੈੱਨਜ਼ ਉੱਤਲ
 - (d) ਦਰਪਣ ਉੱਤਲ ਅਤੇ ਲੈੱਨਜ਼ ਅਵਤਲ
- ਕਿਸੇ ਦਰਪਣ ਤੋਂ ਤੁਸੀਂ ਕਿੰਨੀ ਵੀ ਦੂਰੀ ਉੱਤੇ ਖੜ੍ਹੇ ਹੋਵੇ, ਤੁਹਾਡਾ ਪ੍ਤੀਬਿੰਬ ਹਮੇਸ਼ਾ ਹੀ ਸਿੱਧਾ ਪ੍ਤੀਤ ਹੁੰਦਾ ਹੈ। ਸੰਭਵ ਤੌਰ ਤੇ ਦਰਪਣ ਹੈ:-
 - (a) ਕੇਵਲ ਸਮਤਲ
 - (b) ਕੇਵਲ ਅਵਤਲ
 - (c) ਕੇਵਲ ਉੱਤਲ
 - (d) ਜਾਂ ਤਾਂ ਸਮਤਲ ਜਾਂ ਉੱਤਲ
- 6. ਕਿਸੇ ਸ਼ਬਦਕੋਸ਼ (dictionary) ਵਿੱਚ ਛੋਟੇ ਅੱਖਰਾਂ ਨੂੰ ਪੜ੍ਹਨ ਸਮੇਂ ਤੁਸੀਂ ਹੇਠ ਦਿੱਤਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਲੈੱਨਜ਼ ਨੂੰ ਦੀ ਪਹਿਲ ਦਿਓਗੇ?
 - (a) 50 cm ਫੋਕਸ ਦੂਰੀ ਦਾ ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼
 - (b) 50 cm ਫੋਕਸ ਦੂਰੀ ਦਾ ਇੱਕ ਅਵਤਲ ਲੈੱਨਜ਼
 - (c) 5 cm ਫੋਕਸ ਦੂਰੀ ਦਾ ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼
 - (d) 5 cm ਫੋਕਸ ਦੂਰੀ ਦਾ ਇੱਕ ਅਵਤਲ ਲੈੱਨਜ਼
- 7. 15 cm ਫੋਕਸ ਦੂਰੀ ਦੇ ਇੱਕ ਅਵਤਲ ਦਰਪਣ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਅਸੀਂ ਕਿਸੇ ਵਸਤੂ ਦਾ ਸਿੱਧਾ ਪ੍ਰਤਿਬਿੰਬ ਬਨਾਉਣਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਵਸਤੂ ਦੇ ਦਰਪਣ ਦੀ ਦੂਰੀ ਦਾ ਰੇਂਜ (range) ਕੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ? ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਪ੍ਰਕਿਰਤੀ ਕਿਹੋ ਜਿਹੀ ਹੈ? ਪ੍ਰਤਿਬਿੰਬ ਵਸਤੂ ਤੋਂ ਵੱਡਾ ਹੈ ਜਾਂ ਛੋਟਾ? ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰਤਿਬਿੰਬ ਬਣਨ ਦਾ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾਓ।
- 8. ਨਿਮਨ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵਰਤੇ ਗਏ ਦਰਪਣ ਦੀ ਕਿਸਮ ਦੱਸੋ
 - (a) ਕਿਸੇ ਕਾਰ ਦੀ ਹੈੱਡ ਲਾਈਟ
 - (b) ਕਿਸੇ ਵਾਹਨ ਦਾ ਪਾਸਾ/ ਪਿੱਛੇ-ਦਰਸ਼ੀ ਦਰਪਣ
 - (c) ਸੋਲਰ ਭੱਠੀ ਆਪਣੇ ਉੱਤਰ ਦੀ ਕਾਰਨ ਸਹਿਤ ਪੁਸ਼ਟੀ ਕਰੋ।

- ਕਿਸੇ ਉੱਤਲ ਲੈੱਨਜ਼ ਦਾ ਅੱਧਾ ਭਾਗ ਕਾਲੇ ਕਾਗਜ਼ ਨਾਲ ਢੱਕ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਕੀ ਇਹ ਲੈੱਨਜ਼ ਕਿਸੇ ਵਸਤੂ ਦਾ ਪੂਰਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾ ਲਏਗਾ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਜਾਂਚ ਕਰੋ। ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 10. 5 cm ਲੰਬੀਆਂ ਵਸਤੂ ਨੂੰ 10 cm ਫੋਕਸ ਦੂਰੀ ਦੇ ਕਿਸੇ ਅਭਿਸਾਰੀ ਲੈੱਨਜ਼ ਤੋਂ 25 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਖਿੱਚ ਕੇ ਬਣਨ ਵਾਲੇ ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਸਥਿਤੀ, ਸਾਈਜ਼ ਅਤੇ ਪ੍ਰਕਿਰਤੀ ਗਿਆਤ ਕਰੋ।
- 11. 15 cm ਫੋਕਸ ਦੂਰੀ ਦਾ ਕੋਈ ਅਵਤਲ ਲੈੱਨਜ਼ ਕਿਸੇ ਵਸਤੂ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਲੈੱਨਜ਼ ਤੋਂ 10 cm ਦੂਰੀ ਉੱਤੇ ਬਣਾਉਂਦਾ ਹੈ।ਵਸਤੂ ਲੈੱਨਜ਼ ਤੋਂ ਕਿੰਨੀ ਦੂਰੀ ਉੱਤੇ ਸਥਿਤ ਹੈ? ਕਿਰਨ ਰੇਖਾ ਚਿੱਤਰ ਬਣਾਓ।
- 12. 15 cm ਫੋਕਸ ਦੂਰੀ ਦੇ ਕਿਸੇ ਉੱਤਲ ਦਰਪਣ ਤੋਂ ਕੋਈ ਵਸਤੂ 10 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ।ਪ੍ਰਤਿਬਿੰਬ ਦੀ ਸਥਿਤੀ ਅਤੇ ਪ੍ਰਕਿਰਤੀ ਗਿਆਤ ਕਰੋ।
- 13. ਇੱਕ ਸਮਤਲ ਦਰਪਣ ਦੁਆਰਾ ਪੈਦਾ ਹੋਇਆਂ ਵਡਦਰਸ਼ਨ +1 ਹੈ। ਇਸ ਦਾ ਕੀ ਅਰਥ ਹੈ?
- 14. 5.0 cm ਲੈਬਾਈ ਦੀ ਕੋਈ ਵਸਤੂ 30 cm ਵਕਰਤਾ <mark>ਅਰਧ</mark> ਵਿਆਸ ਦੇ ਕਿਸੇ ਉੱਤਲ ਦਰਪਣ ਦੇ ਸਾਹਮਣੇ 20 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖੀ ਗਈ ਹੈ।ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਸਥਿਤੀ <mark>ਅਤੇ ਆਕਾ</mark>ਰ ਗਿਆਤ ਕਰੋ।
- 15. 7.0 cm ਸਾਈਜ਼ ਦੀ ਕੋਈ ਵਸਤੂ 18 cm ਫੋਕਸ ਦੂਰੀ ਦੇ ਕਿਸੇ ਅਵਤਲ ਦਰਪਣ ਦੇ ਸਾਹਮਣੇ 27 cm ਦੂਰੀ ਉੱਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਦਰਪਣ ਤੋਂ ਕਿੰਨੀ ਦੂਰੀ ਤੇ ਕਿਸੇ ਪਰਦੇ ਨੂੰ ਰੱਖੀਏ ਕਿ ਉਸ ਉੱਤੇ ਵਸਤੂ ਦਾ ਸਪਸ਼ਟ ਫੋਕਸ ਕੀਤਾ ਪ੍ਰਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕੇ। ਪ੍ਰਤਿਬਿੰਬ ਦਾ ਆਕਾਰ ਅਤੇ ਪ੍ਰਕਿਰਤੀ ਗਿਆਤ ਕਰੋ।
- 16. ਉਸ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰੋ ਜਿਸ ਦੀ ਸ਼ਕਤੀ -2.0 D ਹੈ। ਇਹ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਲੈੱਨਜ਼ ਹੈ?
- 17. ਕੋਈ ਡਾਕਟਰ +1.5 D ਸ਼ਕਤੀ ਦਾ ਸੰਸ਼ੋਧਿਤ ਲੈੱਨਜ਼ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਗਿਆਤ ਕਰੋ। ਕੀ ਨਿਰਧਾਰਿਤ ਲੈੱਨਜ਼ ਅਭਿਸਾਰੀ ਜਾਂ ਅਪਸਾਰੀ ਹੈ?

ਅਧਿਆਇ ਮਨੁੱਖੀ ਅੱਖ ਅਤੇ ਰੰਗ **ਰੰਗਾ ਸੰਸਾਰ**

The Human Eve and Colourful world

🐾 ਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਤੁਸੀਂ ਲੈੱਨਜਾਂ ਦੇ ਅਪਵਰਤਨ ਬਾਰੇ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਤੁਸੀਂ ਲੈੱਨਜ਼ਾਂ ਦੁਆਰਾ ਬਣਾਏ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਸਥਿਤੀ ਅਤੇ ਉਹਨਾਂ ਦੇ ਸਾਪੇਖਿਕ ਆਕਾਰ ਬਾਰੇ ਵੀ ਅਧਿਐਨ ਕਰ ਚੱਕੇ ਹੋ। ਇਹ ਗਿਆਨ ਮਨੁੱਖੀ ਅੱਖ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਸਾਡੀ ਕਿਸ ਪ੍ਰਕਾਰ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ? ਮਨੁੱਖੀ ਅੱਖ ਪ੍ਰਕਾਸ਼ ਦਾ ਉਪਯੋਗ ਕਰਦੀ ਹੈ ਅਤੇ ਚਾਰੇ ਪਾਸੇ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਵੇਖਣ ਲਈ ਸਾਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਦੀ ਰਚਨਾ ਵਿੱਚ ਇੱਕ ਲੈੱਨਜ਼ ਹੁੰਦਾ ਹੈ। ਮਨੁੱਖੀ ਅੱਖ ਵਿੱਚ ਲੈੱਨਜ਼ ਦਾ ਕੀ ਕਾਰਜ ਹੈ? ਐਨਕ ਵਿੱਚ ਪਯੋਗ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਲੈੱਨਜ਼ ਦਿਸ਼ਟੀ ਦੋਸ਼ਾਂ ਨੂੰ ਕਿਸ ਪਕਾਰ ਠੀਕ ਕਰਦੇ ਹਨ? ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਹਨਾਂ ਹੀ ਪਸ਼ਨਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਪਕਾਸ਼ ਅਤੇ ਉਸ ਦੇ ਕੁੱਝ ਗੁਣਾਂ ਬਾਰੇ ਅਧਿਐਨ ਕੀਤਾ ਸੀ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਨ੍ਹਾਂ ਧਾਰਨਾਵਾਂ ਦਾ ਉਪਯੋਗ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਕੁੱਝ ਪ੍ਰਕਾਸ਼ੀ ਵਰਤਾਰਿਆਂ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਉਪਯੋਗ ਕਰਾਂਗੇ। ਅਸੀਂ ਸਤਰੰਗੀ ਪੀਂਘ ਬਣਨ, ਚਿੱਟੇ ਪਕਾਸ਼ ਦਾ ਰੰਗਾਂ ਵਿੱਚ ਵਿਭਾਜਨ ਹੋਣਾ ਅਤੇ ਆਕਾਸ਼ ਦੇ ਨੀਲੇ ਰੰਗ ਬਾਰੇ ਵੀ ਚਰਚਾ ਕਰਾਂਗੇ।

11.1 ਮਨੁੱਖੀ ਅੱਖ (The Human Eye)

ਮਨੁੱਖੀ ਅੱਖ ਇੱਕ ਬਹੁਤ ਕੀਮਤੀ ਅਤੇ ਸੰਵੇਦਨਸ਼ੀਲ ਗਿਆਨ ਇੰਦਰੀ ਹੈ। ਇਹ ਸਾਨੂੰ ਇਸ ਅਦਭੱਤ ਸੰਸਾਰ ਅਤੇ ਸਾਡੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਰੰਗਾਂ ਨੂੰ ਵੇਖਣ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ। ਅੱਖਾਂ ਬੰਦ ਕਰਕੇ ਅਸੀਂ ਵਸਤੂਆਂ ਨੂੰ ਉਹਨਾਂ ਦੀ ਗੈਧ, ਸਵਾਦ, ਉਨ੍ਹਾਂ ਦੁਆਰਾ ਉਤਪੰਨ ਧੂਨੀ ਜਾਂ ਉਹਨਾਂ ਨੂੰ ਸਪਰਸ਼ ਕਰਕੇ ਕਿਸੇ ਹੱਦ ਤੱਕ ਪਹਿਚਾਣ ਸਕਦੇ ਹਾਂ। ਫਿਰ ਵੀ ਅੱਖਾਂ ਨੂੰ ਬੈਦ ਕਰਕੇ ਰੰਗਾਂ ਦੀ ਪਹਿਚਾਣ ਕਰਨਾ ਅਸੰਭਵ ਹੈ। ਇਸ ਪਕਾਰ ਸਾਰੀਆਂ ਗਿਆਨ ਇੰਦੀਆਂ ਵਿੱਚੋਂ ਮਨੁੱਖੀ ਅੱਖ ਸਭ ਤੋਂ ਵੱਧ ਮਹੱਤਵਪਰਨ

ਹੈ ਕਿਉਂਕਿ ਇਹ ਸਾਨੂੰ ਚਾਰੇ ਪਾਸੇ ਦੇ ਰੰਗ ਬਰੰਗੇ ਸੰਸਾਰ ਨੂੰ ਵੇਖਣ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ।

ਮਨੱਖੀ ਅੱਖ ਇੱਕ ਕੈਮਰੇ ਦੀ ਤਰ੍ਹਾਂ ਹੈ। ਇਸ ਦਾ ਲੈੱਨਜ਼ ਸਿਸਟਮ, ਇੱਕ ਪਕਾਸ਼ ਪਤੀ ਸੰਵੇਦਨਸ਼ੀਲ ਪਰਦੇ. ਜਿਸ ਨੂੰ ਰੈਟਿਨਾ (Retina) ਕਹਿੰਦੇ ਹਨ, ਉੱਤੇ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾਉਂਦਾ ਹੈ। ਪ੍ਰਕਾਸ਼ ਇੱਕ ਪਤਲੀ ਝਿੱਲੀ ਵਿੱਚੋਂ ਹੋ ਕੇ ਅੱਖ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ। ਇਸ ਝਿੱਲੀ ਨੂੰ ਕਾਰਨੀਆ ਕਹਿੰਦੇ ਹਨ। ਚਿੱਤਰ 11.1 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇਹ ਭਿੱਲੀ ਅੱਖ ਦੇ ਡੇਲੇ ਦੇ ਸਾਹਮਣੇ ਪਾਸੇ ਇੱਕ ਪਾਰਦਰਸ਼ੀ

ਉਭਾਰ ਬਣਾਉਂਦੀ ਹੈ। ਡੇਲੇ ਦੀ ਬਣਤਰ ਲੱਗਭੱਗ ਗੋਲਾਕਾਰ ਹੈ ਅਤੇ ਇਸ ਦਾ ਵਿਆਸ ਲੱਗ ਭੱਗ 2.3 cm ਹੁੰਦਾ ਹੈ। ਅੱਖ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਵਾਲੀਆਂ ਪ੍ਰਕਾਸ਼ ^{ਵਿਟਰੀਅਸ ਹਿਊਮਰ} ਕਿਰਨਾਂ ਦਾ ਬਹੁਤਾ ਅਪਵਰਤਨ ਕਾਰਨੀਆ ਦੀ ਬਾਹਰੀ ਸਤਹ ਉੱਤੇ ਹੁੰਦਾ ਹੈ। ਕ੍ਰਿਸਟਲੀ ਲੈੱਨਜ਼ (Crystalline lens) (ਨੇਤਰ ਲੈਂਨਜ਼) ਭਿੰਨ ਦੁਰੀਆਂ ਉੱਤੇ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਰੈਟਿਨਾ ਉੱਤੇ

ਸਿਲੀਅਰ ਪੇਸ਼ੀ ਕ੍ਰਿਸਟਲੀ ਲੈੱਨਜ਼ ਐਕਅਸ ਰੇਟਿਨਾ ਹਿਉਮਰ ਪਤਲੀ ਪਕਾਸ਼ੀ ਨਾੜੀ ਕਾਰਨੀਆ ਸਾਫ਼ ਪਰਤ

ਚਿੱਤਰ 11.1 ਮਨੁੱਖੀ ਅੱਖ

ਫੋਕਸ ਕਰਨ ਲਈ ਲੋੜੀਂਦੀ ਫੋਕਸ ਦੂਰੀ ਵਿੱਚ ਭਿੰਨ ਸੂਖ਼ਮ ਵਿਵਸਥਿਤ ਕਰਦਾ ਹੈ। ਕਾਰਨਿਆ ਦੇ ਪਿੱਛੇ ਇੱਕ ਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਆਇਰਿਸ (Ircis) ਕਹਿੰਦੇ ਹਨ। ਆਇਰਿਸ ਗਹਿਰੇ ਰੰਗ ਦਾ ਪੇਸ਼ੀਦਾਰ ਡਾਇਫਰਾਮ ਹੁੰਦਾ ਹੈ ਜੋ ਪੁਤਲੀ (Pupil) ਦੇ ਆਕਾਰ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਦਾ ਹੈ। ਪੁਤਲੀ, ਅੱਖ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਵਾਲੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਮਾਤਰਾ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ (regulate) ਕਰਦੀ ਹੈ। ਨੇਤਰ ਲੈੱਨਜ਼ ਰੈਟਿਨਾ ਉੱਤੇ ਕਿਸੇ ਵਸਤੂ ਦਾ ਉਲਟਾ ਅਤੇ ਵਾਸਤਵਿਕ ਪ੍ਰਤਿਬੰਬ ਬਣਾਉਂਦੀ ਹੈ। ਰੈਟਿਨਾ ਇੱਕ ਕੋਮਲ ਝਿੱਲੀ ਹੈ ਜਿਸ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਪ੍ਰਕਾਸ਼ ਪ੍ਰਤੀ ਸੰਵੇਦਨਸ਼ੀਲ ਸੈੱਲ ਹੁੰਦੇ ਹਨ। ਪ੍ਰਦੀਪਤ ਹੋਣ ਤੇ ਪ੍ਰਕਾਸ਼ ਸੁਗ੍ਰਾਹੀ ਸੈੱਲ ਕਿਰਿਆਸ਼ੀਲ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਬਿਜਲਈ ਸੰਕੇਤ ਉਤਪੰਨ ਕਰਦੇ ਹਨ। ਇਹ ਸੰਕੇਤ ਪ੍ਰਕਾਸ਼ੀ ਨਾੜੀਆਂ (optic nerves) ਰਾਹੀਂ ਦਿਮਾਗ ਤੱਕ ਪਹੁੰਚਾ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਦਿਮਾਗ ਇਨ੍ਹਾਂ ਸੰਕੇਤਾਂ ਨੂੰ ਅਨੁਵਾਦ ਕਰਕੇ ਇਸ ਸੂਚਨਾ ਨੂੰ ਅੱਗੇ ਭੇਜਦਾ ਹੈ। ਜਿਸ ਤੋਂ ਅਸੀਂ ਵਸਤਾਂ ਨੂੰ ਉਸ ਤਰ੍ਹਾਂ ਦਾ ਵੇਖ ਸਕਦੇ ਹਾਂ ਜਿਹੀਆਂ ਉਹ ਹਨ।

ਦ੍ਰਿਸ਼ਟੀ ਪ੍ਰਣਾਲੀ ਦੇ ਕਿਸੇ ਵੀ ਭਾਗ ਨੂੰ ਸੱਟ ਲੱਗਣ ਜਾਂ (Malfunctioning) ਠੀਕ ਕਾਰਜ ਨਾ ਕਰਨ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਦ੍ਰਿਸ਼ਟੀ ਕੈਮਾਂ ਵਿੱਚ ਭਾਰੀ ਨੁਕਸਾਨ ਹੋ ਸਕਦਾ ਹੈ ਉਦਾਹਰਨ ਵਜੋਂ ਪ੍ਰਕਾਸ਼ ਸੰਚਾਰਨ ਕਰਦੀ ਕੋਈ ਵੀ ਰਚਨਾ ਜਿਵੇਂ ਕਾਰਨੀਆ, ਪੁਤਲੀ, ਨੇਤਰ ਲੈੱਨਜ਼ ਅਤੇ ਐਕੁਅਸ ਹਿਊਮਰ, ਵਿਟਰੀਅਸ ਹਿਊਮਰ ਅਤੇ ਪ੍ਰਕਾਸ਼ੀ ਨਾੜੀ ਜਾਂ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਬਿਜਲਈ ਸੰਵੇਦਨਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨ ਲਈ ਜ਼ਿਮੇਵਾਰ ਜਿਵੇਂ ਕਿ ਰੈਟਿਨਾ, ਇੱਥੋਂ ਤੱਕ ਕਿ ਪ੍ਰਕਾਸ਼ੀ ਨਾੜੀ ਜੋ ਕਿ ਸਿਗਨਲਾਂ ਨੂੰ ਦਿਮਾਗ ਤੱਕ ਪਹੁੰਚਾਉਂਦੀ ਹੈ, ਦੇ ਹਾਨੀ ਗ੍ਰਸਤ ਹੋਣ ਨਾਲ ਦ੍ਰਿਸ਼ਟੀ ਵਿੱਚ ਵਿਗਾੜ ਪੈ ਜਾਣਗੇ। ਤੁਸੀਂ ਅਨੁਭਵ ਕੀਤਾ ਹੋਵੇਗਾ ਕਿ ਜਦੋਂ ਅਸੀਂ ਤੀਬਰ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਕਿਸੇ ਘੱਟ ਪ੍ਰਕਾਸ਼ਿਤ ਕਮਰੇ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੇ ਹਾਂ ਤਾਂ ਸ਼ੁਰੂ ਵਿੱਚ ਕੁੱਝ ਦੇਰ ਤੱਕ ਤੁਸੀਂ ਉਸ ਕਮਰੇ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਨਹੀਂ ਵੇਖ ਸਕਦੇ ਫਿਰ ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਉਸ ਘੱਟ ਪ੍ਰਕਾਸ਼ਿਤ ਕਮਰੇ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਨਹੀਂ ਵੇਖ ਸਕਦੇ ਫਿਰ ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਉਸ ਘੱਟ ਪ੍ਰਕਾਸ਼ਿਤ ਕਮਰੇ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਨਹੀਂ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਵਧੇਰੇ ਚਮਕੀਲਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਆਇਰਿਸ ਸੁੰਗੜ ਕੇ ਪੁਤਲੀ ਨੂੰ ਛੋਟਾ ਕਰ ਦਿੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਅੱਖ ਵਿੱਚ ਘੱਟ ਪ੍ਰਕਾਸ਼ ਪ੍ਰਵੇਸ਼ ਕਰ ਸਕਦਾ ਹੈ ਪ੍ਰਤੂ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਘੱਟ ਹੁੰਦਾ ਹੈ ਤਾਂ ਆਇਰਿਸ ਫੈਲ ਕੇ ਪੁਤਲੀ ਨੂੰ ਵੱਡਾ ਕਰ ਦਿੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਅੱਖ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਰਕਾਸ਼ ਪ੍ਰਵੇਸ਼ ਕਰ ਸਕਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਘੱਟ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਆਇਰਿਸ ਦੇ ਫੈਲਣ ਨਾਲ ਪੁਤਲੀ ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਖੁੱਲ੍ਹ ਜਾਂਦੀ ਹੈ।

11.1.1 ਅਨੁਕੂਲਣ ਸਮਰੱਥਾ

ਨੇਤਰ ਲੈੱਨਜ਼ ਰੇਸ਼ੇਦਾਰ ਜੈਲੀ ਵਰਗੇ ਪਦਾਰਥ ਦਾ ਬਣਿਆ ਹੋਇਆ ਹੈ। ਇਸ ਦੀ ਵਕਰਤਾ ਵਿੱਚ ਕੁੱਝ ਹੱਦ ਤੱਕ ਸਿਲਰੀ ਪੇਸ਼ੀਆਂ (Ciliary muscles) ਦੁਆਰਾ ਪਰਿਵਰਤਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਨੇਤਰੀ ਲੈੱਨਜ਼ ਦੀ ਵਕਰਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਣ ਨਾਲ ਇਸ ਦੀ ਫੋਕਸ ਦੂਰੀ ਵੀ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਜਦੋਂ ਪੇਸ਼ੀਆਂ ਢਿੱਲੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਨੇਤਰ ਲੈੱਨਜ਼ ਪਤਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਇਸ ਦੀ ਫੋਕਸ ਦੂਰੀ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਅਸੀਂ ਦੂਰ ਰੱਖੀਆਂ ਵਸਤਾਂ ਨੂੰ ਸਪੱਸ਼ਟ ਵੇਖਣ ਦੇ ਸਮਰੱਥ ਹੋ ਜਾਂਦੇ ਹਾਂ। ਜਦੋਂ ਅਸੀਂ ਅੱਖ ਦੇ ਨੇੜੇ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਵੇਖਦੇ ਹਾਂ ਸਿਲਰੀ ਪੇਸ਼ੀਆਂ ਸੁੰਗੜ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਨਾਲ ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਵਕਰਤਾ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਨੇਤਰ ਲੈੱਨਜ਼ ਹੁਣ ਮੋਟਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਸਿੱਟੇ ਵਜੋਂ ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਘੱਟ ਜਾਂਦੀ ਹੈ। ਇਸ ਨਾਲ ਅਸੀਂ ਨੇੜੇ ਰੱਖੀਆਂ ਵਸਤਾਂ ਨੂੰ ਸਪਸ਼ਟ ਵੇਖ ਸਕਦੇ ਹਾਂ।

ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਉਹ ਸਮਰੱਥਾ ਜਿਸ ਦੇ ਕਾਰਨ ਉਹ ਆਪਣੀ ਫੋਕਸ ਦੂਰੀ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰ ਲੈਂਦਾ ਹੈ ਉਸ ਨੂੰ ਅਨੁਕੂਲਣ ਕਹਿੰਦੇ ਹਨ। ਫਿਰ ਵੀ, ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੀਮਾ ਤੋਂ ਘੱਟ ਨਹੀਂ ਹੁੰਦੀ। ਕਿਸੇ ਛਪੇ ਹੋਏ ਪੰਨੇ ਨੂੰ ਅੱਖ ਦੇ ਬਹੁਤ ਨੇੜੇ ਕਰਕੇ ਉਸ ਨੂੰ ਪੜ੍ਹਨ ਦਾ ਯਤਨ ਕਰੋ। ਤੁਸੀਂ ਅਨੁਭਵ ਕਰੋਗੇ ਕਿ ਪ੍ਰਤਿਬਿੰਬ ਧੁੰਦਲਾ ਹੈ ਜਾਂ ਇਸ ਨਾਲ ਤੁਹਾਡੀਆਂ ਅੱਖਾਂ ਉੱਤੇ ਤਣਾਓ ਪੈਂਦਾ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਆਰਾਮ ਨਾਲ ਸਪਸ਼ਟ ਵੇਖਣ ਲਈ ਇਸ ਨੂੰ ਆਪਣੀਆਂ ਅੱਖਾਂ ਤੋਂ ਘੱਟੋ ਘੱਟ 25 cm ਦੂਰ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਉਹ ਨਿਊਨਤਮ ਦੂਰੀ ਜਿਸ ਉੱਤੇ ਰੱਖੀ ਕੋਈ ਵਸਤੂ ਬਿਨਾਂ ਕਿਸੇ ਤਣਾਓ ਦੇ ਵਧੇਰੇ ਸਪਸ਼ਟ ਵੇਖੀ ਜਾ ਸਕਦੀ ਹੈ ਉਸ ਨੂੰ ਸਪਸ਼ਟ ਦ੍ਰਿਸ਼ਟੀ ਦੀ ਨਿਊਨਤਮ ਦੂਰੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਅੱਖ ਦਾ ਨਿਕਟ-ਬਿੰਦੂ (near Point) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਸਾਧਾਰਨ ਦ੍ਰਿਸ਼ਟੀ ਵਾਲੇ ਬਾਲਗ ਲਈ ਨਿਕਟ ਬਿੰਦੂ ਦੀ ਅੱਖ ਤੋਂ ਦੂਰੀ ਲੱਗਭੱਗ 25 cm ਹੁੰਦੀ ਹੈ। ਉਹ ਦੂਰਤਮ ਬਿੰਦੂ ਜਿਸ ਤੱਕ ਕੋਈ ਅੱਖ ਵਸਤੂਆਂ ਨੂੰ ਸਪਸ਼ਟ ਵੇਖ ਸਕਦੀ ਹੈ ਅੱਖ ਦਾ ਦੂਰ ਬਿੰਦੂ (far Point) ਕਹਾਉਂਦਾ ਹੈ। ਸਾਧਾਰਨ ਅੱਖ ਲਈ ਇਹ ਅਨੌਤ ਦੂਰੀ ਉੱਤੇ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਤੁਸੀਂ ਨੋਟ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਇਸ ਸਾਧਾਰਨ ਅੱਖ 25 cm ਤੋਂ ਅਨੌਤ ਦੂਰੀ ਤੱਕ ਰੱਖੀਆਂ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਸਪਸ਼ਟ ਵੇਖ ਸਕਦੀ ਹੈ। ਕਦੇ-ਕਦੇ ਉਚੇਰੀ ਉਮਰ ਦੇ ਕੁੱਝ ਵਿਅਕਤੀਆਂ ਦਾ ਕ੍ਰਿਸਟਲੀ ਲੈੱਨਜ਼ ਦੂਧੀਆ ਜਾਂ ਪੁੰਦਲਾ ਹੋ

ਕਦੇ-ਕਦੇ ਉਚੇਰੀ ਉਮਰ ਦੇ ਕੁੱਝ ਵਿਅਕਤੀਆਂ ਦਾ ਕ੍ਰਿਸਟਲੀ ਲੈੱਨਜ਼ ਦੂਧੀਆ ਜਾਂ ਧੁੰਦਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਸਥਿਤੀ ਨੂੰ ਮੌਤੀਆ ਬਿੰਦ (cataract) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੇ ਕਾਰਨ ਵੇਖਣ ਵਿੱਚ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਕਮੀ ਜਾਂ ਪੂਰੀ ਤਰ੍ਹਾਂ ਅੱਖੋਂ ਦਿਖਣਾ ਬੰਦ ਹੋ ਜਾਂਦਾ ਹੈ। ਮੌਤੀਆ ਬਿੰਦ ਦੇ ਉਪਰੇਸ਼ਨ ਉਪਰੰਤ ਅੱਖ ਦੀ ਨਜ਼ਰ ਦਾ ਮੁੜ ਠੀਕ ਹੋਣਾ ਸੰਭਵ ਹੈ।

9999999999999999999999999999

ਵੇਖਣ ਲਈ ਸਾਡੀਆਂ ਦੋ ਅੱਖਾਂ ਕਿਉਂ ਹਨ, ਕੇਵਲ ਇੱਕ ਹੀ ਕਿਉਂ ਨਹੀਂ?

ਇੱਕ ਅੱਖ ਦੀ ਥਾਂ ਦੋ ਅੱਖਾਂ ਹੋਣ ਦੇ ਸਾਨੂੰ ਅਨੇਕ ਲਾਭ ਹਨ। ਇਸ ਨਾਲ ਸਾਡਾ ਦ੍ਰਿਸ਼ਟੀ ਖੇਤਰ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਮਨੁੱਖੀ ਅੱਖ ਦਾ ਖਿਤਿਜ ਦ੍ਰਿਸ਼ਟੀ ਖੇਤਰ ਲੱਗਭੱਗ 150° ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿ ਦੋ ਅੱਖਾਂ ਰਾਹੀਂ ਇਹ ਲੱਗਭੱਗ 180° ਹੋ ਜਾਂਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਕਿਸੇ ਘੱਟ ਪ੍ਰਕਾਸ਼ਿਤ ਵਸਤੂ ਨੂੰ ਵੇਖਣ ਸਮਰੱਥਾ ਇੱਕ ਦੀ ਬਜਾਏ ਦੋ ਅੱਖਾਂ ਨਾਲ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਸ਼ਿਕਾਰ ਕਰਨ ਵਾਲੇ ਜੰਤੂਆਂ ਦੀਆਂ ਦੋ ਅੱਖਾਂ ਉਹਨਾਂ ਦੇ ਸਿਰ ਉੱਤੇ ਵਿਪਰੀਤ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੀਆਂ ਹਨ ਤਾਂ ਕਿ ਉਹਨਾਂ ਨੂੰ ਵਧੇਰੇ ਵਿਸਤਰਿਤ ਦ੍ਰਿਸ਼ਟੀ ਖੇਤਰ ਪ੍ਰਾਪਤ ਹੋ ਸਕੇ। ਪਰ ਸਾਡੀਆਂ ਦੋਵੇਂ ਅੱਖਾਂ ਸਿਰ ਉੱਤੇ ਸਾਹਮਣੇ ਵੱਲ ਸਥਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਕਾਰਨ ਸਾਡਾ ਦ੍ਰਿਸ਼ਟੀ ਖੇਤਰ ਤਾਂ ਘੱਟ ਜਾਂਦਾ ਹੈ ਪ੍ਰੰਤੂ ਸਾਨੂੰ ਤ੍ਰੈਪਸਾਰੀ Three dimensional) ਦ੍ਰਿਸ਼ਟੀ ਦਾ ਲਾਭ ਮਿਲ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਅੱਖ ਬੰਦ ਕਰੇ ਤੁਹਾਨੂੰ ਸੰਸਾਰ ਚਪਟਾ ਭਾਵ ਦ੍ਰੈਪਸਾਰੀ ਲੱਗੇਗਾ। ਦੋਵੇਂ ਅੱਖਾਂ ਖੇਲ੍ਹੇ ਤੁਹਾਨੂੰ ਸੰਸਾਰ ਦੀਆਂ ਵਸਤਾਂ ਵਿੱਚ ਗਹਿਰਾਈ ਦੀ ਤੀਜੀ ਪਸਾਰ ਵਿਖਾਈ ਦੇਵੇਗੀ ਕਿਉਂਕਿ ਸਾਡੀਆਂ ਅੱਖਾਂ ਵਿਚਕਾਰ ਕੁੱਝ ਸੈਂਟੀਮੀਟਰ ਦਾ ਫਾਸਲਾ ਹੈ ਇਸ ਲਈ ਹਰ ਅੱਖ ਕਿਸੇ ਵਸਤੂ ਦਾ ਥੜ੍ਹਾ ਜਿਹਾ ਭਿੰਨ ਪ੍ਰਤਿਬਿੰਬ ਵੇਖਦੀ ਹੈ। ਸਾਡਾ ਦਿਮਾਗ ਦੋਵੇਂ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦਾ ਸੰਯੋਜਨ ਕਰਕੇ ਇੱਕ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾ ਦਿੰਦਾ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਵਧੇਰੇ ਸੂਚਨਾ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਅਸੀਂ ਇਹ ਦੱਸ ਦਿੰਦੇ ਹਾਂ ਕਿ ਕੋਈ ਵਸਤੂ ਸਾਡੇ ਕਿੰਨੀ ਨੇੜੇ ਜਾਂ ਦੂਰ ਹੈ।

11.2 ਦ੍ਰਿਸ਼ਟੀਦੇਸ਼ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਸੁਧਾਰ (Defects of Vision and their Correction)

ਕਦੇ-ਕਦੇ ਅੱਖਾਂ ਹੌਲੇ ਹੌਲੇ ਆਪਣੀ ਅਨੁਕੂਲਣ ਸਮਰੱਥਾ ਖੋ ਸਕਦੀਆਂ ਹਨ। ਅਜਿਹੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵਿਅਕਤੀ ਵਸਤੂਆਂ ਨੂੰ ਆਰਾਮਦਾਇਕ ਢੰਗ ਨਾਲ ਅਤੇ ਸਪਸ਼ਟ ਨਹੀਂ ਵੇਖ ਸਕਦਾ। ਅੱਖਾਂ ਵਿੱਚ ਅਪਵਰਤਨ ਦੋਸ਼ਾਂ ਕਾਰਨ ਨਜ਼ਰ ਧੁੰਦਲੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਪ੍ਰਮੁੱਖ ਰੂਪ ਵਿੱਚ ਦ੍ਰਿਸ਼ਟੀ ਵਿੱਚ ਤਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਆਮ ਅਪਵਰਤਨ ਦੋਸ਼ ਹੁੰਦੇ ਹਨ। ਇਹ ਦੋਸ਼ ਹਨ :

- (i) ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ (Myopia)
- (ii) ਦੂਰ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ (Hypermetropia)

ਚਿੱਤਰ 11.2 (a), (b) ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੇਸ਼ ਯੁਕਤ ਅੱਖ (c) ਅਵਤਲ ਲੈੱਨਜ਼ ਦੇ ਉਪਯੋਗ ਦੁਆਰਾ ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੇਸ਼ ਠੀਕ ਕਰਨਾ

ਚਿੱਤਰ 11.3 (a), (b) ਦੂਰ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਯੁਕਤ ਅੱਖ (c) ਦੂਰ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਠੀਕ ਕਰਨਾ।

(iii) ਜਗਾ ਦੂਰ ਦ੍ਰਿਸ਼ਟਤਾ ਦੋਸ਼ (Presbyopia) ਇਹਨਾਂ ਦੋਸ਼ਾਂ ਨੂੰ ਉਪਯੁਕਤ ਗੋਲਾਕਾਰ ਲੈੱਨਜ਼ਾਂ ਦੇ ਉਪਯੋਗ ਨਾਲ ਠੀਕ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।ਅਸੀਂ ਇਹਨਾਂ ਦੋਸ਼ਾਂ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਠੀਕ ਕਰਨ ਬਾਰੇ ਹੇਠਾਂ ਚਰਚਾ ਕਰਾਂਗੇ।

(a) ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੇਸ਼

ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਨੂੰ ਨਿਕਟਦ੍ਰਿਸ਼ਟਤਾ (Near-sightedness) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਵਾਲਾ ਕੋਈ ਵਿਅਕਤੀ ਨੇੜੇ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਤਾਂ ਸਪਸ਼ਟ ਵੇਖ ਸਕਦਾ ਹੈ ਪ੍ਰੰਤੂ ਦੂਰ ਰੱਖੀਆਂ ਵਸਤਾਂ ਨੂੰ ਉਹ ਸਪੱਸ਼ਟਤਾ ਨਾਲ ਨਹੀਂ ਵੇਖ ਸਕਦਾ। ਅਜਿਹੇ ਦੋਸ਼ ਯੁਕਤ ਵਿਅਕਤੀ ਦਾ ਦੂਰ-ਬਿੰਦੂ ਅਨੰਤ ਉੱਤੇ ਨਾ ਹੋ ਕੇ ਨੇਤਰ ਨੇੜੇ ਆ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਵਿਅਕਤੀ ਕੁੱਝ ਮੀਟਰ ਦੂਰ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਹੀ ਸਪੱਸ਼ਟ ਵੇਖ ਸਕਦਾ ਹੈ। ਨਿਕਟ ਦ੍ਰਿਸ਼ਟ ਦੋਸ਼ ਯੁਕਤ ਅੱਖ ਵਿੱਚ ਕਿਸੇ ਦੂਰ ਰੱਖੀ ਵਸਤੂ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਰੈਟਿਨਾ ਉੱਤੇ ਨਾ ਬਣ ਕੇ ਰੈਟਿਨਾ ਦੇ ਸਾਹਮਣੇ ਬਣਦਾ ਹੈ [ਚਿੱਤਰ 11.2(b)]। ਇਸ ਦੇਸ਼ ਦੇ ਉਤਪੰਨ

ਹੋਣ ਦੇ ਕਾਰਨ ਹਨ :

- ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਵਕਰਤਾ ਦਾ ਵੱਧ ਹੋਣਾ ਅਤੇ
- (ii) ਡੇਲੇ ਦਾ ਲੰਬਾ ਹੋ ਜਾਣਾ।

ਇਸ ਦੋਸ਼ ਨੂੰ ਸਹੀ ਸਮਰੱਥਾ ਦੇ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੇ ਉਪਯੋਗ ਦੁਆਰਾ ਠੀਕ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ [ਚਿੱਤਰ 11.2 (C)] ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।ਸਹੀ ਸਮਰੱਥਾ ਵਾਲਾ ਅਵਤਲ ਲੈੱਨਜ਼ ਵਸਤੂ ਦੇ ਪ੍ਰਤਿਬਿੰਬ ਨੂੰ ਵਾਪਸ ਰੈਟਿਨਾ ਉੱਤੇ ਲੈ ਆਉਂਦਾ ਹੈ ਅਤੇ ਇਸ ਪ੍ਕਾਰ ਇਹ ਦੋਸ਼ ਠੀਕ ਹੋ ਜਾਂਦਾ ਹੈ।

(b) ਦੂਰ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼

ਦੂਰ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਨੂੰ ਦੂਰ-ਦ੍ਰਿਸ਼ਟਤਾ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਦੂਰ-ਦ੍ਰਿਸ਼ਤੀ ਦੋਸ ਵਾਲਾ ਕੋਈ ਵਿਅਕਤੀ ਦੂਰ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਤਾਂ ਸਪਸ਼ਟ ਵੇਖ ਸਕਦਾ ਹੈ ਪ੍ਰੰਤੂ ਨੇੜੇ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਸਪਸ਼ਟ ਨਹੀਂ ਵੇਖ ਸਕਦਾ।ਅਜਿਹੇ ਦੋਸ਼ ਯੁਕਤ ਵਿਅਕਤੀ ਦਾ ਨਿਕਟ-ਬਿੰਦੂ ਸਾਧਾਰਨ ਨਿਕਟ ਬਿੰਦੂ 25 cm ਤੋਂ ਦੂਰ ਹਟ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਵਿਅਕਤੀ ਨੂੰ ਸਪੱਸ਼ਟ ਪੜ੍ਹਨ ਵਾਸਤੇ ਪੜ੍ਹੀ ਜਾਣ ਵਾਲੀ ਸਮੱਗਰੀ ਨੂੰ ਅੱਖ ਤੋਂ 25 cm ਤੋਂ ਅਧਿਕ ਦੂਰੀ ਉੱਤੇ ਰੱਖਣਾ ਪੈਂਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਨੇੜੇ ਰੱਖੀ ਵਸਤੂ ਤੋਂ ਆਉਣ ਵਾਲੀਆਂ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਰੈਟਿਨਾ ਦੇ ਪਿੱਛੇ ਫੋਕਸ ਹੁੰਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ [ਚਿੱਤਰ 11.3 (b)]ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਦੋਸ਼ ਦੇ ਉਤਪੰਨ ਹੋਣ ਦੇ ਕਾਰਨ ਹਨ : ⇒ਪਾ≪

- (i) ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਦਾ ਵਧ ਜਾਣਾ ਅਤੇ
- (ii) ਡੇਲੇ ਦਾ ਛੋਟਾ ਹੋ ਜਾਣਾ

ਇਸ ਦੋਸ਼ ਨੂੰ ਸਹੀ ਸਮਰੱਥਾ ਦੇ ਉੱਤਲ ਲੈੱਨਜ਼ (ਅਭਿਸਾਰੀ ਲੈੱਨਜ਼) ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਠੀਕ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ ਨੂੰ ਚਿੱਤਰ 11.3C ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਉੱਤਲ ਲੈੱਨਜ਼ ਵਾਲੇ ਚਸ਼ਮੇ ਰੈਟਿਨਾ ਉੱਤੇ ਵਸਤੂ ਦਾ ਪ੍ਤਿਬਿੰਬ ਫੋਕਸ ਕਰਨ ਲਈ ਲੋੜੀਂਦੀ ਸਮਰੱਥਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

(c) ਜਰਾ ਦੂਰ-ਦ੍ਰਿਸ਼ਟਤਾ

ਉਮਰ ਵਿੱਚ ਵਾਧਾ ਹੋਣ ਦੇ ਨਾਲ ਨਾਲ ਮਨੁੱਖੀ ਅੱਖ ਦੀ ਅਨੁਕੂਲਣ ਸਮਰੱਥਾ ਘੱਟ ਜਾਂਦੀ ਹੈ ਵਧੇਰੇ ਵਿਅਕਤੀਆਂ ਦਾ ਨਿਕਟ ਬਿੰਦੂ-ਦੂਰ ਹਟ ਜਾਂਦਾ ਹੈ। ਸੋਧੇ ਹੋਏ ਚਸ਼ਮੇ ਤੋਂ ਬਿਨਾਂ ਉਹਨਾਂ ਨੂੰ ਵਸਤੂਆਂ ਨੂੰ ਆਰਾਮਦਾਇਕ ਢੰਗ ਨਾਲ ਸਪੱਸ਼ਟ ਵੇਖਣ ਵਿੱਚ ਕਠਿਨਾਈ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੋਸ਼ ਨੂੰ ਜਰਾ-ਦੂਰ ਦ੍ਰਿਸ਼ਟਤਾ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੋਸ਼ ਸਿਲੀਆਮਈ ਪੇਸ਼ੀਆਂ ਦੇ ਹੌਲੇ-ਹੌਲੇ ਕਮਜ਼ੋਰ ਹੋਣ ਅਤੇ ਕ੍ਰਿਸਟਲੀ ਲੈੱਨਜ਼ ਦੇ ਲਚੀਲੇਪਨ ਵਿੱਚ ਕਮੀ ਆਉਣ ਕਾਰਨ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ। ਕਦੇ-ਕਦੇ ਕਿਸੇ ਵਿਅਕਤੀ ਦੀ ਅੱਖ ਵਿੱਚ ਦੋਵੇਂ ਪ੍ਕਾਰ ਦੇ ਦੋਸ਼ ਭਾਵ ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਅਤੇ ਦੂਰ-ਦ੍ਰਿਸ਼ਟੀ ਦੋਸ਼ ਹੋ ਸਕਦੇ ਹਨ। ਅਜਿਹੇ ਵਿਅਕਤੀਆਂ ਨੂੰ ਵਸਤੂਆਂ ਨੂੰ ਸਪੱਸ਼ਟ ਵੇਖ ਸਕਣ ਲਈ ਦੋ-ਫੋਕਸੀ ਲੈੱਨਜ਼ਾਂ (Bi-focal lens) ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਸਾਧਾਰਨ ਪ੍ਰਕਾਰ ਦੇ ਦੋ-ਫੋਕਸੀ ਲੈੱਨਜ਼ਾਂ ਵਿੱਚ ਅਵਤਲ ਅਤੇ ਉੱਤਲ ਦੋਵੇਂ ਲੈੱਨਜ਼ ਹੁੰਦੇ ਹਨ। ਉਪਰਲੇ ਭਾਗ ਵਿੱਚ ਅਵਤਲ ਲੈੱਨਜ਼ ਹੁੰਦਾ ਹੈ। ਇਹ ਦੂਰ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਸਪੱਸ਼ਟ ਦੇਖਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।ਹੇਠਲੇ ਭਾਗ ਵਿੱਚ ਉੱਤਲ ਲੈੱਨਜ਼ ਹੁੰਦਾ ਹੈ।

ਅੱਜਕੱਲ੍ਹ ਸਪਰਸ਼ ਲੈੱਨਜ਼ (Contact lens) ਜਾਂ ਸਰਜਰੀ ਦੁਆਰਾ ਦ੍ਰਿਸ਼ਟੀ ਰੋਗਾਂ ਨੂੰ ਠੀਕ ਕਰਨਾ ਸੰਭਵ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਅੱਖ ਦੀ ਅਨੁਕੁਲਣ ਸਮਰੱਥਾ ਤੋਂ ਕੀ ਭਾਵ ਹੈ?
- ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ ਦੇਸ਼ ਦਾ ਕੋਈ ਵਿਅਕਤੀ 1.2 m ਤੋਂ ਵੱਧ ਦੂਰੀ ਉੱਤੇ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਸਪੱਸ਼ਟ ਨਹੀਂ ਦੇਖ ਸਕਦਾ। ਇਸ ਦੇਸ਼ ਨੂੰ ਦੂਰ ਕਰਨ ਲਈ ਸਹੀ ਸੋਧਿਆ ਹੋਇਆ ਲੈੱਨਜ਼ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ?
- 3. ਮਨੁੱਖੀ ਅੱਖ ਦੀ ਸਾਧਾਰਨ ਦ੍ਰਿਸ਼ਟੀ ਲਈ ਦੂਰ ਬਿੰਦੂ ਅਤੇ ਨਿਕਟ ਬਿੰਦੂ ਅੱਖ ਤੋਂ ਕਿੰਨੀ ਦੂਰੀ ਉੱਤੇ ਹੁੰਦੇ ਹਨ?
- 4. ਆਖਰੀ ਕਤਾਰ ਵਿੱਚ ਬੈਠੇ ਕਿਸੇ ਵਿਦਿਆਰਥੀ ਨੂੰ ਬਲੈਕ ਬੋਰਡ ਪੜ੍ਹਨ ਵਿੱਚ ਕਠਿਨਾਈ ਹੁੰਦੀ ਹੈ। ਇਹ ਵਿਦਿਆਰਥੀ ਕਿਸ ਦ੍ਰਿਸ਼ਟੀ ਰੋਗ ਤੋਂ ਪੀੜਤ ਹੈ? ਇਸ ਨੂੰ ਕਿਸ ਪ੍ਰਵਾਰ ਠੀਕ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?

11.3 ਪ੍ਰਿਜ਼ਮ ਵਿੱਚੋਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਅਪਵਰਤਨ (Refraction of light Through a Prism)

ਤੁਸੀਂ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹੋ ਕਿ ਇੱਕ ਆਇਤਾਕਾਰ ਕੱਚ ਦੀ ਸਲੈਬ ਵਿੱਚੋਂ ਲੰਘਣ ਨਾਲ ਪ੍ਕਾਸ਼ ਕਿਸ ਪ੍ਕਾਰ ਅਪਵਰਤਿਤ ਹੁੰਦਾ ਹੈ। ਸਮਾਨਅੰਤਰ ਅਪਵਰਤਕ ਸਤਹਵਾਂ ਲਈ, ਜਿਵੇਂ ਕਿ ਕੱਚ ਦੀ ਸਲੈਬ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਅਪਵਰਤਿਤ ਕਿਰਨ ਆਪਤਿਤ ਕਿਰਨ ਦੇ ਸਮਾਨੰਤਰ ਹੁੰਦੀ ਹੈ। ਫਿਰ ਵੀ ਇਹ ਇੱਕ ਪਾਸੇ ਨੂੰ ਕੁੱਝ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਪਾਰਦਰਸ਼ੀ ਪ੍ਰਿਜ਼ਮ ਵਿੱਚੋਂ ਲੰਘਣ ਨਾਲ ਪ੍ਕਾਸ਼ ਕਿਸ ਕਿਸ ਪ੍ਕਾਰ ਅਪਵਰਤਿਤ ਹੋਵੇਗਾ?

ਜ਼ਰਾ ਸੋਚੋ

ਅਦਭੁਤ ਵਸਤੂਆਂ ਦਾ ਵਰਨਣ ਕਰਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਨੂੰ ਵੇਖ ਸਕਦੇ ਹੋ ਆਪ ਚਮਕੀਲਾ ਹੈ ਸੂਰਜ, ਕਹਿੰਦੇ ਹੋ ਇਹ ਆਪ, ਅਨੁਭਵ ਮੈਂ ਵੀ ਕਰਦਾ ਹਾਂ ਸੂਰਜ ਦਾ ਤਾਪ ਪਰ ਸਮਝ ਨਾ ਸਕਿਆ ਹੁਣ ਤੱਕ ਇਹ ਮੈਂ ਬਣਾਉਂਦਾ ਕਿਵੇਂ ਉਹ ਦਿਨ ਅਤੇ ਰਾਤ?

(ਸੀਂ ਸਿੱਥੇਰ ਦੁਆਰਾ ਅੰਗਰੇਜ਼ੀ ਭਾਸ਼ਾ ਵਿੱਚ ਲਿਖੀ ਕਵਿਤਾ ਦੀਆਂ ਕੁੱਝ ਪੰਕਤੀਆਂ ਦਾ ਪੰਜਾਬੀ ਰੂਪਾਂਤਰ) ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਸਾਡੀਆਂ ਅੱਖਾਂ ਸਾਡੀ ਮੌਤ ਪਿੱਛੋਂ ਵੀ ਜਿਊਂਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ।ਆਪਣੀ ਮੌਤ ਪਿੱਛੋਂ ਅੱਖ ਦਾਨ ਕਰਕੇ ਅਸੀਂ ਕਿਸੇ ਨੇਤਰਹੀਣ ਵਿਅਕਤੀ ਦੇ ਜੀਵਨ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਨਾਲ ਭਰ ਸਕਦੇ ਹਾਂ।

ਵਿਕਾਸਸ਼ੀਲ ਦੇਸ਼ਾਂ ਵਿੱਚ ਲੱਗਭੱਗ 3.5 ਕਰੋੜ ਵਿਅਕਤੀ ਦ੍ਰਿਸ਼ਟੀਹੀਣ ਹਨ ਅਤੇ ਵਧੇਰੇ ਕਰਕੇ ਉਹਨਾਂ ਵਿੱਚੋਂ ਕਈਆਂ ਦੀ ਦ੍ਰਿਸ਼ਟੀ ਠੀਕ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਕਾਰਨਿਆ ਦੇ ਅੰਨ੍ਹੇਪਨ ਨਾਲ ਪੀੜਤ ਲੱਗਭੱਗ 45 ਲੱਖ ਵਿਅਕਤੀਆਂ ਨੂੰ ਨੇਤਰਦਾਨ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕਾਰਨੀਆ ਦੇ ਪ੍ਰਤਿਰੋਪਣ ਨਾਲ ਠੀਕ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ 45 ਲੱਖ ਵਿਅਕਤੀਆਂ ਵਿੱਚ 60 % ਬੱਚੇ 12 ਸਾਲ ਤੋਂ ਘੱਟ ਉਮਰ ਦੇ ਹਨ। ਜੇਕਰ ਸਾਨੂੰ ਦ੍ਰਿਸ਼ਟੀ ਦਾ ਵਰਦਾਨ ਪ੍ਰਾਪਤ ਹੈ ਤਾਂ ਕਿਉਂ ਨਾ ਅਸੀਂ ਉਹਨਾਂ ਨੂੰ ਆਪਣੇ ਨੇਤਰ ਦੇ ਜਾਈਏ ਜਿਨ੍ਹਾਂ ਪਾਸ ਦ੍ਰਿਸ਼ਟੀ ਨਹੀਂ ਹੈ। ਨੇਤਰਦਾਨ ਕਰਦੇ ਸਮੇਂ ਸਾਨੂੰ ਕਿਹੜੀਆਂ ਕਿਹੜੀਆਂ ਗੱਲਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ?

ਨੇਤਰ ਦਾਨ ਕਰਨ ਵਾਲਾ ਵਿਅਕਤੀ ਕਿਸੇ ਵੀ ਉਮਰ ਵਰਗ ਜਾਂ ਲਿੰਗ ਦਾ ਹੋ ਸਕਦਾ ਹੈ। ਚਸ਼ਮਾ ਪਹਿਨਣ ਵਾਲੇ ਜਾਂ ਮੌਤੀਆ ਬਿੰਦ ਦਾ ਆਪਰੇਸ਼ਨ ਕਰਾ ਚੁੱਕੇ ਵਿਅਕਤੀ ਵੀ ਨੇਤਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ। ਸ਼ੱਕਰਰੋਗ ਅਤੇ ਉੱਚ ਰਕਤ ਚਾਪ ਤੋਂ ਪੀੜਤ ਵਿਅਕਤੀ, ਦਮੇਂ ਦੇ ਰੋਗੀ ਅਤੇ ਉਹ ਵਿਅਕਤੀ ਜਿਨ੍ਹਾਂ ਨੂੰ ਛੂਤ ਦਾ ਰੋਗ ਨਹੀਂ ਹੈ। ਨੇਤਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ।

<mark>ੂ ਮੌਤ ਮਗਰੋਂ 4–6 ਘੰਟੇ ਅੰਦਰ ਨੇਤਰ ਕੱਢ ਲੈਣੇ</mark> ਚਾਹੀਦੇ ਹਨ। ਨੇੜੇ ਦੇ ਨੇਤਰ ਬੈਂਕ ਨੂੰ ਤੁਰੰਤ ਸੂਚਿਤ ਕੀਤਾ ਜਾਵੇ।

ਨੇਤਰ ਬੈਂਕ ਦੀ ਟੀਮ ਮਿਤ ਵਿਅਕਤੀ ਦੇ ਘਰ ਜਾ ਕੇ ਤੇ ਜਾਂ ਹਸਪਤਾਲ ਵਿੱਚ ਨੇਤਰ ਕੱਢ ਲਵੇਗੀ।

ਨੇਤਰ ਕੱਢਣ ਵਿੱਚ ਸਿਰਫ 10-15 ਮਿੰਟ ਦਾ ਸਮਾਂ ਲਗਦਾ ਹੈ। ਇਹ ਇੱਕ ਸਰਲ ਪ੍ਰਕਿਰਿਆ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਕਿਸੇ

ਪ੍ਕਾਰ ਦੀ ਕਰੂਪਤਾ ਨਹੀਂ ਹੁੰਦੀ।

ਅਜਿਹੇ ਵਿਅਕਤੀ ਜੋ ਏਡਜ਼ (AIDS), ਹੋਪੇਟਾਈਟਸ B ਜਾਂ C (Hepatitis B or C), ਹਲਕਾਅ (Rabies), ਤੀਬਰ ਲਿਊਕੀਮੀਆ (Acute leukaemia), ਟੈਟਨਸ (Tetanus), ਹੈਜਾ, ਤਾਨਿਕਾਸੋਧ (Meningitis) ਮਸਤਿਸ਼ਕ ਸੋਧ (Encephalitis) ਨਾਲ ਗ੍ਰਸਤ ਹਨ ਜਾਂ ਜਿਨ੍ਹਾਂ ਦੀ ਇਨ੍ਹਾਂ ਰੋਗਾਂ ਦੇ ਕਾਰਨ ਮੌਤ ਹੋਈ ਹੈ ਨੇਤਰਦਾਨ ਨਹੀਂ ਕਰ ਸਕਦੇ।

ਨੇਤਰ ਬੈਂਕ ਦਾਨ ਕੀਤੇ ਨੇਤਰਾਂ ਨੂੰ ਇਕੱਤਰ ਕਰਦਾ ਹੈ, ਉਹਨਾਂ ਦਾ ਮੁਲਅੰਕਣ ਕਰਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦੀ ਵੰਡ ਕਰਦਾ ਹੈ। ਸਾਰੇ ਦਾਨ ਕੀਤੇ ਗਏ ਨੇਤਰਾਂ ਦਾ ਮੈਡੀਕਲ ਦੇ ਉੱਚ ਮਾਪ ਦੰਡਾਂ ਦੁਆਰਾ ਮੁਲਅੰਕਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਤੀਰੋਪਣ ਦੇ ਯੋਗ ਨਾ ਹੋਣ ਵਾਲੇ ਨੇਤਰਾਂ ਨੂੰ ਮਹੱਤਵਪੂਰਨ ਰਿਸਰਚ ਅਤੇ ਮੈਡੀਕਲ ਸਿੱਖਿਆ ਦੇ ਲਈ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਦਾਨ ਕਰਨ ਵਾਲੇ ਅਤੇ ਨੇਤਰ ਲੈਣ ਵਾਲੇ ਦੋਵਾਂ ਦੀ ਪਹਿਚਾਣ ਨੂੰ ਗੁਪਤ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਨੇਤਰਾਂ ਦਾ ਇੱਕ ਜੋੜਾ ਕਾਰਨੀਆ ਅੰਨੇਪਨ ਤੋਂ ਪੀੜਤ ਦੇ ਵਿਅਕਤੀਆਂ ਨੂੰ ਦਿਸ਼ਟੀ ਪਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।

ਇਸ ਬਾਰੇ ਜਾਣਨ ਲਈ, ਇੱਕ ਕੱਚ ਦੇ ਤ੍ਰਿਭੁਜ ਆਕਾਰ ਦੇ ਪ੍ਰਿਜ਼ਮ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ, ਇਸ ਦੇ ਦੋ ਤ੍ਰਿਭੁਜੀ ਆਕਾਰ ਦੇ ਆਧਾਰ ਅਤੇ ਤਿੰਨ ਆਇਤਾਕਾਰ ਪਾਸੇ ਦੀ ਸਤਹ ਹੁੰਦੇ ਹਨ। ਇਹ ਸਤਹ ਇੱਕ ਦੂਜੇ ਉੱਤੇ ਝੁਕੇ ਹੁੰਦੇ ਹਨ। ਦੋ ਪਾਸੇ ਦੀਆਂ ਸਤਿਹਾਂ ਦੇ ਵਿਚਕਾਰ ਕੋਣ ਨੂੰ ਪ੍ਰਿਜ਼ਮ ਕੋਣ ਕਹਿੰਦੇ ਹਨ। ਆਓ ਹੁਣ ਕਿਰਿਆ ਦੁਆਰਾ ਅਧਿਐਨ ਕਰੀਏ ਕਿ ਕੱਚ ਦੇ ਤ੍ਰਿਭੁਜ ਵਿੱਚੋਂ ਲੰਘਣ ਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਸੇ ਪ੍ਰਕਾਰ ਅਪਵਰਤਿਤ ਹੁੰਦਾ ਹੈ।

ਕਿਰਿਆ 11,1

- ਇੱਕ ਡਰਾਇੰਗ ਬੋਰਡ ਉੱਤੇ ਡ੍ਰਾਇੰਗ ਪਿੰਨਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਚਿੱਟੇ ਕਾਗਜ਼ ਦੀ ਇੱਕ ਸ਼ੀਟ ਲਗਾਓ।
- ਇਸ ਸ਼ੀਟ ਉੱਤੇ ਕੱਚ ਦਾ ਪ੍ਰਿਜ਼ਮ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋਂ ਕਿ ਇਸ ਦਾ ਤ੍ਰਿਭੁਜ ਅਕਾਰ ਪਾਸਾ ਆਧਾਰ ਬਣ ਜਾਵੇ। ਇੱਕ ਪੈਂਸਿਲ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਪ੍ਰਿਜ਼ਮ ਦੀ ਸੀਮਾ ਰੇਖਾ ਖਿੱਚੋ।
- ਪ੍ਰਿਜ਼ਮ ਦੀ ਕੋਈ ਇੱਕ ਅਪਵਰਤਕ ਸਤਹ, ਮੰਨ ਲਓ AB ਤੋਂ, ਕੋਈ ਕੋਣ ਬਣਾਉਂਦੀ ਹੋਈ ਇੱਕ ਸਰਲ ਰੇਖਾ PE ਖਿੱਚ।
- ਰੇਖਾ PE ਉੱਤੇ ਦੋ ਪਿੰਨਾਂ, ਬਿੰਦੂ P ਅਤੇ Qਉੱਤੇ ਲਗਾਓ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 11.4 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।
- AC ਪਾਸੇ ਵੱਲ ਤੋਂ P ਅਤੇ Q ਉੱਤੇ ਪਿੰਨਾਂ ਦੇ ਪਤਿਬਿੰਬਾਂ ਨੂੰ ਵੇਖੋ।
- R ਅਤੇ S ਬਿੰਦੂਆਂ ਉੱਤੇ ਦੋ ਹੋਰ ਪਿੰਨਾਂ ਇਸ ਪ੍ਰਕਾਰ ਲਗਾਓ ਕਿ ਪਿੰਨਾਂ R ਅਤੇ S ਅਤੇ P ਅਤੇ Q ਉੱਤੇ ਲੱਗੀਆਂ ਪਿੰਨਾਂ ਦੇ ਪ੍ਰਤੀਬਿੰਬ ਦੀ ਸੇਧ ਵਿੱਚ ਹੋਣ।
- 💌 ਪਿੰਨਾਂ ਅਤੇ ਕੱਚ ਦੇ ਪ੍ਰਿਜ਼ਮ ਨੂੰ ਹਟਾ ਦਿਓ।
- ਰੇਖਾ PE ਪ੍ਰਿਜ਼ਮ ਦੀ ਸੀਮਾ ਦੇ ਬਿੰਦੂ E ਉੱਤੇ ਮਿਲਦੀ ਹੈ (ਚਿੱਤਰ 11.4 ਵੇਖੋ)। ਇਸੇ ਪ੍ਰਕਾਰ, ਬਿੰਦੂਆਂ, R ਅਤੇ S ਨੂੰ ਇੱਕ ਰੇਖਾ ਨਾਲ ਜੋੜੇ ਅਤੇ ਇਸ ਰੇਖਾ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਅੱਗੇ ਵਧਾਓ ਕਿ ਇਹ ਪ੍ਰਿਜ਼ਮ ਦੇ ਪਾਸੇ AC ਨੂੰ F ਉੱਤੇ ਮਿਲੇ।ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪਿੰਨਾਂ P ਅਤੇ Q ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ ਪਾਸੇ AB ਨੂੰ E ਉੱਤੇ ਮਿਲਦੀ ਹੈ। E ਅਤੇ F ਨੂੰ ਮਿਲਾਓ।
- ਪ੍ਰਿਜ਼ਮ ਦੇ ਅਪਵਰਤਕ ਸਤਹ AB ਅਤੇ AC ਉੱਤੇ ਕ੍ਰਮਵਾਰ ਬਿੰਦੂਆਂ E ਅਤੇ F ਤੇ ਲੈਬ ਖਿੱਚੋ।
- ਚਿੱਤਰ 11.4 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਆਪਾਤੀ ਕੋਣ (∠i) ਅਪਵਰਤਕ ਕੋਣ (∠r) ਅਤੇ ਨਿਰਗਮਨੀ ਕੋਣ (∠e) ਨੂੰ ਮਾਰਕ ਕਰੋ।

ਇੱਥੇ PE ਆਪਾਤੀ ਕਿਰਨ ਹੈ, EF ਅਪਵਰਤਿਤ ਕਿਰਨ ਅਤੇ FS ਨਿਰਗਮਨੀ ਕਿਰਨ ਹੈ। ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਪਹਿਲਾਂ ਸਤਹ AB ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਨ ਹਵਾ ਤੋਂ ਕੱਚ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰ ਰਹੀ ਹੈ। ਅਪਵਰਤਨ ਤੋਂ ਬਾਦ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਨ ਲੰਬ ਵੱਲ ਮੁੜ ਜਾਂਦੀ ਹੈ। ਦੂਜੀ ਸਤਹ AC ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਕੱਚ ਤੋਂ ਹਵਾ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਇਹ ਲੰਬ ਤੋਂ ਪਰ੍ਹੇ ਮੁੜਦੀ ਹੈ। ਪ੍ਰਿਜ਼ਮ ਦੀ ਹਰ ਇੱਕ ਅਪਵਰਤਕ ਸਤਹ ਉੱਤੇ ਆਪਾਤੀ ਕੋਣ ਅਤੇ ਅਪਵਰਤਨ ਕੋਣ ਦੀ ਤੁਲਨਾ ਕਰੋ। ਕੀ ਇਹ ਕੱਚ ਦੀ ਸਲੈਬ ਵਿੱਚ ਹੋਏ ਝੁਕਾਓ ਦੇ ਸਮਾਨ ਹੀ ਹੈ? ਪ੍ਰਿਜ਼ਮ ਦੇ ਵਿਸ਼ੇਸ਼ ਆਕਾਰ ਦੇ ਕਾਰਨ ਨਿਰਗਾਮੀ ਕਿਰਨ, ਆਪਾਤੀ ਕਿਰਨ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਇੱਕ ਕੋਣ ਬਣਾਉਂਦੀ ਹੈ। ਇਸ ਕੋਣ ਨੂੰ ਵਿਚਲਨ ਕੋਣ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ∠D ਵਿਚਲਨ ਕੋਣ ਹੈ। ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਵਿਚਲਨ ਕੋਣ ਅੰਕਿਤ ਕਰੋ ਅਤੇ ਇਸ ਨੂੰ ਮਾਪੋ।

11.4 ਕੱਚ ਦੇ ਪ੍ਰਿਜ਼ਮ ਦੁਆਰਾ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਵਿਖੇਪਣ (Dispersion of White Light by a Glass Prism)

ਤੁਸੀਂ ਜ਼ਰੂਰ ਕਿਸੇ ਸਤਰੰਗੀ ਪੀਂਘ ਨੂੰ ਵੇਖਿਆ ਅਤੇ ਉਸ ਦੇ ਸੁੰਦਰ ਰੰਗਾਂ ਨੂੰ ਸਲਾਹਿਆ ਹੋਵੇਗਾ। ਸੂਰਜ ਦੇ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਸਤਰੰਗੀ ਪੀਂਘ ਦੇ ਭਿੰਨ ਰੰਗ ਕਿਸ ਪ੍ਰਕਾਰ ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦੇ ਹਨ? ਇਸ ਪ੍ਰਸ਼ਨ ਦੇ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਅਸੀਂ ਫਿਰ ਤੋਂ ਪ੍ਰਿਜ਼ਮ ਤੋਂ ਹੋਣ ਵਾਲੇ ਪ੍ਰਕਾਸ਼ ਅਪਵਰਤਨ ਨੂੰ ਵੇਖਦੇ ਹਾਂ। ਕੱਚ ਦੇ ਪ੍ਰਿਜ਼ਮ ਦੀਆਂ ਝੁਕੀਆਂ ਹੋਈਆਂ ਅਪਵਰਤਕ ਸਤਿਹਾਂ ਇੱਕ ਰੋਚਕ ਵਰਤਾਰਾ ਦਰਸਾਉਂਦੀਆਂ ਹਨ। ਆਓ ਇਸ ਨੂੰ ਇੱਕ ਕਿਰਿਆ ਦੁਆਰਾ ਵੇਖੀਏ।

ਕਿਰਿਆ 11,2

- ਗੱਤੇ ਦੀ ਇੱਕ ਮੋਟੀ ਸ਼ੀਟ ਲਓ ਅਤੇ ਉਸ ਦੇ ਮੱਧ ਵਿੱਚ ਇੱਕ ਛੋਟਾ ਜਿਹਾ ਛੇਕ ਜਾਂ ਪਤਲੀ ਝਿਰੀ ਬਣਾਓ।
- ਪਤਲੀ ਝਿਰੀ ਉੱਤੇ ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਪੈਣ ਦਿਓ। ਇਸ ਨਾਲ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਇੱਕ ਪਤਲਾ ਕਿਰਨ ਪੁੰਜ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।
- ਹੁਣ ਕੱਚ ਦਾ ਇੱਕ ਪ੍ਰਿਜ਼ਮ ਲਓ ਅਤੇ ਚਿੱਤਰ 11.5 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਝਿਰੀ ਤੋਂ ਪ੍ਰਕਾਸ਼ ਇਸ ਦੇ ਇੱਕ ਪਾਸੇ ਉੱਤੇ ਪਾਓ।
- ਝਿਰੀ ਨੂੰ ਹੌਲੇ ਜਿਹੇ ਇੰਨਾ ਘੁਮਾਓ ਕਿ ਇਸ ਤੋਂ ਬਾਹਰ ਨਿਕਲਣ ਵਾਲਾ ਪ੍ਰਕਾਸ਼ ਕੋਲ ਰੱਖੋ ਕਿਸੇ ਪਰਦੇ ਉੱਤੇ ਵਿਖਾਈ ਦੇਣ ਲੱਗੇ।
- ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਤੁਸੀਂ ਰੰਗਾਂ ਦੀ ਇੱਕ ਸੁੰਦਰ ਪੱਟੀ ਵੇਖੋਗੇ।ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ?

ਸੰਭਵ ਹੈ ਕਿ ਪ੍ਰਿਜ਼ਮ ਨੇ ਆਪਾਤੀ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਰੰਗਾਂ ਦੀ ਪੱਟੀ ਵਿੱਚ ਤੋੜ ਦਿੱਤਾ ਹੈ। ਇਸ ਰੰਗੀਨ ਪੱਟੀ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਉੱਤੇ ਵਿਖਾਈ ਦੇਣ ਵਾਲੇ ਰੰਗਾਂ ਨੂੰ ਨੌਟ ਕਰੋ। ਪਰਦੇ ਉੱਤੇ ਵਿਖਾਈ ਦੇਣ ਵਾਲੇ ਰੰਗਾਂ ਦਾ ਕੀ ਕ੍ਮ ਹੈ? ਵਿਖਾਈ ਦੇਣ ਵਾਲੇ ਭਿੰਨ ਰੰਗਾਂ ਦਾ ਹੇਠੋਂ ਉੱਪਰ ਨੂੰ ਕ੍ਮ ਹੈ : ਵੈਂਗਣੀ (violet), ਜਾਮਨੀ (indigo), ਨੀਲਾ (blue), ਹਰਾ (green), ਪੀਲਾ

ਚਿੱਟਾਂ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਪੁੰਜ ਕੱਚ ਦਾ ਪ੍ਰਿਜ਼ਮ

ਚਿੱਤਰ11.5 ਕੱਚ ਦੇ ਪ੍ਰਿਜ਼ਮ ਦੁਆਰਾ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਵਿਖੇਪਣ

(yellow), ਨਾਰੰਗੀ (orange) ਅਤੇ ਲਾਲ (red) ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 11.5 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਪ੍ਰਸਿੱਧ ਸ਼ਬਦ VIBGYOR ਤੁਹਾਨੂੰ ਰੰਗਾਂ ਦੇ ਕ੍ਰਮ ਯਾਦ ਰੱਖਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰੇਗਾ। ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਘਟਕ ਰੰਗਾਂ ਦੀ ਇਸ ਪੱਟੀ ਨੂੰ ਸਪੈਕਟ੍ਰਸ ਕਹਿੰਦੇ ਹਨ। ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਤੁਸੀਂ ਸਾਰੇ ਰੰਗਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਨਾ ਵੇਖ ਸਕੋ। ਫਿਰ ਵੀ ਕੁੱਝ ਅਜਿਹਾ ਜ਼ਰੂਰ ਹੈ ਜੋ ਹਰ ਰੰਗ ਨੂੰ ਇੱਕ ਦੂਜੇ ਤੋਂ ਵੱਖ ਕਰਦਾ ਹੈ। ਪ੍ਰਕਾਸ਼ ਦੇ ਘਟਕ ਰੰਗਾਂ ਵਿੱਚ ਵਿਭਾਜਨ ਨੂੰ ਵਿਖੇਪਣ ਕਹਿੰਦੇ ਹਨ।

ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਚਿੱਟਾ ਪ੍ਰਕਾਸ਼ ਪ੍ਰਿਜ਼ਮ ਦੁਆਰਾ ਆਪਣੇ ਸੱਤ ਘਟਕ ਰੰਗਾਂ ਵਿੱਚ ਵੰਡ ਹੋ ਜਾਂਦਾ ਹੈ। ਸਾਨੂੰ ਇਹ ਰੰਗ ਕਿਉਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ? ਕਿਸੇ ਪ੍ਰਿਜ਼ਮ ਵਿੱਚੋਂ ਲੰਘਣ ਸਮੇਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਭਿੰਨ ਰੰਗ ਆਪਾਤੀ ਕਿਰਨ ਦੇ ਸਾਪੇਖ ਵੱਖ ਵੱਖ ਕੋਣਾ ਉੱਤੇ ਮੁੜਦੇ ਹਨ। ਲਾਲ ਪ੍ਰਕਾਸ਼ ਸਭ ਤੋਂ ਘੱਟ ਮੁੜਦਾ ਹੈ ਜਦੋਂ ਕਿ ਵੈਂਗਣੀ ਸਭ ਤੋਂ ਵੱਧ ਇਸ ਲਈ ਹਰ ਇੱਕ ਰੰਗ ਦੀਆਂ ਕਿਰਨਾਂ ਵੱਖ ਵੱਖ ਪੱਥਾਂ ਉੱਤੇ ਬਾਹਰ ਆਉਂਦੀਆਂ ਹਨ ਅਤੇ ਸਪੱਸ਼ਟ ਵਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ। ਇਹ ਸਪੱਸ਼ਟ ਰੰਗਾਂ ਦਾ ਬੈਂਡ ਸਾਨੂੰ ਸਪੈੱਕਟ੍ਰਮ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

ਚਿੱਤਰ 11,6 ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਸਪੈੱਕਟ੍ਰਮ ਦਾ ਮੁੜ ਮਿਲਣਾ

ਆਈਜ਼ਕ ਨਿਊਟਨ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਦਾ ਸਪੈੱਕਟ੍ਰਮ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੱਚ ਦੇ ਪ੍ਰਿਜ਼ਮ ਦਾ ਉਪਯੋਗ ਕੀਤਾ। ਇੱਕ ਦੂਜਾ ਬਰਾਬਰ ਦਾ ਪ੍ਰਿਜ਼ਮ ਉਪਯੋਗ ਕਰਕੇ ਉਹਨਾਂ ਨੇ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਸਪੈੱਕਟ੍ਰਮ ਦੇ ਰੰਗਾਂ ਨੂੰ ਹੋਰ ਅੱਗੇ ਵਿਭਾਜਿਤ

ਕਰਨ ਦਾ ਯਤਨ ਕੀਤਾ। ਪ੍ਰੰਤੂ ਉਹਨਾਂ ਤੋਂ ਵਧੇਰੇ ਰੰਗ ਪ੍ਰਾਪਤ ਨਾ ਹੋਏ। ਫਿਰ ਉਹਨਾਂ ਨੇ ਚਿੱਤਰ 11.6 ਦੀ ਤਰ੍ਹਾਂ ਇੱਕ ਦੂਜਾ ਬਿਲਕੁਲ ਬਰਾਬਰ ਦਾ ਪ੍ਰਿਜ਼ਮ ਪਹਿਲੇ ਪ੍ਰਿਜ਼ਮ ਦੇ ਸਾਪੇਖ ਉਲਟੀ ਸਥਿਤੀ ਵਿੱਚ ਰੱਖਿਆ। ਇਸ ਨਾਲ ਸਪੈੱਕਟ੍ਰਮ ਦੇ ਸਾਰੇ ਰੰਗ ਦੂਜੇ ਪ੍ਰਿਜ਼ਮ ਵਿੱਚੋਂ ਗੁਜ਼ਰੇ। ਉਹਨਾਂ ਨੇ ਵੇਖਿਆ ਕਿ ਦੂਜੇ ਪ੍ਰਿਜ਼ਮ ਦੀ ਦੂਜੀ ਸਾਈਡ ਤੋਂ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਕਿਰਨ ਪੁੰਜ ਬਾਹਰ ਆਇਆ। ਇਸ ਤੋਂ ਨਿਊਟਨ ਨੂੰ ਵਿਚਾਰ ਆਇਆ ਕਿ ਸੂਰਜ ਦਾ ਪ੍ਰਕਾਸ਼ ਸੱਤ ਰੰਗਾਂ ਤੋਂ ਮਿਲ ਕੇ ਬਣਿਆ ਹੋਇਆ ਹੈ।

ਕੋਈ ਵੀ ਪ੍ਰਕਾਸ਼ ਜੋ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਜਿਹਾ ਸਪੈੱਕਟ੍ਰਮ ਬਣਾਉਂਦੀ ਹੈ ਉਸ ਨੂੰ ਆਮ ਕਰਕੇ ਚਿੱਟਾ ਪ੍ਰਕਾਸ਼ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਸੱਤ ਰੰਗੀ ਪੀਂਘ, ਮੀਂਹ ਪੈਣ ਪਿੱਛੋਂ ਆਕਾਸ਼ ਵਿੱਚ ਪਾਣੀ ਦੇ ਸੂਖ਼ਮ ਕਣਾਂ ਵਿੱਚ ਵਿਖਾਈ ਦੇਣ ਵਾਲਾ ਕੁਦਰਤੀ ਸਪੈੱਕਟ੍ਰਮ ਹੈ (ਚਿੱਤਰ 11.7)। ਇਹ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਉਪਸਥਿਤ ਪਾਣੀ ਦੀਆਂ ਸੂਖ਼ਮ ਬੂੰਦਾਂ ਦੁਆਰਾ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਵਿਖੇਪਣ ਦੇ ਕਾਰਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਸਤਰੰਗੀ ਪੀਂਘ ਸਦਾ ਸੂਰਜ ਤੋਂ ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਪਾਣੀ ਦੀਆਂ ਸੂਖ਼ਮ ਬੂੰਦਾਂ ਛੋਟੇ ਪ੍ਰਿਜ਼ਮਾਂ ਵਜੋਂ ਕਾਰਜ ਕਰਦੀਆਂ ਹਨ। ਸੂਰਜ ਦੇ ਆਪਤਿਤ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਇਹ ਬੂੰਦਾਂ ਅਪਵਰਤਿਤ ਅਤੇ ਵਿਖੇਪਿਤ ਕਰਦੀਆਂ ਹਨ, ਫਿਰ ਅੰਦਰੂਨੀ ਪਰਾਵਰਤਿਤ ਕਰਦੀਆਂ ਹਨ ਅਤੇ ਪਾਣੀ ਦੀਆਂ ਬੂੰਦਾਂ ਤੋਂ ਬਾਹਰ ਨਿਕਲਣ ਸਮੇਂ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਮੁੜ ਅਪਵਰਤਿਤ ਕਰਦੀਆਂ ਹਨ। (ਚਿੱਤਰ 11.8)। ਪ੍ਰਕਾਸ਼ ਦੇ ਵਿਖੇਪਣ ਅਤੇ ਅੰਤਰ ਪਰਾਵਰਤਨ ਦੇ ਕਾਰਨ ਭਿੰਨ ਰੰਗ ਪ੍ਰੇਖਕ ਦੀਆਂ ਅੱਖਾਂ ਤੀਕ ਪਹੁੰਚਦੇ ਹਨ।

ਜੇਕਰ ਸੂਰਜ ਤੁਹਾਡੀ ਪਿੱਠ ਵੱਲ ਹੋਵੇ ਅਤੇ ਤੁਸੀਂ ਆਕਾਸ਼ ਦੇ ਵੱਲ ਧੁੱਪ ਵਾਲੇ ਦਿਨ ਪਾਣੀ ਦੀ ਜਾਂ ਪਾਣੀ ਦੇ ਫੁਹਾਰੇ ਵਿੱਚੋਂ ਵੇਖੋ ਤਾਂ ਤੁਸੀਂ ਸਤਰੰਗੀ ਪੀਂਘ ਦਾ ਦ੍ਰਿਸ਼ ਵੇਖ ਸਕਦੇ ਹੋ।

ਚਿੱਤਰ11.7 ਆਕਾਸ਼ ਵਿੱਚ ਸਤਰੰਗੀ ਪੀਂਘ

11.5 ਵਾਯੂ ਮੰਡਲੀ ਅਪਵਰਤਨ (Atmospheric Refraction)

ਸੰਭਵ ਹੈ ਤੁਸੀਂ ਕਦੇ ਅੱਗ ਜਾਂ ਭੱਠੀ ਜਾਂ ਰੇਡੀਏਟਰ ਦੇ ਉੱਪਰ ਉੱਠਦੀ ਗਰਮ ਹਵਾ ਦੇ ਅਸ਼ਾਂਤ ਪ੍ਰਵਾਹ ਵਿੱਚ ਵਸਤਾਂ ਦੀ ਆਭਾਸੀ, ਅਨਿਯਮਤ, ਅਸਥਿਰ ਗਤੀ ਵੇਖੀ ਹੋਵੇ। ਅੱਗ ਦੇ ਤੁਰੰਤ ਉੱਪਰ ਦੀ ਹਵਾ ਆਪਣੇ ਉੱਪਰ ਦੀ ਹਵਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਗਰਮ ਹੋ ਜਾਂਦੀ ਹੈ। ਗਰਮ ਹਵਾ ਆਪਣੇ ਉੱਪਰ ਦੀ ਠੰਢੀ ਹਵਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਹਲਕੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਦਾ ਅਪਵਰਤਨ ਅੰਕ ਠੰਢੀ ਹਵਾ ਨਾਲੋਂ ਥੋੜ੍ਹਾ ਘੱਟ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਅਪਵਰਤਕ ਮਾਧਿਅਮ (ਹਵਾ) ਦੀ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ ਸਥਿਰ ਨਹੀਂ ਹਨ ਇਸ ਲਈ ਗਰਮ ਹਵਾ ਵਿੱਚੋਂ ਹੋਂ ਕੇ ਵੇਖਣ ਤੇ ਵਸਤੂ ਦੀ ਆਭਾਸੀ ਸਥਿਤੀ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਇਹ ਅਸਥਿਰਤਾ ਸਾਡੇ ਸਥਾਨਿਕ ਵਾਤਾਵਰਨ ਵਿੱਚ ਛੋਟੀ ਪੱਧਰ ਤੇ ਵਾਯੂਮੰਡਲੀ ਅਪਵਰਤਨ (ਪ੍ਰਿਥਵੀ ਦੇ ਵਾਯੂਮੰਡਲ ਦੇ ਕਾਰਨ ਪ੍ਰਕਾਸ਼ ਦਾ ਅਪਵਰਤਨ) ਦਾ ਹੀ ਇੱਕ ਪ੍ਰਭਾਵ ਹੈ। ਤਾਰਿਆਂ ਦਾ ਟਿਮਟਮਾਉਣਾ ਉੱਚ ਪੱਧਰ ਦੀ ਇੱਕ ਅਜਿਹੀ ਹੀ ਘਟਨਾ ਹੈ। ਆਓ ਵੇਖੀਏ ਇਸ ਦੀ ਵਿਆਖਿਆ ਅਸੀਂ ਕਿਸ ਪ੍ਰਕਾਰ ਕਰ ਸਕਦੇ ਹਾਂ।

ਤਾਰਿਆਂ ਦਾ ਟਿਮਟਿਮਾਉਣਾ

ਤਾਰਿਆਂ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਵਾਯੂ ਮੰਡਲੀ ਅਪਵਰਤਨ ਦੇ ਕਾਰਨ ਹੀ ਤਾਰੇ ਟਿਮਟਿਮਾਉਂਦੇ ਪ੍ਰਤੀਤ ਹੁੰਦੇ ਹਨ। ਪ੍ਰਿਥਵੀ ਦੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਤੋਂ ਬਾਦ ਪ੍ਰਿਥਵੀ ਦੀ ਸਤਹ ਉੱਤੇ ਪਹੁੰਚਣ ਤੱਕ ਤਾਰੇ ਦਾ ਪ੍ਰਕਾਸ਼ ਨਿਰੰਤਰ ਅਪਵਰਤਿਤ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। ਵਾਯੂਮੰਡਲੀ ਅਪਵਰਤਨ ਉਸੇ ਮਾਧਿਅਮ

ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦਾ ਲਗਾਤਾਰ ਬਦਲਣ ਵਾਲਾ ਅਪਵਰਤਨ ਅੰਕ ਹੋਵੇ। ਕਿਉਂਕਿ ਵਾਯੂਮੰਡਲ ਤਾਰੇ ਦੇ ਪ੍ਕਾਸ਼ ਨੂੰ ਲੰਬ ਦੇ ਵੱਲ ਮੋੜ੍ਹਾਦਿੰਦਾ ਹੈ ਇਸ ਲਈ ਤਾਰੇ ਦੀ ਆਭਾਸੀ ਸਥਿਤੀ ਉਸ ਦੀ ਵਾਸਤਵਿਕ ਸਥਿਤੀ ਤੋਂ ਕੁੱਝ ਭਿੰਨ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ। ਖਿਤਿਜ ਦੇ ਨਿਕਟ ਵੇਖਣ ਤੇ (ਚਿੱਤਰ 11.9) ਕੋਈ ਤਾਰਾ ਆਪਣੀ ਵਾਸਤਵਿਕ ਸਥਿਤੀ ਤੋਂ ਕੁੱਝ ਉਚਾਈ ਤੇ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਇਲਾਵਾ ਜਿਵੇਂ ਕਿ ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਪਿਛਲੇ ਅਨੁਭਾਗ ਵਿੱਚ ਵਰਨਣ ਕੀਤਾ ਜਾ ਚੁੱਕਿਆ ਹੈ। ਤਾਰੇ ਦੀ ਇਹ ਅਕਾਸ਼ੀ ਸਥਿਤੀ ਵੀ ਸਥਾਈ ਨਾ ਹੋ ਕੇ ਹੌਲੇ ਹੌਲੇ ਥੋੜ੍ਹੀ ਬਦਲਦੀ ਰਹਿੰਦੀ ਹੈ ਕਿਉਂਕਿ ਪ੍ਰਿਥਵੀ ਦੇ ਵਾਯੂਮੰਡਲ ਦੀਆਂ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ ਸਥਾਈ ਨਹੀਂ ਹਨ ਕਿਉਂਕਿ ਤਾਰੇ ਬਹੁਤ ਦੂਰ ਹਨ ਇਸ ਲਈ ਉਹ ਪ੍ਰਕਾਸ਼ ਦੇ ਬਿੰਦੂ ਸਰੌਤ ਦੇ ਲਾਗੇ ਹਨ। ਕਿਉਂਕਿ ਤਾਰੇ ਤੋਂ ਆਉਣ ਵਾਲੀਆਂ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਦਾ ਪੱਥ ਥੋੜ੍ਹਾ ਥੋੜ੍ਹਾ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ ਇਸ ਲਈ ਤਾਰੇ ਦੀ ਆਭਾਸੀ ਸਥਿਤੀ ਬਦਲਦੀ ਰਹਿੰਦੀ ਹੈ ਅਤੇ ਅੱਖਾਂ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਵਾਲੇ ਤਾਰੇ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਮਾਤਰਾ ਝਿਲਮਿਲਾਉਂਦੀ ਰਹਿੰਦੀ ਹੈ ਜਿਸ ਦੇ ਕਾਰਨ ਕੋਈ ਤਾਰਾ

ਤਾਰੇ ਦੇ ਪ੍ਕਾਸ਼ ਦੀ ਮਾਤਰਾ ਝਿਲਮਿਲਾਉਂਦੀ ਰਹਿੰਦੀ ਹੈ ਜਿਸ ਦੇ ਕਾਰਨ ਕੋਈ ਤਾਰਾ ਕਦੇ ਚਮਕੀਲਾ ਪ੍ਤੀਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਦੇ ਧੁੰਦਲਾ ਜੋ ਟਿਮਟਿਮਾਉਣ ਦਾ ਪ੍ਰਭਾਵ ਹੈ। ਗ੍ਰਹਿ ਕਿਉਂ ਨਹੀਂ ਟਿਮਟਿਮਾਉਂਦੇ। ਗ੍ਰਹਿ ਤਾਰੇ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਬਹੁਤ ਨੇੜੇ ਹਨ ਅਤੇ ਇਸ ਲਈ ਉਹਨਾਂ ਨੂੰ ਵਿਸਤ੍ਤਿ ਸਰੋਤ ਦੀ ਤਰ੍ਹਾਂ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਗ੍ਰਹਿ ਨੂੰ ਬਿੰਦੂ ਸਾਈਜ਼ ਦੇ ਅਨੇਕਾਂ ਪ੍ਰਕਾਸ਼ ਸਰੋਤਾਂ ਦਾ ਸੰਗ੍ਰਹਿ ਮੰਨ ਲਈਏ ਤਾਂ ਸਾਰੇ ਬਿੰਦੂ ਸਾਈਜ਼ ਦੇ ਪ੍ਰਕਾਸ਼ ਸਰੋਤਾਂ ਤੋਂ ਸਾਡੇ ਨੇਤਰਾਂ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਵਾਲੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਕੁਲ ਪਰਿਵਰਤਨ ਦਾ ਔਸਤ

> ਮਾਣ ਜੀਰੋ ਹੋਵੇਗਾ, ਇਸੇ ਕਾਰਨ ਟਿਮਟਿਮਾਉਣ ਦਾ ਪ੍ਰਭਾਵ ਨਿਸਪ੍ਰਭਾਵਿਤ ਹੋ ਜਾਵੇਗਾ।

ਚਿੱਤਰ 11.9 ਵਾਯੂ ਮੰਡਲੀ ਅਪਵਰਤਨ ਦੇ ਕਾਰਨ ਤਾਰੇ ਦੀ ਅਭਾਸੀ ਸਥਿਤੀ

ਸੂਰਜ ਦੀ ਆਭਾਸੀ ਸਥਿਤੀ ਪ੍ਰੇਖਕ <u>ਬਿਤਿਜ</u> ਵਾਯੁਮੰਡਲ

ਚਿੱਤਰ 11.10 ਵਾਯਮੰਡਲੀ ਅਪਵਰਤਨ

ਸੂਰਜ ਦਾ ਪਹਿਲਾਂ ਚੜ੍ਹਨਾ ਅਤੇ ਮਗਰੋਂ ਛਿਪਣਾ

ਵਾਯੂ ਮੰਡਲੀ ਅਪਵਰਤਨ ਕਾਰਨ ਸੂਰਜ ਸਾਨੂੰ ਅਸਲ ਵਿੱਚ ਸੂਰਜ ਚੜ੍ਹਨ ਤੋਂ ਲੱਗਭੱਗ 2 ਮਿੰਟ ਪਹਿਲਾਂ ਵਿਖਾਈ ਦੇਣ ਲਗਦਾ ਹੈ ਅਤੇ ਅਸਲ ਵਿੱਚ ਸੂਰਜ ਡੁੱਬਣ ਤੋਂ ਲੱਗਭੱਗ ਦੋ ਮਿੰਟ ਪਿੱਛੋਂ ਵਿਖਾਈ ਦਿੰਦਾ ਰਹਿੰਦਾ ਹੈ। ਵਾਸਤਵਿਕ ਜਾਂ ਅਸਲ ਵਿੱਚ ਸੂਰਜ ਚੜ੍ਹਨ ਤੋਂ ਸਾਡਾ ਅਰਥ ਹੈ, ਸੂਰਜ ਦੁਆਰਾ ਅਸਲ ਵਿੱਚ ਖਿਤਿਜ ਨੂੰ ਪਾਰ ਕਰਨਾ।ਚਿੱਤਰ 11.10 ਵਿੱਚ ਸੂਰਜ ਨੂੰ ਖਿਤਿਜ ਦੇ ਸਾਪੇਖ ਵਾਸਤਵਿਕ ਅਤੇ ਆਭਾਸੀ ਸਥਿਤੀਆਂ ਵਿਖਾਈਆਂ ਗਈਆਂ ਹਨ।ਵਾਸਤਵਿਕ ਸੂਰਜ ਛਿਪਣ ਅਤੇ ਆਭਾਸੀ ਸੂਰਜ ਛਿਪਣ ਦੇ ਵਿੱਚ ਸਮੇਂ ਦਾ ਅੰਤਰ ਲੱਗਭੱਗ 2 ਮਿੰਟ ਹੈ। ਇਸ ਘਟਨਾ ਦੇ ਕਾਰਨ ਹੀ ਸੂਰਜ ਨਿਕਲਣ ਅਤੇ ਸੂਰਜ ਡੁੱਬਣ ਸਮੇਂ ਸੂਰਜ ਦਾ ਚੱਕਰ ਚਪਟਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ।

11.6 ਪ੍ਰਕਾਸ਼ ਦਾ ਖਿੰਡਣਾ (Scattering of Light)

ਪ੍ਰਕਾਸ਼ ਅਤੇ ਸਾਡੇ ਚਾਰੇ ਪਾਸੇ ਦੀਆਂ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਆਪਸੀ ਕਿਰਿਆ ਕਾਰਨ ਹੀ ਸਾਨੂੰ ਕੁਦਰਤ ਵਿੱਚ ਅਨੇਕ ਹੈਰਾਨੀਜਨਕ ਘਟਨਾਵਾਂ ਵੇਖਣ ਨੂੰ ਮਿਲਦੀਆਂ ਹਨ। ਆਕਾਸ਼ ਦਾ ਨੀਲਾ ਰੰਗ, ਡੂੰਘੇ ਸਮੁੰਦਰੀ ਪਾਣੀ ਦਾ ਰੰਗ, ਸੂਰਜ ਚੜ੍ਹਨ ਅਤੇ ਛਿਪਣ ਸਮੇਂ ਸੂਰਜ ਦਾ ਲਾਲ ਹੋਣਾ, ਕੁੱਝ ਅਜਿਹੀਆਂ ਘਟਨਾਵਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਬਾਰੇ ਅਸੀਂ ਜਾਣੂ ਹਾਂ। ਪਿਛਲੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਤੁਸੀਂ ਕੋਲਾਇਡੀ ਕਣਾਂ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਦੇ ਖਿੰਡਣ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਸੀ। ਕਿਸੇ ਵਾਸਤਵਿਕ ਘੋਲ ਵਿੱਚੋਂ ਗੁਜ਼ਰਨ ਵਾਲੀਆਂ ਪ੍ਰਕਾਸ਼ ਕਿਰਨਾਂ ਪੁੰਜ ਦਾ ਮਾਰਗ ਸਾਨੂੰ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦਾ ਪਰ ਕੋਲਾਇਡੀ ਘੋਲਾਂ ਵਿੱਚ, ਜਿੱਥੇ ਕਣਾਂ ਦਾ ਆਕਾਰ ਸਾਪੇਖਕ ਵੱਡਾ ਹੁੰਦਾ ਹੈ, ਮਾਰਗ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

11.6.1 ਟਿੰਡਲ ਪ੍ਰਭਾਵ

ਪ੍ਰਿਥਵੀ ਦਾ ਵਾਯੂਮੰਡਲ ਸੂਖ਼ਮ ਕਣਾਂ ਦਾ ਇੱਕ ਵਿਜਾਤੀ ਮਿਸ਼ਰਨ ਹੈ। ਇਹਨਾਂ ਕਣਾਂ ਵਿੱਚ ਧੂੰਆਂ, ਪਾਣੀ ਦੀਆਂ ਸੂਖ਼ਮ ਬੂੰਦਾਂ, ਧੂੜ ਦੇ ਲਟਕਦੇ ਕਣ ਅਤੇ ਹਵਾ ਦੇ ਅਣੂ ਸ਼ਾਮਲ ਹਨ। ਜਦੋਂ ਕੋਈ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਪੁੰਜ ਅਜਿਹੇ ਬਾਰੀਕ ਕਣਾਂ ਨਾਲ ਟਕਰਾਉਂਦਾ ਹੈ ਤਾਂ ਉਸ ਕਿਰਨ ਪੁੰਜ ਦਾ ਮਾਰਗ ਵਿਖਾਈ ਦੇਣ ਲੱਗਦਾ ਹੈ। ਇਹਨਾਂ ਕਣਾਂ ਤੋਂ ਵਿਸ਼ਰਿਤ ਪ੍ਰਕਾਸ਼ ਪਰਾਵਰਤਿਤ ਹੋ ਕੇ ਸਾਡੇ ਕੌਲ ਪਹੁੰਚਦਾ ਹੈ। ਕੋਲਾਇਡੀ ਕਣਾਂ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਦੇ ਖਿੰਡਣ ਦੀ ਘਟਨਾ ਟਿੰਡਲ ਪ੍ਰਭਾਵ ਉਤਪੰਨ ਕਰਦੀ ਹੈ। ਜਿਸ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤੁਸੀਂ ਸ਼੍ਰੇਣੀ 9 ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ। ਜਦੋਂ ਧੂੰਏਂ ਨਾਲ ਭਰੇ ਕਮਰੇ ਵਿੱਚ ਇੱਕ ਸੂਖ਼ਮ ਛੇਕ ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਪੁੰਜ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ ਤਾਂ ਇਸ ਵਰਤਾਰੇ ਨੂੰ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ ਪ੍ਰਕਾਸ਼ ਦਾ ਖਿੰਡਣਾ ਕਣਾਂ ਨੂੰ ਦਿਖਣ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ। ਜਦੋਂ ਕਦੇ ਸੰਘਣੇ ਜੰਗਲ ਦੀ ਛੱਤਰੀ (canopy) ਵਿੱਚੋਂ ਸੂਰਜ ਦਾ ਪ੍ਰਕਾਸ਼ ਲੰਘਦਾ ਹੈ ਤਾਂ ਟਿੰਡਲ ਪ੍ਰਭਾਵ ਨੂੰ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਥੇ ਧੁੰਦ ਵਿੱਚ ਪਾਣੀ ਦੀਆਂ ਅਤਿ ਸੂਖ਼ਮ ਬੂੰਦਾਂ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਖਿਲਾਰਦੀਆਂ ਹਨ। ਖਿੰਡਰੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਰੰਗ ਖਿੰਡਰਣ ਕਰਨ ਵਾਲੇ ਕਣਾਂ ਦੇ ਸਾਈਜ਼ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਅਤਿ ਸੂਖ਼ਮ ਕਣ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਨੀਲੇ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਖਿੰਡਾਉਂਦੇ ਹਨ ਜਦੋਂ ਕਿ ਵੱਡੇ ਸਾਈਜ਼ ਦੇ ਕਣ ਲੰਬੀ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਖਿੰਡਾਉਂਦੇ ਹਨ। ਜੇਕਰ ਕਣਾਂ ਦਾ ਆਕਾਰ ਕਾਫੀ ਵੱਡਾ ਹੈ, ਖਿੰਡਿਆ ਹੋਇਆ ਪ੍ਰਕਾਸ਼ ਚਿੱਟਾ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

11.6.2 ਸਾਫ਼ ਆਕਾਸ਼ ਦਾ ਰੰਗ ਨੀਲਾ ਕਿਉਂ ਹੈ?

ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਹਵਾ ਦੇ ਕਣ ਅਤੇ ਹੋਰ ਕਣਾਂ ਦਾ ਸਾਈਜ਼ ਦਿਸਦੇ ਪ੍ਕਾਸ਼ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਤੋਂ ਘੱਟ ਹੈ। ਇਹ ਲਾਲ ਰੰਗ ਵੱਲ ਦੇ ਵੱਧ ਤਰੰਗ ਲੰਬਾਈ ਵਾਲੇ ਪ੍ਕਾਸ਼ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਨੀਲੇ ਰੰਗ ਵੱਲ ਦੇ ਘੱਟ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਪ੍ਕਾਸ਼ ਨੂੰ ਖਿੰਡਾਉਣ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਰਭਾਵੀ ਹੈ। ਲਾਲ ਰੰਗ ਦੇ ਪ੍ਕਾਸ਼ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਨੀਲੇ ਰੰਗ ਦੇ ਪ੍ਕਾਸ਼ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਨਾਲੋਂ ਲੱਗਭੱਗ 1.8 ਗੁਣਾ ਹੈ। ਇਸ ਲਈ ਜਦੋਂ ਸੂਰਜ ਦਾ ਪ੍ਕਾਸ਼ ਵਾਯੂਮੰਡਲ ਵਿੱਚੋਂ ਲੰਘਦਾ ਹੈ ਤਾਂ ਹਵਾ ਦੇ ਸੂਖ਼ਮ ਕਣ ਲਾਲ ਰੰਗ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਨੀਲੇ ਰੰਗ (ਛੋਟੀ ਤਰੰਗ ਲੰਬਾਈ) ਨੂੰ ਵੱਧ ਪ੍ਰਬਲਤਾ ਨਾਲ ਖਿੰਡਾਉਂਦੇ ਹਨ। ਖਿੰਡਿਆ

ਹੋਇਆ ਨੀਲਾ ਪ੍ਕਾਸ਼ ਸਾਡੀਆਂ ਅੱਖਾਂ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਵਾਯੂ ਮੰਡਲ ਨਾ ਹੁੰਦਾ ਤਾਂ ਕੋਈ ਖਿੰਡਰਣ ਨਾ ਹੁੰਦਾ ਅਤੇ ਆਕਾਸ਼ ਕਾਲਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ। ਬਹੁਤ ਉਚਾਈ ਉੱਤੇ ਉੱਡਣ ਵਾਲੇ ਯਾਤਰੀਆਂ ਨੂੰ ਆਕਾਸ਼ ਕਾਲਾ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇੰਨੀ ਉਚਾਈ ਉੱਤੇ ਖਿੰਡਰਣ ਨਾ ਹੋਣ ਦੇ ਬਰਾਬਰ ਹੈ।

ਤੁਸੀਂ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਖਤਰੇ ਦੇ ਸਿਗਨਲ ਦਾ ਪ੍ਰਕਾਸ਼ ਲਾਲ ਰੰਗ ਦਾ ਹੁੰਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਸ ਦਾ ਕਾਰਨ ਜਾਣਦੇ ਹੋ? ਲਾਲ ਰੰਗ ਧੁੰਦ ਜਾਂ ਧੂੰਏਂ ਵਿੱਚ ਸਭ ਤੋਂ ਘੱਟ ਖਿੰਡਰਦਾ ਹੈ। ਇਸੇ ਲਈ ਇਹ ਦੂਰ ਤੋਂ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

11.6.3 ਸੂਰਜ ਨਿਕਲਣ ਅਤੇ ਸੂਰਜ ਛਿਪਣ ਸਮੇਂ ਸੂਰਜ ਦਾ ਰੰਗ

ਕੀ ਤੁਸੀਂ ਸੂਰਜ ਨਿਕਲਦੇ ਅਤੇ ਸੂਰਜ ਛਿਪਣ ਸਮੇਂ ਆਕਾਸ਼ ਅਤੇ ਸੂਰਜ ਨੂੰ ਵੇਖਿਆ ਹੈ? ਕੀ ਤੁਸੀਂ ਸੋਚਿਆ ਹੈ ਕਿ ਸੂਰਜ ਅਤੇ ਉਸਦੇ ਆਲੇ ਦੁਆਲੇ ਦਾ ਆਕਾਸ਼ ਲਾਲ ਕਿਉਂ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ? ਆਕਾਸ਼ ਦੇ ਨੀਲੇ ਰੰਗ ਅਤੇ ਸੂਰਜ ਚੜ੍ਹਨ ਅਤੇ ਸੂਰਜ ਡੁੱਬਣ ਸਮੇਂ ਸੂਰਜ ਦਾ ਰੰਗ ਲਾਲ ਹੋਣ ਬਾਰੇ ਸਮਝਣ ਲਈ ਆਓ ਇੱਕ ਪ੍ਰਯੋਗ ਕਰੀਏ।

ਕਿਰਿਆ 11.3

- ਇੱਕ ਉੱਤਲ ਲੈੱਨਜ਼ (ਅਭਿਸਾਰੀ ਲੈੱਨਜ਼) L, ਲੈ ਕੇ ਉਸ ਦੇ ਫੋਕਸ ਉੱਤੇ ਤੇਜ਼ ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਸੋਮਾ (S) ਰੱਖੋ। ਲੈੱਨਜ਼ ਪ੍ਰਕਾਸ਼ ਦਾ ਇੱਕ ਸਮਾਨ ਅੰਤਰ ਕਿਰਨ ਪੁੰਜ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।
- ਪ੍ਕਾਸ਼ ਦੇ ਸਮਾਨਅੰਤਰ ਕਿਰਨ ਪੁੰਜ ਨੂੰ ਸਾਫ਼ ਪਾਣੀ ਦੇ ਭਰੇ ਇੱਕ ਪਾਰਦਰਸ਼ੀ ਕੱਚ ਦੇ ਟੈਂਕ (T) ਵਿੱਚੋਂ ਲੰਘਾਓ।
- ਗੱਤੇ ਵਿੱਚ ਬਣੇ ਇੱਕ ਗੋਲ ਛੇਕ (C) ਵਿੱਚੋਂ ਇਸ ਪ੍ਰਕਾਸ਼ ਕਿਰਨ ਪੁੰਜ ਨੂੰ ਲੰਘਾਓ। ਚਿੱਤਰ 11.11 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇੱਕ ਦੂਜੇ ਉੱਤਲ ਲੈੱਨਜ਼ (L₂) ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਗੋਲ ਛੋਕ ਦਾ ਸਪਸ਼ਟ ਪ੍ਰਤਿਬਿੰਬ ਪਰਦੇ (MN) ਉੱਤੇ ਬਣਾਓ।
- ਟੈਂਕ ਵਿੱਚ ਲੱਗਭੱਗ 2 L ਸਾਫ ਪਾਣੀ ਲੈ ਕੇ 200 g ਸੋਡੀਅਮ ਥਾਇਓ ਸਲਫੇਟ (ਹਾਈਪੋ) ਘੋਲੋ। ਪਾਣੀ ਵਿੱਚ ਲੱਗਭੱਗ 1 ਤੋਂ 2 mL ਗਾੜ੍ਹਾ ਸਲਫਿਊਰਿਕ ਤੇਜ਼ਾਬ ਪਾਓ। ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ?

ਲੱਗਭੱਗ 2-3 ਮਿੰਟ ਪਿੱਛੋਂ ਸਲਫਰ ਦੇ ਸੂਖ਼ਮ ਕਣਾਂ ਨੂੰ ਅਵਖੇਪਿਤ ਹੁੰਦੇ ਹੋਏ ਵੇਖੋਗੇ। ਜਿਵੇਂ ਹੀ ਸਲਫਰ ਦੇ ਕਣ ਬਣਨਾ ਅਰੰਭ ਹੁੰਦੇ ਹਨ ਤੁਸੀਂ ਕੱਚ ਦੇ ਟੈਂਕ ਦੇ ਤਿੰਨ ਪਾਸਿਆਂ (sides) ਤੋਂ

ਚਿੱਤਰ 11.11 ਕੋਲਾਇਡਲ ਘੋਲ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦਾ ਖਿਡਣ ਪ੍ਰੇਖਣ ਕਰਨ ਲਈ ਇੱਕ ਪ੍ਰਬੰਧ

ਨੀਲਾ ਪ੍ਕਾਸ਼ ਵੇਖ ਸਕੋਗੇ। ਇਹ ਸਲਫਰ ਦੇ ਸੂਖ਼ਮ ਕੋਲਾਇਡੀ ਕਣਾਂ ਦੁਆਰਾ ਨੀਵੀਂ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਪ੍ਕਾਸ਼ ਦੇ ਖਿੰਡਰਣ ਕਾਰਨ ਹੈ। ਕੱਚ ਦੇ ਟੈਂਕ ਦੇ ਚੌਥੇ ਪਾਸੇ ਤੋਂ ਗੋਲ ਛੇਕ ਵੱਲ ਤੋਂ ਬਾਹਰ ਆਉਂਦੇ ਪ੍ਕਾਸ਼ ਦੇ ਰੰਗ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਇਹ ਪ੍ਰੇਖਣ ਬਹੁਤ ਰੌਚਕ ਹੈ ਕਿਉਂਕਿ ਪਰਦੇ ਉੱਤੇ ਪਹਿਲਾਂ ਨਾਰੰਗੀ-ਲਾਲ ਅਤੇ ਫਿਰ ਚਮਕੀਲਾ ਕਿਰਮਚੀ-ਲਾਲ ਰੰਗ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

ਇਹ ਕਿਰਿਆ ਪ੍ਰਕਾਸ਼ ਦੇ ਖਿੰਡਣ ਨੂੰ

ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ ਜਿਸ ਤੋਂ ਤੁਹਾਨੂੰ ਆਕਾਸ਼ ਦੇ ਨੀਲੇ ਰੰਗ ਅਤੇ ਸੂਰਜ ਨਿਕਲਣ ਅਤੇ ਸੂਰਜ ਛਿਪਣ ਸਮੇਂ ਸੂਰਜ ਦੇ ਲਾਲ ਪ੍ਤੀਤ ਹੋਣ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ। ਖਿਤਿਜ ਦੇ ਲਾਗੇ ਸਥਿਤ ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲਾ ਪ੍ਕਾਸ਼ ਸਾਡੀਆਂ ਅੱਖਾਂ ਤੀਕ ਪਹੁੰਚਣ ਤੋਂ ਪਹਿਲਾਂ ਪ੍ਰਿਥਵੀ ਦੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਹਵਾ ਦੀਆਂ ਮੋਟੀਆਂ ਪਰਤਾਂ ਵਿੱਚੋਂ ਹੋ ਕੇ ਗੁਜ਼ਰਦਾ ਹੈ (ਚਿੱਤਰ।।.12)।

ਜਦੋਂ ਸੂਰਜ ਸਿਰ ਉੱਤੇ ਹੁੰਦਾ ਹੈ ਤਾਂ ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲਾ ਪ੍ਕਾਸ਼ ਸਾਪੇਖਕ ਤੌਰ ਤੇ ਘੱਟ ਦੂਰੀ ਤੇ ਚੱਲੇਗਾ। ਦੁਪਹਿਰ ਦੇ ਸਮੇਂ ਸੂਰਜ ਸਫੈਦ ਪ੍ਤੀਤ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਨੀਲੇ ਅਤੇ ਖਿਤਿਜ ਦੇ ਨੇੜੇ ਬੈਂਗਣੀ ਰੰਗਾਂ ਦਾ ਬਹੁਤ ਥੋੜ੍ਹਾ ਭਾਗ ਹੀ ਖਿੰਡਦਾ ਹੈ। ਖਿਤਿਜ ਦੇ ਸ਼ੂਰਜ ਲਾਗੇ ਨੀਲੇ ਅਤੇ ਘੱਟ ਤਰੰਗ ਲੰਬਾਈਆਂ ਦੇ ਪ੍ਕਾਸ਼ ਦਾ ਬਹੁਤਾ *ਚਿੱਤਰ 1* ਭਾਗ ਕਣਾਂ ਦੁਆਰਾ ਖਿੰਡ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਸਾਡੀਆਂ ਅੱਖਾਂ *ਪ੍ਰਤੀਤ ਹੋਰ* ਤੱਕ ਪਹੁੰਚਣ ਵਾਲਾ ਪ੍ਕਾਸ਼ ਅਧਿਕ ਤਰੰਗ ਲੰਬਾਈਆਂ ਦਾ

ਸੂਰਜ ਲੱਗਭੱਗ ਸਿਰ ਦੇ ਉੱਪਰ ਨੀਲਾ ਪ੍ਰਕਾਸ਼ ਖਿੰਡ ਜਾਂਦਾ ਹੈ, ਸੂਰਜ ਲਾਲ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਿਤਜ ਦੇ ਨੇੜੇ ਸੂਰਜ

ਚਿੱਤਰ 11.12 ਸੂਰਜ ਚੜ੍ਹਨ ਅਤੇ ਛਿਪਣ ਸਮੇਂ ਸੂਰਜ ਦਾ ਲਾਲ ਪ੍ਰਤੀਤ ਹੋਣਾ

ਹੋਵੇਗਾ। ਇਸ ਨਾਲ ਸੂਰਜ ਨਿਕਲਣ ਅਤੇ ਸੂਰਜ ਡੁੱਬਣ ਸਮੇਂ ਸੂਰਜ ਲਾਲ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ?

- ਅੱਖ ਦੀ ਉਹ ਸਮਰੱਥਾ ਜਿਸ ਦੇ ਕਾਰਨ ਉਹ ਆਪਣੀ ਫੋਕਸ ਦੂਰੀ ਅਨੁਕੂਲਿਤ ਕਰਕੇ ਨੇੜੇ ਅਤੇ ਦੂਰ ਦੀਆਂ ਵਸਤਾਂ ਨੂੰ ਫੋਕਸ ਕਰ ਲੈਂਦੀ ਹੈ। ਅੱਖ ਦੀ ਅਨੁਕੁਲਣ ਸਮਰੱਥਾ ਅਖਵਾਉਂਦੀ ਹੈ।
- ਉਹ ਅਲਪਤਮ ਦੂਰੀ ਜਿਸ ਉੱਤੇ ਰੱਖੀ ਵਸਤੂ ਨੂੰ ਅੱਖ ਬਿਨਾਂ ਕਿਸੇ ਤਣਾਓ ਦੇ ਸਪਸ਼ਟ ਵੇਖ ਸਕਦੀ ਹੈ ਉਸ ਨੂੰ ਅੱਖ ਦਾ ਨਿਕਟ ਬਿੰਦੂ ਜਾਂ ਸਪਸ਼ਟ ਦ੍ਰਿਸ਼ਟੀ ਦੀ ਅਲਪਤਮ ਦੂਰੀ ਕਹਿੰਦੇ ਹਨ। ਸਾਧਾਰਨ ਦ੍ਰਿਸ਼ਟੀ ਦੇ ਵਿਅਕਤੀ ਦੇ ਲਈ ਇਹ ਦੂਰੀ ਲੱਗਭੱਗ 25 cm ਹੁੰਦੀ ਹੈ।
- ਦ੍ਰਿਸ਼ਟੀ ਦੇ ਆਮ ਅਪਵਰਤਕ ਦੋਸ਼ ਹਨ –ਨਿਕਟ –ਦ੍ਰਿਸ਼ਟੀ, ਦੂਰ –ਦ੍ਰਿਸ਼ਟੀ, ਜਰਾ –ਦੂਰ ਦ੍ਰਿਸ਼ਟਤਾ। (ਨਿਕਟ ਦ੍ਰਿਸ਼ਟਤਾ ਦੂਰ ਰੱਖੀ ਵਸਤੂ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਰੈਟਿਨਾ ਦੇ ਅੱਗੇ ਬਣਦਾ ਹੈ।) ਨੂੰ ਉੱਚਿਤ ਸਮਰੱਥਾ ਵਾਲੇ ਅਵਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਸੋਧਿਆ ਜਾਂਦਾ ਹੈ। ਦੂਰ –ਦ੍ਰਿਸ਼ਟੀ (ਦੂਰ –ਦ੍ਰਿਸ਼ਟਤਾ –ਨੇੜੇ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਦੇ ਪ੍ਰਤਿਬਿੰਬ ਰੈਟਿਨਾ ਦੇ ਪਿੱਛੇ ਬਣਦੇ ਹਨ) ਨੂੰ ਉੱਚਿਤ ਸਮਰੱਥਾ ਦੇ ਉੱਤਲ ਲੈੱਨਜ਼ ਦੁਆਰਾ ਸੋਧਿਆ ਜਾਂਦਾ ਹੈ। ਬੁਢਾਪੇ ਵਿੱਚ ਅਨੁਕੂਲਿਤ ਸਮਰੱਥਾ ਘੱਟ ਜਾਂਦੀ ਹੈ।
- ਚਿੱਟੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਇਸ ਦੇ ਘੱਟਕ ਰੰਗਾਂ ਵਿੱਚ ਵਿਭਾਜਨ ਵਿਖੇਪਣ ਕਹਾਉਂਦਾ ਹੈ।
- ਪ੍ਰਕਾਸ਼ ਖਿੰਡਣ ਦੇ ਕਾਰਨ ਆਕਾਸ਼ ਦਾ ਰੰਗ ਨੀਲਾ ਅਤੇ ਸੂਰਜ ਚੜ੍ਹਨ ਅਤੇ ਛਿਪਣ ਸਮੇਂ ਸੂਰਜ ਦਾ ਰੰਗ ਲਾਲ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ।

ਅਭਿਆਸ

- ਮਨੁੱਖੀ ਅੱਖ ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰਕੇ ਭਿੰਨ ਭਿੰਨ ਦੂਰੀਆਂ ਉੱਤੇ ਰੱਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਫੋਕਸਿਤ ਕਰ ਸਕਦਾ ਹੈ। ਅਜਿਹਾ ਹੋ ਸਕਣ ਦਾ ਕਾਰਨ ਹੈ –
 - (a) ਜਗਾ-ਦ੍ਰਿਸ਼ਟਤਾ
 - (b) ਅਨੁਕੂਲਣ ਸਮਰੱਥਾ
 - (c) ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟੀ
 - (d) ਦੂਰ-ਦ੍ਰਿਸ਼ਟਤਾ

- ਮਨੁੱਖੀ ਅੱਖ ਜਿਸ ਭਾਗ ਉੱਤੇ ਕਿਸੇ ਵਸਤੂ ਦਾ ਪ੍ਰਤਿਬਿੰਬ ਬਣਾਉਂਦੀ ਹੈ, ਉਹ ਹੈ
 - (a) ਕਾਰਨੀਆ
 - (b) ਆਇਰਿਸ
 - (c) ਪੁਤਲੀ
 - (d) ਰੈਟਿਨਾ
- 3. ਸਾਧਾਰਨ ਦ੍ਰਿਸ਼ਟੀ ਦੇ ਵਿਅਕਤੀ ਲਈ ਸਪਸ਼ਟ ਦਰਸ਼ਨ ਦੀ ਅਲਪਤਮ ਦੂਰੀ ਹੁੰਦੀ ਹੈ, ਲੱਗਭੱਗ
 - (a) 25 m
 - (b) 2.5 cm
 - (c) 25 cm
 - (d) 2.5 m
- 4. ਨੇਤਰ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ
 - (a) ਪਤਲੀ ਦੁਆਰਾ
 - (b) ਰੈਟਿਨਾ ਦੁਆਰਾ
 - (c) ਸਿਲੀਅਰੀ ਪੇਸ਼ੀ ਦੁਆਰਾ
 - (d) ਆਇਰਿਸ
- 5. ਕਿਸੇ ਵਿਅਕਤੀ ਨੂੰ ਆਪਣੀ ਦੂਰ ਦੀ ਦ੍ਰਿਸ਼ਟੀ ਨੂੰ ਸੋਧਣ ਲਈ 5.5 ਡਾਈਆਪਟਰ ਸਮਰੱਥਾ ਦੇ ਲੈੱਨਜ ਦੀ ਲੋੜ ਹੈ। ਆਪਣੀ ਨਿਕਟ ਦੀ ਦ੍ਰਿਸ਼ਟੀ ਦੇ ਸੋਧਣ ਲਈ +1.5 ਡਾਈਆਪਟਰ ਸਮਰੱਥਾ ਵਾਲੇ ਲੈੱਨਜ਼ ਦੀ ਜ਼ਰੂਰੀ ੍ਰੋਧਣ ਲਈ ਲੋੜੀਂਦੇ ਲੈੱਨਜ਼ ਦੀ ਫੋਕਸ ਦੂਰੀ ਕੀ ਹੋਵੇਗੀ–
 - (i) ਦੂਰ ਦੀ ਦ੍ਰਿਸ਼ਟੀ ਲਈ (ii) ਨਿਕਟ ਦੀ ਦ੍ਰਿਸ਼ਟੀ ਲਈ।
- 6. ਕਿਸੇ ਨਿਕਟ-ਦ੍ਰਿਸ਼ਟ ਦੋਸ਼ ਵਾਲੇ ਵਿਅਕਤੀ ਦਾ ਦੂਰ ਬਿੰਦੂ ਅੱਖ ਦੇ ਸਾਹਮਣੇ 80 cm ਦੂਰੀ ਉੱਤੇ ਹੈ। ਇਸ ਦੋਸ਼ ਨੂੰ ਸੋਧਣ ਲਈ ਲੋੜੀਂਦੇ ਲੈੱਨਜ਼ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਸਮਰੱਥਾ ਕੀ ਹੋਵੇਗੀ?
- 7. ਚਿੱਤਰ ਬਣਾ ਕੇ ਦਰਸਾਓ ਕਿ ਦੂਰ-ਦ੍ਰਿਸ਼ਟ ਦੇਸ਼ ਕਿਵੇਂ ਸੰਸ਼ੋਧਿਤ (ਠੀਕ) ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਦੂਰ-ਦ੍ਰਿਸ਼ਟ ਦੇਸ਼ ਵਾਲੀ ਅੱਖ ਦਾ ਨਿਕਟ ਬਿੰਦੂ 1 m ਹੈ। ਇਸ ਦੇਸ਼ ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਜ਼ਰੂਰੀ ਲੈੱਨਜ਼ ਦੀ ਸਮਰੱਥਾ ਕੀ ਹੋਵੇਗੀ? ਮੰਨ ਲਓ ਕਿ ਆਮ ਅੱਖ ਦਾ ਨਿਕਟ ਬਿੰਦੂ 25 cm ਹੈ।
- 8. ਆਮ ਅੱਖ 25 cm ਤੋਂ ਨੇੜੇ ਰੱਖੀ ਵਸਤੂਆਂ ਨੂੰ ਸਪੱਸ਼ਟ ਕਿਉਂ ਨਹੀਂ ਵੇਖ ਸਕਦੀ?
- 9. ਜਦੋਂ ਅਸੀਂ ਅੱਖ ਤੋਂ ਕਿਸੇ ਵਸਤੂ ਦੀ ਦੂਰੀ ਵਧਾ ਦਿੰਦੇ ਹਾਂ ਤਾਂ ਅੱਖ ਵਿੱਚ ਪ੍ਰਤਿਬਿੰਬ-ਦੂਰੀ ਨੂੰ ਕੀ ਲਾਭ ਹੁੰਦਾ ਹੈ?
- 10. ਤਾਰੇ ਕਿਉਂ ਟਿਮਟਿਮਾਉਂਦੇ ਹਨ?
- 11. ਵਿਆਖਿਆ ਕਰੋ ਕਿ ਗ੍ਰਹਿ ਕਿਉਂ ਨਹੀਂ ਟਿਮਟਮਾਉਂਦੇ?
- 12. ਸੂਰਜ ਚੜ੍ਹਨ ਸਮੇਂ ਸੂਰਜ ਲਾਲ ਕਿਉਂ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ?
- 13. ਕਿਸੇ ਪੁਲਾੜ ਯਾਤਰੀ ਨੂੰ ਆਕਾਸ਼ ਨੀਲੇ ਦੀ ਥਾਂ ਕਾਲਾ ਕਿਉਂ ਪ੍ਰਤੀਤ ਹੁੰਦਾ ਹੈ?

ਜਲੀ ਦਾ ਆਧੁਨਿਕ ਸਮਾਜ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਸਥਾਨ ਹੈ। ਇਹ ਘਰ, ਸਕੂਲ, ਹਸਪਤਾਲਾਂ ਉਦਯੋਗਾਂ ਅਤੇ ਅਜਿਹੀਆਂ ਅਨੇਕ ਸੰਸਥਾਵਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਉਪਯੋਗਾਂ ਦੇ ਲਈ ਇੱਕ ਨਿਯੰਤ੍ਰਿਤ ਕਰ ਸਕਣਯੋਗ ਅਤੇ ਸੁਵਿਧਾਜਨਕ ਊਰਜਾ ਦਾ ਰੂਪ ਹੈ। ਉਹ ਕੀ ਹੈ ਜਿਸ ਤੋਂ ਬਿਜਲੀ ਬਣਦੀ ਹੈ? ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਇਹ ਕਿਵੇਂ ਚਲਦੀ ਹੈ? ਉਹ ਕਿਹੜੇ ਕਾਰਨ ਹਨ ਜੋ ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਦੀ ਧਾਰਾ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ ਜਾਂ ਨਿਯਮਤ ਕਰਦੇ ਹਨ? ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਦਾ ਯਤਨ ਕਰਾਂਗੇ। ਅਸੀਂ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਤਾਪਨ ਪ੍ਰਭਾਵ ਅਤੇ ਇਸ ਦੇ ਹੋਰ ਉਪਯੋਗਾਂ ਉੱਤੇ ਵੀ ਚਰਚਾ ਕਰਾਂਗੇ।

12.1 ਬਿਜਲਈ ਧਾਰਾ ਅਤੇ ਸਰਕਟ (Electric Current and Circuit)

ਅਸੀਂ ਵਾਯੂ ਧਾਰਾ ਅਤੇ ਜਲ ਧਾਰਾ ਤੋਂ ਜਾਣੂ ਹਾਂ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਗਦੇ ਹੋਏ ਪਾਣੀ ਤੋਂ ਨਦੀਆਂ ਵਿੱਚ ਪਾਣੀ ਦੀ ਧਾਰਾ ਬਣਦੀ ਹੈ। ਇਸੇ ਪ੍ਕਾਰ ਜੇਕਰ ਬਿਜਲਈ ਚਾਰਜ ਚਾਲਕ ਵਿੱਚੋਂ ਪ੍ਵਾਹਿਤ ਹੁੰਦਾ ਹੈ (ਉਦਾਹਰਨ ਲਈ ਕਿਸੇ ਧਾਤ ਦੀ ਤਾਰ ਵਿੱਚੋਂ) ਤਾਂ ਅਸੀਂ ਇਹ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਚਾਲਕ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਟਾਰਚ ਵਿੱਚ ਸੈੱਲ (ਜਾਂ ਇੱਕ ਬੈਟਰੀ, ਜਦੋਂ ਉੱਚਿਤ ਕ੍ਮ ਵਿੱਚ ਰੱਖੇ ਜਾਂਦੇ ਹਨ) ਟਾਰਚ ਬਲਬ ਨੂੰ ਦੀਪਤ ਕਰਨ ਲਈ ਚਾਰਜ ਦਾ ਪ੍ਰਵਾਹ ਜਾਂ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਅਸੀਂ ਇਹ ਵੀ ਵੇਖਿਆ ਹੈ ਕਿ ਟਾਰਚ ਤਦ ਹੀ ਪ੍ਕਾਸ਼ ਦਿੰਦੀ ਹੈ ਜਦੋਂ ਉਸ ਦੇ ਸਵਿੱਚ ਨੂੰ ਆਨ ਕਰਦੇ ਹਨ। ਸਵਿੱਚ ਕੀ ਕਾਰਜ ਕਰਦਾ ਹੈ? ਸਵਿੱਚ ਸੈੱਲ ਅਤੇ ਬਲਬ ਦੇ ਵਿਚਕਾਰ ਸੰਬੰਧ ਜੋੜਦਾ ਹੈ ਕਿਸੇ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਲਗਾਤਾਰ ਅਤੇ ਬੰਦ ਪੱਥ ਨੂੰ ਬਿਜਲਈ ਸਰਕਟ ਕਹਿੰਦੇ ਹਨ। ਹੁਣ ਜੇਕਰ ਸਰਕਟ ਕਿਸੇ ਥਾਂ ਤੋਂ ਟੁੱਟ ਜਾਵੇ (ਜਾਂ ਟਾਰਚ ਸਵਿੱਚ ਆਫ਼ ਕਰ ਦਿੱਤਾ ਜਾਵੇ) ਤਾਂ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਚੱਲਣਾ ਬੰਦ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਬੱਲਬ ਚਮਕਣਾ ਬੰਦ ਹੋ ਜਾਂਦਾ ਹੈ।

ਅਸੀਂ ਬਿਜਲਈ ਧਾਰਾ ਨੂੰ ਕਿਵੇਂ ਦਰਸਾਉਂਦੇ ਹਾਂ? ਬਿਜਲਈ ਧਾਰਾ ਨੂੰ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਖੇਤਰ ਤੋਂ ਲੰਘਦੇ ਚਾਰਜ ਦੀ ਮਾਤਰਾ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਬਿਜਲਈ ਚਾਰਜ ਦੇ ਪ੍ਵਾਹ ਦੀ ਦਰ ਨੂੰ ਬਿਜਲਈ ਧਾਰਾ ਕਹਿੰਦੇ ਹਨ ਉਨ੍ਹਾਂ ਸਰਕਟਾਂ ਵਿੱਚ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਧਾਤ ਦੇ ਤਾਰ ਉਪਯੋਗ ਹੁੰਦੇ ਹਨ ਚਾਰਜ ਦੇ ਪ੍ਵਾਹ ਦੀ ਰਚਨਾ ਇਲੈੱਕਟ੍ਰਾਨ ਕਰਦੇ ਹਨ। ਜਿਸ ਸਮੇਂ ਬਿਜਲੀ ਦੀ ਘਟਨਾ ਦਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਪ੍ਰੇਖਣ ਕੀਤਾ ਗਿਆ ਸੀ ਉਦੋਂ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੋਈ ਜਾਣਕਾਰੀ ਨਹੀਂ ਸੀ, ਇਸ ਲਈ ਬਿਜਲੀ ਧਾਰਾ ਨੂੰ ਧਨ ਚਾਰਜਾਂ ਦਾ ਵਹਿਣ ਮੰਨਿਆ ਗਿਆ ਹੈ ਅਤੇ ਧਨ ਚਾਰਜਾਂ ਦੇ ਪ੍ਵਾਹ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਹੀ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਮੰਨਿਆ ਗਿਆ। ਪਰੰਪਰਾ ਅਨੁਸਾਰ ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਇਲੈੱਕਟ੍ਰਾਨ, ਜੋ ਰਿਣ ਚਾਰਜ ਹਨ, ਦੇ ਪ੍ਵਾਹ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਨੂੰ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

ਜੇਕਰ ਕਿਸੇ ਚਾਲਕ ਦੀ ਕਿਸੇ ਵੀ ਪਰਿਖੇਤਰ ਕਾਟ ਵਿੱਚੋਂ ਸਮੇਂ t ਲਈ ਚਾਰਜ Q ਪ੍ਰਵਾਹਿਤ ਹੁੰਦਾ ਹੈ ਤਦ ਉਸ ਪਰਿਖੇਤਰ ਕਾਟ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ I ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਉਂਦੇ ਹਨ।

$$I = \frac{Q}{t} \tag{12.1}$$

ਬਿਜਲਈ ਚਾਰਜ ਦੀ SI ਇਕਾਈ ਕੂਲਮ (C) ਹੈ, ਜੋ ਲੱਗਭੱਗ 6× ××××10¹⁸ ਇਲੈੱਕਟਾਨਾਂ ਵਿੱਚ ਸਮਾਏ ਚਾਰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।(ਸਾਨੂੰ ਪਤਾ ਹੈ ਕਿ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਉੱਤੇ 1.6×10⁻¹⁹C ਚਾਰਜ ਹੁੰਦਾ ਹੈ) ਬਿਜਲਈ ਧਾਰਾ ਨੂੰ ਇੱਕ ਇਕਾਈ, ਜਿਸਨੂੰ ਐੱਮਪੀਅਰ (A) ਕਹਿੰਦੇ ਹਨ, ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਇਕਾਈ ਦਾ ਨਾਂ ਆਂਦਰੇ ਮੇਰੀ ਐੱਮਪੀਅਰ (1775-1836) ਨਾਂ ਦੇ ਫਰਾਂਸੀਸੀ ਵਿਗਿਆਨੀ ਦੇ ਨਾਂ ਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਇੱਕ ਐੱਮਪੀਅਰ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਰਚਨਾ ਪਤਿ ਸੈਕਿੰਡ ਇੱਕ ਕਲਾਮ ਚਾਰਜ ਦੇ ਪਵਾਹ ਨਾਲ ਹੁੰਦੀ ਹੈ, ਅਰਥਾਤ 1 A = 1 C/1 s

ਚਿੱਤਰ 12,1 ਸੈੱਲ. ਬਿਜਲੀ ਬਲਬ, ਐਮਮੀਟਰ ਅਤੇ ਪਲੱਗ ਕੁੰਜੀ ਤੋਂ ਮਿਲ ਕੇ ਬਣੇ ਬਿਜਲਈ ਸਰਕਟ ਦਾ ਵਿਓਂਤ ਚਿੱਤਰ

ਬਿਜਲਈ ਧਾਰਾ ਦੀਆਂ ਛੋਟੀਆ ਇਕਾਈਆਂ ਨੂੰ ਮਿਲੀ ਐਮਪੀਅਰ (1 mA=10⁻³ A) ਅਤੇ ਮਾਈਕਰੋਐਮਪੀਅਰ (1 µA = 10⁻⁶ A) ਵਜੋਂ ਵਿਅਕਤ ਕਰਦੇ ਹਨ। ਇੱਕ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਮਾਪਣ ਲਈ ਐਮਮੀਟਰ ਨਾਮੀ ਯੰਤਰ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਸਦਾ ਜਿਸ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਮਾਪਣੀ ਹੁੰਦੀ ਹੈ ਉਸ ਦੀ ਲੜੀ ਵਿੱਚ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ 12.1 ਵਿੱਚ ਇੱਕ ਨਮੂਨੇ ਦੇ ਬਿਜਲਈ ਸਰਕਟ ਦਾ ਵਿਉਂਤ ਚਿੱਤਰ ਵਿਖਾਇਆ ਗਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਸੈੱਲ, ਬਿਜਲੀ ਦਾ ਬਲਬ, ਐਮਮੀਟਰ ਅਤੇ ਪਲੱਗ ਚਾਬੀ ਜੁੜੇ ਹੋਏ ਹਨ। ਨੋਟ ਕਰੋ ਕਿ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਸੈੱਲ ਦੇ ਧਨ ਟਰਮੀਨਲ ਤੋਂ ਸੈੱਲ ਦੇ ਰਿਣ ਟਰਮੀਨਲ ਤੱਕ ਬਲਬ ਅਤੇ ਐੱਮ ਮੀਟਰ ਵਿੱਚੋਂ ਹੋ ਕੇ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ।

ਉਦਾਹਰਨ 12.1

ਕਿਸੇ ਬਿਜਲੀ ਬਲਬ ਦੇ ਤੰਤੂ ਵਿੱਚੋਂ 0.5 A ਬਿਜਲਈ ਧਾਰਾ 10 ਮਿੰਟ ਤੱਕ ਪ੍ਵਾਹਿਤ ਹੁੰਦੀ ਹੈ। ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚੋਂ ਲੰਘੇ ਬਿਜਲਈ ਚਾਰਜ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।

ਹੱਲ

ਦਿੱਤਾ ਗਿਆ ਹੈ : ,I = 0.5 A; t = 10 ਮਿੰਟ = 600 sਸਮੀਕਰਨ (12.1), ਤੋਂ

Q = It

 $= 0.5 \,\mathrm{A} \times \times 600 \,\mathrm{s}$

= 300 C

ਪ੍ਰਸ਼ਨ

- 1. ਬਿਜਲਈ ਸਰਕਟ ਦਾ ਕੀ ਭਾਵ ਹੈ?
- 2. ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਇਕਾਈ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ।
- 3. ਇੱਕ ਕੁਲਮ ਚਾਰਜ ਦੀ ਰਚਨਾ ਕਰਨ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।

^^^^

ਤਾਰ ਦੇ ਅੰਦਰ ਚਾਰਜ ਦਾ ਪ੍ਰਵਾਹ

ਕੋਈ ਧਾਤ ਬਿਜਲੀ ਦਾ ਚਾਲਨ ਕਿਵੇਂ ਕਰਦੀ ਹੈ? ਤੁਸੀਂ ਸੋਚਦੇ ਹੋਵੋਗੇ ਕਿ ਘੱਟ ਊਰਜਾ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਕਿਸੇ ਨੌਸ ਚਾਲਕ ਵਿੱਚੋਂ ਲੰਘਣ ਵਿੱਚ ਬਹੁਤ ਕਠਿਨਾਈ ਹੁੰਦੀ ਹੋਵੇਗੀ। ਨੌਸ ਵਿੱਚ ਪਰਮਾਣੂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਵਿਚਕਾਰ ਬਹੁਤ ਘੱਟ ਥਾਂ ਹੁੰਦੀ ਹੈ ਪ੍ਰੰਤੂ ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਇਲੈੱਕਟ੍ਰਾਨ ਕਿਸੇ ਆਦਰਸ਼ ਨੌਸ ਕ੍ਰਿਸਟਲ ਵਿੱਚੋਂ ਬਿਨਾਂ ਰੁਕਾਵਟ ਆਸਾਨੀ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਯਾਤਰਾ ਕਰ ਲੈਂਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਉਹ ਖਲਾਅ ਵਿੱਚ ਹੋਣ। ਕਿਸੇ ਚਾਲਕ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਗਤੀ ਖਾਲੀ ਸਥਾਨ ਵਿੱਚ ਚਾਰਜਾਂ ਦੀ ਗਤੀ ਨਾਲੋਂ ਬਹੁਤ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਕਿਸੇ ਚਾਲਕ ਵਿੱਚੋਂ ਸਥਿਰ ਧਾਰਾ ਲੰਘਦੀ ਹੈ ਤਾਂ ਉਸ ਦੇ ਅੰਦਰ ਇਲੈਕਟ੍ਰਾਨ ਇੱਕ ਨਿਸ਼ਚਿਤ ਔਸਤ ਵਹਿਣ ਚਾਲ (drift speed) ਨਾਲ ਗਤੀ ਕਰਦੇ ਹਨ। ਕਿਸੇ ਨਮੂਨੇ ਦੀ ਕਾਪਰ ਦੀ ਤਾਰ ਦੇ ਲਈ ਜਿਸ ਵਿੱਚੋਂ ਬਹੁਤ ਥੋੜ੍ਹੀ ਬਿਜਲਈ ਧਾਰਾ ਲੰਘ ਰਹੀ ਹੈ ਇਸ ਵਹਿਣ ਚਾਲ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਹ ਅਸਲ ਵਿੱਚ ਬਹੁਤ ਥੋੜ੍ਹੀ ਲਗਭਗ ਹੈ mm sਾਪਾਈ ਗਈ। ਫਿਰ ਅਜਿਹਾ ਕਿਉਂ ਹੈ ਕਿ ਸਾਡੇ ਸਵਿੱਚ ਆਨ ਕਰਦਿਆਂ ਹੀ ਬਿਜਲਈ ਬਲਬ ਪ੍ਰਕਾਸ਼ ਦੇਣ ਲੱਗਦਾ ਹੈ? ਅਜਿਹਾ ਨਹੀਂ ਹੋ ਸਕਦਾ ਕਿ ਬਿਜਲਈ ਧਾਰਾ ਕੇਵਲ ਉਦੋਂ ਆਰੰਭ ਹੋਵੇ ਜਦੋਂ ਜਦੋਂ ਕੋਈ ਇਲੈੱਕਟ੍ਰਾਨ ਬਿਜਲੀ ਪੂਰਤੀ ਲਈ ਇੱਕ ਟਰਮੀਨਲ ਤੋਂ ਆਪ ਚੱਲ ਕੇ ਬਲਬ ਤੋਂ ਹੁੰਦਾ ਹੋਇਆ ਦੂਜੇ ਟਰਮੀਨਲ ਤੱਕ ਪਹੁੰਚੇ ਕਿਉਂਕਿ ਕਿਸੇ ਚਾਲਕ ਤਾਰ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਭੌਤਿਕ ਵਹਿਣ ਇੱਕ ਬਹੁਤ ਧੀਮੀ ਪ੍ਰਕਿਰਿਆ ਹੈ। ਬਿਜਲਈ ਧਾਰਾ ਚੱਲਣ ਦੀ ਠੀਕ ਪ੍ਰਕਿਰਿਆ ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ ਦੇ ਲਗਭਗ ਬਰਾਬਰ ਚਾਲ ਨਾਲ ਹੁੰਦੀ ਹੈ, ਦਿਲ ਖਿੱਚਵੀਂ ਹੈ ਪ੍ਰੰਤੂ ਇਸ ਪੁਸਤਕ ਦੇ ਕਾਰਜ ਖੇਤਰ ਤੋਂ ਬਾਹਰ ਹੈ। ਕੀ ਤੁਸੀਂ ਉੱਚ ਪੱਧਰ ਤੇ ਇਸ ਪ੍ਰਸ਼ਨ ਦੀ ਗਹਿਰਾਈ ਤੱਕ ਪਹੁੰਚਣਾ ਚਾਹੁੰਦੇ ਹੋ?

12.2 ਬਿਜਲਈ ਪੁਟੈਂਸ਼ਲ ਅਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ (Electric Potential And Potential Difference)

ਉਹ ਕੀ ਹੈ ਜੋ ਬਿਜਲਈ ਚਾਰਜ ਨੂੰ ਪਵਾਹਿਤ ਕਰਦਾ ਹੈ? ਆਓ ਪਾਣੀ ਦੇ ਪਵਾਹ ਦੀ ਸਮਾਨਤਾ ਦੇ ਆਧਾਰ ਉੱਤੇ ਇਸ ਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਕਿਸੇ ਕਾਪਰ ਦੀ ਤਾਰ ਵਿੱਚ ਆਪਣੇ ਆਪ ਚਾਰਜ ਪ੍ਵਾਹਿਤ ਨਹੀਂ ਹੁੰਦਾ ਠੀਕ ਉਸੇ ਤਰ੍ਹਾਂ ਜਿਵੇਂ ਕਿਸੇ ਬਿਲਕੁਲ ਖਿਤਿਜੀ ਟਿਊਬ ਵਿੱਚ ਪਾਣੀ ਪ੍ਰਵਾਹਿਤ ਨਹੀਂ ਹੁੰਦਾ। ਜੇਕਰ ਨਲੀ ਦੇ ਇੱਕ ਸਿਰੇ ਨੂੰ ਕਿਸੇ ਉੱਚੇ ਤਲ ਉੱਤੇ ਰੱਖੋਂ ਪਾਣੀ ਦੇ ਟੈਂਕ ਨਾਲ ਜੋੜ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਜੋ ਨਲੀ ਦੇ ਦੋ ਸਿਰਿਆਂ ਵਿਚਕਾਰ ਕੋਈ ਦਬਾਓ ਅੰਤਰ ਸਥਾਪਿਤ ਹੋ ਜਾਵੇ ਤਾਂ ਨਲੀ ਦੇ ਮੁਕਤ ਸਿਰੇ ਤੋਂ ਪਾਣੀ ਬਾਹਰ ਵੱਲ ਚੱਲਣਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਧਾਤਵੀ ਤਾਰ ਚਾਲਕ ਵਿੱਚ ਚਾਰਜਾਂ ਦੇ ਪ੍ਰਵਾਹ ਲਈ ਅਸਲ ਵਿੱਚ ਗੁਰੂਤਾ ਬਲ ਦੀ ਕੋਈ ਭੂਮਿਕਾ ਨਹੀਂ ਹੈ, ਇਲੈੱਕਟ੍ਰਾਨ ਕੇਵਲ ਤਾਂ ਹੀ ਗਤੀ ਕਰਦੇ ਹਨ ਜਦੋਂ ਚਾਲਕ ਵਿੱਚ ਬਿਜਲਈ ਦਬਾਓ ਦਾ ਅੰਤਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਪੂ<mark>ਟੈਂਸ਼ਲ ਅੰਤਰ</mark> ਕਹਿੰਦੇ ਹਨ। ਸਰਕਟ ਵਿੱਚ ਇਹ ਪਟੈਂਸ਼ਲ ਅੰਤਰ ਇੱਕ ਜਾਂ ਵੱਧ ਬਿਜਲਈ ਸੈੱਲਾਂ ਤੋਂ ਬਣੀ ਬੈਟਰੀ ਦੁਆਰਾ ਉਤਪੰਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਸੈੱਲ ਅੰਦਰ ਹੋਣ ਵਾਲੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਸੈੱਲ ਦੇ ਟਰਮੀਨਲ ਦੇ ਵਿੱਚ ਪਟੈਂਸ਼ਲ ਅੰਤਰ ਉਤਪੰਨ ਕਰ ਦਿੰਦੀ ਹੈ. ਅਜਿਹਾ ਉਸ ਸਮੇਂ ਵੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਸੈੱਲ ਤੋਂ ਕੋਈ ਬਿਜਲਈ ਧਾਰਾ ਨਹੀਂ ਲੈ ਜਾ ਰਹੀ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਸੈੱਲ ਨੂੰ ਕਿਸੇ ਚਾਲਕ ਸਰਕਟ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪਟੈਂਸ਼ਲ ਅੰਤਰ ਉਸ ਚਾਲਕ ਦੇ ਚਾਰਜਾਂ ਵਿੱਚ ਗਤੀ ਲਿਆ ਦਿੰਦਾ ਹੈ ਅਤੇ ਬਿਜਲਈ ਧਾਰਾ ਉਤਪੰਨ ਹੋ ਜਾਂਦੀ ਹੈ।ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਬਣਾਈ ਰੱਖਣ ਲਈ ਸੈੱਲ ਆਪਣੀ ਸਟੋਰ ਕੀਤੀ ਹੋਈ ਰਸਾਇਣਿਕ ਉਰਜਾ ਖਰਚ ਕਰਦਾ ਹੈ।

ਕੁਝ ਕਰੰਟ ਲੈ ਜਾ ਰਹੇ ਬਿਜਲਈ ਸਰਕਟ ਦੇ ਦੋ ਬਿੰਦੂਆਂ ਵਿਚਕਾਰ **ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ** ਨੂੰ ਅਸੀਂ ਉਸ ਕਾਰਜ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ ਜੋ ਇਕਾਈ ਚਾਰਜ ਨੂੰ ਇੱਕ ਬਿੰਦੂ ਤੋਂ ਦੂਜੇ ਬਿੰਦੂ ਤੱਕ ਲਿਆਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਦੋ ਬਿੰਦੂਆਂ ਵਿਚਕਾਰ ਪੋਟੈਂਸ਼ਲ ਅੰਤਰ
$$(V) = rac{$$
ਕੀਤਾ ਗਿਆ ਕੰਮ (W) ਚਾਰਜ (Q)

$$V = W/Q \tag{12.2}$$

ਬਿਜਲਈ ਅੰਤਰ ਦੀ SI ਇਕਾਈ ਵੋਲਟ (V) ਹੈ ਜਿਸ ਦਾ ਨਾਂ ਇਟਲੀ ਦੇ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਐਲੇਜ਼ੈਂਦਰੋ ਵੋਲਟਾ (1745–1827) ਦੇ ਨਾਂ ਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਜੇਕਰ ਕਿਸੇ ਬਿਜਲਈ ਧਾਰਾ ਲੈ ਜਾ ਰਹੇ ਚਾਲਕ ਦੇ ਦੋ ਬਿੰਦੂਆਂ ਵਿਚਕਾਰ ਇੱਕ ਕੂਲਾਮ ਚਾਰਜ ਨੂੰ ਇੱਕ ਬਿੰਦੂ ਤੋਂ ਦੂਜੇ ਬਿੰਦੂ ਤੱਕ ਲੈ ਜਾਣ ਵਿੱਚ 1 ਜੂਲ ਕਾਰਜ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹਨਾਂ ਦੋ ਬਿੰਦੂਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ 1 ਵੋਲਟ ਹੁੰਦਾ ਹੈ।

ਇਸ ਲਈ,
$$1 \equiv \frac{1}{8} = \frac{1}{1} = \frac{$$

$$1V = 1JC^{-1}$$
 (12.3)

ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਦਾ ਮਾਪ, ਇੱਕ ਯੰਤਰ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨੂੰ **ਵੋਲਟਮੀਟਰ** ਕਹਿੰਦੇ ਹਨ। ਵੋਲਟਮੀਟਰ ਨੂੰ ਸਦਾ ਉਹਨਾਂ ਬਿੰਦੂਆਂ ਦੇ ਸਮਾਨਾਂਤਰ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਵਿਚਕਾਰ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਮਾਪਣਾ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਨ 12.2

12 V ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਦੇ ਦੋ ਬਿੰਦੂਆਂ ਦੇ ਵਿੱਚ 2C ਚਾਰਜ ਨੂੰ ਲੈ ਜਾਣ ਵਿੱਚ ਕਿੰਨਾ ਕੰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?

ਹੱਲ

ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ V (= 12 ਵੋਲਟ) ਦੇ ਦੋ ਬਿੰਦੂਆਂ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਚਾਰਜ ਦੀ ਮਾਤਰਾ Q (= 2 ਕੂਲਾਮ) ਹੈ। ਇਸ ਪ੍ਕਾਰ ਚਾਰਜ ਨੂੰ ਲੈ ਜਾਣ ਲਈ ਕੀਤਾ ਕੰਮ (ਸਮੀਕਰਨ 12.2 ਅਨੁਸਾਰ) ਹੈ :

$$W = VQ$$

$$= 12 \text{ V} \times 2 \text{ C} = 24 \text{ J}$$

ਪ੍ਰਸ਼ਨ

- ਉਸ ਯੁਕਤੀ ਦਾ ਨਾਂ ਲਿਖੋ ਜੋ ਕਿਸੇ ਚਾਲਕ ਦੇ ਸਿਰਿਆਂ ਉੱਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਰੱਖਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ।
- ਇਹ ਕਹਿਣ ਦਾ ਕੀ ਭਾਵ ਹੈ ਕਿ ਦੋ ਬਿੰਦੂਆਂ ਵਿਚਕਾਰ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ 1V ਹੈ?
- 6 V ਵੋਲਟ ਬੈਟਰੀ ਵਿੱਚੋਂ ਲੰਘਣ ਵਾਲੇ ਹਰ ਇੱਕ ਕੂਲਾਮ ਚਾਰਜ ਨੂੰ ਕਿੰਨੀ ਊਰਜਾ ਦਿੱਤੀ ਜਾਂਦੀ ਜੈ?

12.3 ਸਰਕਟ ਚਿੱਤਰ (Circuit Diagram)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕੋਈ ਬਿਜਲਈ ਸਰਕਟ, ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 12.1 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ, ਸੈੱਲ (ਜਾਂ ਇੱਕ ਬੈਟਰੀ), ਇੱਕ ਪਲੱਗ ਕੂੰਜੀ, ਬਿਜਲਈ ਘਟਕ ਅਤੇ ਜੋੜਨ ਵਾਲੀਆਂ ਤਾਰਾਂ ਮਿਲ ਕੇ ਬਣਦਾ ਹੈ। ਬਿਜਲਈ ਸਰਕਟ ਦਾ ਅਜਿਹਾ ਯੋਜਨਾਬੱਧ ਚਿੱਤਰ ਖਿੱਚਣਾ ਸੁਵਿਧਾਜਨਕ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਸਰਕਟ ਦੇ ਵੱਖ ਵੱਖ ਭਾਗਾਂ ਨੂੰ ਸਰਲ ਸੈਕੇਤਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਸਾਰਨੀ 12.1 ਵਿੱਚ ਆਮ ਉਪਯੋਗ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਕੁੱਝ ਬਿਜਲਈ ਘਟਕਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਸੈਕੇਤ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸਾਰਨੀ 12.1 : ਬਿਜਲਈ ਸਰਕਟਾਂ ਵਿੱਚ ਆਮ ਉਪਯੋਗ ਹੋਣ ਵਾਲੇ ਕੁੱਝ ਘਟਕਾਂ ਦੇ ਸੈਕੇਤ

ਕੂਮ ਸੰਖਿਆ	भारत (Components)	ਸੈਕੇਤ ਤ
1	ਬਿਜਲਈ ਮੈੱਲ	
2	ਬੈਟਰੀ ਜਾਂ ਸੈਲਾਂ ਦਾ ਸੰਯੋਜਨ	
3	ਖੁੱਲ੍ਹੀ ਪਲੱਗ ਕੁੰਜੀ ਜਾਂ ਸਵਿੱਚ	
4	ਬੰਦ ਪਲੱਗ ਕੁੰਜੀ ਜਾਂ ਸਵਿੱਚ	-(•)-
5	ਤਾਰ ਜੋੜ	
6	ਬਿਨਾਂ ਜੋੜ ਤੋਂ ਤਾਰ ਕਰਾਸਿੰਗ	
7	ਬਿਜਲੀ ਬਲਬ	
8	ਪ੍ਰਤਿਰੋਧਕ	
9	ਪਰਿਵਰਤਨਸ਼ੀਲ ਪ੍ਰਤਿਰੋਧ ਜਾਂ ਰੀਓਸਟੈਂਟ (Rheastat)	
10	ਐਮਮੀਟਰ	
11	ਵੋਲਟਮੀਟਰ	

12,4 ਓਹਮ ਦਾ ਨਿਯਮ (Ohm's Law)

ਕੀ ਕਿਸੇ ਚਾਲਕ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਅਤੇ ਉਸ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਵਿੱਚ ਕੋਈ ਸੰਬੰਧ ਹੈ? ਆਓ ਇੱਕ ਕਿਰਿਆ ਦੁਆਰਾ ਇਸ ਦੀ ਜਾਂਚ ਕਰੀਏ।

ਕਿਰਿਆ 12.1

■ ਚਿੱਤਰ 12.3 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਇੱਕ ਸਰਕਟ ਤਿਆਰ ਕਰੋ। ਇਸ ਸਰਕਟ ਵਿੱਚ ਲਗਭਗ 0.5 m ਲੈਬੀ ਨਾਈਕ੍ਰੇਮ ਦੀ ਤਾਰ XY, ਐਮਮੀਟਰ ਅਤੇ 4 ਸੈੱਲ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਰ ਇੱਕ ਸੈੱਲ 1.5 V ਦਾ ਹੋਵੇ, ਜੋੜੇ। (ਨਾਈਕ੍ਰੋਮ, ਨਿਕਲ, ਕਰੋਮੀਅਮ, ਮੈਗਨੀਜ਼ ਅਤੇ ਆਇਰਨ ਦੀ ਇੱਕ ਮਿਸ਼ਰਤ ਧਾਤ ਹੈ)।

ਚਿੱਤਰ 12.2 ਓਮ ਦੇ ਨਿਯਮ ਦੇ ਅਧਿਐਨ ਲਈ ਬਿਜਲਈ ਸਰਕਟ

- ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਦੇ ਸਰੋਤ ਦੇ ਰੂਪ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਸੈੱਲ ਦਾ ਉਪਯੋਗ ਕਰੋ। ਸਰਕਟ ਵਿੱਚ ਨਾਈਕ੍ਰੌਮ ਤਾਰ XY ਵਿੱਚੋਂ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ । ਦੇ ਲਈ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਅਤੇ ਤਾਰ ਦੇ ਸਿਰਿਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਲਈ ਵੋਲਟਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਲਓ। ਇਹਨਾਂ ਨੂੰ ਦਿੱਤੀ ਸਾਰਨੀ ਵਿੱਚ ਭਰੋ।
- ਇਸ ਤੋਂ ਪਿੱਛੇ ਸਰਕਟ ਵਿੱਚ ਦੋ ਸੈੱਲ ਜੋੜੇ ਅਤੇ ਨਾਈਕ੍ਰੋਮ ਤਾਰ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਅਤੇ ਇਸ ਦੇ ਸਿਰਿਆਂ ਵਿਚਕਾਰ ਪੁਟੈਂਸ਼ਲ ਦੇ ਮਾਨ ਗਿਆਤ ਕਰਨ ਲਈ ਐਮਮੀਟਰ ਅਤੇ ਵੋਲਟਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਲਓ ।
- 🍟 ਉਪਰੋਕਤ ਚਰਨਾਂ ਨੂੰ ਪਹਿਲਾਂ ਤਿੰਨ ਸੈੱਲ ਅਤੇ ਫਿਰ ਚਾਰ ਸੈੱਲ ਵੱਖ ਵੱਖ ਸਰਕਟ ਵਿੱਚ ਲਗਾ ਕੇ ਦੁਹਰਾਓ।
- ੂ ਪਟੈਂਸ਼ਲ ਅੰਤਰ V ਅਤੇ ਬਿਜਲਈ ਧਾਰਾ I ਦੇ ਹਰ ਇੱਕ ਜੋੜੇ ਲਈ ਅਨੁਪਾਤ V/I ਦੀ ਗਣਨਾ ਕਰੋ।
- 🧸 V ਅਤੇ । ਵਿੱਚ ਗ੍ਰਾਫ ਖਿੱਚੋਂ ਅਤੇ ਇਸ ਗ੍ਰਾਫ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।

ਲੜੀ ਨੰ.	ਸਰਕਟ ਵਿੱਚ ਜੁੜੇ ਸੈੱਲਾਂ ਦੀ ਸੰਖਿਆ		ਨਾਈਕ੍ਰੋਮ ਤਾਰ ਦੇ ਸਿਰਿਆਂ ਉੱਤੇ ਪੁਟੈੱਸ਼ਲ <i>V</i> (ਵੋਲਟ)	V/I (ਵੌਲਟ/ਐਮਪੀਅਰ)
1	1			
2	2	THE RESERVE THE PARTY OF THE PA	And the second	
3	3			
4	4			

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਹਰ ਇੱਕ ਕੇਸ ਵਿੱਚ V/I ਦਾ ਲਗਭਗ ਇੱਕ ਹੀ ਮਾਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ VI ਗ੍ਰਾਫ ਚਿੱਤਰ 12.3 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਲੰਘਣ ਵਾਲੀ ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ V/I ਇੱਕ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਹੈ।

1827 ਵਿੱਚ ਜਰਮਨ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਜਾਰਜ ਸਾਈਮਨ ਓਹਮ ਨੇ ਧਾਤ ਦੀ ਤਾਰ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ*I* ਅਤੇ ਉਸ ਦੇ ਸਿਰਿਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ *V* ਵਿੱਚ ਪਰਸਪਰ ਸੰਬੰਧ ਦਾ ਪਤਾ ਲਗਾਇਆ। ਉਹਨਾਂ ਨੇ ਇਹ ਕਿਹਾ :

ਕਿਸੇ ਧਾਤ ਦੀ ਤਾਰ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਉਸ ਤਾਰ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਦੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ, ਪ੍ਰੰਤੂ ਤਾਰ ਦਾ ਤਾਪਮਾਨ ਸਮਾਨ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਨੂੰ ਓਹਮ ਦਾ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ : -

$$V \propto I$$
 (12.4)
ਜਾਂ $V/I = \text{ ਸਥਿਰ ਅੰਕ}$
 $= R$
ਜਾਂ $V = IR$ (12.5)

ਨਾਈਕ੍ਰੋਮ ਤਾਰ ਦੇ ਲਈ V-I ਗ੍ਰਾਫ। ਸਰਲ ਰੇਖੀ ਗ੍ਰਾਫ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਜਿਵੇਂ ਜਿਵੇਂ ਤਾਰ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਵਧਦੀ ਹੈ ਪੁਟੈੱਸ਼ਲ ਅੰਤਰ ਰੇਪੀਕਤ ਵਧਦਾ ਹੈ।ਇਹ ਹੀ ਓਹਮ ਦਾ ਨਿਯਮ ਹੈ।

ਸਮੀਕਰਨ (12.5) ਵਿੱਚ ਕਿਸੇ ਦਿੱਤੀ ਹੋਈ ਧਾਤ ਲਈ, ਦਿੱਤੇ ਗਏ ਤਾਪਮਾਨ ਉੱਤੇ, R ਇੱਕ ਸਥਿਰ ਅੰਕ ਹੈ ਜਿਸ ਨੂੰ ਤਾਰ ਦਾ ਪ੍ਰਤਿਰੋਧ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਚਾਲਕ ਦਾ ਇਹ ਗੁਣ ਹੈ ਕਿ ਉਹ ਆਪਣੇ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੇ ਚਾਰਜ ਦੇ ਪ੍ਰਵਾਹ ਦਾ ਵਿਰੋਧ ਕਰਦਾ ਹੈ। ਪ੍ਰਤਿਰੋਧ ਦੀ SI ਇਕਾਈ ਓਹਮ ਹੈ, ਇਸ ਨੂੰ ਗ੍ਰੀਕ ਭਾਸ਼ਾ ਦੇ ਅੱਖਰ Ω ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਓਹਮ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ :

$$R = V/I \tag{12.6}$$

ਜੇਕਰ ਕਿਸੇ ਚਾਲਕ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ 1~V~ ਹੈ ਅਤੇ ਉਸ ਵਿੱਚੋਂ 1~A ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਤਦ ਉਸ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ $R,1~\Omega$ ਹੁੰਦਾ ਹੈ।

1 ਓਹਮ =
$$\frac{1 ਵੋਲਟ}{1 ਐਮਪੀਅਰ$$

ਸਮੀਕਰਨ (12.5) ਤੋਂ ਸਾਨੂੰ ਇਹ ਸੰਬੰਧ ਵੀ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$I = V/R \tag{12.7}$$

ਸਮੀਕਰਨ (12.7) ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਕਿਸੀ ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚੋਂ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਉਸ ਦੇ ਪ੍ਰਤਿਰੋਧ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਜੇਕਰ ਪ੍ਰਤਿਰੋਧ ਦੁੱਗਣਾ ਹੋ ਜਾਵੇ ਤਾਂ ਬਿਜਲਈ ਧਾਰਾ ਅੱਧੀ ਰਹਿ ਜਾਂਦੀ ਹੈ। ਬਹੁਤ ਸਾਰੇ ਕੇਸਾਂ ਵਿੱਚ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਨੂੰ ਘਟਾਉਣਾ ਜਾਂ ਵਧਾਉਣਾ ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ। ਸਰੋਤ ਦੀ ਵੋਲਟਤਾ ਵਿੱਚ ਬਿਨਾਂ ਕੋਈ ਪਰਿਵਰਤਨ ਕੀਤੇ ਸਰਕਟ ਦੀ ਬਿਜਲਈ ਧਾਰਾ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ ਕਰਨ ਲਈ ਉਪਯੋਗ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਯੰਤਰ ਨੂੰ ਬਦਲਣ ਪ੍ਰਤਿਰੋਧ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਸਰਕਟ ਦੇ ਪ੍ਰਤਿਰੋਧ ਨੂੰ ਬਦਲਣ ਲਈ ਇੱਕ ਯੁਕਤੀ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ ਜਿਸ ਨੂੰ (Rheostat) ਰੀਓਸਟੈਂਟ ਕਹਿੰਦੇ ਹਨ। ਹੁਣ ਅਸੀਂ ਹੇਠਾਂ ਦਿੱਤੀ ਹੋਈ ਕਿਰਿਆ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਕਿਸੇ ਚਾਲਕ ਦੇ ਬਿਜਲਈ ਪ੍ਰਤਿਰੋਧ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰਾਂਗੇ।

ਕਿਰਿਆ 12,2

- ਇੱਕ ਨਾਈਕ੍ਰੋਮ ਤਾਰ, ਇੱਕ ਟਾਰਚ ਬਲਬ, ਇੱਕ 10 W ਦਾ ਬਲਬ ਅਤੇ ਇੱਕ ਐਮਮੀਟਰ (0 5 A ਰੇਂਜ), ਇੱਕ ਪਲੱਗ ਕੁੰਜੀ ਅਤੇ ਕੁੱਝ ਨਿਰੋਧਿਕ ਜੋੜਨੀ ਤਾਰਾਂ ਲਓ।
- ਚਾਰ ਖੁਸ਼ਕ ਸੈੱਲਾਂ (ਹਰ ਇੱਕ 1.5 V ਦਾ) ਨੂੰ ਲੜੀ ਵਿੱਚ ਐਮਮੀਟਰ ਨਾਲ ਜੋੜ ਕੇ ਚਿੱਤਰ 12.4 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਸਰਕਟ ਵਿੱਚ ਇੱਕ ਵਿੱਚ XY ਛੱਡ ਕੇ ਇੱਕ ਸਰਕਟ ਬਣਾਓ।

ਚਿੱਤਰ 12.4

- ਵਿੱਥ XY ਵਿੱਚ ਨਾਈਕ੍ਰੋਮ ਤਾਰ ਨੂੰ ਜੋੜ ਕਰ ਸਰਕਟ ਪੂਰਾ ਕਰੋ। ਕੁੰਜੀ ਲਗਾਓ। ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਲਓ ਅਤੇ ਨੋਟ ਕਰੋ। ਪਲੱਗ ਤੋਂ ਕੁੰਜੀ ਬਾਹਰ ਕੱਢੋ। (ਧਿਆਨ ਦਿਓ: ਸਰਕਟ ਦੀ ਧਾਰਾ ਮਾਪਣ ਤੋਂ ਪਿੱਛੋਂ ਸਦਾ ਹੀ ਪਲੱਗ ਤੋਂ ਕੁੰਜੀ ਬਾਹਰ ਕੱਢ ਲਓ)।
- ਨਾਈਕ੍ਰੋਮ ਦੀ ਤਾਰ ਦੇ ਸਥਾਨ ਵਿੱਥ XY ਵਿੱਚ ਟਾਰਚ ਬਲਬ ਨੂੰ ਸਰਕਟ ਵਿੱਚ ਜੋੜੋ ਅਤੇ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਲੈ ਕੇ ਬਲਬ ਵਿੱਚੋਂ ਪਵਾਹਿਤ ਹੁੰਦੀ ਬਿਜਲਈ ਧਾਰਾ ਮਾਪੋ।
- ੂ ਕੀ ਵਿੱਥ xx ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਵਸਤੂਆਂ ਨੂੰ ਜੋੜ ਨਾਲ ਐਮਮੀਟਰ ਦੀਆਂ ਪੜ੍ਹਤਾਂ ਵੱਖ ਵੱਖ ਹਨ? ਉਪਰੋਕਤ ਪ੍ਰੇਖਣ ਕੀ ਸੰਕੇਤ ਦਿੰਦੇ ਹਨ?
- ਤੁਸੀਂ ਵਿੱਚ XY ਵਿੱਚ ਕਿਸੇ ਵੀ ਪਦਾਰਥ ਦਾ ਟੁਕੜਾ ਜੋੜ ਕੇ ਇਸ ਕਿਰਿਆ ਨੂੰ ਦੁਹਰਾ ਸਕਦੇ ਹੋ, ਹਰ ਸਥਿਤੀ ਵਿੱਚ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਇਸ ਪ੍ਰੇਖਣ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰੋ।

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਅਸੀਂ ਇਹ ਅਵਲੋਕਨ ਕਰਦੇ ਹਾਂ ਕਿ ਭਿੰਨ ਭਿੰਨ ਵਸਤੂਆਂ ਲਈ ਬਿਜਲਈ ਧਾਰਾ ਭਿੰਨ ਭਿੰਨ ਹੈ। ਇਹ ਭਿੰਨ ਕਿਉਂ ਹੈ? ਕੁੱਝ ਵਸਤੂਆਂ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਪ੍ਵਾਹ ਲਈ ਸਰਲ ਪੱਥ ਪ੍ਦਾਨ ਕਰਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਦੂਜਿਆਂ ਇਸ ਪ੍ਵਾਹ ਦਾ ਵਿਰੋਧ ਕਰਦੀਆਂ ਹਨ। ਅਸੀਂ ਇਹ ਜਾਣਦੇ ਹਾਂ ਕਿ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਕਿਸੇ ਸਰਕਟ ਵਿੱਚ ਗਤੀ ਦੇ ਕਾਰਨ ਹੀ ਸਰਕਟ ਵਿੱਚ ਕੋਈ ਬਿਜਲਈ ਧਾਰਾ ਬਣਦੀ ਹੈ। ਫਿਰ ਵੀ, ਚਾਲਕ ਦੇ ਅੰਦਰ ਇਲੈੱਕਟ੍ਰਾਨ ਗਤੀ ਕਰਨ ਲਈ ਪੂਰਨ ਅਜ਼ਾਦ ਨਹੀਂ ਹੁੰਦੇ। ਜਿਨ੍ਹਾਂ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਹ ਗਤੀ ਕਰਦੇ ਹਨ ਉਹਨਾਂ ਦੇ ਆਕਰਸ਼ਣ ਦੁਆਰਾ ਇਹਨਾਂ ਦੀ ਗਤੀ ਨਿਰਭਰ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਕਿਸੇ ਚਾਲਕ ਵਿੱਚੋਂ ਹੋ ਕੇ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਦੀ ਗਤੀ ਉਸ ਦੇ ਪ੍ਰਤਿਰੋਧ ਕਾਰਨ ਘੱਟ ਜਾਂਦੀ ਹੈ। ਇੱਕ ਹੀ ਸਾਈਜ਼ ਦੇ ਚਾਲਕਾਂ ਵਿੱਚ ਉਹ ਚਾਲਕ ਜਿਸ ਦਾ ਪ੍ਰਤਿਰੋਧ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਵਧੇਰੇ ਚੰਗਾ ਚਾਲਕ ਹੁੰਦਾ ਹੈ। ਉਹ ਚਾਲਕ ਜਿਸ ਦਾ ਪ੍ਰਤਿਰੋਧ ਵੱਧ ਹੁੰਦਾ ਹੈ ਉਸ ਨੂੰ ਪ੍ਰਤਿਰੋਧਕ (Resister) ਕਹਿੰਦੇ ਹਨ। ਇੱਕੋ ਜਿਹੇ ਸਾਈਜ਼ ਦਾ ਉਹ ਪਦਾਰਥ ਜੋ ਉੱਚ ਪ੍ਰਤਿਰੋਧ ਲਗਾਉਂਦਾ ਹੈ ਉਹ ਮੰਦਾ ਚਾਲਕ ਕਹਾਉਂਦਾ ਹੈ। ਸਮਾਨ ਸਾਈਜ਼ ਦਾ ਕੋਈ ਬਿਜਲੀ ਰੋਧਕ ਇਸ ਤੋਂ ਵੀ ਵੱਧ ਪਤਿਰੋਧ ਲਗਾਉਂਦਾ ਹੈ।

12.5 ਉਹ ਕਾਰਕ ਜਿਨ੍ਹਾਂ ਉੱਤੇ ਕਿਸੇ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ ਨਿਰਭਰ ਕਰਦਾ ਹੈ : Factors on which the resistance of a conductor depends

ਕਿਰਿਆ 12.3

 ਇੱਕ ਸੈੱਲ, ਇੱਕ ਐਮਮੀਟਰ, । ਲੰਬਾਈ ਦੀ ਇੱਕ ਨਾਈਕ੍ਰੋਮ ਤਾਰ [ਜਿਵੇਂ (1) ਅੰਕਿਤ ਕੀਤਾ ਗਿਆ ਹੈ] ਅਤੇ ਇੱਕ ਪਲੱਗ ਕੁੰਜੀ ਚਿੱਤਰ 12.5 ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਜੋੜ ਕੇ ਇੱਕ ਬਿਜਲਈ ਸਰਕਟ ਪੂਰਾ ਕਰੋ।

ਚਿੱਤਰ 12.5 ਉਹਨਾਂ ਕਾਰਕਾਂ ਜਿਨ੍ਹਾਂ ਉੱਤੇ ਕਿਸੇ ਚਾਲਕ ਤਾਰ ਦਾ ਪ੍ਰਤਿਰੋਧ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਦਾ ਅਧਿਐਨ ਕਰਨ ਲਈ ਬਿਜਲਈ ਸਰਕਟ

- ਹੁਣ ਪਲੱਗ ਵਿੱਚ ਕੁੰਜੀ ਲਗਾਓ। ਐਮਮੀਟਰ ਤੋਂ ਬਿਜਲਈ ਧਾਰਾ ਨੋਟ ਕਰੋ।
- ਇਸ ਨਾਈਕ੍ਰੋਮ ਤਾਰ ਨੂੰ ਦੂਜੀ ਤਾਰ ਨਾਲ ਪ੍ਰਤਿ ਸਥਾਪਿਤ ਕਰੋ ਜਿਸ ਦੀ ਮੋਟਾਈ ਬਰਾਬਰ ਪ੍ਰੰਤੂ ਲੰਬਾਈ ਦੁੱਗਣੀ ਹੋਵੇਂ ਅਰਥਾਤ 2। ਲੰਬਾਈ ਦੀ ਤਾਰ ਲਓ ਜਿਸ ਨੂੰ ਚਿੱਤਰ 12.5 ਵਿੱਚ (2) ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।
- 🔹 ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਨੋਟ ਕਰੋ।
- ਹੁਣ ਇਸ ਤਾਰ ਨੂੰ ਬਰਾਬਰ ਲੰਬਾਈ । ਦੇ ਨਾਈਕ੍ਰੋਮ ਦੀ ਮੋਟੀ ਨਾਈਕ੍ਰੋਮ ਤਾਰ ((3) ਦੁਆਰਾ ਦਰਸਾਈ) ਨਾਲ ਪ੍ਰਤਿ ਸਥਾਪਿਤ ਕਰੇ। ਮੋਟੀ ਤਾਰ ਦੇ ਪਰਿਖੇਤਰ ਦੀ ਕਾਟ ਦਾ ਖੇਤਰਫਲ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਸਰਕਟ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਫਿਰ ਨੋਟ ਕਰੋ।
- ਹੁਣ ਨਾਈਕ੍ਰੋਮ ਤਾਰ ਦੀ ਥਾਂ ਤਾਂਬੇ ਦੀ ਤਾਰ [ਚਿੱਤਰ 12.5 ਜਿਸ ਉੱਤੇ ਚਿੰਨ੍ਹ (4) ਬਣਿਆ ਹੋਇਆ ਹੈ] ਸਰਕਟ ਵਿੱਚ ਜੋੜੋ।ਮੰਨ ਲਓ ਕਿ ਇਹ ਤਾਰ ਨਾਈਕ੍ਰੋਮ ਦੀ ਤਾਰ ਜਿਸ ਉੱਤੇ (1) ਚਿੰਨ੍ਹ ਹੈ, ਦੇ ਬਰਾਬਰ ਲੰਬੀ ਅਤੇ ਸਮਾਨ ਪਰਿਖੇਤਰ ਦੇ ਕਾਟ ਦੇ ਖੇਤਰਫਲ ਦੀ ਹੈ। ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਪੜ੍ਹਤ ਨੌਟ ਕਰੋ।
- ਸਾਰੇ ਕੇਸਾਂ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਮਾਨ ਵਿੱਚ ਅੰਤਰ ਨੂੰ ਨੌਟ ਕਰੋ।
- ਕੀ ਬਿਜਲਈ ਧਾਰਾ ਚਾਲਕ ਦੀ ਲੰਬਾਈ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ?
- ਕੀ ਬਿਜਲਈ ਧਾਰਾ ਉਪਯੋਗ ਕੀਤੇ ਜਾਣ ਵਾਲੀ ਤਾਰ ਦੇ ਦੇ ਪਰਿਖੇਤਰ ਦੇ ਕਾਟ ਦੇ ਖੇਤਰਫਲ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ?

ਇਹ ਪ੍ਰੇਖਣ ਕੀਤਾ ਗਿਆ ਹੈ ਕਿ ਜਦੋਂ ਤਾਰ ਦੀ ਲੰਬਾਈ ਦੁੱਗਣੀ ਕਰ ਦਿੰਦੇ ਹਾਂ ਤਾਂ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਦਾ ਮਾਨ ਅੱਧਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਸਰਕਟ ਵਿੱਚ ਸਮਾਨ ਪਦਾਰਥ ਅਤੇ ਸਮਾਨ ਲੰਬਾਈ ਦੀ ਮੋਟੀ ਤਾਰ ਜੋੜਨ ਤੇ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਵਿੱਚ ਉਦੋਂ ਵੀ ਅੰਤਰ ਆਉਂਦਾ ਹੈ ਜਦੋਂ ਸਰਕਟ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਪਦਾਰਥਾਂ ਪ੍ਰੰਤੂ ਸਮਾਨ ਲੰਬਾਈ ਅਤੇ ਸਮਾਨ ਪਰਿਖੇਤਰ ਕਾਟ ਦੇ ਖੇਤਰਫਲਾਂ ਦੇ ਤਾਰ ਨੂੰ ਜੋੜਦੇ ਹਾਂ। ਓਹਮ ਦੇ ਨਿਯਮ [ਸਮੀਕਰਨ (12.5) – (12.7)] ਨੂੰ ਵਰਤ ਕੇ ਸਾਨੂੰ ਇਹ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਕਿਸੇ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ (i) ਚਾਲਕ ਦੀ ਲੰਬਾਈ (ii) ਉਸ ਦੇ ਪਰਿਖੇਤਰ ਕਾਟ ਦੇ ਖੇਤਰਫਲ ਅਤੇ (iii) ਉਸਦੇ ਪਦਾਰਥ ਦੀ ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਵਾਸਤਵਿਕ ਮਾਪ ਇਹ ਦਰਸਾਉਂਦੇ ਹਨ ਕਿ ਕਿਸੇ ਧਾਤ ਦੇ ਇੱਕ ਸਾਰ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ ਉਸ ਦੀ ਲੰਬਾਈ (t) ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਅਤੇ ਉਸ ਦੇ ਪਰਿਖੇਤਰ ਦੀ ਕਾਟ ਦੇ ਖੇਤਰਫਲ (A) ਦਾ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ।

ਸਮੀਕਰਨ (12.8) ਅਤੇ (12.9) ਨੂੰ ਜੋੜ ਕੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$(\overline{\mathfrak{d}}) R \approx \frac{1}{A}$$
 ਅਬਵਾ $R = \rho \frac{1}{A}$ (12.10)

ਇੱਥੇ ρ (ਰੋ) ਇੱਕ ਅਨੁਪਾਤੀ ਸਥਿਰ ਅੰਨ ਹੈ ਜਿਸ ਨੂੰ ਚਾਲਕ ਦੇ ਪਦਾਰਥ ਦੀ ਬਿਜਲਈ ਪ੍ਰਤਿਰੋਧਕਤਾ ਕਹਿੰਦੇ ਹਨ। ਪ੍ਰਤਿਰੋਧਕਤਾ ਦੀ SI ਇਕਾਈ Ω m ਹੈ। ਇਹ ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਹੈ। ਧਾਤਾਂ ਅਤੇ ਮਿਸ਼ਰਤ ਧਾਤੂਆਂ ਦੀ ਪ੍ਰਤਿਰੋਧਕਤਾ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦੀ ਰੇਂਜ $10^{-6} \Omega m$ ਤੋਂ $10^{-6} \Omega m$ ਹੈ। ਇਹ ਬਿਜਲੀ ਦੀਆਂ ਚੰਗੀਆਂ ਚਾਲਕ ਹਨ। ਰਬੜ ਅਤੇ ਕੱਚ ਜਿਹੇ ਬਿਜਲਈ ਰੋਧੀ ਪਦਾਰਥਾਂ ਦੀ ਪ੍ਰਤਿਰੋਧਕਤਾ ਦੀ ਰੇਂਜ 10^{12} ਤੋਂ $10^{17} \Omega$ m ਰੇਂਜ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਪ੍ਰਤਿਰੋਧ ਅਤੇ ਪ੍ਰਤਿਰੋਧਕਤਾ ਦੋਵੇਂ ਹੀ ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਨਾਲ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।

ਸਾਰਨੀ 12.2 ਵਿੱਚ, ਅਸੀਂ ਇਹ ਵੇਖਦੇ ਹਾਂ ਕਿ ਆਮ ਕਰਕੇ ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਦੀ ਪ੍ਰਤਿਰੋਧਕਤਾ ਉਸ ਦੀਆਂ ਘਟਕ ਧਾਤਾਂ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਅਧਿਕ ਹੁੰਦੀ ਹੈ। ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਦਾ ਉੱਚ ਤਾਮਪਾਨ ਉੱਤੇ ਛੇਤੀ ਆਕਸੀਕਰਨ (ਜਲਣ) ਨਹੀਂ ਹੁੰਦਾ। ਇਹੀ ਹੀ ਕਾਰਨ ਹਨ ਕਿ ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਦਾ ਉਪਯੋਗ ਬਿਜਲਈ ਪ੍ਰੈੱਸ, ਟੋਸਟਰ ਆਦਿ ਸਾਧਾਰਨ ਬਿਜਲਈ ਤਾਪਕ ਯੰਤਰਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬਿਜਲਈ ਬੱਲਬਾਂ ਦੇ ਫਿਲਾਮੈਂਟਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਤਾਂ ਇੱਕਮਾਤਰ ਟੈਗਸਟਨ ਦਾ ਹੀ ਪ੍ਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਕਿ ਕਾਪਰ ਅਤੇ ਐਲੂਮਿਨੀਅਮ ਦਾ ਉਪਯੋਗ ਬਿਜਲੀ ਸੰਚਾਰਨ ਦੇ ਉਪਯੋਗ ਹੋਣ ਵਾਲੀਆਂ ਤਾਰਾਂ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

BOST COLLEGE	TO THE REPORT OF THE PROPERTY	प्रविक्यवं ।।। ॥
ਚਾਲਕ	ਸਿਲਵਰ	1.60 ×× 10 ⁻⁸
	ਕਾਪਰ	1.62 ×x 10 ⁻⁸
	ਐਲੂਮਿਨੀਅਮ	2.63 × × 10 *
	ਟੈਗਸਟਨ	5.20 × × 10 ⁻⁸
	ਨਿੱਕਲ	$6.84 \times \times 10^{-8}$
	ਆਇਰਨ	10.0 × × 10 ⁻⁸
	ਕਰੋਮੀਅਮ	12.9 ×× 10 ⁻⁸
	ਮਰਕਰੀ	94.0 ×× 10 ⁻⁸
	ਮੈਗਨੀਜ਼	1.84 ×x 10 ⁻⁶
ਮਿਸ਼ਰਤ ਧਾਤਾਂ	ਕੌਂਸਟਨਟੈਨ Constantan (Cu ਅਤੇ Ni ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ)	49 ×× 10-6
	ਮੈਗਨਿਨ Manganin (Cu, Mn ਅਤੇ Ni ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ)	
	ਨਾਈਕ੍ਰੋਮ Nichrome (Ni, Cr, Mn ਅਤੇ Fe ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ)	100 ×× 10 ⁻⁶
ਬਿਜਲੀ ਰੋਧਕ	ਕੱਚ ਕਠੌਰ ਰਬੜ	1010 - 1014
	ਐਬੋਨਾਈਟ	1015 - 1017
	ਡਾਇਮੰਡ	1012 - 1013
	ਕਾਗਜ਼ (ਸੁੱਕਾ)	1012

[•] ਤੁਹਾਨੂੰ ਇਹਨਾਂ ਮੁੱਲਾਂ ਨੂੰ ਯਾਦ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੈ। ਇਹਨਾਂ ਮੁੱਲਾਂ ਦਾ ਉਪਯੋਗ ਤੁਸੀਂ ਸੰਖਿਆਤਮਕ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਕਰ ਸਕਦੇ ਹੋ।

ਸਾਰਨੀ 12.2 20 °C ਉੱਤੇ ਕੁੱਝ ਪਦਾਰਥਾਂ ਦੀ ਬਿਜਲਈ ਪ੍ਤਿਰੋਧਕਤਾ

ਉਦਾਹਰਨ 12,3

- (a) ਜੇਕਰ ਕਿਸੇ ਬਿਜਲੀ ਦੇ ਬਲਬ ਦੇ ਫਿਲਾਮੈਂਟ (ਤੰਤੂ) ਦਾ ਪ੍ਰਤੀਰੋਧ 1200 Ω ਹੈ ਤਾਂ ਇਹ ਬਲਬ 220V ਸਰੋਤ ਤੋਂ ਕਿੰਨੀ ਬਿਜਲਈ ਧਾਰਾ ਲਾਵੇਗਾ?
- (b) ਜੇਕਰ ਕਿਸੇ ਬਿਜਲੀ ਹੀਟਰ ਦੀ ਕੁੰਡਲੀ ਦਾ ਪ੍ਰਤਿਰੋਧ 100Ω ਹੈ ਤਾਂ ਇਹ ਬਿਜਲੀ ਹੀਟਰ 220V ਸਰੋਤ ਤੋਂ ਕਿੰਨੀ ਬਿਜਲਈ ਧਾਰਾ ਲਵੇਗਾ।

ਹੱਲ

(a) ਸਾਨੂੰ ਦਿੱਤਾ ਗਿਆ ਹੈ, V = 220V; R = 1200 Ω ਸਮੀਕਰਨ (12.6) ਤੋਂ ਬਿਜਲਈ ਧਾਰਾ I = 220 $V/1200\,\Omega$ = 0.18 Λ

(b) ਸਾਨੂੰ ਦਿੱਤਾ ਗਿਆ ਹੈ V = 220 V; R = $100\,\Omega$ ਸਮੀਕਰਨ (12.6) ਬਿਜਲੀ ਦੀ ਧਾਰਾ, I = 220 V/ $100\,\Omega$ = $2.2\,\mathrm{A}$

220 V ਦੇ ਸਮਾਨ ਬਿਜਲਈ ਸਰੋਤ ਤੋਂ ਬਿਜਲੀ ਦੇ ਬਲਬ ਅਤੇ ਬਿਜਲੀ ਦੋ ਹੀਟਰ ਦੁਆਰਾ ਲਏ ਜਾਣ ਵਾਲੇ ਕਰੰਟ ਦੇ ਅੰਤਰ ਤੇ ਧਿਆਨ ਦਿਓ।

ਉਦਾਹਰਨ 12,4

ਜਦੋਂ ਕੋਈ ਬਿਜਲਈ ਹੀਟਰ, ਬਿਜਲੀ ਸਰੋਤ ਤੋਂ 4 A ਬਿਜਲਈ ਧਾਰਾ ਲੈਂਦਾ ਹੈ ਤਾਂ ਉਸ ਦੇ ਟਰਮੀਨਲਾਂ ਦੇ ਵਿਚਕਾਰ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ 60 V ਹੈ। ਉਸ ਸਮੇਂ ਬਿਜਲਈ ਹੀਟਰ ਕਿੰਨੀ ਬਿਜਲਈ ਧਾਰਾ ਲਵੇਗਾ ਜਦੋਂ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਨੂੰ 120 V ਤੱਕ ਵਧਾ ਦਿੱਤਾ ਜਾਵੇ?

ਹੱਲ

ਸਾਨੂੰ ਦਿੱਤਾ ਹੋਇਆ ਹੈ, ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ $V=60~\mathrm{V}$, ਬਿਜਲਈ ਧਾਰਾ $I=4~\mathrm{A}$

ਓਮ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ, $R=rac{V}{I}=rac{60\ \mathrm{V}}{4\ \mathrm{A}}=15\ \Omega$

ਜਦੋਂ ਪੁਟੈਂਸ਼ਲ ਵਧਾ ਕੇ 120 V ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ :

ਬਿਜਲਈ ਧਾਰਾ $I = \frac{V}{R} = \frac{120 \text{ V}}{15 \Omega} = 8 \text{ A}$

ਅਰਥਾਤ, ਤਦ ਬਿਜਲੀ ਹੀਟਰ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਮੁੱਲ 8 A ਹੋ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਨ 12,5

ਕਿਸੇ ਧਾਤ ਦੇ $1~\mathrm{m}$ ਲੰਬੀ ਤਾਰ ਦਾ $20^{\circ}\mathrm{C}$ ਉੱਤੇ ਪ੍ਰਤਿਰੋਧ 26Ω ਹੈ। ਜੇਕਰ ਤਾਰ ਦਾ ਵਿਆਸ $0.3~\mathrm{mm}$ ਹੈ, ਤਾਂ ਇਸ ਤਾਪਮਾਨ ਉੱਤੇ ਧਾਤ ਦੀ ਪ੍ਰਤਿਰੋਧਕਤਾ ਕੀ ਹੈ? ਸਾਰਨੀ $12.2~\mathrm{er}$ ਉਪਯੋਗ ਕਰਕੇ ਤਾਰ ਦੇ ਪਦਾਰਥ ਦੀ ਪਹਿਚਾਣ ਕਰੋ।

ਹੱਲ

ਸਾਨੂੰ ਦਿੱਤਾ ਗਿਆ ਹੈ, ਤਾਰ ਦਾ ਪ੍ਰਤਿਰੋਧ, $R = 26\Omega$,

ਤਾਰ ਦਾ ਵਿਆਸ $d = 0.3 \text{ mm} = 3 \times 10^4 \text{ m}, l = 1 \text{ m}$

ਸਮੀਕਰਨ (12.10) ਤੋਂ ਦਿੱਤੇ ਗਏ ਧਾਤ ਦੀ ਤਾਰ ਦੀ ਤਾਰ ਦੀ ਬਿਜਲਈ ਪ੍ਰਤਿਰੋਧਕਤਾ, $\rho = (RA/l) = (R\pi d^2/4l)$

ਕੀਮਤਾਂ ਪ੍ਰਤਿਸਥਾਪਿਤ ਕਰਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

 $\rho = 1.84 \times 10^{-6} \Omega \,\text{m}$

ਇਸ ਪ੍ਰਕਾਰ ਦਿੱਤੀ ਤਾਰ ਦੀ ਧਾਤ ਦੀ 20°C ਉੱਤੇ ਪ੍ਰਤਿਰੋਧਤਾ 1.84 × 10°Ω m ਹੈ। ਸਾਰਨੀ 12.2 ਵਿੱਚ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਇਹ ਮੈਂਗਨੀਜ਼ ਦੀ ਪ੍ਰਤਿਰੋਧਕਤਾ ਦਾ ਮਾਨ ਇਹੋ ਹੀ ਹੈ।

ਉਦਾਹਰਨ 12,6

4Ωਪ੍ਰਤਿਰੋਧ ਦੇ ਕਿਸੇ ਤਾਰ ਦੀ ਮੋਟਾਈ ਦੁੱਗਣੀ ਕਰ ਦਿੱਤੀ ਗਈ ਹੈ। ਤਾਰ ਦੇ ਨਵੇਂ ਪ੍ਰਤਿਰੋਧ ਦੀ ਗਣਨਾ ਕਰੋ।

ਪਨ ਜ਼ਾਨੂੰ ਜ਼ਿੱਤਾ ਤਿਲਾ

ਸਾਨੂੰ ਦਿੱਤਾ ਗਿਆ ਹੈ, ਜਦੋਂ ਤਾਰ ਦੀ ਮੋਟਾਈ ਦੁੱਗਣੀ ਕਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਉਸ ਦੀ ਲੰਬਾਈ ਅੱਧੀ ਰਹਿ ਜਾਂਦੀ ਹੈ ਅਤੇ ਤਾਰ ਦੀ ਪਰਿਖੇਤਰ ਦੀ ਕਾਟ ਦਾ ਖੇਤਰਫਲ ਦੁੱਗਣਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਭਾਵ ਇੱਕ ਤਾਰ ਦੀ ਲੰਬਾਈ L ਅਤੇ ਪਰਿਖੇਤਰ ਦੀ ਕਾਟ ਦਾ ਖੇਤਰਫਲ A ਹੈ ਹੁਣ ਲੰਬਾਈ L ਅਤੇ ਪਰਿਖੇਤਰ ਦੀ ਕਾਟ ਦਾ ਖੇਤਰਫਲ 2A ਵਾਲੀ ਬਣ ਗਈ ਹੈ। ਸਮੀਕਰਨ 12.10 ਤੋਂ

$$R_{j} = \rho \frac{l}{A}$$
$$= 4 \Omega$$

ਇੱਥੇ R, ਤਾਰ ਦਾ ਨਵਾਂ ਪ੍ਤਿਰੋਧ ਹੈ।

$$R_2 = \rho \frac{l/2}{2A}$$

$$= \frac{1}{4} \cdot \rho \frac{l}{A}$$

$$= \frac{1}{4} R_1$$

$$= \frac{1}{4} \times 4\Omega$$

$$= 10$$

ਤਾਰ ਦਾ ਨਵਾਂ ਪ੍ਰਤਰੋਧ = 1 Ω ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਕਿਸੇ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ ਕਿਹੜੇ ਕਾਰਕਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ?
- ਸਮਾਨ ਪ੍ਰਦਾਰਥ ਦੀਆਂ ਦੋ ਤਾਰਾਂ ਵਿੱਚ ਜੇਕਰ ਇੱਕ ਪਤਲੀ ਅਤੇ ਦੂਜੀ ਮੋਟੀ ਹੋਵੇ ਤਾਂ ਇਹਨਾ ਵਿੱਚੋਂ ਕਿਸ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਧਾਰਾ ਆਸਾਨੀ ਨਾਲ ਪ੍ਰਵਾਹਿਤ ਹਵੇਗੀ ਜਦੋਂ ਇਹਨਾਂ ਨੂੰ ਸਮਾਨ ਬਿਜਲਈ ਸਰੋਤ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ? ਕਿਉਂ?
- ਮੰਨ ਲਓ ਕਿਸੇ ਬਿਜਲਈ ਪਦਾਰਥ ਦੇ ਘਟਕ ਦੇ ਦੋ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਨੂੰ ਉਸ ਦੇ ਪਹਿਲੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘਟਾ ਕੇ ਅੱਧਾ ਕਰ ਦੇਣ ਤੇ ਵੀ ਉਸ ਦਾ ਪ੍ਰਤਿਰੋਧ ਨਿਸਚਿਤ ਰਹਿੰਦਾ ਹੈ। ਤਾਂ ਉਸ ਪਦਾਰਥ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਵਿੱਚ ਕੀ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ?
- 4. ਬਿਜਲਈ ਟੋਸਟਰਾਂ ਅਤੇ ਬਿਜਲਈ ਪ੍ਰੈਸਾਂ ਦੇ ਫਿਲਾਮੈਂਟ ਸ਼ੁੱਧ ਧਾਤ ਦੇ ਨਾ ਬਣਾ ਕੇ ਮਿਸ਼ਰਤ ਧਾਤ ਦੇ ਕਿਉਂ ਬਣਾਏ ਜਾਂਦੇ ਹਨ?
- ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਸਾਰਨੀ 12.2 ਵਿੱਚ ਦਿੱਤੇ ਅੰਕੜਿਆਂ ਦੇ ਆਧਾਰ ਤੇ ਦਿਓ :
 - (a) ਆਇਰਨ (Fe) ਅਤੇ ਮਰਕਰੀ (Hg) ਵਿੱਚ ਕਿਹੜਾ ਚੰਗਾ ਚਾਲਕ ਹੈ?
 - (b) ਕਿਹੜਾ ਪਦਾਰਥ ਸਭ ਤੋਂ ਵਧੀਆ ਚਾਲਕ ਹੈ?

12.6 ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸਿਸਟਮ ਦਾ ਪ੍ਰਤਿਰੋਧ (Resistance of System of Resistors)

ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਕੁੱਝ ਸਰਲ ਬਿਜਲਈ ਸਰਕਟਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸਿੱਖਿਆ ਸੀ। ਅਸੀਂ ਇਹ ਵੇਖਿਆ ਕਿ ਕਿਸੇ ਚਾਲਕ ਵਿੱਚੋਂ ਪ੍ਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਮਾਨ ਕਿਸ ਪ੍ਕਾਰ ਉਸ ਦੇ ਪ੍ਰਤਿਰੋਧ ਅਤੇ ਉਸ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਵੱਖ ਵੱਖ ਪ੍ਕਾਰ ਦੇ ਬਿਜਲਈ ਉਪਕਰਨਾਂ ਵਿੱਚ ਅਸੀਂ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਭਿੰਨ ਭਿੰਨ ਸੰਯੋਗ ਵਰਤਦੇ ਹਾਂ। ਇਸ ਲਈ ਹੁਣ ਅਸੀਂ ਇਹ ਵਿਚਾਰ ਕਰਨਾ ਹੈ ਕਿ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸੰਯੋਗ ਉੱਤੇ ਓਹਮ ਦੇ ਨਿਯਮ ਦੀ ਕਿਸ ਪ੍ਕਾਰ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਜੋੜਨ ਦੀਆਂ ਦੋ ਵਿਧੀਆਂ ਹਨ। ਚਿੱਤਰ 12.6 ਵਿੱਚ ਇੱਕ ਬਿਜਲੀ ਸਰਕਟ ਵਿਖਾਇਆ ਗਿਆ ਹੈ ਜਿਸ ਵਿੱਚ R_1 , R_2 ਅਤੇ R_3 ਪ੍ਰਤਿਰੋਧ ਦੇ ਤਿੰਨ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਇੱਕ ਸਿਰੇ ਤੋਂ ਦੂਜੇ ਸਿਰੇ ਮਿਲਾ ਕੇ ਜੋੜਿਆ ਗਿਆ ਹੈ।ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਜੋੜਨ ਨੂੰ **ਲੜੀ** ਬੱਧ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

चिँउव 12.6 सञ्जीभ्रंप पृजिवेपव (Resistors in series)

ਚਿੱਤਰ 12.7 ਵਿੱਚ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦਾ ਇੱਕ ਅਜਿਹਾ ਸੰਯੋਗ ਵਿਖਾਇਆ ਗਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਤਿੰਨ ਪ੍ਰਤਿਰੋਧਕ ਇਕੱਠੇ A ਅਤੇ B ਬਿੰਦੂਆਂ ਵਿਚਕਾਰ ਜੋੜੇ ਗਏ ਹਨ। ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਸੰਯੋਗ ਨੂੰ **ਸਮਾਨਾਂਤਰ ਬੱਧ** ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

चिँउन 12.7 मभग्तांउन घॅप पृजिनेपन (Resistors in series)

12.6.1 ਲੜੀਬੱਧ ਸੰਯੋਜਿਤ ਪ੍ਰਤਿਰੋਧਕ (Resistors in Series)

ਜਦ ਕਈ ਪ੍ਤਿਰੋਧਕਾਂ ਨੂੰ ਲੜੀ ਵਿੱਚ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸਰਕਟ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ? ਇਹਨਾਂ ਦਾ ਤੁੱਲ ਪ੍ਤਿਰੋਧ ਕੀ ਹੁੰਦਾ ਹੈ? ਆਓ ਇਸ ਨੂੰ ਨਿਮਨਲਿਖਤ ਕਿਰਿਆ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਮਝਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ।

ਕਿਰਿਆ 12.4

- ਭਿੰਨ ਭਿੰਨ ਮਾਨ ਵਾਲੇ ਤਿੰਨ ਪ੍ਤਿਰੋਧਕਾਂ ਨੂੰ ਲੜੀ ਵਿੱਚ ਜੋੜੋ। ਚਿੱਤਰ 12.6 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਇਹਨਾਂ ਨੂੰ ਇੱਕ ਬੈਟਰੀ, ਇੱਕ ਐਮਮੀਟਰ ਅਤੇ ਇੱਕ ਪਲੱਗ ਕੁੰਜੀ ਨਾਲ ਸੰਯੋਜਿਤ ਕਰੋ। ਤੁਸੀਂ 1Ω, 2Ω, 3Ω ਆਦਿ ਮਾਨ ਵਾਲੇ ਪ੍ਤਿਰੋਧਕਾਂ ਦਾ ਉਪਯੋਗ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਇਸ ਕਿਰਿਆ ਲਈ 6 V ਦੀ ਬੈਟਰੀ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆ ਸਕਦੇ ਹੋ।
- 🔹 ਕੁੰਜੀ ਨੂੰ ਪਲੱਗ ਵਿੱਚ ਲਗਾਓ ਅਤੇ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਨੌਟ ਕਰੋ।
- ਐਮਮੀਟਰ ਦੀ ਸਥਿਤੀ ਨੂੰ ਦੋ ਪ੍ਤਿਰੋਧਕਾਂ ਦੇ ਵਿੱਚ ਕਿਤੇ ਵੀ ਬਦਲੋ। ਹਰ ਵਾਰ ਐਮਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਨੋਟ ਕਰੋ।
- ਕੀ ਤੁਸੀਂ ਐਮਮੀਟਰ ਦੁਆਰਾ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਮੁੱਲ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਵੇਖਦੇ ਹੋ?

ਤੁਸੀਂ ਇਹ ਵੇਖੋਗੇ ਕਿ ਐਮਮੀਟਰ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਮੁੱਲ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ। ਇਹ ਸਰਕਟ ਵਿੱਚ ਐਮਮੀਟਰ ਦੀ ਸਥਿਤੀ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਹੈ ਕਿ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਲੜੀ ਵਿੱਚ ਜੋੜਨ ਨਾਲ ਸਰਕਟ ਦੇ ਹਰ ਭਾਗ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ਭਾਵ ਹਰ ਇੱਕ ਪ੍ਰਤਿਰੋਧ ਵਿੱਚ ਸਮਾਨ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ 12.5

 ਕਿਰਿਆ 12.4 ਵਿੱਚ, ਚਿੱਤਰ 12.6 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਤਿੰਨ ਲੜੀਬੱਧ ਜੋੜੇ ਗਏ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸਿਰੇ X ਅਤੇ Y ਦੇ ਵਿੱਚ ਇੱਕ ਵੋਲਟਮੀਟਰ ਲਗਾਓ।

- ਸਰਕਟ ਵਿੱਚ ਪਲੱਗ ਅੰਦਰ ਕੁੰਜੀ ਲਗਾਓ ਅਤੇ ਵੋਲਟਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਨੋਟ ਕਰੋ। ਇਸ ਤੋਂ ਸਾਨੂੰ ਲੜੀਬੱਧ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸਿਰਿਆਂ ਵਿਚਕਾਰ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਗਿਆਤ ਹੁੰਦਾ ਹੈ।ਮੰਨ ਲਓ ਇਹ V ਹੈ।ਹੁਣ ਬੈਟਰੀ ਦੇ ਦੋਵੇਂ ਟਰਮੀਨਲਾਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਨੋਟ ਕਰੋ। ਇਹਨਾਂ ਦੋਵੇਂ ਮਾਨਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।
- ਪਲੱਗ ਤੋਂ ਕੁੰਜੀ ਕੱਢ ਲਓ ਅਤੇ ਵੋਲਟਮੀਟਰ ਨੂੰ ਵੀ ਸਰਕਟ ਵਿੱਚੋਂ ਹਟਾ ਦਿਓ। ਹੁਣ ਵੋਲਟਮੀਟਰ ਨੂੰ ਚਿੱਤਰ 12.8 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਪਹਿਲੇ ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ X ਅਤੇ P ਦੇ ਵਿੱਚ ਜੋੜੋ।
- ਪਲੱਗ ਵਿੱਚ ਕੁੰਜੀ ਲਗਾਓ ਅਤੇ ਪਹਿਲੇ ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਵਿਚਕਾਰ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਮਾਪੋ। ਮੰਨ ਲਓ ਇਹ V, ਹੈ।
- ਇਸੀ ਪ੍ਕਾਰ ਦੂਜੇ ਦੋ ਪ੍ਤਿਰੋਧਕਾਂ ਦੇ ਸਿਰਿਆਂ ਦੇ ਵਿਚਕਾਰ ਵੱਖ ਵੱਖ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਮਾਪੋ।ਮੰਨ ਲਓ ਕ੍ਰਮ ਅਨੁਸਾਰ ਇਹ ਮਾਨ V₂ ਅਤੇ V₃ ਹੈ।
- ullet V_1 , V_2 ਅਤੇ V_3 ਦੇ ਵਿੱਚ ਸੰਬੰਧ ਪਤਾ ਕਰੈ।

ਤੁਸੀਂ ਇਹ ਵੇਖੋਗੇ ਕਿ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ V ਦੂਜੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰਾਂ V_1 , V_2 ਅਤੇ V_3 ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਲੜੀਬੱਧ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸਿਰਿਆਂ ਦੇ ਵਿੱਚ ਕੁੱਲ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਇਕੱਲੇ–ਇਕੱਲੇ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੈ, ਭਾਵ

$$V = V_1 + V_2 + V_3 \tag{12.11}$$

ਮੰਨ ਲਓ ਚਿੱਤਰ 12.8 ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਸਰਕਟ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ I ਹੈ। ਹੁਣ ਹਰ ਇਕ ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚੋਂ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਵੀ I ਹੈ। ਲੜੀ ਵਿੱਚ ਜੁੜੇ ਇਨ੍ਹਾਂ ਤਿੰਨੋਂ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਇੱਕ ਅਜਿਹੇ ਤੁਲ ਇਕੱਲੇ ਪ੍ਰਤਿਰੋਧਕ ਜਿਸ ਦਾ ਪ੍ਰਤਿਰੋਧ R ਹੈ, ਦੇ ਦੁਆਰਾ ਪ੍ਰਤਿਸਥਾਪਿਤ ਕਰਨਾ ਸੰਭਵ ਹੈ ਜਿਸ ਨੂੰ ਸਰਕਟ ਵਿੱਚ ਜੌੜ ਕੇ ਇਸ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ V ਅਤੇ ਸਰਕਟ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਧਾਰਾ I ਹੀ ਰਹਿੰਦੀ ਹੈ। ਸਾਰੇ ਸਰਕਟ ਉੱਤੇ ਓਹਮ ਦਾ ਨਿਯਮ ਵਰਤ ਕੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$V = IR \tag{12.12}$$

ਤਿੰਨਾਂ ਪ੍ਰਤਿਰੋਧਕਾਂ ਉੱਤੇ ਅਲੱਗ ਅਲੱਗ ਓਹਮ ਦਾ ਨਿਯਮ ਲਾਗੂ ਕਰਨ ਨਾਲ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$V_1 = IR_1$$
 [12.13(a)]

$$V_2 = IR_2$$
 [12.13(b)]

ਅਤੇ
$$V_s = IR_s$$
 [12.13(c)]

ਸਮੀਕਰਨ (12.11) ਤੋਂ

$$IR = IR_1 + IR_2 + IR_3$$

ਅਰਥਾਤ

$$R_s = R_t + IR_2 + IR_3$$
 = $R_1 + R_2 + R_3$ (12.14)

ਇਸ ਪ੍ਰਕਾਰ ਅਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਜਦੋਂ ਬਹੁਤ ਸਾਰੇ ਪ੍ਰਤਿਰੋਧਕ ਲੜੀ ਬੱਧ ਜੋੜੇ ਜਾਂਦੇ ਹਨ ਤਾਂ ਇਹਨਾਂ ਦਾ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ $R_1,\,R_2,\,R_3$ ਆਦਿ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਪ੍ਰਕਾਰ ਸਾਰਿਆਂ ਦਾ ਪ੍ਰਤਿਰੋਧ ਕਿਸੇ ਵੀ ਇਕੱਲੇ-ਇਕੱਲੇ ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਪ੍ਰਤਿਰੋਧ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਨ 12,7

ਇੱਕ ਬਿਜਲਈ ਲੈਂਪ ਜਿਸ ਦਾ ਪ੍ਰਤਿਰੋਧ 20Ω ਹੈ, ਅਤੇ ਇੱਕ 4Ω ਪ੍ਰਤਿਰੋਧ ਦਾ ਚਾਲਕ 6 V ਦੀ ਬੈਟਰੀ ਨਾਲ ਚਿੱਤਰ 12.9 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਜੋੜਿਆ ਗਿਆ ਹੈ। (a) ਸਰਕਟ ਦਾ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ, (b) ਸਰਕਟ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਅਤੇ (c) ਬਿਜਲਈ ਲੈਂਪ ਅਤੇ ਚਾਲਕ ਦੇ ਸਿਰਿਆਂ ਵਿਚਕਾਰ ਪਟੈਂਸ਼ਲ ਅੰਤਰ ਦੀ ਗਣਨਾ ਕਰੋ।

ਚਿੱਤਰ 12.9 6V ਦੀ ਬੈਟਰੀ ਤੋਂ ਲੜੀ ਵਿੱਚ ਜੋੜੇ ਇੱਕ ਬਿਜਲਈ ਲੈਂਪ ਅਤੇ 4Ω ਦਾ ਇੱਕ ਪਤਿਰੋਧਕ

ਹੱਲ

ਬਿਜਲਈ ਲੈਂਪ ਦਾ ਪ੍ਰਤਿਰੋਧ $R_{_{\rm I}}$ = 20 Ω ਲੜੀ ਵਿੱਚ ਸੰਯੋਜਿਤ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ $R_{_{\rm 2}}$ = 4 Ω

(a) ਸਰਕਟ ਵਿੱਚ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ :

$$R = R_t + R_2$$

 $R_s = 20 \Omega + 4 \Omega = 24 \Omega$

ਬੈਟਰੀ ਦੇ ਟਰਮੀਨਲਾਂ ਦੇ ਵਿੱਚ ਕੁੱਲ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ,

$$V = 6 V$$

(b) ਹੁਣ, ਓਹਮ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਸਰਕਟ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਕੁੱਲ ਬਿਜਲਈ ਧਾਰਾ,

$$I = V/R$$

 $= 6 V/24 \Omega$

= 0.25 A

(c) ਬਿਜਲਈ ਲੈੱਪ ਅਤੇ ਚਾਲਕ ਉੱਤੇ ਓਹਮ ਦਾ ਨਿਯਮ ਵੱਖ ਵੱਖ ਲਾਗੂ ਕਰਨ ਤੇ ਸਾਨੂੰ ਬਿਜਲਈ ਲੈੱਪ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਔਤਰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$V_i = 20 \Omega \times 0.25 A$$

= 5 V

ਅਤੇ, ਚਾਲਕ ਦੇ ਸਿਰਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ:

$$V_{2} = 4 \Omega \times 0.25 A = 1 V$$

ਹੁਣ ਮੰਨ ਲਓ ਅਸੀਂ ਬਿਜਲਈ ਲੈਂਪ ਅਤੇ ਚਾਲਕ ਦੇ ਲੜੀ ਸੈਯੋਜਨ ਦੀ ਥਾਂ ਕਿਸੇ ਇਕੱਲੇ ਅਤੇ ਤੁਲ ਪ੍ਰਤਿਰੋਧਕ ਨੂੰ ਪ੍ਰਤਿਸਥਾਪਿਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਇਸ ਤੁਲ ਪ੍ਰਤਿਰੋਧਕ ਦਾ ਪ੍ਰਤਿਰੋਧ ਇੰਨਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਇਸ ਨੂੰ 6 V ਬੈਟਰੀ ਦੇ ਦੋ ਟਰਮੀਨਲਾਂ ਵਿੱਚ ਸੈਯੋਜਿਤ ਕਰਨ ਉੱਤੇ ਸਰਕਟ ਵਿੱਚ 0.25 A ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਹੋਵੇ। ਤਦ ਇਸ ਤੁਲ ਪ੍ਤਿਰੋਧਕ ਦਾ ਪ੍ਤਿਰੋਧ R ਹੋਵੇਗਾ।

R = V/I

= 6 V / 0.25 A

 $= 24 \Omega$

ਇਹ ਲੜੀ ਸਰਕਟ ਦਾ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ ਹੈ, ਇਹ ਦੋਵੇਂ ਪ੍ਰਤਿਰੋਧਾਂ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਦਾ ਯੋਜਨਾਬੱਧ ਚਿੱਤਰ ਖਿੱਚੋ ਜਿਸ ਵਿੱਚ 2-2 v ਦੇ ਤਿੰਨ ਸੈੱਲਾਂ ਦੀ ਬੈਟਰੀ, ਇੱਕ 5 Ωਪ੍ਰਤਿਰੋਧਕ, ਇੱਕ 8 Ω ਪ੍ਰਤਿਰੋਧਕ, ਇੱਕ 12 Ω ਪ੍ਰਤਿਰੋਧਕ ਅਤੇ ਇੱਕ ਪਲੱਗ ਕੁੰਜੀ ਸਾਰੇ ਲੜੀ ਵਿੱਚ ਸੰਯੋਜਿਤ ਹੋਣ।
- ਪ੍ਰਸ਼ਨ 1 ਦਾ ਸਰਕਟ ਦੁਬਾਰਾ ਖਿੱਚੋਂ ਅਤੇ ਇਸ ਵਿੱਚ ਪ੍ਰਤਿਰੋਧਕਾਂ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਾਲੀ ਧਾਰਾ ਨੂੰ ਮਾਪਣ ਲਈ ਐਮ ਮੀਟਰ ਅਤੇ 12 Ω ਦੇ ਪ੍ਰਤਿਰੋਧਕ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਮਾਪਣ ਲਈ ਵੋਲਟਮੀਟਰ ਲਗਾਓ।ਐਮਮੀਟਰ ਅਤੇ ਵੋਲਟਮੀਟਰ ਦੇ ਕੀ ਮਾਨ ਹੋਣਗੇ?

12.6.2 ਸਮਾਨਾਂਤਰਬੱਧ ਪ੍ਰਤਿਰੋਧਕ (Resistors in Parallel)

ਆਓ ਹੁਣ ਚਿੱਤਰ 12.7 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ, ਜੋੜੇ ਗਏ (ਜਾਂ ਬੈਟਰੀ) ਤੇ ਸਮਾਨਾਂਤਰ ਬੱਧ ਜੋੜੇ ਗਏ ਤਿੰਨ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਪ੍ਰਬੰਧ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ।

ਕਰਿਆ 12.6

- ਤਿੰਨ ਪ੍ਤਿਰੋਧਕ ਜਿਨ੍ਹਾਂ ਦੇ ਪ੍ਤਿਰੋਧ ਕ੍ਰਮਵਾਰ: R₁, R₂ ਅਤੇ R₃ ਹਨ. ਦਾ ਸਮਾਨਾਂਤਰ ਸੰਯੋਗ XY ਬਣਾਓ। ਚਿੱਤਰ 12.10 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਇਸ ਸੰਯੋਗ ਨੂੰ ਇੱਕ ਬੈਟਰੀ, ਇੱਕ ਪਲੱਗ ਕੁੰਜੀ ਅਤੇ ਇੱਕ ਐਮਮੀਟਰ ਨਾਲ ਜੋੜੋ। ਪ੍ਤਿਰੋਧਕਾਂ ਦੇ ਸੰਯੋਗ ਦੇ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਇੱਕ ਵੋਲਟਮੀਟਰ ਵੀ ਜੋੜੋ ਸੰਯੋਜਿਤ ਕਰੋ।
- ਪਲੱਗ ਵਿੱਚ ਕੁੰਜੀ ਲਗਾਓ ਅਤੇ ਐਮਮੀਟਰ ਦੀ ਰੀਡਿੰਗ ਦਾ ਮਾਨ ਨੋਟ ਕਰੋ। ਮੰਨ ਲਓ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਮਾਨ I ਹੈ। ਵੋਲਟਮੀਟਰ ਦੀ ਰੀਡਿੰਗ ਦਾ ਮਾਨ ਵੀ ਨੋਟ ਕਰੋ। ਇਸ ਨਾਲ ਸਮਾਨ ਅੰਤਰ ਸੰਯੋਜਨ ਦੇ ਸਿਰਿਆਂ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ V ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਹਰ ਇੱਕ ਪ੍ਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਵੀ V ਹੈ। ਇਸ ਦੀ ਜਾਂਚ ਹਰ ਇੱਕ ਪ੍ਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਉੱਤੇ ਵੱਖ ਵੱਖ ਵੋਲਟਮੀਟਰ ਜੋੜ ਕੇ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਚਿੱਤਰ 12.11 ਵੇਖੋ।।

- ਕੁੰਜੀ ਤੋਂ ਪਲੱਗ ਬਾਹਰ ਕੱਢੋ। ਸਰਕਟ ਤੋਂ ਐਮਮੀਟਰ ਅਤੇ ਵੋਲਟਮੀਟਰ ਕੱਢ ਲਓ।
 ਚਿੱਤਰ 12.11 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਐਮਮੀਟਰ ਨੂੰ ਪ੍ਰਤਿਰੋਧ R_i ਨੂੰ ਲੜੀ ਵਿੱਚ ਸੰਯੋਜਿਤ ਕਰੋ। ਐਮਮੀਟਰ ਦਾ ਮਾਨ I_i ਨੋਟ ਕਰੋ।
- ਇਸੇ ਪ੍ਕਾਰ R₂ ਅਤੇ R₃ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਧਾਰਾ ਵੀ ਮਾਪੋ। ਮੰਨ ਲਓ ਇਹਨਾਂ ਦਾ ਮਾਨ ਕ੍ਰਮਵਾਰ: I₂ ਅਤੇ I₃ ਹੈ। I, I₃, I₄ ਅਤੇ I₄ ਵਿੱਚ ਕੀ ਸੰਬੰਧ ਹੈ?

ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਕੁੱਲ ਬਿਜਲਈ ਧਾਰਾ *I*, ਸੰਯੋਗ ਦੀ ਹਰ ਇੱਕ ਸ਼ਾਖਾ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਹੋਣ ਵਾਲੀਆਂ ਵੱਖ ਵੱਖ ਧਾਰਾਵਾਂ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੈ।

$$I = I_1 + I_2 + I_3 \tag{12.15}$$

ਮੰਨ ਲਓ, ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸਮਾਨਾਂਤਰ ਸੰਯੋਗ ਦਾ ਤੁਲ ਪ੍ਰਤਿਰੋਧ R_p ਹੈ। ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਸਮਾਨਾਂਤਰ ਸੰਯੋਗ ਉੱਤੇ ਓਹਮ ਦਾ ਨਿਯਮ ਲਾਗੂ ਕਰਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$I = V/R_{o} \tag{12.16}$$

ਹਰ, ਪ੍ਰਤਿਰੋਧਕਾਂ ਉੱਤੇ ਓਹਮ ਦਾ ਨਿਯਮ ਲਾਗੂ ਕਰਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$I_1 = V/R_1; \quad I_2 = V/R_2; \text{ and } I_3 = V/R_3$$
 (12.17)

ਸਮੀਕਰਨ (12.15) ਅਤੇ (12.17) ਤੋਂ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ :

$$V/R_0 = V/R_1 + V/R_2 + V/R_3$$

ਜਾਂ

$$1/R_{p} = 1/R_{1} + 1/R_{2} + 1/R_{3}$$
 (12.18)

ਇਸ ਪ੍ਕਾਰ ਅਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਸਮਾਨਾਂਤਰ ਪ੍ਰਤਿਰੋਧਾਂ ਦੇ ਸਮੂਹ ਦੇ ਤੁੱਲ ਪ੍ਰਤਿਰੋਧ ਦਾ ਉਲਟ ਇਕੱਲੇ-ਇਕੱਲੇ ਪ੍ਰਤਿਰੋਧਾਂ ਦੇ ਉਲਟ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਨ 12,8

ਚਿੱਤਰ 12.10 ਦੇ ਸਰਕਟ ਚਿੱਤਰ ਵਿੱਚ ਮੰਨ ਲਓ ਪ੍ਰਤਿਰੋਧਕਾਂ $R_{_{1}}$, $R_{_{2}}$ ਅਤੇ $R_{_{3}}$ ਦੇ ਮਾਨ ਕ੍ਰਮਵਾਰ $5~\Omega,~10~\Omega,~30~\Omega$ ਹਨ ਅਤੇ ਇਹਨਾਂ ਨੂੰ $~12~\mathrm{V}~$ ਦੀ ਬੈਟਰੀ ਨਾਲ ਜੋੜਿਆ ਗਿਆ ਹੈ।

- (a) ਹਰ ਇੱਕ ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚੋਂ ਪਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ
- (b) ਸਰਕਟ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਕੁੱਲ ਬਿਜਲਈ ਧਾਰਾ (c) ਸਰਕਟ ਦੇ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

 R_1 = 5 Ω , R_2 = 10 Ω , ਅਤੇ R_3 = 30 Ω

ਬੈਟਰੀ ਦੇ ਸਿਰਿਆਂ ਉੱਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ, V = 12 V

ਇਕੱਲੇ-ਇਕੱਲੇ ਪ੍ਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਉੱਤੇ ਵੀ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਇੰਨਾ ਹੀ ਹੈ, ਇਸ ਲਈ

ਪ੍ਰਤਿਰੋਧਕਾਂ ਤੋਂ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਗਣਨਾ ਕਰਨ ਲਈ ਅਸੀਂ ਓਹਮ ਦੇ ਨਿਯਮ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ :

 R_i ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ, $I_i = V/R_i$

$$I_1 = 12 \, \text{V} / 5 \, \Omega = 2.4 \, \text{A}$$

 R_2 ਤੋਂ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ $I_2 = V/R_g$

$$I_2 = 12 \text{ V}/10 \Omega = 1.2 \text{ A}$$

 $R_{_3}$ ਤੋਂ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ $I_{_3} = V/R_{_3}$

$$I_{g} = 12 \text{ V}/30 \Omega = 0.4 \text{ A}$$

ਸਰਕਟ ਵਿੱਚ ਪਵਾਹਿਤ ਕੱਲ ਧਾਰਾ

$$I = I_1 + I_2 + I_3$$

= $(2.4 + 1.2 + 0.4) A$
= $4 A$

ਸਮੀਕਰਨ (12.18) ਤੋਂ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ R_p , ਦਾ ਮੁੱਲ ਇਸ ਪ੍ਕਾਰ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$\frac{1}{R_p} = \frac{1}{5} + \frac{1}{10} + \frac{1}{30} = \frac{1}{3}$$

ਇਸ ਪ੍ਕਾਰ $R_p = 3 \Omega$

ਉਦਾਹਰਨ 12,9

ਚਿੱਤਰ 12.12, ਵਿੱਚ $R_{_{I}}$ = 10 $\Omega,\,R_{_{2}}$ = 40 $\Omega,\,R_{_{3}}$ = 30 $\Omega,\,R_{_{4}}$ = 20 Ω

 $R_{\rm s}$ = $60~\Omega$, ਹੈ ਅਤੇ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਇਸ ਪ੍ਰਬੰਧ ਨੂੰ $12~{
m V}$ ਦੀ ਬੈਟਰੀ ਨਾਲ ਜੋੜਿਆ ਗਿਆ ਹੈ ।

(a) ਸਰਕਟ ਵਿੱਚ ਕੁੱਲ ਪ੍ਤਿਰੋਧ ਅਤੇ (b) ਸਰਕਟ ਵਿੱਚੋਂ ਲੰਘਦੀ ਕੁੱਲ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਮੰਨ ਲਓ ਇਹਨਾਂ ਸਮਾਨਾਂਤਰ ਜੋੜੇ ਗਏ ਦੋ ਪ੍ਤਿਰੋਧਕਾਂ R_1 ਅਤੇ R_2 ਨੂੰ ਕਿਸੇ ਇੱਕ ਤੁਲ ਪ੍ਤਿਰੋਧਕ R' ਦੁਆਰਾ ਪ੍ਤਿਸਥਾਪਿਤ ਕਰਦੇ ਹਾਂ। ਇਸ ਪ੍ਰਕਾਰ ਅਸੀਂ ਸਮਾਨਾਂਤਰ ਜੋੜੇ ਗਏ ਤਿੰਨ ਪ੍ਤਿਰੋਧਕਾਂ R_3 , R_4 ਅਤੇ R_5 ਨੂੰ ਇੱਕ ਤੁਲ

ਪ੍ਰਤਿਰੋਧਕ R″ ਦੁਆਰਾ ਪ੍ਰਤਿਸਾਥਿਤ ਕਰਦੇ ਹਾਂ। ਤਦ ਸਮੀਕਰਨ (12.18) ਦਾ ਉਪਯੋਗ ਕਰਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ:

$$1/R'$$
= $1/10$ + $1/40$ = $5/40$; = $1/8$ ਅਰਥਾਤ R' = 8 Ω ਇਸੇ ਤਰ੍ਹਾਂ $1/R''$ = $1/30$ + $1/20$ + $1/60$ = $6/60$; = $1/10$; ਜਾਂ R'' = 10 Ω

ਇਸ ਪ੍ਰਕਾਰ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ, , $R = R' + R'' = 18 \Omega$

ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਓਹਮ ਦਾ ਨਿਯਮ ਉਪਯੋਗ ਕਰਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

ਚਿੱਤਰ 12.12 ਲੜੀ ਅਤੇ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜੇ ਗਏ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੋਇਆ ਬਿਜਲਈ ਸਰਕਟ

ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਕਿਸੇ ਲੜੀਬੱਧ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਆਰੰਭ ਤੋਂ ਅੰਤ ਤੱਕ ਬਿਜਲਈ ਧਾਰਾ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਸਪੱਸ਼ਟ ਰੂਪ ਤੋਂ ਇਹ ਉਪਯੁਕਤ ਨਹੀਂ ਹੈ ਕਿ ਅਸੀਂ ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਬਲਬ ਅਤੇ ਬਿਜਲਈ ਹੀਟਰ ਨੂੰ ਲੜੀ ਵਿੱਚ ਜੋੜੀਏ, ਕਿਉਂਕਿ ਇਹਨਾਂ ਨੂੰ ਠੀਕ ਪ੍ਰਕਾਰ ਤੋਂ ਕੰਮ ਕਰਨ ਲਈ ਬਹੁਤ ਭਿੰਨ ਮਾਨਾਂ ਦੀ ਬਿਜਲਈ ਧਾਰਾਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। (ਉਦਾਹਰਨ 12.3 ਵੇਖੋ)। ਲੜੀਬੱਧ ਸਰਕਟ ਦੀ ਇੱਕ ਪ੍ਰਮੁੱਖ ਹਾਨੀ ਇਹ ਹੁੰਦੀ ਹੈ ਕਿ ਜਦੋਂ ਸਰਕਟ ਦਾ ਇੱਕ ਅੰਗ ਕੰਮ ਕਰਨਾ ਬੰਦ ਕਰ ਦਿੰਦਾ ਹੈ ਤਾਂ ਸਰਕਟ ਟੁੱਟ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਰਕਟ ਦਾ ਹੋਰ ਕੋਈ ਅੰਗ ਕਾਰਜ ਨਹੀਂ ਕਰ ਸਕਦਾ। ਜੇਕਰ ਤੁਸੀਂ ਤਿਉਹਾਰਾਂ, ਵਿਆਹਾਂ ਆਦਿ ਸਮੇਂ ਭਵਨਾਂ ਦੀ ਸਜਾਵਟ ਵਿੱਚ ਬਲਬਾਂ ਦੀਆਂ ਸਜਾਵਟੀ ਲੜੀਆਂ ਦਾ ਉਪਯੋਗ ਹੁੰਦੇ ਵੇਖਿਆ ਹੈ ਤਾਂ ਤੁਸੀਂ ਬਿਜਲੀ ਮਿਸਤਰੀ ਨੂੰ ਸਰਕਟ ਵਿੱਚ ਖਰਾਬੀ ਵਾਲੇ ਸਥਾਨਾਂ ਨੂੰ ਲੱਭਣ ਵਿੱਚ ਕਾਫੀ ਸਮਾਂ ਖਰਚ ਕਰਦੇ ਹੋਏ ਇਹ ਵੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਕਿਵੇਂ ਉਹ ਫਿਊਜ਼ ਹੋਏ ਬਲਬਾਂ ਨੂੰ ਭਾਲਣ ਵਿੱਚ ਸਾਰੇ ਬਲਬਾਂ ਦੀ ਜਾਂਚ ਕਰਦਾ ਹੈ। ਖਰਾਬ ਬਲਬਾਂ ਨੂੰ ਬਦਲਦਾ ਹੈ। ਇਸ ਦੇ ਉਲਟ ਸਮਾਨਾਂਤਰ ਸਰਕਟਾਂ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਭਿੰਨ ਭਿੰਨ ਬਿਜਲੀ ਸ਼ਾਪਾਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਸਮਾਨਾਂਤਰ ਸਰਕਟ ਵਿੱਚ ਬੁੱਲ ਪ੍ਰਤਿਰੋਧ ਸਮੀਕਰਨ (12.18) ਦੇ ਅਨੁਸਾਰ ਘਟਦਾ ਹੈ ਇਹ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਤੋਂ ਤਦ ਵਧੇਰੇ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਯੰਤਰਾਂ ਦੇ ਪ੍ਰਤਿਰੋਧ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਉਚਿੱਤ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਨ ਲਈ ਭਿੰਨ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ

- 1. ਜਦੋਂ (a) 1 Ω ਅਤੇ 10 6 Ω (b) 1 Ω , 10 3 Ω ਅਤੇ 10 6 Ω ਦੇ ਪ੍ਰਤਿਰੋਧਾਂ ਨੂੰ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹਨਾਂ ਦੇ ਤੁੱਲ ਪ੍ਰਤਿਰੋਧ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਨਿਰਣਾ ਕਰੋਗੇ?
- 2. 100 Ω ਦਾ ਇੱਕ ਬਿਜਲਈ ਬਲਬ, 50 Ω ਦਾ ਇੱਕ ਟੋਸਟਰ, 500 Ω ਦਾ ਇੱਕ ਪਾਣੀ ਫਿਲਟਰ 220 V ਦੇ ਬਿਜਲਈ ਸਰੋਤ ਨਾਲ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜੇ ਗਏ ਹਨ। ਉਸ ਬਿਜਲਈ ਪ੍ਰੈੱਸ ਦਾ ਪ੍ਰਤਿਰੋਧ ਕੀ ਹੈ ਜਿਸ ਨੂੰ ਜੇਕਰ ਸਮਾਨ ਸਰੋਤ ਦੇ ਨਾਲ ਜੋੜ ਦੇਈਏ ਉਹ ਉੱਨੀ ਹੀ ਬਿਜਲਈ ਧਾਰਾ ਲੈਂਦੀ ਹੈ ਜਿੰਨੀ ਤਿੰਨੋਂ ਯੰਤਰ ਲੈਂਦੇ ਹਨ। ਇਹ ਵੀ ਗਿਆਤ ਕਰੋ ਕਿ ਇਸ ਬਿਜਲਈ ਪ੍ਰੈੱਸ ਤੋਂ ਕਿੰਨੀ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ?
- 3. ਲੜੀ ਵਿੱਚ ਜੋੜਨ ਦੀ ਥਾਂ, ਬਿਜਲਈ ਯੈਤਰਾਂ ਨੂੰ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜਨ ਦੇ ਕੀ ਲਾਭ ਹਨ?
- 4. 2 Ω , 3 Ω ਅਤੇ 6 Ω ਦੇ ਤਿੰਨ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਜੋੜਿਆ ਜਾਵੇ ਕਿ ਕੁੱਲ ਪ੍ਰਤਿਰੋਧ : (a) 4 Ω , (b) 1 Ω ਹੋਵੇ।
- 5. 4 Ω, 8 Ω, 12 Ω ਅਤੇ 24 Ω ਪ੍ਰਤਿਰੋਧ ਦੀਆਂ ਚਾਰ ਕੁੰਡਲੀਆਂ ਨੂੰ ਜੋੜਨ ਤੇ (a) ਅਧਿਕਤਮ (b) ਨਿਊਨਤਮ ਕਿੰਨਾ ਪ੍ਰਤਿਰੋਧ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?

12.7 ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਤਾਪ ਪ੍ਰਭਾਵ (Heating Effect of Electric Current)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਬੈਟਰੀ ਜਾਂ ਸੈੱਲ ਬਿਜਲਈ ਊਰਜਾ ਦੇ ਸਰੋਤ ਹਨ। ਸੈੱਲ ਦੇ ਅੰਦਰ ਹੋਣ ਵਾਲੀ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਸੈੱਲ ਦੇ ਦੋ ਟਰਮੀਨਲਾਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਉਤਪੰਨ ਕਰਦੀ ਹੈ, ਜੋ ਬੈਟਰੀ ਨਾਲ ਜੁੜੇ ਕਿਸੇ ਪ੍ਰਤਿਰੋਧਕ ਜਾਂ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦੇ ਕਿਸੇ ਸਿਸਟਮ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਕਰਨ ਦੇ ਲਈ ਇਲੈੱਕਟ੍ਰਾਨਾਂ ਨੂੰ ਗਤੀਸ਼ੀਲ ਕਰਦਾ ਹੈ। ਅਸੀਂ ਅਨੁਭਾਗ 12.2 ਵਿੱਚ ਇਹ ਅਧਿਐਨ ਕੀਤਾ ਹੈ ਕਿ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਬਣਾਈ ਰੱਖਣ ਲਈ ਸਰੋਤ ਨੂੰ ਆਪਣੀ ਉਰਜਾ ਖਰਚ ਕਰਦੇ ਰਹਿਣਾ ਪੈਂਦਾ ਹੈ। ਇਹ ਊਰਜਾ ਕਿੱਥੇ ਚਲੀ ਜਾਂਦੀ ਹੈ? ਬਿਜਲਈ ਧਾਰਾ

ਬਣਾਈ ਰੱਖਣ ਲਈ, ਸਰੋਤ ਦੀ ਊਰਜਾ ਦਾ ਕੁੱਝ ਭਾਗ ਉਪਯੋਗੀ ਕਾਰਜ ਕਰਨ (ਜਿਵੇਂ ਪੱਖੇ ਦੇ ਖੰਭਾਂ ਨੂੰ ਘੁੰਮਾਉਣਾ) ਵਿੱਚ ਉਪਯੋਗ ਹੋ ਜਾਂਦਾ ਹੈ। ਸਰੋਤ ਦੀ ਊਰਜਾ ਦਾ ਬਾਕੀ ਭਾਗ ਉਸ ਤਾਪ ਨੂੰ ਉਤਪੰਨ ਕਰਨ ਵਿੱਚ ਖਰਚ ਹੁੰਦਾ ਹੈ ਜੋ ਯੰਤਰਾਂ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਕਰਦਾ ਹੈ। ਇਸ ਦਾ ਪ੍ਰੇਖਣ ਅਸੀਂ ਆਪਣੇ ਦੈਨਿਕ ਜੀਵਨ ਵਿੱਚ ਕਰਦੇ ਹਾਂ। ਉਦਾਹਰਨ ਵਜੋਂ, ਅਸੀਂ ਕਿਸੇ ਬਿਜਲਈ ਪੱਖੇ ਨੂੰ ਨਿਰੰਤਰ ਕਾਫ਼ੀ ਸਮੇਂ ਤੱਕ ਚਲਾਉਂਦੇ ਹਾਂ ਤਾਂ ਉਹ ਗਰਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਉਲਟ ਜੇਕਰ ਬਿਜਲਈ ਸਰਕਟ ਸਿਰਫ਼ ਪ੍ਰਤਿਰੋਧਕ ਹੈ, ਅਰਥਾਤ ਬੈਟਰੀ ਨਾਲ ਕੇਵਲ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦਾ ਇੱਕ ਸਮੂਹ ਹੀ ਜੋੜਿਆ ਹੈ ਤਾਂ ਸਰੋਤ ਦੀ ਊਰਜਾ ਨਿਰੰਤਰ ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਤਾਪ ਦੇ ਰੂਪ ਵਿੱਚ ਖਪਤ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਤਾਪਨ ਪ੍ਰਭਾਵ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਪ੍ਰਭਾਵ ਦਾ ਉਪਯੋਗ ਬਿਜਲਈ ਹੀਟਰ, ਬਿਜਲਈ ਪ੍ਰੈੱਸ ਜਿਹੇ ਯੰਤਰਾਂ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਪ੍ਰਤਿਰੋਧ R ਦੇ ਕਿਸੀ ਪ੍ਤਿਰੋਧਕ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਤੋਂ ਬਿਜਲਈ ਧਾਰਾ I ਪ੍ਰਵਾਹਿਤ ਹੋ ਰਹੀ ਹੈ।ਮੰਨ ਲਓ ਇਸ ਦੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ V ਹੈ (ਚਿੱਤਰ 12.13)। ਮੰਨ ਲਓ ਇਸ ਤੋਂ ਸਮੇਂ t ਵਿੱਚ Q ਚਾਰਜ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦਾ ਹੈ। Q ਚਾਰਜ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ V ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਕਾਰਜ VQ ਹੈ। ਇਸ ਲਈ ਸਮੇਂ t ਵਿੱਚ VQ ਊਰਜਾ ਦੀ ਅਪੂਰਤੀ ਸਰੋਤ ਨੂੰ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ। ਸੋ, ਸਰੋਤ ਦੁਆਰਾ ਸਰਕਟ ਵਿੱਚ ਦਿੱਤੀ ਸ਼ਕਤੀ :

 $P = V \frac{Q}{t} = VI \tag{12.19}$

ਅਰਥਾਤ ਸਮੇਂ t ਵਿੱਚ ਸਰੋਤ ਦੁਆਰਾ ਸਰਕਟ ਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੀ ਗਈ ਊਰਜਾ $P \times t$ ਹੈ ਜੋ VIt ਦੇ ਬਰਾਬਰ ਹੈ। ਸਰੋਤ ਦੁਆਰਾ ਖਰਚ ਕੀਤੇ ਜਾਣ ਵਾਲੀ ਇਸ ਊਰਜਾ ਦਾ ਕੀ ਹੋਵੇਗਾ? ਇਹ ਊਰਜਾ ਤਾਪ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਤਿਰੋਧਕ ਵਿੱਚ ਜਾਂ ਲੁਪਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਕਿਸੇ ਸਥਾਈ ਬਿਜਲਈ ਧਾਰਾ I ਦੁਆਰਾ ਸਮੇਂ t ਵਿੱਚ ਉਤਪੰਨ ਤਾਪ ਦੀ ਮਾਤਰਾ

H = VIt (12.20)

ਓਹਮ ਦਾ ਨਿਯਮ [ਸਮੀਕਰਨ (12.5)] ਲਾਗੂ ਕਰਨ ਪਰ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

 $H = I^{\mu}Rt$ (12.21) ਇਸ ਨੂੰ ਜੂਲ ਦਾ ਤਾਪਨ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨਿਯਮ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਕਿਸੇ

ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚ ਉਤਪੰਨ ਹੋਣ ਵਾਲਾ ਤਾਪ : (i) ਦਿੱਤੇ ਗਏ ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਵਰਗ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ।(ii) ਦਿੱਤੀ ਗਈ ਬਿਜਲਈ ਧਾਰਾ ਲਈ ਪ੍ਰਤਿਰੋਧ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ, ਅਤੇ (iii) ਉਸ ਸਮੇਂ ਦਾ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦੇ ਲਈ ਦਿੱਤੇ ਹੋਏ ਪ੍ਰਤਿਰੋਧ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ। ਵਿਵਹਾਰਕ ਪ੍ਰਸਥਿਤੀਆਂ ਵਿੱਚ ਜਦੋਂ ਇੱਕ ਬਿਜਲਈ ਯੰਤਰ ਨੂੰ ਗਿਆਤ ਵੋਲਟਤਾ ਸਰੋਤ ਨਾਲ ਜੋੜਦੇ ਹਾਂ ਤਾਂ ਸੰਬੰਧ I = V/R ਦੇ ਦੁਆਰਾ ਉਸ ਯੰਤਰ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਗਣਨਾ ਕਰਨ ਉਪਰੰਤ ਸਮੀਕਰਨ (12.21) ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ।

ਚਿੱਤਰ 12.13

ਸ਼ੁੱਧ ਪ੍ਰਤਿਰੋਧਕ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਸਥਿਰ ਬਿਜਲਈ ਧਾਰਾ

ਉਦਾਹਰਨ 12,10

ਇੱਕ ਬਿਜਲੀ ਦੀ ਪ੍ਰੈੱਸ ਅਧਿਕਤਮ ਤਾਪਨ ਦਰ ਦੇ ਲਈ 840W ਅਤੇ ਨਿਊਨਤਮ ਤਾਪਨ ਦਰ ਦੇ ਲਈ 360W ਦੀ ਦਰ ਨਾਲ ਊਰਜਾ ਖਪਤ ਕਰਦੀ ਹੈ। ਵੋਲਟਤਾ 220V ਹੈ। ਦੋਵੇਂ ਪ੍ਸਬਿਤੀਆਂ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਅਤੇ ਪ੍ਰਤਿਰੋਧ ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕਰੋ।

ਚੱਲ

ਸਮੀਕਰਨ (12.19) ਤੋਂ ਅਸੀਂ ਇਹ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦਿੱਤੀ ਸ਼ਕਤੀ :

P = VI

ਇਸ ਪਕਾਰ ਬਿਜਲਈ ਧਾਰਾ I = P/V

(a) ਜਦੋਂ ਤਾਪਨ ਦੀ ਦਰ ਅਧਿਕਤਮ ਹੈ, ਤਦ

I = 840 W/220 V = 3.82 A;

ਅਤੇ ਬਿਜਲਈ ਪ੍ਰੈੱਸ ਦਾ ਪ੍ਰਤਿਰੋਧ :

 $R = V/I = 220 \text{ V}/3.82 \text{ A} = 57.60 \Omega$

(b) ਜਦੋਂ ਤਾਪਨ ਦੀ ਦਰ ਨਿਊਨਤਮ ਹੈ, ਤਦ,

I = 360 W/220 V = 1.64 A;

ਅਤੇ ਬਿਜਲਈ ਪ੍ਰੈਸ ਦਾ ਪ੍ਰਤਿਰੋਧ :

 $R = V/I = 220 \text{ V}/1.64 \text{ A} = 134.15 \Omega$

ਉਦਾਹਰਨ 12,11

ਕਿਸੇ 4 Ω ਪ੍ਰਤਿਰੋਧ ਤੋਂ ਪ੍ਰਤਿ ਸੈਕਿੰਡ 100 ਹ ਤਾਪ ਉਤਪੰਨ ਹੋ ਰਹੀ ਹੈ। ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਗਿਆਤ ਕਰੋ।

ਹੱਲ

H = 100 J, $R = 4 \Omega$, t = 1 s, V = ?

ਸਮੀਕਰਨ (12.21) ਤੋਂ ਸਾਨੂੰ ਪਤਿਰੋਧ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ I ਪ੍ਰਾਪਤ ਹੈ :

 $I = \sqrt{(H/Rt)}$

= $\sqrt{[100 \text{ J/}(4 \Omega \times 1 \text{ s})]}$

= 5 A

ਸਮੀਕਰਨ (12.5) ਤੋਂ ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ $\,V\,$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

V = IR

= 5 A \times 4 Ω

= 20 V

ਪ੍ਰਸ਼ਨ

- ਬਿਜਲੀ ਲੰਘਾਉਣ ਨਾਲ ਕਿਸੀ ਬਿਜਲਈ ਹੀਟਰ ਦੀ ਡੋਰੀ ਕਿਉਂ ਨਹੀਂ ਚਮਕਦੀ ਜਦੋਂ ਕਿ ਉਸ ਦੀ ਕੁੰਡਲੀ ਹੈ?
- ਇੱਕ ਘੰਟੇ ਵਿੱਚ 50 w ਦੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਤੇ 96000 ਕੂਲਾਮ ਚਾਰਜ ਭੇਜਣ ਨਾਲ ਉਤਪੰਨ ਹੁੰਦੇ ਤਾਪ ਦੀ ਗਣਨਾ ਕਰੋ।
- 3. 20 Ω ਪ੍ਰਤਿਰੋਧ ਦੀ ਕੋਈ ਬਿਜਲਈ ਪ੍ਰੈੱਸ 5 A ਬਿਜਲਈ ਧਾਰਾ ਲੈਂਦੀ ਹੈ। 30 s ਵਿੱਚ ਉਤਪੰਨ ਤਾਪ ਦੀ ਗਣਨਾ ਕਰੋ।

12.7.1 ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਤਾਪਨ ਪ੍ਰਭਾਵ ਦੇ ਵਿਵਹਾਰਕ ਉਪਯੋਗ (Practical Applications of Heating effect of electric current)

ਕਿਸੇ ਚਾਲਕ ਵਿੱਚ ਤਾਪ ਉਤਪੰਨ ਹੋਣਾ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਜ਼ਰੂਰੀ ਅਸਰ ਹੈ। ਬਹੁਤ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਇਹ ਅਣਇੱਛਤ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਉਹ ਉਪਯੋਗੀ ਬਿਜਲਈ ਊਰਜਾ ਨੂੰ ਤਾਪ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਬਿਜਲਈ ਸਰਕਟਾਂ ਵਿੱਚ ਨਾ ਟਾਲਿਆ ਜਾ ਸਕਣ ਵਾਲਾ ਤਾਪਨ ਸੰਬੰਧਿਤ ਯੰਤਰ ਦਾ ਤਾਪਮਾਨ ਵਧਾ ਸਕਦਾ ਹੈ। ਜਿਸ ਨਾਲ ਉਸ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਅੰਤਰ ਆ ਸਕਦਾ ਹੈ। ਫਿਰ ਵੀ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਤਾਪਨ ਪ੍ਰਭਾਵ ਦੇ ਬਹੁਤ ਸਾਰੇ ਉਪਯੋਗ ਹਨ। ਬਿਜਲਈ ਪ੍ਰੈੱਸ, ਬਿਜਲਈ ਟੋਸਟਰ, ਬਿਜਲਈ ਤੰਦੂਰ, ਬਿਜਲਈ ਕੇਤਲੀ ਅਤੇ ਬਿਜਲਈ ਹੀਟਰ ਜੂਲ ਦੇ ਤਾਪਨ ਆਧਾਰਿਤ ਕੁੱਝ ਜਾਣੇ ਪਹਿਚਾਣੇ ਯੰਤਰ ਹਨ।

ਬਿਜਲਈ ਤਾਪਨ ਦਾ ਉਪਯੋਗ ਪ੍ਰਕਾਸ਼ ਉਤਪੰਨ ਕਰਨ ਵਿੱਚ ਵੀ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਬਿਜਲਈ ਬਲਬ ਵਿੱਚ ਵੇਖਦੇ ਹਾਂ। ਇੱਥੇ ਬਲਬ ਦੇ ਫਿਲਾਮੈਂਟ (ਤੰਤੂ) ਨੂੰ ਉਤਪੰਨ ਤਾਪ ਨੂੰ ਜਿੰਨਾਂ ਸੰਭਵ ਹੋ ਸਕੇ ਉੱਨਾ ਰੋਕ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਜੋ ਉਹ ਬਹੁਤ ਗਰਮ ਹੋ ਕਰ ਪ੍ਰਕਾਸ਼ ਉਤਪੰਨ ਕਰੇ। ਇਹ ਇੰਨੇ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਪਿਘਲਣਾ ਨਹੀਂ ਚਾਹੀਦਾ। ਬਲਬ ਦੇ ਫਿਲਾਮੈਂਟ ਨੂੰ ਬਣਾਉਣ ਲਈ ਟੰਗਸਟਨ (ਪਿਘਲਣ ਅੰਕ 3380° C) ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਉੱਚ ਪਿਘਲਣ ਅੰਕ ਵਾਲੀ ਇੱਕ ਪ੍ਰਬਲ ਧਾਤ ਹੈ। ਬਿਜਲੀਰੋਧੀ ਟੇਕ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਫਿਲਾਮੈਂਟ ਨੂੰ ਜਿੰਨਾ ਸੰਭਵ ਹੋ ਸਕੇ ਤਾਪ ਰੋਧੀ ਬਣਾਇਆ ਜਾਵੇ। ਆਮ ਕਰਕੇ ਬਲਬਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਤੌਰ ਤੇ ਅਕਿਰਿਆਸ਼ੀਲ ਨਾਈਟਰੋਜਨ ਅਤੇ ਆਰਗਨ ਗੈਂਸਾਂ ਫਿਲਾਮੈਂਟ ਦੀ ਉਮਰ ਵਧਾਉਣ ਲਈ ਭਰੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਫਿਲਾਮੈਂਟ ਦੁਆਰਾ ਵਰਤੀ ਜਾਂਦੀ ਊਰਜਾ ਦਾ ਬਹੁਤ ਸਾਰਾ ਭਾਗ ਤਾਪ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਗਟ ਹੁੰਦਾ ਹੈ ਪ੍ਰੰਤੂ ਇਸ ਦਾ ਥੋੜ੍ਹਾ ਭਾਗ ਵਿਕਿਰਿਤ ਪ੍ਰਕਾਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ।

ਜੂਲ ਤਾਪਨ ਦਾ ਇੱਕ ਹੋਰ ਆਮ ਉਪਯੋਗ ਬਿਜਲਈ ਯੰਤਰਾਂ ਵਿੱਚ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਫਿਊਜ਼ ਹੈ। ਇਹ ਕਿਸੇ ਵੀ ਗੈਰ ਜ਼ਰੂਰੀ ਉੱਚ ਬਿਜਲਈ ਧਾਰਾ ਨੂੰ ਸਰਕਟ ਅਤੇ ਯੰਤਰਾਂ ਵਿੱਚੋਂ ਲੰਘਣਾਂ ਰੋਕ ਕੇ ਉਹਨਾਂ ਦੀ ਰੱਖਿਆ ਕਰਦਾ ਹੈ। ਫਿਊਜ਼ ਨੂੰ ਯੰਤਰ ਨਾਲ ਲੜੀ ਵਿੱਚ ਜੋੜਦੇ ਹਨ। ਫਿਊਜ਼ ਕਿਸੇ ਅਜਿਹੀ ਧਾਤ ਜਾਂ ਮਿਸ਼ਰਤ ਧਾਤ ਦੀ ਤਾਰ ਦਾ ਟੁਕੜਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦਾ ਉੱਚਿਤ ਪਿਘਲਣ ਅੰਕ ਹੋਵੇ, ਉਦਾਹਰਨ ਦੇ ਲਈ ਐਲੂਮੀਨੀਅਮ, ਕਾਪਰ, ਆਇਰਨ, ਲੈੱਡ ਆਦਿ, ਜੇਕਰ ਸਰਕਟ ਵਿੱਚ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਮਾਨ ਤੋਂ ਅਧਿਕ ਮਾਨ ਦੀ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਫਿਊਜ਼ ਤਾਰ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਨਾਲ ਫਿਊਜ਼ ਤਾਰ ਪਿਘਲ ਜਾਂਦੀ ਹੈ ਅਤੇ ਸਰਕਟ ਟੁੱਟ ਜਾਂਦਾ ਹੈ। ਫਿਊਜ਼ ਦੀ ਤਾਰ ਨੂੰ ਧਾਤ ਦੇ ਸਿਰੇ ਵਾਲੇ ਪੋਰਸੀਲੇਨ ਜਾਂ ਇਸੇ ਪ੍ਰਕਾਰ ਦੇ ਬਿਜਲੀਰੋਧੀ ਪਦਾਰਥ ਦੇ ਕਾਰਟਰੇਜ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਘਰੇਲੂ ਸਰਕਟਾਂ ਵਿੱਚ ਉਪਯੋਗ ਹੋਣ ਵਾਲੇ ਫਿਊਜ਼ਾਂ ਦੀ ਅਨੁਮਾਨਤ ਬਿਜਲਈ ਧਾਰਾ 1 A, 2 A, 3 A, 5 A, 10 A ਆਦਿ ਹੁੰਦੀ ਹੈ। ਉਸ ਬਿਜਲਈ ਪ੍ਰੈੱਸ ਦੇ ਸਰਕਟ ਵਿੱਚ ਜੋ 1 kW ਦੀ ਬਿਜਲਈ ਸ਼ਕਤੀ ਉਸ ਸਮੇਂ ਵਰਤਦੀ ਹੈ ਜਦ ਉਸ ਨੂੰ 220 V ਤੇ ਚਾਲੂ ਕਰਦੇ ਹਨ, 1000 W/220 V = 4.54 A ਦੀ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੋਈ ਹੈ। ਇਸ ਕੇਸ ਵਿੱਚ 5 A ਦਾ ਫਿਊਜ਼ ਵਰਤਣਾ ਚਾਹੀਦਾ ਹੈ।

12.8 ਬਿਜਲਈ ਸ਼ਕਤੀ (Electric Power)

ਤੁਸੀਂ ਆਪਣੀਆਂ ਪਿਛਲੀਆਂ ਸ਼ੇ੍ਣੀਆਂ ਵਿੱਚ ਇਹ ਅਧਿਐਨ ਕੀਤਾ ਸੀ ਕਿ ਕਾਰਜ ਕਰਨ ਦੀ ਦਰ ਨੂੰ ਸ਼ਕਤੀ ਕਹਿੰਦੇ ਹਨ। ਊਰਜਾ ਦੇ ਖਪਤ ਹੋਣ ਦੀ ਦਰ ਨੂੰ ਵੀ ਸ਼ਕਤੀ ਕਹਿੰਦੇ ਹਨ।

ਸਮੀਕਰਨ (12.21) ਤੋਂ ਸਾਨੂੰ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਲੁਪਤ ਜਾਂ ਖਪਤ ਬਿਜਲਈ ਊਰਜਾ ਦੀ ਦਰ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਸੇ ਨੂੰ ਬਿਜਲਈ ਸ਼ਕਤੀ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਸ਼ਕਤੀ, P ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ:

$$P = VI$$

ਅਤੇ
$$P = I^2R = V$$

(12.22)

ਬਿਜਲਈ ਸ਼ਕਤੀ ਦਾ SI ਯੂਨਿਟ ਵਾਟ (W) ਹੈ। ਇਹ ਉਸ ਯੰਤਰ ਦੁਆਰਾ ਖਪਤ ਸ਼ਕਤੀ ਹੈ ਜਿਸ ਤੋਂ ਉਸ ਸਮੇਂ 1 A ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਜਦ ਉਸ ਨੂੰ 1 V ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਤੇ ਚਾਲੂ ਕਰਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ :

'ਵਾਟ' ਸ਼ਕਤੀ ਦੀ ਛੋਟੀ ਇਕਾਈ ਹੈ। ਇਸ ਲਈ ਵਾਸਤਵਿਕ ਵਿਵਹਾਰ ਵਿੱਚ ਅਸੀਂ ਇਸ ਤੋਂ ਕਾਫੀ ਵੱਡੀ ਇਕਾਈ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ ਜਿਸ ਨੂੰ ਕਿਲੋਵਾਟ ਆਖਦੇ ਹਨ। ਇੱਕ ਕਿਲੋ ਵਾਟ 1000 ਵਾਟ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਬਿਜਲਈ ਊਰਜਾ, ਸ਼ਕਤੀ ਅਤੇ ਸਮੇਂ ਦਾ ਗੁਣਨਫਲ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਬਿਜਲਈ ਊਰਜਾ ਦੀ ਇਕਾਈ ਵਾਟ ਘੰਟਾ (Wh) ਹੈ। ਜਦੋਂ 1 ਵਾਟ ਸ਼ਕਤੀ ਦਾ ਉਪਯੋਗ 1 ਘੰਟੇ ਤੱਕ ਹੁੰਦਾ ਹੈ ਤਾਂ ਖਪਤ ਹੋਈ ਊਰਜਾ ਇੱਕ ਵਾਟ ਘੰਟਾ ਹੁੰਦੀ ਹੈ। ਬਿਜਲਈ ਊਰਜਾ ਦੀ ਵਪਾਰਿਕ ਇਕਾਈ ਕਿਲੋਵਾਟ ਘੰਟਾ (kWh) ਹੈ ਜਿਸ ਨੂੰ ਸਾਧਾਰਨ ਬੋਲ ਚਾਲ ਵਿੱਚ 'ਯੂਨਿਟ' ਕਹਿੰਦੇ ਹਨ।

= 3.6 xx× 106 ਵਾਟ ਸੈਕਿੰਡ

= 3.6 xxx 106 ਜੂਲ (J)

ਬਹੁਤ ਸਾਰੇ ਲੋਕੀ ਇਹ ਸੋਚਦੇ ਹਨ ਕਿ ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਖਪਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਗਲਤ ਹੈ। ਅਸੀਂ ਬਿਜਲੀ ਬੋਰਡ ਜਾਂ ਬਿਜਲੀ ਕੰਪਨੀ ਨੂੰ ਬਿਜਲਈ ਬਲਬ, ਬਿਜਲਈ ਪੱਖੇ ਅਤੇ ਇੰਜਣ ਆਦਿ ਜਿਹੇ ਬਿਜਲਈ ਯੰਤਰਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਗਤੀ ਦੇਣ ਦੇ ਲਈ ਪ੍ਰਦਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਬਿਜਲਈ ਊਰਜਾ ਦਾ ਭੁਗਤਾਨ ਕਰਦੇ ਹਾਂ। ਅਸੀਂ ਆਪਣੇ ਦੁਆਰਾ ਖਪਤ ਉਰਜਾ ਦੇ ਲਈ ਭੁਗਤਾਨ ਕਰਦੇ ਹਾਂ।

ਉਦਾਹਰਨ 12,12

ਇੱਕ ਬਿਜਲੀ ਬਲਬ 220 V ਦੇ ਜਨਰੇਟਰ ਨਾਲ ਜੋੜਿਆ ਗਿਆ ਹੈ। ਜੇਕਰ ਬਲਬ ਤੋਂ 0.50 A ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਬਲਬ ਦੀ ਸ਼ਕਤੀ ਕੀ ਹੈ?

ਹੱਲ

P = VI

 $= 220 \text{ V} \times 0.50 \text{ A}$

= 110 J/s

= 110 W

ज़ की मार्के।

ਉਦਾਹਰਨ 12,13

400 W ਅੰਕਿਤ ਇੱਕ ਬਿਜਲਈ ਰੈਫਰੀਜਰੇਟਰ 8 ਘੰਟੇ /ਦਿਨ ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ।3.00 ਰੁਪਏ ਪ੍ਤਿ kW h ਦੀ ਦਰ ਨਾਲ ਇਸ ਨੂੰ 30 ਦਿਨ ਚਲਾਉਣ ਦੇ ਲਈ ਊਰਜਾ ਦਾ ਮੁੱਲ ਕੀ ਹੈ?

ਹੱਲ

30 ਦਿਨ ਵਿੱਚ ਰੇਫਰੀਜਰੇਟਰ ਦੁਆਰਾ ਖਪਤ ਕੁੱਲ ਊਰਜਾ = 400 W × 8.0 ਘੰਟੇ/ਦਿਨ × 30 ਦਿਨ = 96000 W h = 96 kW h

ਇਸ ਪ੍ਕਾਰ 30 ਦਿਨ ਰੇਫਰੀਜਰੇਟਰ ਨੂੰ ਚਲਾਉਣ ਵਿੱਚ ਖਪਤ ਕੁੱਲ ਊਰਜਾ ਦਾ ਮੁੱਲ = 96 kW $h \times 3$ ਰੁਪਏ/ kW h = 288.00 ਰੁਪਏ।

ਪ੍ਰਸ਼ਨ

- ਬਿਜਲਈ ਧਾਰਾ ਦੁਆਰਾ ਦਿੱਤੀ ਊਰਜਾ ਦੀ ਦਰ ਦਾ ਨਿਰਧਾਰਨ ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- ਇੱਕ ਬਿਜਲਈ ਮੋਟਰ 220 V ਦੇ ਬਿਜਲਈ ਸਰੋਤ ਤੋਂ 5.0 A ਬਿਜਲਈ ਧਾਰਾ ਲੈਂਦਾ ਹੈ। ਮੋਟਰ ਦੀ ਸ਼ਕਤੀ ਨਿਰਧਾਰਿਤ ਕਰੋ ਅਤੇ 2 ਘੰਟੇ ਵਿੱਚ ਮੀਟਰ ਦੁਆਰਾ ਖਪਤ ਉਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਕਿਸੇ ਚਾਲਕ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਧਾਰਾ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਰਚਨਾ ਕਰਦੀ ਹੈ। ਪਰੰਪਰਾ ਅਨੁਸਾਰ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਪ੍ਵਾਹ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਨੂੰ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਦਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।
- ਬਿਜਲਈ ਧਾਰਾ ਦੀ SI ਇਕਾਈ ਐਮਪੀਅਰ (A) ਹੈ।
- ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਗਤੀ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਅਸੀਂ ਕਿਸੇ ਸੈੱਲ ਜਾਂ ਬੈਟਰੀ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ।ਸੈੱਲ ਆਪਣੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਉਤਪੰਨ ਕਰਦਾ ਹੈ।ਇਸ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਨੂੰ ਵੋਲਟ (V) ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ।
- ਪ੍ਰਤਿਰੋਧ ਇੱਕ ਅਜਿਹਾ ਗੁਣ ਹੈ ਜੋ ਕਿਸੇ ਚਾਲਕ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਪ੍ਰਵਾਹ ਦਾ ਵਿਰੋਧ ਕਰਦਾ ਹੈ। ਇਹ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਮਾਤਰਾ ਨੂੰ ਨਿਯੀਤ੍ਰਿਤ ਕਰਦਾ ਹੈ।ਪ੍ਰਤਿਰੋਧ ਦੀ SI ਇਕਾਈ ਓਹਮ (Ω) ਹੈ।
- ਓਹਮ ਦਾ ਨਿਯਮ: ਕਿਸੇ ਪ੍ਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਉਸ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ ਪ੍ਰੰਤੂ ਸ਼ਰਤ ਇਹ ਹੈ ਕਿ ਪ੍ਤਿਰੋਧਕ ਦਾ ਤਾਪਮਾਨ ਸਮਾਨ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ।
- ਕਿਸੇ ਚਾਲਕ ਦਾ ਪ੍ਰਤਿਰੋਧ ਉਸ ਦੀ ਲੰਬਾਈ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਅਤੇ ਉਸ ਦੀ ਪਰਿਖੇਤਰ ਕਾਟ ਦੇ ਖੇਤਰਫਲ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਸ ਚਾਲਕ ਦੇ ਪਦਾਰਥ ਦੀ ਪ੍ਰਕਿਰਤੀ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਸ ਤੋਂ ਉਹ ਬਣਿਆ ਹੈ।
- ਲੜੀ ਵਿੱਚ ਜੋੜੇ ਬਹੁਤ ਸਾਰੇ ਪ੍ਤਿਰੋਧਕਾਂ ਦਾ ਤੁਲ ਪ੍ਤਿਰੋਧ ਉਹਨਾਂ ਦੇ ਇਕੱਲੇ ਇਕੱਲੇ ਪ੍ਤਿਰੋਧਾਂ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜੇ ਪ੍ਰਤਿਰੋਧਕਾਂ ਦਾ ਉਲਟ ਤੁਲ ਪ੍ਰਤਿਰੋਧ $R_{ ho}$ ਹੇਠ ਲਿਖੇ ਸੰਬੰਧ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ
ਹੈ :

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

ਕਿਸੇ ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚ ਖਪਤ ਜਾਂ ਵਰਤੀ ਗਈ ਊਰਜਾ ਨੂੰ ਇਸ ਪ੍ਕਾਰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ :

$$W = V \times I \times T$$

- ਬਿਜਲਈ ਸ਼ਕਤੀ ਦੀ ਇਕਾਈ ਵਾਟ (W) ਹੈ। ਜਦੋਂ 1A ਬਿਜਲਈ ਧਾਰਾ 1 V ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਤੇ ਪ੍ਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਸਰਕਟ ਵਿੱਚ ਵਰਤੀ ਸ਼ਕਤੀ । ਵਾਟ ਹੁੰਦੀ ਹੈ।
- ਬਿਜਲਈ ਊਰਜਾ ਦੀ ਵਪਾਰਿਕ ਇਕਾਈ ਕਿਲੋਵਾਟ ਘੰਟਾ (kW h) ਹੈ। 1 kW h = 3,600,000 J = 3.6×10⁶ J

ਅਭਿਆਸ

1.	ਪ੍ਰਤਿਰੋਧ R ਦੇ ਕਿਸੇ ਤਾਰ ਦੇ	ਟੁਕੜੇ ਨੂੰ ਪੰਜ ਬਰਾਬਰ ਭ	ਾਗਾਂ ਵਿੱਚ ਕੱਟਿਆ ਗਿ ਅ	ਜ ਹੈ। ਇਹਨਾਂ ਟੁਕੜਿਆਂ ਨੂੰ	ਫਿਰ
	ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜਿਆ ਰਿ				

- (a) 1/25
- (b) 1/5
- (c) 5
- (d) 25

2. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਤੋਂ ਕਿਹੜਾ ਪਦ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਸ਼ਕਤੀ ਨੂੰ ਨਹੀਂ ਦਰਸਾਉਂਦਾ?

(a) PR

- (b) IR2
- (c) VI
- (d) V2/R

 ਕਿਸੇ ਬਿਜਲਈ ਬਲਬ ਉੱਤੇ 220 V ਅਤੇ 100 W ਅੰਕਿਤ ਹੈ। ਜਦੋਂ ਇਸ ਨੂੰ 110V ਉੱਤੇ ਚਾਲੂ ਕਰਦੇ ਹਨ ਤਾਂ ਇਸ ਦੁਆਰਾ ਵਰਤੀ ਸ਼ਕਤੀ ਹੋਵੇਗੀ:

- (a) 100 W
- (b) 75 W
- (c) 50 W
- (d) 25 W

4. ਦੋ ਚਾਲਕ ਤਾਰਾਂ ਜਿਨ੍ਹਾਂ ਦੇ ਪਦਾਰਥ, ਲੰਬਾਈ ਅਤੇ ਵਿਆਸ ਬਰਾਬਰ ਹਨ ਕਿਸੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਜਿਸ ਦੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਉਹੀ ਹੋਵੇ, ਪਹਿਲਾਂ ਲੜੀ ਵਿੱਚ ਅਤੇ ਫਿਰ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜੀਆਂ ਗਈਆਂ। ਲੜੀ ਅਤੇ ਸਮਾਨਾਂਤਰ ਸੈਯੋਗ ਵਿੱਚ ਉਤਪੰਨ ਤਾਪ ਦਾ ਅਨੁਪਾਤ ਹੋਵੇਗਾ :

(a) 1:2

- (b) 2:1
- (c) 1:4

(d) 4:1

5. ਕਿਸੇ ਬਿਜਲੀ ਸਰਕਟ ਵਿੱਚ ਦੋ ਬਿੰਦੂਆਂ ਦੇ ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਮਾਪਣ ਲਈ ਵੋਲਟਮੀਟਰ <mark>ਨੂੰ ਕਿਸ</mark> ਪ੍ਕਾਰ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ?

- 6. ਇੱਕ ਤਾਂਬੇ ਦੀ ਤਾਰ ਦਾ ਵਿਆਸ 0.5 mm ਅਤੇ ਪ੍ਰਤਿਰੋਧਕਤਾ 1.6 ×× 10⁻⁶ Ω m ਹੈ। 10 Ω ਪ੍ਰਤਿਰੋਧ ਦਾ ਪ੍ਰਤਿਰੋਧਕ ਬਣਾਉਣ ਲਈ ਕਿੰਨੀ ਲੰਬੀ ਤਾਰ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ? ਜੇਕਰ ਇਸ ਤੋਂ ਦੁੱਗਣੇ ਵਿਆਸ ਦੀ ਤਾਰ ਲਈ ਜਾਵੇ ਤਾਂ ਪ੍ਰਤਿਰੋਧ ਵਿੱਚ ਕੀ ਅੰਤਰ ਆਵੇਗਾ?
- 7. ਕਿਸੇ ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਤੇ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ V ਦੇ ਭਿੰਨ ਮਾਨਾਂ ਦੇ ਲਈ ਉਸ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਬਿਜਲਈ ਧਾਰਾਵਾਂ

I ਦੇ ਸੰਗਤ ਮਾਨ ਅੱਗੇ ਦਿੱਤੇ ਗਏ ਹਨ :

I (ਐਮਪੀਅਰ) 0.5 1.0 2.0 3.0 4.0

ਂ (ਵੱਲਟ) 1.6 3.4 6.7 10.2 13.2

V ਅਤੇ I ਦੇ ਵਿੱਚ ਗ੍ਰਾਫ ਖਿੱਚ ਕੇ ਇਸ ਪ੍ਰਤਿਰੋਧਕ ਦਾ ਪ੍ਰਤਿਰੋਧ ਗਿਆਤ ਕਰੋ।

- 8. ਕਿਸੇ ਅਗਿਆਤ ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਸਿਰਿਆਂ ਤੇ 12 V ਦੀ ਬੈਟਰੀ ਜੋੜਨ ਤੇ ਸਰਕਟ ਵਿੱਚ 2.5 mA ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਤਿਰੋਧਕ ਦੇ ਪ੍ਰਤਿਰੋਧ ਦੀ ਗਣਨਾ ਕਰੋ।
- 9. 9 V ਦੀ ਬੈਂਟਰੀ ਨੂੰ $0.2~\Omega$, $0.3~\Omega$, $0.4~\Omega$, $0.5~\Omega$ ਅਤੇ $12~\Omega$ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨਾਲ ਲੜੀ ਵਿੱਚ ਜੋੜਿਆ ਗਿਆ ਹੈ। $12~\Omega$ ਦੇ ਪ੍ਰਤਿਰੋਧਕ ਵਿੱਚ ਕਿੰਨੀ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੋਵੇਗੀ?
- 10. 176 Ω ਪ੍ਰਤਿਰੋਧ ਦੇ ਕਿੰਨੇ ਪ੍ਰਤਿਰੋਧਕਾਂ ਨੂੰ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜਿਆ ਜਾਵੇ ਤਾਂ ਕਿ 220 V ਦੇ ਬਿਜਲਈ ਸਰੋਤ ਤੋਂ 5 Α ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੋਵੇ।
- 11. ਇਹ ਦਰਸਾਓ ਕਿ ਤੁਸੀਂ 6 Ωਪ੍ਤਿਰੋਧ ਦੇ ਤਿੰਨ ਪ੍ਤਿਰੋਧਕਾਂ ਨੂੰ ਕਿਸ ਪ੍ਕਾਰ ਜੋੜੋਗੇ ਕਿ ਸੰਯੋਗ ਦਾ ਪ੍ਤਿਰੋਧ : (i) 9 Ω, (ii) 4 Ω ਹੋਵੇ।
- 12. 220 V ਦੀ ਬਿਜਲਈ ਲਾਇਨ ਉੱਤੇ ਉਪਯੋਗ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਬਹੁਤ ਸਾਰੇ ਬਲਬ ਨੂੰ 10 W ਅੰਕਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਜੇਕਰ 220 V ਲਾਇਨ ਵਿੱਚ ਅਨੁਮਾਨਤ ਅਧਿਕਤਮ ਬਿਜਲਈ ਧਾਰਾ 5 A ਹੈ ਤਦ ਇਸ ਲਾਇਨ ਦੀਆਂ ਦੋ ਤਾਰਾਂ ਵਿੱਚ ਕਿੰਨੇ ਬੱਲਬ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜੇ ਜਾ ਸਕਦੇ ਹਨ?
- 13. ਇੱਕ ਬਿਜਲਈ ਭੱਠੀ ਦੀ ਤਪਤ ਪਲੇਟ ਦੀ ਪ੍ਤਿਰੋਧਿਕ ਕੁੰਡਲੀਆਂ A ਅਤੇ B ਦੀਆਂ ਬਣੀਆਂ ਹੋਈਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਰ ਇੱਕ ਦਾ ਪ੍ਤਿਰੋਧ 24 Ω ਹੈ ਇਹਨਾਂ ਨੂੰ ਵੱਖ ਵੱਖ ਲੜੀ ਵਿੱਚ ਜਾਂ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜ ਕੇ ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਇਹ ਭੱਠੀ 220 V ਬਿਜਲਈ ਸਰੋਤ ਨਾਲ ਜੋੜੀ ਜਾਵੇ ਤਾਂ ਤਿੰਨਾਂ ਕੇਸਾਂ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾਵਾਂ ਕੀ ਹਨ?
- 14. ਹੇਠ ਲਿਖੇ ਸਰਕਟਾਂ ਵਿੱਚ ਹਰ ਇੱਕ ਵਿੱਚ 2 Ω ਦੇ ਪ੍ਰਤਿਰੋਧਕ ਦੁਆਰਾ ਖਪਤ ਸ਼ਕਤੀਆਂ ਦੀ ਤੁਲਨਾ ਕਰੋ: (i) 6 V ਦੀ ਬੈਟਰੀ ਨਾਲ ਲੜੀ ਵਿੱਚ ਜੋੜੇ ਗਏ 1 Ω ਅਤੇ 2 Ω ਦੇ ਪ੍ਰਤਿਰੋਧਕ (ii) 4 V ਦੀ ਬੈਟਰੀ ਨਾਲ ਸਮਾਨਾਂਤਰ ਜੋੜੇ ਗਏ 12 Ω ਅਤੇ 12 Ω ਦੇ ਪ੍ਰਤਿਰੋਧਕ।
- 15. ਦੋ ਬਿਜਲਈ ਲੈਂਪ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਤੇ 100 W; 220 V ਅੰਕਿਤ ਹੈ ਅਤੇ ਦੂਜੇ ਤੇ 60 W; 220 V ਹੈ, ਬਿਜਲਈ ਮੁੱਖ ਲਾਇਨ ਨਾਲ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜੇ ਗਏ ਹਨ। ਜੇਕਰ ਬਿਜਲੀ ਦੀ ਪੂਰਤੀ ਦੀ ਵੋਲਟਤਾ 220 V ਹੈ ਤਾਂ ਬਿਜਲੀ ਦੀ ਮੁੱਖ ਲਾਇਨ ਤੋਂ ਕਿੰਨੀ ਧਾਰਾ ਲਈ ਜਾਂਦੀ ਹੈ?
- 16. ਕਿਸ ਵਿੱਚ ਵਧੇਰੇ ਬਿਜਲਈ ਊਰਜਾ ਵਰਤੀ ਜਾਂਦੀ ਹੈ: 250 W ਦਾ ਟੀ. ਵੀ. ਸੈੱਟ ਜੋ ਇੱਕ ਘੰਟੇ ਤੱਕ ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਜਾਂ 1200 W ਦਾ ਟੋਸਟਰ ਜੋ 10 ਮਿੰਟ ਲਈ ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ?
- 17. 8 Ω ਪ੍ਰਤਿਰੋਧ ਦਾ ਇੱਕ ਬਿਜਲਈ ਹੀਟਰ ਬਿਜਲਈ ਮੁੱਖ ਲਾਇਨ ਤੋਂ 2 ਘੰਟੇ ਤੱਕ 15 A ਬਿਜਲਈ <mark>ਧਾਰਾ ਲੈਂਦਾ ਹੈ।</mark> ਹੀਟਰ ਵਿੱਚ ਉਤਪੰਨ ਤਾਪ ਦੀ ਦਰ ਦੀ ਗਣਨਾ ਕਰੋ।
- 18. ਹੇਠ ਲਿਖਿਆਂ ਦੀ ਵਿਆਖਿਆ ਕਰੋ :

- (a) ਬਿਜਲੀ ਲੈਂਪਾਂ ਦੇ ਫਿਲਾਮੈਂਟ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਇੱਕ ਮਾਤਰ ਟੈਗਸਟਨ ਦਾ ਹੀ ਉਪਯੋਗ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- (b) ਬਿਜਲਈ ਤਾਪਨ ਯੰਤਰਾਂ ਜਿਵੇਂ ਕਿ ਬ੍ਰੈੱਡ ਟੋਸਟਰ ਅਤੇ ਬਿਜਲਈ ਪ੍ਰੈੱਸ ਦੇ ਚਾਲਕ ਸ਼ੁੱਧ ਧਾਤੂਆਂ ਦੇ ਸਥਾਨ ਤੇ ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਦੇ ਕਿਉਂ ਬਣਾਏ ਜਾਂਦੇ ਹਨ?
- (с) ਘਰੇਲੂ ਬਿਜਲਈ ਸਰਕਟਾਂ ਵਿੱਚ ਲੜੀ ਸੰਯੋਜਨ ਦਾ ਉਪਯੋਗ ਕਿਉਂ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ?
- (d) ਇੱਕ ਤਾਰ ਦਾ ਪ੍ਰਤਿਰੋਧ ਉਸ ਦੀ ਪਰਿਖੇਤਰ ਕਾਟ ਦੇ ਖੇਤਰਫਲ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨਾਲ ਕਿਸ ਪ੍ਰਕਾਰ ਬਦਲਦਾ ਹੈ?
- (e) ਬਿਜਲੀ ਸੰਚਾਰਣ ਦੇ ਲਈ ਕਾਪਰ ਅਤੇ ਐਲੂਮਿਨੀਅਮ ਦੀਆਂ ਤਾਰਾਂ ਦਾ ਉਪਯੋਗ ਕਿਉਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?

ਅਧਿਆਇ13 ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਚੁੰਬਕੀ ਪ੍ਰਭਾਵ

ਜਲੀ ਦੇ ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਬਿਜਲਈ ਧਾਰਾ ਦੇ ਤਾਪ ਪ੍ਰਭਾਵਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਸੀ। ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਹੋਰ ਪ੍ਰਭਾਵ ਕੀ ਹੋ ਸਕਦੇ ਹਨ? ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਤਾਰ ਚੁੰਬਕ ਦੀ ਤਰ੍ਹਾਂ ਵਿਵਹਾਰ ਕਰਦੀ ਹੈ। ਇਸ ਤੱਥ ਨੂੰ ਦ੍ਰਿੜ ਕਰਨ ਲਈ ਆਓ ਇੱਕ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ 13,1

- ਤਾਂਬੇ ਦੀ ਇੱਕ ਸਿੱਧੀ ਮੋਟੀ ਤਾਰ ਲਓ ਅਤੇ ਇਸ ਨੂੰ ਚਿੱਤਰ
 13.1 ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਬਿੰਦੂ X ਅਤੇ Y ਦੇ ਵਿੱਚ ਰੱਖੋ।
- ਇਸ ਤਾਂਬੇ ਦੀ ਤਾਰ ਦੇ ਨੇੜੇ ਇੱਕ ਛੋਟੀ ਦਿਸ਼ਾ ਸੂਚਕ ਰੱਖੋ। ਇਸ ਦੀ ਸੂਈ ਦੀ ਸਥਿਤੀ ਨੋਟ ਕਰੋ।
- ਪਲੱਗ ਵਿੱਚ ਕੂੰਜੀ ਲਗਾ ਕੇ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਕਰਵਾਓ।
- ਦਿਸ਼ਾ ਸੂਚਕ ਦੀ ਸੂਈ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਪੇਖਣ ਕਰੋ।

ਪਰਿਵਰਤਨਸ਼ੀਲ ਪ੍ਰਤੀਰੋਧ

ਚਿੱਤਰ 13.1 ਧਾਤ ਦੇ ਚਾਲਕ ਵਿੱਚੋਂ ਬਿਜਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਕਰਾਉਣ ਦੇ ਦਿਸ਼ਾ ਸੂਚਕ ਦੀ ਸੂਈ ਵਿਖੇਪਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸੂਈ ਵਿਖੇਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਦਾ ਕੀ ਭਾਵ ਹੈ? ਇਸ ਦਾ ਇਹ ਅਰਥ ਹੈ ਕਿ ਤਾਂਬੇ ਦੀ ਤਾਰ ਵਿੱਚੋਂ ਪ੍ਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਨੇ ਚੁੰਬਕੀ ਪ੍ਭਾਵ ਉਤਪੰਨ ਕੀਤਾ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਬਿਜਲੀ ਅਤੇ ਚੁੰਬਕਤਾ ਇੱਕ ਦੂਜੇ ਨਾਲ ਸੰਬੰਧਿਤ ਹਨ।

ਹੈਂਸ ਕਰਿਸਚਨ ਆਰਸਟੈਡ (1777-1851)

19ਵੀਂ ਸ਼ਤਾਬਦੀ ਦੇ ਮੋਢੀ ਵਿਗਿਆਨੀਆਂ ਵਿੱਚੋਂ ਹੈਂਸ ਕਰਿਸਚਨ ਆਰਸਟੈਂਡ ਨੇ ਬਿਜਲ-ਚੁੰਬਕਤਾ ਸਮਝਾਉਣ ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਈ। ਸੈਨ 1820 ਈਸਵੀ ਵਿੱਚ ਉਹਨਾਂ ਨੇ ਇਤਫਾਕੀਆ ਇਹ ਵੇਖਿਆ ਕਿ ਕਿਸੇ ਧਾਤ ਦੀ ਤਾਰ ਵਿੱਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਕਰਨ ਤੇ ਨੇੜੇ ਰੱਖੀ ਦਿਸ਼ਾ ਸੂਚਕ ਵਿੱਚ ਵਿਖੇਪਨ ਉਤਪੰਨ ਹੋਇਆ। ਆਰਸਟੈਂਡ ਨੇ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਦੇ ਆਧਾਰ ਉੱਤੇ ਇਹ ਸਿੱਧ ਕੀਤਾ ਕਿ ਬਿਜਲੀ ਅਤੇ ਚੁੰਬਕਤਾ ਪਰਸਪਰ ਸੰਬੰਧਿਤ ਘਟਨਾਵਾਂ ਹਨ। ਇਹਨਾਂ ਦੀ ਖੋਜ ਨੇ ਅੱਗੇ ਜਾ ਕੇ ਨਵੀਆਂ-ਨਵੀਆਂ ਤਕਨੀਕਾਂ ਜਿਵੇਂ ਕਿ ਰੇਡੀਓ, ਟੈਲੀਵਿਜ਼ਨ, ਤੰਤੂ – ਪ੍ਰਕਾਸ਼ਕੀ ਆਦਿ ਉਤਪੰਨ ਕੀਤੀਆਂ। ਉਹਨਾਂ ਦੇ ਸਨਮਾਨ ਵਿੱਚ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਤੀਬਰਤਾ ਦੀ ਇਕਾਈ ਦਾ ਨਾਂ ਆਰਸਟੈਂਡ ਰੱਖਿਆ ਗਿਆ ਹੈ।

ਤਦ ਗਤੀਮਾਨ ਚੁੰਬਕਾਂ ਦੇ ਬਿਜਲੀ ਪ੍ਰਭਾਵ ਦੀ ਉਲਟ ਸੰਭਾਵਨਾ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ? ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਚੁੰਬਕੀ ਖੇਤਰ ਅਤੇ ਇਸੇ ਪ੍ਰਕਾਰ ਦੇ ਬਿਜਲ-ਚੁੰਬਕੀ ਪ੍ਰਭਾਵਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਅਸੀਂ ਬਿਜਲ-ਚੁੰਬਕੀ ਅਤੇ ਬਿਜਲੀ ਮੋਟਰਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵੀ ਅਧਿਐਨ ਕਰਾਂਗੇ ਜੋ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਚੁੰਬਕੀ ਪ੍ਰਭਾਵ ਤੇ ਆਧਾਰਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਅਸੀਂ ਬਿਜਲੀ ਜਨਰੇਟਰਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ ਜੋ ਗਤੀਮਾਨ ਚੁੰਬਕਾਂ ਦੇ ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਉੱਤੇ ਆਧਾਰਿਤ ਹਨ।

13.1 ਚੁੰਬਕੀ ਖੇਤਰ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ (Magnetic Field & Field Lines)

ਅਸੀਂ ਇਸ ਤੱਥ ਤੋਂ ਭਲੀ ਭਾਂਤ ਜਾਣੂ ਹਾਂ ਕਿ ਕਿਸੇ ਛੜ ਚੁੰਬਕ ਦੇ ਨੇੜੇ ਲਿਆਉਣ ਤੇ ਦਿਸ਼ਾ ਸੂਚਕ ਦੀ ਸੂਈ ਵਿਖੇਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਵਾਸਤਵ ਵਿੱਚ ਦਿਸ਼ਾ ਸੂਚਕ ਦੀ ਸੂਈ ਇੱਕ ਛੋਟਾ ਛੜ ਚੁੰਬਕ ਹੀ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਦੋਵੇਂ ਸਿਰੇ ਲੱਗਭੱਗ ਉੱਤਰ ਅਤੇ ਦੱਖਣ ਦਿਸ਼ਾਵਾਂ ਵੱਲ ਸੰਕੇਤ ਕਰਦੇ ਹਨ। ਉੱਤਰ ਦਿਸ਼ਾ ਵੱਲ ਸੰਕੇਤ ਕਰਨ ਵਾਲੇ ਸਿਰੇ ਨੂੰ ਉੱਤਰ ਲੱਭਦਾ (North seeking) ਜਾਂ ਉੱਤਰ ਧਰੁਵ ਕਹਿੰਦੇ ਹਨ। ਦੂਜਾ ਸਿਰਾ ਜੋ ਦੱਖਣ ਦਿਸ਼ਾ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ ਉਸ ਨੂੰ ਦੱਖਣ ਭਾਲਦਾ (North seeking) ਜਾਂ ਦੱਖਣ ਧਰੁਵ ਆਖਦੇ ਹਨ। ਵੱਖ ਵੱਖ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਅਸੀਂ ਇਹ ਪ੍ਰੇਖਣ ਕੀਤੇ ਹਨ ਕਿ ਚੁੰਬਕਾਂ ਦੇ ਸਮਜਾਤੀ ਧਰੁਵ ਇੱਕ ਦੂਜੇ ਨੂੰ ਪਰੇ ਧੱਕਦੇ ਹਨ ਅਤੇ ਉਲਟ ਧਰੁਵ ਇੱਕ ਦੂਜੇ ਨੂੰ ਆਪਣੇ ਵੱਲ ਖਿੱਚਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

ਚੁੰਬਕ ਦੇ ਨੇੜੇ ਲਿਆਉਣ ਤੇ ਦਿਸ਼ਾ ਸੂਚਕ ਦੀ ਸੂਈ ਵਿਖੇਪਿਤ ਕਿਉਂ ਹੋ ਜਾਂਦੀ ਹੈ?

ਕਿਰਿਆ 13.2

- ਕਿਸ ਚਿਪਕਾਉਣ ਵਾਲੇ ਪਦਾਰਥ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਡਰਾਇੰਗ ਬੋਰਡ ਉੱਤੇ ਇੱਕ ਚਿੱਟੇ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਲਗਾਓ।
 ਇਸ ਦੇ ਕੇਂਦਰ ਵਿੱਚ ਇੱਕ ਛੜ ਚੁੰਬਕ ਰੱਖ।
 ਇਸ ਚੁੰਬਕ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇੱਕ ਸਮਾਨ ਰੂਪ ਦੇ ਲੋਹ-ਚੂਨ ਛਿੜਕਾਉ (ਚਿੱਤਰ 13.2)। ਇਸ ਕੰਮ ਲਈ ਨਮਕ-ਛਿੜਕਣੀ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- 👊 ਹੁਣ ਬੋਰਡ ਨੂੰ ਸਹਿਜੇ ਸਹਿਜੇ ਟੁਣਕਾਓ।
 - ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ ਕਰਦੇ ਹੋ?

ਚਿੱਤਰ 13.2 ਛੜ ਚੁੰਬਕ ਦੇ ਨੇੜੇ ਲੋਹ ਚੂਨ ਦਾ ਆਪਣੇ ਆਪ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਵਿੱਚ ਸੈੱਟ ਹੋਣਾ।

ਲੋਹ-ਚੂਨ ਆਪਣੇ ਆਪ ਨੂੰ ਚਿੱਤਰ 13.2 ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਪੈਟਰਨ ਵਿੱਚ ਸੈੱਟ ਕਰ ਲੈਂਦਾ ਹੈ। ਲੋਹ-ਚੂਨ ਇਸ ਪ੍ਕਾਰ ਦੇ ਪੈਟਰਨ ਵਿੱਚ ਕਿਉਂ ਸੈੱਟ ਹੁੰਦਾ ਹੈ? ਇਹ ਪੈਟਰਨ ਕੀ ਦਰਸਾਉਂਦਾ ਹੈ? ਚੁੰਬਕ ਆਪਣੇ ਚਾਰੇ ਪਾਸੇ ਦੇ ਖੇਤਰ ਵਿੱਚ ਆਪਣਾ ਪ੍ਰਭਾਵ ਪਾਉਂਦਾ ਹੈ। ਇਸ ਲਈ ਲੋਹ-ਚੂਨ ਇਸ ਬਲ ਨੂੰ ਅਨੁਭਵ ਕਰਦਾ ਹੈ। ਇਸੇ ਬਲ ਦੇ ਕਾਰਨ ਲੋਹ-ਚੂਨ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਪੈਟਰਨ ਵਿੱਚ ਸੈੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਚੁੰਬਕ ਦੇ ਚਾਰੇ ਪਾਸੇ ਦਾ ਇਹ ਖੇਤਰ ਜਿਸ ਵਿੱਚ ਇਸ ਦੇ ਬਲ ਦਾ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਉਹ ਚੁੰਬਕ ਦਾ **ਚੁੰਬਕੀ ਖੇਤਰ** ਅਖਵਾਉਂਦਾ ਹੈ। ਉਹ ਰੇਖਾਵਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਲੋਹ ਚੂਨ ਆਪਣੇ ਆਪ ਸੈੱਟ ਹੋਂ ਜਾਂਦਾ ਹੈ **ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀਆਂ** ਹਨ।

ਕੀ ਕਿਸੇ ਛੜ ਚੁੰਬਕ ਦੇ ਸਾਰੇ ਪਾਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਹੋਰ ਕੋਈ ਢੰਗ ਹੈ? ਵਾਸਤਵ ਵਿੱਚ ਤੁਸੀਂ ਆਪਣੇ ਆਪ ਕਿਸੇ ਛੜ ਚੁੰਬਕ ਦੀਆਂ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਖਿੱਚ ਸਕਦੇ ਹੈ।

ਕਿਰਿਆ 13.3

- ਇੱਕ ਛੜ ਚੁੰਬਕ ਅਤੇ ਇੱਕ ਛੋਟੀ ਦਿਸ਼ਾ (Compass) ਸੂਚਕ ਲਓ।
- ਕਿਸੇ ਚਿਪਕਾਉਣ ਪਦਾਰਥ ਨਾਲ ਡਰਾਇੰਡ ਬੋਰੰਡ ਉੱਤੇ ਚਿਪਕਾਏ ਗਏ ਚਿੱਟੇ ਕਾਗਜ਼ ਦੇ ਕੇਂਦਰ ਵਿੱਚ ਇੱਕ ਚੰਬਕ ਰੱਖੋ।
- . ਚੰਬਕ ਦੀ ਸੀਮਾ ਰੇਖਾ ਖਿੱਚ।
- ਦਿਸ਼ਾ ਸੂਚਕ ਨੂੰ ਚੁੰਬਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਦੇ ਨੌੜੇ ਰੱਖੋ। ਇਹ ਕਿਵੇਂ ਵਿਵਹਾਰ ਕਰਦੀ ਹੈ? ਦਿਸ਼ਾ ਸੂਚਕ ਦਾ ਦੱਖਣੀ ਧਰੁਵ ਚੁੰਬਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ। ਦਿਸ਼ਾ ਸੂਚਕ ਦਾ ਉੱਤਰੀ ਧਰੁਵ ਚੁੰਬਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਤੋਂ ਦੂਰ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ।
- ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਤਿੱਖੀ ਪੈਸਿਲ ਨਾਲ ਕਾਗਜ਼ ਉੱਤੇ ਅੰਕਿਤ ਕਰੋ।
- ਹੁਣ ਦਿਸ਼ਾ ਸੂਚਕ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋਂ ਕਿ ਇਸ ਦਾ ਦੱਖਣੀ ਧਰੁਵ ਉਸ ਸਥਿਤੀ ਉੱਤੇ ਆ ਜਾਵੇਂ ਜਿੱਥੇ ਪਹਿਲਾਂ ਉੱਤਰੀ ਧਰੁਵ ਦੀ ਸਥਿਤੀ ਅੰਕਿਤ ਕੀਤੀ ਸੀ।ਉੱਤਰੀ ਧਰੁਵ ਦੀ ਇਹ ਨਵੀਂ ਸਥਿਤੀ ਨੂੰ ਅੰਕਿਤ ਕਰੋ।
- ਚਿੱਤਰ 13.3 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਚੁੰਬਕ ਦੇ ਦੱਖਣੀ ਧਰੁਵ ਉੱਤੇ ਪਹੁੰਚਣ ਤੱਕ ਇਸ ਕਿਰਿਆ ਨੂੰ ਦਹਰਾਉਂਦੇ ਜਾਓ।
- ਹੁਣ ਕਾਗਜ਼ ਉੱਤੇ ਔਕਿਤ ਬਿੰਦੂਆਂ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਮਿਲਾਓ ਕਿ ਵਕਰ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ। ਇਹ ਵਕਰ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।ਉੱਪਰ ਵਾਲੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਦੁਹਰਾ ਕੇ ਜਿੰਨੀਆਂ ਸੰਭਵ ਹੋ ਸਕੇ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਖਿੱਚੋਂ।ਤੁਹਾਨੂੰ ਚਿੱਤਰ 13.4 ਵਿੱਚ ਵਿਖਾਏ ਜਿਹਾ ਪੈਟਰਨ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ। ਇਹ ਰੇਖਾਵਾਂ ਚੁੰਬਕ ਦੇ ਚਾਰੇ ਪਾਸੇ ਦੇ ਚੁੰਬਕੀ ਖੇਤਰ ਨੂੰ ਦਰਸਾਉਂਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਕਹਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 13.3 ਦਿਸ਼ਾ ਸੂਚਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਖਿੱਚਣਾ

ਚਿੱਤਰ 13.4 ਕਿਸੇ ਛੜ ਚੁੰਬਕ ਦੇ ਸਾਰੇ ਪਾਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ

ਚੁੰਬਕੀ ਖੇਤਰ ਇੱਕ ਅਜਿਹੀ ਰਾਸ਼ੀ ਹੈ ਜਿਸ ਵਿੱਚ ਪਰਿਮਾਣ ਅਤੇ ਦਿਸ਼ਾ ਦੋਵੇਂ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਉਹ ਮੰਨੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਦਿਸ਼ਾ ਸੂਚਕ ਦਾ ਉੱਤਰੀ ਧਰੁਵ ਉਸ ਖੇਤਰ ਵਿੱਚ ਚਲਦਾ ਹੈ। ਇਸ ਲਈ ਪਰੰਪਰਾ ਅਨੁਸਾਰ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਚੁੰਬਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਤੋਂ ਪ੍ਰਗਟ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਦੱਖਣੀ ਧਰੁਵ ਵਿੱਚ ਵਿਲੀਨ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। (ਚਿੱਤਰ 13.4 ਵਿੱਚ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਉੱਤੇ ਅੰਕਿਤ ਤੀਰ ਦੇ ਨਿਸ਼ਾਨ ਵੱਲ ਧਿਆਨ ਦਿਓ।) ਚੁੰਬਕ ਦੇ ਅੰਦਰ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਦੀ ਦਿਸ਼ਾ ਉਸ ਦੇ ਦੱਖਣੀ ਧਰੁਵ ਤੋਂ ਉੱਤਰੀ ਧਰੁਵ ਵੱਲ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਚੁੰਬਕੀ ਰੇਖਾਵਾਂ ਇੱਕ ਬੰਦ ਵਕਰ ਹੁੰਦੀਆਂ ਹਨ।

ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਸਾਪੇਖਿਕ ਪ੍ਰਬਲਤਾ ਨੂੰ ਰੇਖਾਵਾਂ ਦੀ ਨੇੜਤਾ ਦੇ ਦਰਜੇ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।ਜਿੱਥੇ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਅਧਿਕ ਨੇੜੇ ਹੁੰਦੀਆਂ ਹਨ ਉੱਥੇ ਚੁੰਬਕੀ ਖੇਤਰ ਅਧਿਕ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ ਅਰਥਾਤ ਉੱਥੇ ਰੱਖੇ ਕਿਸੇ ਹੋਰ ਚੁੰਬਕ ਦੇ ਧਰੁਵ ਉੱਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਕਾਰਨ ਅਧਿਕ ਬਲ ਕੰਮ ਕਰੇਗਾ (ਚਿੱਤਰ 13.4 ਵੇਖੋ)।

ਦੋ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਕਿਤੇ ਵੀ ਇੱਕ ਦੂਜੇ ਨੂੰ ਨਹੀਂ ਕੱਟਦੀਆਂ। ਜੇਕਰ ਉਹ ਅਜਿਹਾ ਕਰਨ ਤਾਂ ਇਸ ਦਾ ਇਹ ਅਰਥ ਹੋਵੇਗਾ ਕਿ ਕਾਟ ਬਿੰਦੂ ਉੱਤੇ ਦਿਸ਼ਾ ਸੂਚਕ ਨੂੰ ਰੱਖਣ ਨਾਲ ਉਸ ਦੀ ਸੂਈ ਇੱਕੋ ਸਮੇਂ ਦੋ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਸੈਕੇਤ ਕਰੇਗੀ ਜੋ ਸੰਭਵ ਨਹੀਂ ਹੋ ਸਕਦਾ।

13.2 ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਦੇ ਕਾਰਨ ਚੁੰਬਕੀ ਖੇਤਰ (Magnetic field due to a current-carrying conductor)

ਕਿਰਿਆ 13.1 ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੇਖਿਆ ਕਿ ਕਿਸੇ ਧਾਤ ਦੇ ਚਾਲਕ ਵਿੱਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਕਰਨ ਨਾਲ ਉਸ ਦੇ ਚਾਰੇ ਪਾਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਉਤਪੰਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਗਿਆਤ ਕਰਨ ਲਈ ਆਓ ਅਸੀਂ ਇਸ ਕਿਰਿਆ ਨੂੰ ਹੇਠ ਲਿਖੇ ਢੰਗ ਨਾਲ ਕਰਦੇ ਹਾਂ:

ਕਿਰਿਆ 13.4

- ਇੱਕ ਸਿੱਧੀ ਲੰਬੀ ਤਾਂਬੇ ਦੀ ਤਾਰ, 1.5 V ਦੇ ਦੋ ਜਾਂ ਤਿੰਨ ਸੈੱਲ ਅਤੇ ਇੱਕ ਪਲੱਗ ਕੰਜੀ ਲਓ। ਇਹਨਾਂ ਸਭ ਨੂੰ ਚਿੱਤਰ 13.5 (a) ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਲੜੀ ਵਿੱਚ ਜੋੜੋ।
- ਸਿੱਧੇ ਤਾਰ ਨੂੰ ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਉੱਪਰ ਉਸ ਦੀ ਸੂਈ ਦੇ ਸਮਾਨ ਅੰਤਰ ਰੱਖੋ। ਹੁਣ ਪਲੱਗ ਵਿੱਚ ਕੁੰਜੀ ਲਗਾ ਕੇ ਸਰਕਟ ਨੂੰ ਪੂਰਾ ਕਰੋ। ਸੂਈ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਦੇ ਵਿਖੇਪਨ ਦੀ ਦਿਸ਼ਾ ਨੋਟ ਕਰੋ। ਜੇਕਰ ਬਿਜਲੀ ਧਾਰਾ ਚਿੱਤਰ 13.5 (a) ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਦੱਖਣ ਤੋਂ ਉੱਤਰ ਵੱਲ ਪ੍ਰਵਾਹਿਤ ਹੋ ਰਹੀ ਹੈ ਤਾਂ ਦਿਸ਼ਾ ਸੂਚਕ ਦਾ ਉੱਤਰੀ ਧਰੁਵ ਪੂਰਬ ਵੱਲ ਵਿਖੇਪਤ ਹੋਵੇਗਾ।
- ਚਿੱਤਰ 13.5 (b) ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਸਰਕਟ ਵਿੱਚ ਜੁੜੇ ਸੈੱਲਾਂ ਦੇ ਸੰਯੋਗ ਨੂੰ ਪ੍ਰਤਿ ਸਥਾਪਿਤ ਕਰੋ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਤਾਂਬੇ ਦੀ ਤਾਰ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਰਵਾਹ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ ਅਰਥਾਤ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਰਵਾਹ ਦੀ ਦਿਸ਼ਾ ਦੱਖਣ ਤੋਂ ਉੱਤਰ ਵੱਲ ਹੋ ਜਾਵੇਗੀ।

ਚਿੱਤਰ 13.5 ਇੱਕ ਸਰਲ ਬਿਜਲੀ ਸਰਕਟ ਜਿਸ ਵਿੱਚ ਤਾਂਬੇ ਦੀ ਲੰਬੀ ਤਾਰ ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਉੱਪਰ ਅਤੇ ਉਸ ਦੀ ਸੂਈ ਨੂੰ ਸਮਾਨ ਅੰਤਰ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਜਦੋਂ ਤਾਰ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਰਵਾਹ ਦੀ ਦਿਸ਼ਾ ਉਲਟ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਦਿਸ਼ਾ ਸੂਚਕ ਦਾ ਵਿਖੇਪਨ ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋ ਜਾਂਦਾ ਹੈ।

S FIDS S

ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਵਿਖੇਪਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਤੁਸੀਂ ਇਹ ਵੇਖੋਗੇ ਕਿ ਹੁਣ ਸੂਈ ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਅਰਥਾਤ ਪੱਛਮ ਵੱਲ ਵਿਖੇਪਿਤ ਹੋਈ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਬਿਜਲੀ ਧਾਰਾ ਦੁਆਰਾ ਉਤਪੰਨ ਚੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਵੀ ਉਲਟ ਹੋ ਗਈ ਹੈ।

13.2.1 ਸਿੱਧੇ ਚਾਲਕ ਵਿੱਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਕਾਰਨ ਚੂੰਬਕੀ ਖੇਤਰ (Magnetic Field due to a current through a straight Conductor)

ਕਿਸੇ ਚਾਲਕ ਵਿੱਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪਵਾਹਿਤ ਹੋਣ ਨਾਲ ਉਤਪੰਨ ਚੰਬਕੀ ਖੇਤਰ ਦਾ ਪੈਟਰਨ ਕਿਵੇਂ ਨਿਰਧਾਰਿਤ ਹੁੰਦਾ ਹੈ? ਕੀ ਇਹ ਪੈਟਰਨ ਚਾਲਕ ਦੀ ਸ਼ਕਲ ਉੱਤੇ ਨਿਰਭਭ ਕਰਦਾ ਹੈ? ਇਸ ਦੀ ਜਾਂਚ ਅਸੀਂ ਇੱਕ ਪਯੋਗ ਦੁਆਰਾ ਕਰਾਂਗੇ।

ਪਹਿਲਾਂ ਅਸੀਂ ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਸਿੱਧੇ ਚਾਲਕ ਦੇ ਚਾਰੇ ਪਾਸਿਆਂ ਦੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਪੈਟਰਨ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

ਕਿਰਿਆ13.5

- ੂ ਇੱਕ 12 V ਦੀ ਬੈਂਟਰੀ, ਇੱਕ ਪਰਿਵਰਤਨਸ਼ੀਲ ਪ੍ਰਤਿਰੋਧ, 0-5 A ਰੇਜ ਦਾ ਐਮ ਮੀਟਰ, ਇੱਕ ਪਲੱਗ ਕੰਜੀ ਅਤੇ ਇੱਕ ਮੋਟੀ ਲੰਬੀ ਸਿੱਧੀ ਤਾਂਬੇ ਦੀ ਤਾਰ ਲਓ।
- 🥃 ਇੱਕ ਆਇਤਕਾਰ ਕਾਰਡਬੋਰਡ ਦਾ ਟਕੜਾ ਲੈ ਕੇ ਉਸ ਦੇ ਕੇਂਦਰ ਵਿੱਚੋਂ ਅਤੇ ਕਾਰਡਬੋਰਡ ਦੇ ਤਲ ਦੇ ਲੰਬਾਤਮਕ ਇਸ ਮੋਟੀ ਤਾਰ ਨੰ ਲੰਘਾਓ। ਇਹ ਧਿਆਨ ਰੱਖੋਂ ਕਿ ਕਾਰਡਬੋਰਡ ਸਥਿਰ ਰਹੇ, ਉੱਪਰ ਹੇਠਾਂ ਨਾ ਹਿੱਲੇ।
- ਚਿੱਤਰ 13.6 (a) ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਤਾਂਬੇ ਦੀ ਤਾਰ ਨੂੰ ਖੜਵੇਂ ਰਖ ਬਿੰਦਆਂ X ਅਤੇ Y ਦੇ ਵਿੱਚ ਲੜੀ ਵਿੱਚ ਬੈਟਰੀ. ਐਮਮੀਟਰ, ਪਰਿਵਰਤਨਸ਼ੀਲ ਪਤਿਰੋਧ ਅਤੇ ਪਲੱਗ ਨਾਲ ਸੰਯੋਜਿਤ ਕਰੋ।
- ਤਾਰ ਦੇ ਚਾਰੋਂ ਪਾਸੇ ਕਾਰਡਬੋਰਡ ਉੱਤੇ ਕੁੱਝ ਲੋਹ ਚੂਨ ਇੱਕ ਸਮਾਨ ਰਪ ਵਿੱਚ ਛਿੜਕੇ। (ਇਸ ਲਈ ਤੁਸੀਂ ਲਣ ਛਿੜਕਾਊ ਯੰਤਰ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹੋ।)
- ੂ ਪਰਿਵਰਤਨਸ਼ੀਲ ਪ੍ਰਤਿਰੋਧ ਦੇ ਪਰਿਵਰਤਕ ਨੂੰ ਕਿਸੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸਥਿਤੀ ਤੇ ਰੱਖੋ ਅਤੇ ਐਮਮੀਟਰ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦਾ ਮਾਨ ਨੋਟ ਕਰੋ।
- 🍟 ਕੁੰਜੀ ਲਗਾਓ ਤਾਂ ਜੋ ਤਾਂਬੇ ਦੀ ਤਾਰ ਵਿੱਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਲੈਘੇ। ਇਹ ਨਿਸ਼ਚਿਤ ਕਰੋ ਕਿ ਬਿੰਦੂਆਂ X ਅਤੇ Y ਦੇ ਵਿੱਚ ਤਾਂਬੇ ਦੀ ਤਾਰ ਲੰਬਾਤਮਕ ਅਤੇ ਸਿੱਧੀ ਰਹੇ।
- 🍟 ਕਾਰਡਬੋਰਡ ਨੂੰ ਕੁਝ ਸਮੇਂ ਲਈ ਹੌਲੀ-ਹੌਲੀ ਟਣਕਾਓ। ਲੋਹ ਚੂਨ ਦੇ ਪੈਟਰਨ ਦਾ ਪੇਖਣ ਕਰੋ। ਤੁਸੀਂ ਇਹ ਵੇਖੋਗੇ ਕਿ ਲੋਹ ਚਨ ਆਪਣੀ ਸਥਿਤੀ ਬਦਲ ਕੇ ਤਾਂਬੇ ਦੀ ਤਾਰ ਦੇ ਦੁਆਲੇ ਸਮ ਕੇਂਦਰੀ ਚੁੱਕਰਾਂ ਦਾ ਪੈਟਰਨ ਬਣਾਉਂਦਾ ਹੈ। (ਚਿੱਤਰ 13.6)।
- ੂ ਇਹ ਸਮ ਕੇਂਦਰੀ ਚੱਕਰ ਕੀ ਦਰਸਾਉਂਦੇ ਹਨ? ਇਹ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ।

ਚਿੱਤਰ 13,6 (a) ਇੱਕ ਸਿੱਧੀ ਚਾਲਕ ਤਾਰ ਦੇ ਚਾਰੇ ਪਾਸੇ ਦੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀਆਂ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੋਇਆ ਹੋਈ ਸਮ ਕੇਂਦਰੀ ਚੱਕਰਾਂ ਦਾ ਪੈਟਰਨ । ਚੱਕਰਾਂ ਉੱਤੇ ਅੰਕਿਤ ਤੀਰ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਵਿਖਾਉਂਦੇ ਹਨ।(b) ਪਾਪਤ ਪੈਟਨ ਦਾ ਨੇੜੇ ਦਾ ਦਿਸ਼

- ਇਸ ਪ੍ਰਕਾਰ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਕਿਵੇਂ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ? ਚੱਕਰ ਦੇ ਕਿਸੇ ਬਿੰਦੂ (ਜਿਵੇਂ P) ਉੱਤੇ ਦਿਸ਼ਾ ਸੂਚਕ ਰੱਖੋ। ਸੂਈ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਦੀ ਦਿਸ਼ਾ ਬਿਜਲੀ ਧਾਰਾ ਦੁਆਰਾ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਦੀ ਦਿਸ਼ਾ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਸ ਦਿਸ਼ਾ ਨੂੰ ਤੀਰ ਦੁਆਰਾ ਦਰਸਾਓ।
- ਜੇਕਰ ਸਿੱਧੇ ਤਾਰ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਉਲਟਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਕੀ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਦੀ ਦਿਸ਼ਾ ਵੀ ਉਲਟ ਹੋ ਜਾਵੇਗੀ? ਇਸ ਦੀ ਪਰਖ ਕਰੋ।

ਜੇਕਰ ਤਾਂਬੇ ਦੀ ਤਾਰ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰ ਦਈਏ ਤਾਂ ਕਿਸੇ ਦਿੱਤੇ ਬਿੰਦੂ ਉੱਤੇ ਰੱਖੇ ਦਿਸ਼ਾ ਸੂਚਕ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ? ਇਹ ਵੇਖਣ ਲਈ ਤਾਰ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰੋ। ਸਾਨੂੰ ਇਹ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਸੂਈ ਦੇ ਵਿਖੇਪਨ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਵਾਸਤਵ ਵਿੱਚ, ਜਦੋਂ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਵਿਖੇਪਨ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਹ ਸਿੱਟਾ ਨਿਕਲਦਾ ਹੈ ਕਿ ਜਿਵੇਂ ਜਿਵੇਂ ਤਾਰ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਬਿੰਦੂ ਉੱਤੇ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੋ ਜਾਂਦਾਂ ਹੈ।

ਜੇਕਰ ਤਾਂਬੇ ਦੀ ਤਾਰ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਤਾਂ ਨਾ ਬਦਲੇ ਪ੍ਰੰਤੂ ਦਿਸ਼ਾ ਸੂਚਕ ਤਾਂਬੇ ਦੀ ਤਾਰ ਤੋਂ ਪਰੇ ਚਲਿਆ ਜਾਵੇ, ਤਾਂ ਦਿਸ਼ਾ ਸੂਚਕ ਦੇ ਵਿਖੇਪਨ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ? ਇਹ ਵੇਖਣ ਲਈ ਅਸੀਂ ਦਿਸ਼ਾ ਸੂਚਕ ਨੂੰ ਚਾਲਕ ਤਾਰ ਤੋਂ ਦੂਰ ਕਿਸੇ ਸਥਿਰ ਬਿੰਦੂ (ਜਿਵੇਂ Q) ਉੱਤੇ ਰੱਖ ਦਿੰਦੇ ਹਾਂ। ਤੁਸੀਂ ਕੀ ਪਰਿਵਰਤਨ ਵੇਖਦੇ ਹੋ? ਅਸੀਂ ਇਹ ਵੇਖਦੇ ਹਾਂ ਕਿ ਦਿਸ਼ਾ ਸੂਚਕ ਦਾ ਵਿਖੇਪਨ ਘੱਟ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਕਿਸੇ ਚਾਲਕ ਵਿੱਚੋਂ ਪ੍ਰਵਾਹਿਤ ਕੀਤੀ ਗਈ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਕਾਰਨ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਚਾਲਕ ਤੋਂ ਦੂਰ ਜਾਣ ਤੇ ਘਟਦਾ ਹੈ। ਚਿੱਤਰ 13.6 ਤੋਂ ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਜਿਵੇਂ ਜਿਵੇਂ ਬਿਜਲੀ ਵਾਲੀ ਸਿੱਧੀ ਚਾਲਕ ਤਾਰ ਤੋਂ ਦੂਰ ਹਟਦੇ ਜਾਂਦੇ ਹਾਂ, ਉਸ ਦੇ ਚਾਰੋਂ ਪਾਸੇ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਸਮਕੇਂਦਰੀ ਚੱਕਰਾਂ ਦਾ ਸਾਈਜ਼ ਵੱਡਾ ਹੋ ਜਾਂਦਾ ਹੈ।

13.2.2 ਸੱਜਾ-ਹੱਥ ਅੰਗੂਠਾ ਨਿਯਮ (Right-Hand Thumb Rule)

ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਲਿਜਾ ਰਹੇ ਚਾਲਕ ਨਾਲ ਸੰਬੰਧਿਤ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਗਿਆਤ ਕਰਨ ਦਾ ਸਰਲ ਢੰਗ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ।

> ਕਲਪਨਾ ਕਰੋ ਕਿ ਤੁਸੀਂ ਆਪਣੇ ਸੱਜੇ ਹੱਥ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਲੰਘ ਰਹੇ ਚਾਲਕ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਪਕੜਿਆ ਹੋਇਆ ਹੈ ਕਿ ਤੁਹਾਡਾ ਅੰਗੂਠਾ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸੰਕੇਤ ਕਰਦਾ ਹੈ, ਤਾਂ ਤੁਹਾਡੀਆਂ ਉਂਗਲੀਆਂ ਚਾਲਕ ਦੇ ਚਾਰੋਂ ਪਾਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀਆਂ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਪਟੀਆਂ ਹੋਣਗੀਆਂ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 13.7 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਨੂੰ ਸੱਜਾ ਹੱਥ ਅੰਗੂਠਾ* ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 13,7 ਸੱਜਾ ਹੱਥ ਅੰਗੁਠਾ ਨਿਯਮ

ਉਦਾਹਰਨ 13,1

ਕਿਸੇ ਖਿਤਿਜੀ ਪਾਵਰ ਲਾਇਨ ਵਿੱਚ ਪੂਰਵ ਤੋਂ ਪੱਛਮ ਦਿਸ਼ਾ ਵੱਲ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਹੋ ਰਹੀ ਹੈ। ਇਸ ਦੇ ਠੀਕ ਹੇਠਾਂ ਦੇ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਅਤੇ ਠੀਕ ਉੱਪਰਦੇ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਕੀ ਹੈ?

 ਇਸ ਨੂੰ ਮੈਕਸਵੇਲ ਦਾ ਕਾਰਕ ਸਕਰੂ ਨਿਯਮ ਵੀ ਕਹਿੰਦੇ ਹਨ।ਜੇਕਰ ਅਸੀਂ ਇਹ ਵਿਚਾਰ ਕਰੀਏ ਕਿ ਅਸੀਂ ਕਿਸੇ ਕਾਰਕ ਸਕਰੂ ਨੂੰ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਅੱਗੇ ਵਧਾ ਰਹੇ ਹਾਂ, ਤਾਂ ਕਾਰਕਸਕਰੂ ਦੀ ਘੁੰਮਣ ਦੀ ਦਿਸ਼ਾ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਹੁੰਦੀ ਹੈ। ਬਿਜਲੀ ਧਾਰਾ ਪੂਰਬ ਤੋਂ ਪੱਛਮ ਵੱਲ ਪ੍ਰਵਾਹਿਤ ਹੋ ਰਹੀ ਹੈ।ਸੱਜਾ ਹੱਥ ਅੰਗੂਠਾ ਨਿਯਮ ਨੂੰ ਲਾਗੂ ਕਰਨ ਤੇ ਸਾਨੂੰ ਤਾਰ ਦੇ ਹੇਠਾਂ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਉੱਤਰ ਤੋਂ ਦੱਖਣ ਵੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।ਤਾਰ ਦੇ ਠੀਕ ਉੱਪਰ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਦੱਖਣ ਤੋਂ ਉੱਤਰ ਵੱਲ ਹੈ।

ਪ੍ਰਸ਼ਨ

- 1. ਕਿਸੇ ਛੜ ਚੁੰਬਕ ਦੇ ਚਾਰੋਂ ਪਾਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਖਿੱਚੋ।
- ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਦੇ ਗੁਣਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ।

to Della E

ਦੋ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਇੱਕ ਦੂਜੇ ਨੂੰ ਕਿਉਂ ਨਹੀਂ ਕੱਟਦੀਆਂ?

13.2.3 ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਗੋਲਾਕਾਰ ਲੂਪ ਕਾਰਨ ਚੁੰਬਕੀ ਖੇਤ (Magnetic Field due to a current through a circular loop)

ਹੁਣ ਤੀਕ ਅਸੀਂ ਕਿਸੇ ਸਿੱਧੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਦੇ ਕਾਰਨ ਉਸ ਦੇ ਚਾਰੇ ਪਾਸੇ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਦਾ ਪੈਟ੍ਰਨ ਵੇਖਿਆ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਇਸ ਤਾਰ ਨੂੰ ਮੋੜ ਕੇ ਇੱਕ ਗੋਲਾਕਾਰ ਲੂਪ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫੇਰ ਉਸ ਵਿੱਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਕਰਾਉਂਦੇ ਹਾਂ। ਤਦ ਇਸ ਦੁਆਰਾ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਕਿਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਦਿਸਣਗੀਆਂ? ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਦੇ ਕਾਰਨ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਉਸ ਤੋਂ ਦੂਰੀ ਦੇ ਉਲਟਕ੍ਰਮ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਲੂਪ ਦੇ ਹਰ ਇੱਕ ਬਿੰਦੂ ਤੇ ਉਸ ਦੇ ਚਾਰੇ ਪਾਸੇ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਸਮਕੇਂਦਰੀ ਚੱਕਰਾਂ ਦਾ ਆਕਰ ਤਾਰ ਤੋਂ ਦੂਰ ਜਾਣ ਨਾਲ ਨਿਰੰਤਰ ਵੱਡਾ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 13.8)। ਜਿਉਂ ਹੀ ਅਸੀਂ ਗੋਲਾਕਾਰ ਲੂਪ ਦੇ ਕੇਂਦਰ ਉੱਤੇ ਪਹੁੰਚਦੇ ਹਾਂ ਇਹਨਾਂ ਵੱਡੇ ਚੱਕਰਾਂ ਦੀਆਂ ਚਾਪਾਂ ਸਰਲ ਰੇਖਾਵਾਂ ਜਿਹੀਆਂ ਪ੍ਰਤੀਤ ਹੋਣ ਲਗਦੀਆਂ ਹਨ। ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਤਾਰ ਦੇ ਹਰ ਇੱਕ ਬਿੰਦੂ ਤੋਂ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਲੂਪ ਦੇ ਕੇਂਦਰ ਤੇ ਸਰਲ ਰੇਖਾ ਜਿਹੀਆਂ ਪ੍ਰਤੀਤ ਹੋਣ ਲਗਦੀਆਂ ਹਨ। ਸੱਜਾ ਹੱਥ ਅੰਗੂਠਾ

ਨਿਯਮ ਲਾਗੂ ਕਰਕੇ ਇਸ ਗੱਲ ਦੀ ਆਸਾਨੀ ਨਾਲ ਜਾਂਚ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਕਿ ਤਾਰ ਦਾ ਹਰ ਇੱਕ ਭਾਗ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਵਿੱਚ ਯੋਗਦਾਨ ਦਿੰਦਾ ਹੈ ਅਤੇ ਲੂਪ ਦੇ ਅੰਦਰ ਸਾਰੀਆਂ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਤਾਰ ਦੇ ਕਾਰਨ ਕਿਸੇ ਦਿੱਤੇ ਬਿੰਦੂ ਤੇ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਉੱਤੇ ਸਿੱਧਾ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਲਈ ਜੇਕਰ ਸਾਡੇ ਕੋਲ n ਫੇਰਿਆ ਦੀ ਕੋਈ ਕੁੰਡਲੀ ਹੋਵੇ ਤਾਂ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਮਾਤਰਾ ਇਕੱਲੇ ਫੇਰੇ ਦੁਆਰਾ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ n ਗੁਣਾ ਅਧਿਕ ਪ੍ਰਬਲ ਹੋਵੇਗੀ। ਇਸ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਪ੍ਰਤਿ ਇੱਕ ਫੇਰੇ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਰਵਾਹ ਦੀ ਦਿਸ਼ਾ ਸਮਾਨ ਹੈ ਇਸ ਲਈ ਵੱਖ-ਵੱਖ ਫੇਰਿਆਂ ਦੇ ਚੁੰਬਕੀ ਖੇਤਰ ਜੁੜ ਜਾਂਦੇ ਹਨ।

ਚਿੱਤਰ 13.8 ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਲੂਪ ਦੇ ਕਾਰਨ ਉਤਪੰਨ ਚੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ

ਚਿੱਤਰ 13,9 ਬਿਜਲਈ ਧਾਰਾ ਵਾਲੀ ਗੋਲਾਕਾਰ ਕੁੰਡਲੀ ਦੁਆਰਾ ਉਤਪੰਨ ਚੰਬਕੀ ਖੇਤਰ

ਕਿਰਿਆ 13.6

- ਇੱਕ ਅਜਿਹਾ ਆਇਤਾਕਾਰ ਕਾਰਡਬੋਰਡ ਲਓ ਜਿਸ ਵਿੱਚ ਦੋ ਛੇਕ ਹੋਣ ਇੱਕ ਅਜਿਹੀ ਗੋਲਾਕਾਰ ਕੁੰਡਲੀ ਲਓ ਜਿਸ ਵਿੱਚ ਫੇਰਿਆਂ ਦੀ ਸੰਖਿਆ ਕਾਫੀ ਅਧਿਕ ਹੋਵੇਂ ਅਤੇ ਉਸ ਨੂੰ ਕਾਰਡਬੋਰਡ ਦੇ ਤਲ ਦੇ ਲੰਬਾਤਕਮ ਲਗਾਓ।
- ਚਿੱਤਰ 13.9 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਕੁੰਡਲੀ ਦੇ ਸਿਰਿਆਂ ਨੂੰ ਲੜੀ
 ਵਿੱਚ ਬੈਟਰੀ, ਇੱਕ ਕੁੰਜੀ ਅਤੇ ਰੀਓਸਟੈਟ ਨਾਲ ਜੋੜੋ।
- 🛾 ਕਾਰਡਬੋਰਡ ਉੱਤੇ ਲੋਹ-ਚੂਨ ਇੱਕ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਵਿਛਾਓ।
- 🍙 ਕੁੰਜੀ ਲਗਾ ਕੇ ਸਰਕਟ ਪੂਰਾ ਕਰੋ।
- ਕਾਰਡਬੋਰਡ ਨੂੰ ਕੁਝ ਸਮੇਂ ਲਈ ਸਹਿਜੇ, ਸਹਿਜੇ ਟੁਣਕਾਓ। ਕਾਰਡ ਬੋਰਡ ਉੱਤੇ ਜੋ ਪੈਟਨ ਬਣਦਾ ਹੈ ਉਸ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।

13.2.4 ਸੋਲੀਨਾਇਡ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਕਾਰਨ ਚੁੰਬਕੀ ਖੇਤਰ

(Magnetic Field due to a current in a solenoid)

ਸੋਲੀਨਾਇਡ ਦੇ ਅੰਦਰ ਪ੍ਰਬਲ ਚੁੰਬਕੀ ਖੇਤਰ ਦਾ ਉਪਯੋਗ ਕਿਸੇ ਚੁੰਬਕੀ ਪਦਾਰਥ, ਜਿਵੇਂ ਕਿ ਨਰਮ ਲੋਹੇ, ਨੂੰ ਸੋਲੀਨਾਇਡ ਦੇ ਅੰਦਰ ਰੱਖ ਕੇ ਚੁੰਬਕ ਬਣਾਉਣ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਚਿੱਤਰ 13. 11)। ਇਸ ਪ੍ਰਕਾਰ ਬਣੇ ਚੁੰਬਕ ਨੂੰ ਬਿਜਲ ਚੁੰਬਕ ਕਹਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 13,10 ਕਿਸੇ ਬਿਜਲਈ ਧਾਰਾ ਵਾਲੇ ਸੋਲੀਨਾਇਡ ਦੇ ਅੰਦਰ ਅਤੇ ਉਸ ਦੇ ਚਾਰੇ ਪਾਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀਆਂ ਖੇਤਰੀ ਰੇਖਾਵਾਂ

ਚਿੱਤਰ 13.11 ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਸੋਲੀਨਾਇਡ ਦਾ ਉਪਯੋਗ ਉਸ ਦੇ ਅੰਦਰ ਰੱਖੀ ਸਟੀਲ ਦੀ ਛੜ ਨੂੰ ਚੁੰਬਕਿਤ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ – ਇੱਕ ਬਿਜਲ – ਚੁੰਬਕ

ਪਸ਼ਨ

 ਮੇਜ਼ ਦੇ ਤਲ ਤੇ ਪਏ ਤਾਰ ਦੇ ਗੋਲਾਕਾਰ ਲੂਪ ਤੇ ਵਿਚਾਰ ਕਰੋ।ਮੰਨ ਲਓ ਇਸ ਲੂਪ ਵਿੱਚ ਕਲਾਕ ਵਾਈਜ਼ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੋ ਰਹੀ ਹੈ। ਸੱਜੇ ਹੱਥ ਅੰਗੂਠਾ ਨਿਯਮ ਲਾਗੂ ਕਰਕੇ ਲੂਪ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਗਿਆਤ ਕਰੋ।

- 2. ਕਿਸੇ ਦਿੱਤੇ ਗਏ ਖੇਤਰ ਵਿੱਚ ਚੁੰਬਕੀ ਖੇਤਰ ਇੱਕ ਸਮਾਨ ਹੈ। ਇਸ ਨੂੰ ਵਿਖਾਉਣ ਲਈ ਰੇਖਾ ਚਿੱਤਰ ਖਿੱਚੋ।
- 3. ਠੀਕ ਵਿਕਲਪ ਚੁਣੋ :

ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਸਿੱਧੀ, ਲੰਬੀ ਸੋਲੀਨਾਇਡ ਦੇ ਅੰਦਰ ਚੁੰਬਕੀ ਖੇਤਰ :

- (a) ਜ਼ੀਰ ਹੁੰਦਾ ਹੈ।
- (b) ਇਸ ਦੇ ਸਿਰੇ ਵੱਲ ਜਾਣ ਨਾਲ ਘਟਦਾ ਹੈ।
- (c) ਇਸ ਦੇ ਸਿਰੇ ਵੱਲ ਜਾਣ ਨਾਲ ਵਧਦਾ ਹੈ।
- (d) ਸਾਰੇ ਬਿੰਦੂਆਂ ਉੱਤੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

13.3 ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਉੱਤੇ ਬਲ (Force on a Current Carrying Conductor in a Managnetic field

ਅਸੀਂ ਇਹ ਸਿੱਖਿਆ ਹੈ ਕਿ ਕਿਸੇ ਚਾਲਕ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਚੁੰਬਕੀ ਖੇਤਰ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਪੈਦਾ ਚੁੰਬਕੀ ਖੇਤਰ ਇਸ ਚਾਲਕ ਦੇ ਨੇੜੇ ਰੱਖੇ ਕਿਸੇ ਚੁੰਬਕ ਉੱਤੇ ਬਲ ਲਗਾਉਂਦਾ ਹੈ। ਫਰਾਂਸੀਸੀ ਵਿਗਿਆਨਿਕ ਆਂਦਰੇ ਮੈਰੀ ਐਮਪੀਅਰ (1775-1836) ਨੇ ਇਹ ਵਿਚਾਰ ਪ੍ਰਗਟ ਕੀਤੇ ਕਿ ਚੁੰਬਕ ਨੂੰ ਵੀ ਬਿਜਲੀ ਪ੍ਵਾਹਿਤ ਚਾਲਕ ਉੱਤੇ ਮਾਤਰਾ ਵਿੱਚ ਬਰਾਬਰ ਪ੍ਰੰਤੂ ਦਿਸ਼ਾ ਵਿੱਚ ਵਿਪਰੀਤ ਬਲ ਲਗਾਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਉੱਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਕਾਰਨ ਲੱਗਣ ਵਾਲੇ ਬਲ ਨੂੰ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਰਿਆ 13.7

- ਐਲੂਮਿਨੀਅਮ ਦੀ ਇੱਕ ਛੋਟੀ ਛੜ (ਲੱਗਭੱਗ 5 cm ਲੰਬੀ) ਲਓ। ਚਿੱਤਰ 13.12 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇਸ ਛੜ ਨੂੰ ਦੋ ਜੋੜਕ ਤਾਰਾਂ ਦੁਆਰਾ ਕਿਸੇ ਸਟੈਂਡ ਵਿੱਚ ਖਿਤਿਜ਼ਕ ਲਟਕਾਓ।
- ਇੱਕ ਪ੍ਰਬਲ ਨਾਲ ਚੁੰਬਕ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋ ਕਿ ਛੜ ਨਾਲ-ਚੁੰਬਕ ਦੇ ਦੋ ਧਰੁਵਾਂ ਵਿੱਚ ਹੋਵੇ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਉੱਪਰ ਨੂੰ ਹੋਵੇ। ਅਜਿਹਾ ਕਰਨ ਲਈ ਨਾਲ ਚੁੰਬਕ ਦਾ ਉੱਤਰੀ ਧਰੁਵ ਐਲੂਮਿਨੀਅਮ ਦੀ ਛੜ ਤੋਂ ਖੜੇ ਰੁਖ ਹੇਠਾਂ ਅਤੇ ਦੱਖਣੀ ਧਰੁਵ ਖੜੇ ਰੁਖ ਉੱਪਰ ਰੱਖੋਂ (ਚਿੱਤਰ 13.12)।
- ਐਲੂਮਿਨੀਅਮ ਛੜ ਨੂੰ ਇੱਕ ਬੈਟਰੀ, ਇੱਕ ਕੂੰਜੀ ਅਤੇ ਇੱਕ ਰੀਓਸਟੈਟ ਐਲੂਮਿਨੀਅਮ ਛੜ ਨਾਲ ਲੜੀ ਵਿੱਚ ਜੋੜੋ।
- ਐਲੂਮਿਨੀਅਮ ਛੜ ਵਿੱਚ ਸਿਰੇ В ਤੋਂ А ਦੇ ਵੱਲ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਕਰੋ।
- ੂਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ? ਅਸੀਂ ਇਹ ਵੇਖਦੇ ਹਾਂ ਕਿ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਹੁੰਦੇ ਹੀ ਛੜ ਖੱਬੇ ਪਾਸੇ ਦਿਸ਼ਾ ਵੱਲ ਵਿਸਥਾਪਿਤ ਹੁੰਦੀ ਹੈ।
- ਹੁਣ ਛੜ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਉਲਟ ਕਰ ਦਿਓ ਅਤੇ ਛੜ ਦੇ ਵਿਸਥਾਪਨ ਹੋਣ ਦੀ ਦਿਸ਼ਾ ਨੋਟ ਕਰੋ। ਹੁਣ ਇਹ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਵਿਸਥਾਪਿਤ ਹੁੰਦੀ ਹੈ।
- ੂ ਛੜ ਵਿਸਥਾਪਿਤ ਕਿਉਂ ਹੁੰਦੀ ਹੈ?

ਚਿੱਤਰ 13.12 ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਛੜ AB ਆਪਣੀ ਲੰਬਾਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਲੰਬਾਤਮਕ ਇੱਕ ਬਲ ਦਾ ਅਨੁਭਵ ਕਰਦੀ ਹੈ।

ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਛੜ ਦੇ ਵਿਸਥਾਪਨ ਤੋਂ ਸਾਨੂੰ ਇਹ ਸੰਕੇਤ ਮਿਲਦਾ ਹੈ ਕਿ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਰੱਖਣ ਨਾਲ ਐਲੂਮਿਨੀਅਮ ਦੀ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਛੜ ਉੱਤੇ ਇੱਕ ਬਲ ਲਗਦਾ ਹੈ ਅਤੇ ਇਹ ਵੀ ਸੰਕੇਤ ਮਿਲਦਾ ਹੈ ਕਿ ਚਾਲਕ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਉਲਟਣ ਨਾਲ ਬਲ ਦੀ ਦਿਸ਼ਾ ਉਲਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨਾਲ ਇਹ ਪ੍ਦਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ ਕਿ ਚਾਲਕ ਉੱਤੇ ਲੱਗ ਰਹੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਦੋਵਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਛੜ ਵਿੱਚ ਵਿਸਥਾਪਨ ਉਸ ਸਮੇਂ ਅਧਿਕਤਮ (ਭਾਵ ਛੜ ਉੱਤੇ ਲੱਗ ਰਹੇ ਬਲ ਦੀ ਮਾਤਰਾ ਉੱਚਤਮ) ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਦੇ ਲੰਬਾਤਮਕ ਹੁੰਦੀ ਹੈ।ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਚਾਲਕ ਤੇ ਲੱਗ ਰਹੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪਤਾ ਅਸੀਂ ਇੱਕ ਸਰਲ ਨਿਯਮ ਦੁਆਰਾ ਲਗਾ ਸਕਦੇ ਹਾਂ।

ਕਿਰਿਆ 13.7 ਵਿੱਚ, ਅਸੀਂ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਆਪਸ ਵਿੱਚ ਲੰਬਾਤਮਕ ਰੱਖ ਕੇ ਵਿਚਾਰ ਕੀਤਾ ਸੀ ਅਤੇ ਇਹ ਵੇਖਿਆ ਕਿ ਚਾਲਕ ਉੱਤੇ ਲੱਗਦੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਇਹਨਾਂ ਦੋਵਾਂ ਦੇ ਲੰਬਾਤਮਕ ਹੈ। ਇਹਨਾਂ ਤਿੰਨਾਂ ਦਿਸ਼ਾਵਾਂ ਦੀ ਵਿਆਖਿਆ, ਇੱਕ ਸਰਲ

ਭੁੰਬਕੀ ਖੇਤਰ ਭੁੰਬਕੀ ਖੇਤਰ ਅੰਗੂਠਾ ਗਤੀ ਬਿਜਲਈ ਧਾਰਾ ਬੁਲ, ਗਤੀ

ਚਿੱਤਰ 13.13 ਫਲੇਮਿੰਗ ਦਾ ਖੱਬਾ ਹੱਥ ਨਿਯਮ

ਨਿਯਮ ਜਿਸ ਨੂੰ ਫਲੇਮਿੰਗ ਦਾ ਖੱਬਾ ਹੱਥ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ, ਦੁਆਰਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ, ਆਪਣੇ ਖੱਬੇ ਹੱਥ ਦੀ ਪਹਿਲੀ ਉਂਗਲੀ, ਅੰਗੂਠੇ ਅਤੇ ਵਿਚਕਾਰਲੀ ਉਂਗਲੀ ਨੂੰ ਇਸ ਪ੍ਕਾਰ ਫੈਲਾਓ ਕਿ ਇਹ ਤਿੰਨੋਂ ਇੱਕ ਦੂਜੇ ਦੇ ਲੰਬ ਰੂਪ ਵਿੱਚ ਹੋਣ। ਜੇਕਰ ਪਹਿਲੀ ਉਂਗਲੀ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ, ਵਿਚਕਾਰਲੀ ਉਂਗਲੀ ਚਾਲਕ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਸੰਕੇਤ ਕਰਦੀ ਹੈ ਤਾਂ ਅੰਗੂਠਾ ਚਾਲਕ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਜਾਂ ਚਾਲਕ ਉੱਤੇ ਲੱਗੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਸੰਕੇਤ ਕਰੇਗਾ।

ਬਿਜਲੀ ਦੀ ਮੋਟਰ, ਬਿਜਲੀ ਜਰਨੇਟਰ, ਲਾਊਡ ਸਪੀਕਰ, ਮਾਈਕਰੋਫੋਨ ਅਤੇ ਬਿਜਲੀ ਮਾਪਣ ਵਾਲੇ ਯੰਤਰ ਕੁੱਝ ਅਜਿਹੇ ਯੰਤਰ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ

ਦਾ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ। ਅੱਗੇ ਦੇ ਕੁੱਝ ਸੈਕਸ਼ਨਾਂ ਵਿੱਚ ਅਸੀਂ ਬਿਜਲੀ ਮੋਟਰਾਂ ਅਤੇ ਬਿਜਲਈ ਜਰਨੇਟਰਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਧਿਅਨ ਕਰਾਂਗੇ।

ਉਦਾਹਰਨ 13,2

ਚਿੱਤਰ 13.14 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਕੋਈ ਇਲੈੱਕਟ੍ਰਾਨ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਖੇਤਰ ਦੀ ਲੰਬ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ। ਇਲੈੱਕਟ੍ਰਾਨ ਉੱਤੇ ਲੱਗ ਰਹੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਹੈ :

ਚਿੱਤਰ 13.14

- (a) ਸੱਜੇ ਪਾਸੇ
- (b) ਖੱਬੇ ਪਾਸੇ
- (c) ਕਾਗਜ਼ ਤੋਂ ਬਾਹਰ ਵੱਲ ਆਉਂਦੇ ਹੋਏ
- (d) ਕਾਗਜ਼ ਤੋਂ ਅੰਦਰ ਵੱਲ ਜਾਂਦੇ ਹੋਏ।

ਜਲਮਾ ਵਿਸ਼ਾ

ਉੱਤਰ ਵਿਕਲਪ (d) ਹੈ। ਫਲੇਮਿੰਗ ਦੇ ਖੱਬੇ ਹੱਥ ਨਿਯਮ ਅਨੁਸਾਰ ਬਲ ਦੀ ਦਿਸ਼ਾ ਚੁੰਬਕੀ ਖੇਤਰ ਅਤੇ ਬਿਜਲੀ ਧਾਰਾ ਦੋਨਾਂ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਦੀ ਲੰਬ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਯਾਦ ਕਰੋ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਇਲੈੱਕਟ੍ਰਾਨ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਵਿਪਰੀਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਬਲ ਦੀ ਦਿਸ਼ਾ ਕਾਗਜ਼ ਵਿੱਚ ਅੰਦਰ ਵੱਲ ਜਾਂਦੇ ਹੋਏ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਕਿਸੇ ਪ੍ਰੋਟਾਨ ਦਾ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਗੁਣ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਸੁਤੰਤਰ ਗਤੀ ਕਰਦੇ ਸਮੇਂ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ? (ਇੱਥੇ ਇੱਕ ਤੋਂ ਵੱਧ ਉੱਤਰ ਹੋ ਸਕਦੇ ਹਨ।)
 - (a) ਪੁੰਜ, (b) ਚਾਲ (c) ਵੇਗ (d) ਮੌਮੈਂਟਮ
- 2. ਕਿਰਿਆ 13.7 ਵਿੱਚ ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਛੜ AB ਦਾ ਵਿਸਥਾਪਨ ਕਿਸ ਪ੍ਕਾਰ ਪ੍ਰਭਾਵਿਤ ਹੋਵੇਗਾ ਜੇਕਰ: (i) ਛੜ AB ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਵਿੱਚ ਵਾਧਾ ਹੋ ਜਾਵੇ। (ii) ਵਾਧਾ ਇੱਕ ਪ੍ਰਬਲ ਨਾਲ ਚੁੰਬਕ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਵੇ। (iii) ਛੜ AB ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਵਾਧਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ।
- ਪੱਛਮ ਦੇ ਵੱਲ ਪਰਖੇਪਿਤ ਕੋਈ ਧਨ ਚਾਰਜਿਤ ਕਣ (ਐਲਫਾ ਕਣ) ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੁਆਰਾ ਉੱਤਰ ਵੱਲ ਵਿਖੇਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਹੈ:
 - (a) ਦੱਖਣ ਵੱਲ (b) ਪੂਰਬ ਵੱਲ (c) ਹੇਠਾਂ ਵੱਲ (d) ਉੱਪਰ ਵੱਲ

^

ਦਵਾਈਆਂ ਵਿੱਚ ਚੰਬਕਤਾ

ਬਿਜਲਈ ਧਾਰਾ ਸਦਾ ਚੁੰਬਕੀ ਖੇਤਰ ਉਤਪੰਨ ਕਰਦੀ ਹੈ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਸਾਡੇ ਸਰੀਰ ਦੀਆਂ ਨਾੜੀ ਸੈੱਲਾਂ ਦੇ ਨਾਲ ਚੱਲਣ ਵਾਲੀਆਂ ਦੁਰਬਲ ਆਇਨ ਧਾਰਾਵਾਂ ਵੀ ਚੁੰਬਕੀ ਖੇਤਰ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ। ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਸਪਰਸ਼ ਕਰਦੇ ਹਾਂ ਸਾਡੀਆਂ ਨਾੜੀਆਂ ਇੱਕ ਬਿਜਲੀ ਚਾਰਜ ਉਸ ਪੇਸ਼ੀ ਤੱਕ ਲੈ ਜਾਂਦੀਆਂ ਹਨ ਜਿਸ ਦੀ ਅਸੀਂ ਵਰਤੋਂ ਕਰਨੀ ਹੈ। ਇਹ ਚਾਰਜ ਇੱਕ ਅਸਥਾਈ ਚੁੰਬਕੀ ਖੇਤਰ ਪੈਦਾ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਹ ਖੇਤਰ ਬਹੁਤ ਕਮਜੋਰ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਿਥਵੀ ਦੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉਸ ਦੇ ਇੱਕ ਅਰਬਵੇਂ ਭਾਗ ਦੇ ਬਰਾਬਰ ਹੁੰਦੇ ਹਨ। ਮਾਨਵ ਸਰੀਰ ਦੇ ਦੋ ਮੁੱਖ ਭਾਗ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਚੁੰਬਕੀ ਖੇਤਰ ਦਾ ਪੈਦਾ ਹੋਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ, ਉਹ ਦਿਲ ਅਤੇ ਦਿਮਾਗ ਹਨ। ਸਰੀਰ ਦੇ ਅੰਦਰ ਚੁੰਬਕੀ ਖੇਤਰ ਸਰੀਰ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਭਾਗਾਂ ਦੇ ਪ੍ਤਿਬਿੰਬ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਆਧਾਰ ਬਣਦਾ ਹੈ। ਇਹ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਤਕਨੀਕ ਚੁੰਬਕੀ ਅਨੁਦਾਨ ਪ੍ਤਿਬਿੰਬ (Magnetic Resonance Imaging (MRI)) ਕਹਿੰਦੇ ਹਨ, ਦੀ ਵਰਤੋਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਡਾਕਟਰੀ ਜਾਂਚ ਵਿੱਚ ਇਹਨਾਂ ਪ੍ਰਤਿਬਿੰਬਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਡਾਕਟਰੀ ਵਿਗਿਆਨ ਵਿੱਚ ਚੁੰਬਕਤਾ ਦੇ ਮਹੱਤਵਪੂਰਨ ਉਪਯੋਗ ਹਨ।

13.4 ਬਿਜਲੀ ਮੋਟਰ (Electric Motor)

ਬਿਜਲਈ–ਮੋਟਰ ਇੱਕ ਅਜਿਹਾ ਘੁੰਮਣਸ਼ੀਲ ਯੰਤਰ ਹੈ ਜਿਹੜਾ ਬਿਜਲੀ ਊਰਜਾ ਨੂੰ ਯੰਤ੍ਰਿਕ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਦਾ ਹੈ।ਮਹੱਤਵਪੂਰਨ ਅੰਗ ਦੇ ਰੂਪ ਵਿੱਚ ਬਿਜਲੀ ਮੋਟਰ ਦਾ ਉਪਯੋਗ ਬਿਜਲੀ ਪੱਖਿਆਂ, ਰੇਫਰੀਜਰੇਟਰਾਂ, ਮਿਕਸਰਾਂ, ਵਾਸ਼ਿੰਗ ਮਸ਼ੀਨਾਂ, ਕੰਪਿਊਟਰਾਂ, MP 3 ਪਲੇਅਰਾਂ ਆਦਿ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਬਿਜਲੀ ਮੋਟਰ ਕਿਵੇਂ ਕੰਮ ਕਰਦੀ ਹੈ?

ਸਾਧਾਰਨ ਬਿਜਲੀ ਮੋਟਰ

ਚਿੱਤਰ 13.15 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਬਿਜਲੀ ਮੋਟਰ ਵਿੱਚ ਬਿਜਲੀ ਰੋਪਿਤ ਤਾਂਬੇ ਦੀ ਤਾਰ ਦੀ ਇੱਕ ਆਇਤਾਕਾਰ ਕੰਡਲੀ ABCD ਹੁੰਦੀ ਹੈ। ਇਹ ਕੰਡਲੀ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਦੋ ਧਰਵਾਂ ਦੇ ਵਿੱਚ ਇਸ ਪਕਾਰ ਰੱਖੀ ਹੁੰਦੀ ਹੈ ਕਿ ਇਸ ਦੀਆਂ ਭਜਾਵਾਂ AB ਅਤੇ CD ਚੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਦੇ ਲੰਬ ਸਥਿਤੀ ਵਿੱਚ ਰਹਿਣ। ਕੰਡਲੀ ਦੇ ਦੋ ਸਿਰੇ ਵਿਭੇਦਿਤ ਰਿੰਗ ਦੇ ਦੋ ਅਰਧ ਭਾਗਾਂ P ਅਤੇ Q ਨਾਲ ਜੜੇ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਅਰਧ ਭਾਗਾਂ ਦੀ ਅੰਦਰਲੀ ਸਤਹ ਬਿਜਲੀ ਰੋਧਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਧੂਰੀ ਨਾਲ ਜੜੀ ਹੁੰਦੀ ਹੈ। P ਅਤੇ Q ਦੇ ਬਾਹਰੀ ਚਾਲਕ ਸਿਰੇ ਕਮਵਾਰ ਦੋ ਸਥਿਰ ਚਾਲਕ ਬੁਰਸ਼ਾਂ X ਅਤੇ Y ਨਾਲ ਸਪਰਸ਼ ਕਰਦੇ ਹਨ (ਚਿੱਤਰ 13.15)।

ਬੈਟਰੀ ਤੋਂ ਚੱਲ ਕੇ ਚਾਲਕ ਬਰਸ਼ X ਵਿੱਚੋਂ ਹੋਏ ਹੋਏ

ਬਿਜਲੀ ਧਾਰਾ ਕੁੰਡਲੀ ABCD ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੀ ਹੈ ਅਤੇ ਚਾਲਕ ਬੁਰਸ਼ Y ਵਿੱਚੋਂ ਹੁੰਦੇ ਹੋਏ ਬੈਂਟਰੀ ਦੇ ਦੂਜੇ ਟਰਮੀਨਲ ਤੇ ਵਾਪਸ ਵੀ ਆ ਜਾਂਦੀ ਹੈ। ਧਿਆਨ ਦਿਓ, ਕੁੰਡਲੀ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਇਸ ਦੀ ਭੂਜਾ AB ਵਿੱਚ A ਤੋਂ B ਵੱਲ ਅਤੇ ਭੂਜਾ CD ਵਿੱਚ C ਤੋਂ D ਦੇ ਵੱਲ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ। AB ਅਤੇ CD ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਪਰਸਪਰ ਵਿਪਰੀਤ ਹੁੰਦੀਆਂ ਹਨ। ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਰੱਖੇ ਬਿਜਲਈ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਉੱਤੇ ਲੱਗੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਗਿਆਤ ਕਰਨ ਲਈ ਫਲੇਮਿੰਗ ਦਾ ਖੱਬਾ ਹੱਥ ਨਿਯਮ (ਵੇਖੋ ਚਿੱਤਰ 13.13) ਲਾਗ ਕਰਨ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਭੂਜਾ AB ਉੱਤੇ ਲਗਦਾ ਬਲ ਇਸਨੂੰ ਹੇਠਾਂ ਵੱਲ ਧਕੇਲਦਾ ਹੈ ਜਦੋਂ ਕਿ ਭੂਜਾ CD ਉੱਤੇ ਲਗਦਾ ਬਲ ਇਸ ਨੂੰ ਉੱਪਰ ਵੱਲ ਧਕੇਲਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਧੂਰੇ ਉੱਤੇ ਘੁੰਮਣ ਲਈ ਸਤੰਤਰ ਕੰਡਲੀ ਅਤੇ ਧਰੀ ਖੱਬੇ ਗੇੜ (Anti- clockwise) ਘੁੰਮਦੀ ਹੈ। ਅੱਧੇ ਘੁੰਮਣ ਵਿੱਚ Q ਦਾ ਸੰਪਰਕ ਬਰਸ਼ X ਨਾਲ ਹੁੰਦਾ ਹੈ ਅਤੇ P ਦਾ ਸੰਪਰਕ ਬਰਸ਼ Y ਨਾਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਕੁੰਡਲੀ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਉਲਟ ਹੋ ਕੇ ਪੱਥ DCBA ਰਸਤੇ ਵਗਦੀ ਹੈ।

ਉਹ ਯੰਤਰ ਜੋ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪਵਾਹ ਨੂੰ ਉਲਟ ਕਰ ਦਿੰਦਾ ਹੈ ਉਸ ਨੂੰ ਦਿਸ਼ਾ-ਪਰਿਵਰਤਕ (Commutator) ਬਿਜਲੀ ਮੋਟਰਾਂ ਵਿੱਚ ਸਪਲਿਟ ਰਿੰਗ (ਵਿਭੇਦਿਤ ਰਿੰਗ) ਦਿਸ਼ਾ-ਪਰਿਵਰਤਕ ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਹੈ। ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਉਲਟ ਹੋਣ ਨਾਲ ਦੋਵੇਂ ਭਜਾਵਾਂ AB ਅਤੇ CD ਉੱਤੇ ਲੱਗ ਰਹੇ ਬਲਾਂ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵੀ ਉਲਟ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਪ੍ਰਕਾਰ ਕੁੰਡਲੀ ਦੀ ਭੂਜਾ AB ਜੋ ਪਹਿਲਾਂ ਹੇਠਾਂ ਨੂੰ ਧਕੇਲੀ ਗਈ ਸੀ ਹੁਣ ਉੱਪਰ ਨੂੰ ਧਕੇਲੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਕੁੰਡਲੀ ਦੀ ਭੂਜਾ CD ਜੋ ਪਹਿਲਾਂ ਉੱਪਰ ਨੂੰ ਧੱਕੀ ਗਈ ਸੀ ਹੁਣ ਹੇਠਾਂ ਨੂੰ ਧਕੇਲੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਕੁੰਡਲੀ ਅਤੇ ਧੂਰੀ ਉਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਅੱਧਾ ਘੁੰਮਣ ਹੋਰ ਪੂਰਾ ਕਰ ਲੈਂਦੀਆਂ ਹਨ। ਹਰ ਇੱਕ ਅੱਧੇ ਘੁੰਮਣ ਦੇ ਪਿੱਛੋਂ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਉਲਟਣ ਦਾ ਕ੍ਰਮ ਦੁਹਰਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕੰਡਲੀ ਅਤੇ ਧਰੀ ਦਾ ਨਿਰੰਤਰ ਘੰਮਣ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ।

ਵਪਾਰਿਕ ਮੋਟਰਾਂ ਵਿੱਚ : (i) ਸਥਾਈ ਚੁੰਬਕ ਦੇ ਸਥਾਨ ਤੇ ਬਿਜਲਈ ਚੁੰਬਕ ਪ੍ਰਯੋਗ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। (ii) ਬਿਜਲਈ ਧਾਰਾ ਵਾਲੀ ਕੰਡਲੀ ਵਿੱਚ ਫੇਰਿਆਂ ਦੀ ਗਿਣਤੀ ਵੱਧ ਹੁੰਦੀ ਹੈ ਅਤੇ (iii) ਕੰਡਲੀ ਨਰਮ ਲੋਹੇ ਦੀ ਕੋਰ ਉੱਤੇ ਲਪੇਟੀ ਹੁੰਦੀ ਹੈ। ਨਰਮ ਲੋਹੇ ਦੀ ਕੋਰ ਜਿਸ ਉੱਤੇ ਕੰਡਲੀ ਲਪੇਟੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕੰਡਲੀ ਦੋਵੇਂ ਮਿਲ ਕੇ ਆਰਮੇਚਰ ਕਹਾਉਂਦੇ ਹਨ। ਇਸ ਨਾਲ ਮੋਟਰ ਦੀ ਸ਼ਕਤੀ ਵਿੱਚ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ।. ਫਲੇਮਿੰਗ ਦਾ ਖੱਬਾ ਹੱਥ ਨਿਯਮ ਲਿਖੋ।
- 2. ਬਿਜਲਈ ਮੋਟਰ ਦਾ ਕੀ ਸਿਧਾਂਤ ਹੈ?
- ਬਿਜਲਈ ਮੋਟਰ ਵਿੱਚ ਸਪਲਿਟ ਰਿੰਗ ਦੀ ਕੀ ਮਹੱਤਤਾ ਹੈ?

13.5 ਬਿਜਲ-ਚੁੰਬਕੀ ਪ੍ਰੇਰਣ (Eletromagnetic induction)

ਅਸੀਂ ਇਹ ਪੜ੍ਹਿਆ ਹੈ ਕਿ ਜਦੋਂ ਕੋਈ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲਾ ਚਾਲਕ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਚਾਲਕ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਚੁੰਬਕੀ ਖੇਤਰ ਤੋਂ ਲੰਬ ਅਵਸਥਾ ਵਿੱਚ ਹੋਵੇ ਤਾਂ ਉਹ ਚਾਲਕ ਇੱਕ ਬਲ ਦਾ ਅਨੁਭਵ ਕਰਦਾ ਹੈ। ਇਸ ਬਲ ਦੇ ਕਾਰਨ ਉਹ ਚਾਲਕ ਗਤੀ ਕਰਨ ਲੱਗਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ਦੀ ਕਲਪਨਾ ਕਰਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਕੋਈ ਚਾਲਕ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਗਤੀ ਕਰ ਰਿਹਾ ਹੈ ਜਾਂ ਕਿਸੇ ਸਥਿਰ ਚਾਲ ਤੇ ਚਾਰੇ ਪਾਸੇ ਦਾ ਚੁੰਬਕੀ ਖੇਤਰ ਪਰਿਵਰਤਿਤ ਹੋ ਰਿਹਾ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਕੀ ਹੋਵੇਗਾ? ਇਸ ਦਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਧਿਐਨ ਸੰਨ 1831 ਈ. ਵਿੱਚ ਮਾਇਕਲ ਫੈਰਾਡੇ ਨੇ ਕੀਤਾ ਸੀ। ਫੈਰਾਡੇ ਦੀ ਇਸ ਖੋਜ ਨੇ ਕਿ ਕਿਸੇ ਗਤੀਸ਼ੀਲ ਚੁੰਬਕ ਦੀ ਵਰਤੋਂ ਕਿਸ ਪ੍ਕਾਰ ਬਿਜਲੀ ਧਾਰਾ ਪੈਦਾ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਵਿਗਿਆਨਕ ਖੇਤਰ ਨੂੰ ਇੱਕ ਨਵੀਂ ਦਿਸ਼ਾ ਪ੍ਰਦਾਨ ਕੀਤੀ। ਇਸ ਪ੍ਰਭਾਵ ਦਾ ਅਧਿਐਨ ਕਰਨ ਲਈ ਆਓ ਇੱਕ ਕਿਰਿਆ ਕਰੀਏ:

ਕਿਰਿਆ 13.8

- ਅਨੇਕ ਫੇਰਿਆਂ ਵਾਲੀ ਤਾਰ ਦੀ ਇੱਕ ਕੰਡਲੀ AB ਲਓ।
- ਕੁੰਡਲੀ ਦੇ ਸਿਰਿਆਂ ਨੂੰ ਗੈਲਵੈਨੋਮੀਟਰ ਨਾਲ ਚਿੱਤਰ 13.16 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਜੋੜੇ।
- ਇੱਕ ਪ੍ਰਬਲ ਛੜ ਚੁੰਬਕ ਲੈ ਕੇ ਉਸ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਨੂੰ ਕੁੰਡਲੀ ਦੇ ਸਿਰੇ B ਦੇ ਵੱਲ ਤੇਜ਼ੀ ਨਾਲ ਲੈ ਜਾਓ। ਕੀ ਤੁਸੀਂ ਗੈਲਵੈਨੌਮੀਟਰ ਦੀ ਸੂਈ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਵੇਖਦੇ ਹੋ?
- ਗੈਲਵੈਨੋਮੀਟਰ ਸੂਈ ਵਿੱਚ ਅਸਥਾਈ ਵਿਖੇਪਨ ਹੁੰਦਾ ਹੈ। ਮੰਨ ਲਓ ਇਹ ਸੱਜੇ ਪਾਸੇ ਹੁੰਦਾ ਹੈ। ਇਹ ਕੁੰਡਲੀ AB ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਮੌਜੂਦਗੀ ਦਾ ਸੰਕੇਤ ਦਿੰਦਾ ਹੈ। ਜਿਵੇਂ ਹੀ ਚੁੰਬਕ ਦੀ ਗਤੀ ਸਮਾਪਤ ਹੁੰਦੀ ਹੈ ਗੈਲਵੈਨੋਮੀਟਰ ਵਿੱਚ ਵਿਖੇਪਨ ਜੀਰੋ ਹੋ ਜਾਂਦਾ ਹੈ।
- ਹੁਣ ਚੁੰਬਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ ਕੁੰਡਲੀ ਤੋਂ ਦੂਰ ਲੈ ਜਾਓ। ਇਸ ਬਾਰ ਗੈਲਵੈਨੌਮੀਟਰ ਦੀ ਸੂਈ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਵਿਖੇਪਿਤ ਹੁੰਦੀ ਹੈ; ਜੋ ਇਹ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਹੁਣ ਪਹਿਲਾਂ ਨਾਲੋਂ ਪੈਦਾ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਪਹਿਲਾਂ ਦੇ ਉਲਟ ਹੈ।

ਚਿੱਤਰ 13.16 ਚੁੰਬਕ ਨੂੰ ਕੁੰਡਲੀ ਵੱਲ ਲੈ ਜਾਣ ਤੇ ਕੁੰਡਲੀ ਦੇ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਗੈਲਵੈਨੋਮੀਟਰ ਦੀ ਸਈ ਦੇ ਵਿਖੇਪਨ ਦੁਆਰਾ ਪਤਾ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ।

- ਕੁੰਡਲੀ ਦੇ ਨੇੜੇ ਕਿਸੇ ਚੁੰਬਕ ਨੂੰ ਸਥਿਰ ਅਵਸਥਾ ਵਿੱਚ ਇਸ ਪ੍ਕਾਰ ਰੱਖ ਕਿ ਚੁੰਬਕ ਦਾ ਉੱਤਰੀ ਧਰੁਵ ਕੁੰਡਲੀ ਦੇ ਸਿਰੇ B ਵੱਲ ਹੋਵੇ।ਅਸੀਂ ਇਹ ਵੇਖਦੇ ਹਾਂ ਕਿ ਜਿਵੇਂ ਹੀ ਕੁੰਡਲੀਂ ਨੂੰ ਚੁੰਬਕ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਵੱਲ ਲੈ ਜਾਂਦੇ ਹਾਂ ਗੈਲਵੈਨੋਮੀਟਰ ਦੀ ਸੂਈ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਵਿਖੇਪਿਤ ਹੁੰਦੀ ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ ਜਦੋਂ ਤੁਸੀਂ ਉੱਤਰੀ ਧਰੁਵ ਤੋਂ ਦੂਰ ਹਟਾਉਂਦੇ ਹੋ ਤਾਂ ਗੈਲਵੈਨੋਮੀਟਰ ਦੀ ਸੂਈ ਖੱਬੇ ਪਾਸੇ ਵਿਖੇਪਿਤ ਹੁੰਦੀ ਹੈ।
- ਹੁਣ ਕੁੰਡਲੀ ਨੂੰ ਚੁੰਬਕ ਦੇ ਸਾਪੇਖ ਸਥਿਰ ਰੱਖਦੇ ਹਾਂ ਤਾਂ ਗੈਲਵੈਨੋਮੀਟਰ ਵਿੱਚ ਵਿਖੇਪਨ ਜੀਰੋ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਕਿਰਿਆ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢਦੇ ਹੋ?

ਤੁਸੀਂ ਇਹ ਜਾਂਚ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਜੇਕਰ ਤੁਸੀਂ ਚੁੰਬਕ ਦੇ ਦੱਖਣੀ ਧਰੁਵ ਨੂੰ ਕੁੰਡਲੀ ਦੇ B ਸਿਰੇ ਵੱਲ ਗਤੀ ਕਰਾਉਂਦੇ ਹੋ ਤਾਂ ਗੈਲਵੈਨੋਮੀਟਰ ਵਿੱਚ ਵਿਖੇਪਨ ਪਹਿਲੀ ਸਥਿਤੀ (ਜਿਸ ਵਿੱਚ ਉੱਤਰੀ ਧਰੁਵ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਸੀ) ਦੇ ਵਿਪਰੀਤ ਹੋਵੇਗਾ। ਜਦੋਂ ਕੁੰਡਲੀ ਅਤੇ ਚੁੰਬਕ ਦੋਵੇਂ ਸਥਿਰ ਹੁੰਦੇ ਹਨ ਤਦ ਗੈਲਵੈਨੋਮੀਟਰ ਵਿੱਚ ਕੋਈ ਵਿਖੇਪਨ ਨਹੀਂ ਹੁੰਦਾ। ਇਸ ਲਈ ਇਸ ਕਿਰਿਆ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਕੁੰਡਲੀ ਦੇ ਸਾਪੇਖ ਚੁੰਬਕ ਦੀ ਗਤੀ ਪ੍ਰੇਰਿਤ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਉਤਪੰਨ ਕਰਦੀ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਸਰਕਟ ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ।

ਗੈਲਵੈਨਮੀਟਰ ਇੱਕ ਅਜਿਹਾ ਉਪਕਰਨ ਹੈ ਜੋ ਕਿਸੇ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਮੌਜੂਦਗੀ ਦੀ ਜਾਣਕਾਰੀ ਦਿੰਦਾ ਹੈ। ਜੇਕਰ ਇਸ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲਈ ਧਾਰਾ ਜੀਰੋ ਹੈ ਤਾਂ ਇਸ ਦਾ ਸੰਕੇਤਕ ਜੀਰੋ (ਪੈਮਾਨੇ ਦੇ ਮੱਧ ਵਿੱਚ) ਤੇ ਰਹਿੰਦਾ ਹੈ। ਇਹ ਆਪਣੇ ਜੀਰੋ ਚਿੰਨ੍ਹ ਦੇ ਸੱਜੇ ਖੱਬੇ ਪਾਸੇ ਵਿਖੇਪਿਤ ਹੋ ਸਕਦਾ ਹੈ। ਇਹ ਵਿਖੇਪਨ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਮਾਈਕਲ ਫੈਰਾਡੇ (1791–1867)

ਮਾਈਕਲ ਫੈਰਾਡੇ ਇੱਕ ਪ੍ਰਯੋਗਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਸਨ। ਉਹਨਾਂ ਨੇ ਕੋਈ ਰਸਮੀ ਸਿੱਖਿਆ ਪ੍ਰਾਪਤ ਨਹੀਂ ਕੀਤੀ। ਉਹਨਾਂ ਨੇ ਜੀਵਨ ਦੇ ਅਰੰਭਿਕ ਸਾਲਾਂ ਵਿੱਚ ਜਿਲਦ ਸਾਜੀ ਦੀ ਦੁਕਾਨ ਤੇ ਕੰਮ ਕੀਤਾ। ਫੈਰਾਡੇ ਜਿਲਦਸਾਜ਼ੀ ਦੇ ਲਈ ਦੁਕਾਨ ਤੇ ਆਉਣ ਵਾਲੀਆਂ ਪੁਸਤਕਾਂ ਦਾ ਅਧਿਐਨ ਕਰਦੇ ਸਨ। ਇਸ ਨਾਲ ਉਹਨਾਂ ਦੀ ਵਿਗਿਆਨ ਵਿੱਚ ਰੁਚੀ ਪੈਦਾ ਹੋ ਗਈ। ਉਹਨਾਂ ਨੂੰ ਰਾਇਲ ਇੰਨਸਟੀਚਿਊਟ ਦੇ ਵਿਗਿਆਨਿਕ ਸਰ ਹੈਫਰੇ ਡੇਵੀ ਦੇ ਪੈਦਾ ਸੁਣਨ ਦਾ ਮੌਕਾ ਪ੍ਰਾਪਤ ਹੋਇਆ। ਉਹਨਾਂ ਨੇ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਡੇਵੀ ਦੇ ਵਿਚਾਰ ਦੇ ਨੋਟ ਤਿਆਰ ਕੀਤੇ ਅਤੇ ਉਹਨਾਂ ਨੇ ਨੋਟ ਸਰ ਡੇਵੀ ਨੂੰ ਭੇਜ ਦਿੱਤੇ। ਛੇਤੀ ਹੀ ਉਹਨਾਂ ਨੂੰ ਰਾਇਲ ਇੰਸਟੀਚਿਊਟ ਵਿੱਚ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ

ਸਹਾਇਕ ਬਣਾ ਦਿੱਤਾ ਗਿਆ। ਫੈਰਾਡੇ ਨੇ ਬਹੁਤ ਸਾਰੀਆ ਕਰਾਂਤੀਕਾਰੀ ਖੋਜਾਂ ਕੀਤੀਆਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬਿਜਲ ਚੁੰਬਕੀ ਪ੍ਰੇਰਣ ਅਤੇ ਬਿਜਲੀ ਅਪਘਟਨ ਦੇ ਨਿਯਮ ਸ਼ਾਮਿਲ ਹਨ। ਅਨੇਕ ਵਿਸ਼ਵ ਵਿਦਿਆਲਿਆਂ ਨੇ ਉਹਨਾਂ ਨੂੰ ਮਾਣ ਉਪਾਧੀਆਂ ਪ੍ਰਦਾਨ ਕੀਤੀਆਂ ਪ੍ਰੰਤੂ ਉਹਨਾਂ ਨੇ ਇਸ ਪ੍ਕਾਰ ਦੇ ਸਨਮਾਨਾਂ ਨੂੰ ਠੁਕਰਾ ਦਿੱਤਾ। ਫੈਰਾਡੇ ਨੂੰ ਕਿਸੇ ਵੀ ਸਨਮਾਨ ਦੀ ਤੁਲਨਾ ਨਾਲ ਆਪਣੇ ਵਿਗਿਆਨਿਕ ਕਾਰਜਾਂ ਵਿੱਚ ਵੱਧ ਪਿਆਰ ਸੀ।

ਆਓ ਹੁਣ ਅਸੀਂ ਕਿਰਿਆ 13.8 ਵਿੱਚ ਕੁੱਝ ਪਰਿਵਰਤਨ ਕਰਦੇ ਹਾਂ ਅਤੇ ਗਤੀਮਾਨ ਚੁੰਬਕ ਨੂੰ ਅਜਿਹੀ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਕੁੰਡਲੀ ਨਾਲ ਪ੍ਰਤਿਸਥਾਪਿਤ ਕਰਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਮਾਤਰਾ ਦਾ ਪਰਿਵਰਤਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਰਿਆ 13.9

- ਤਾਂਬੇ ਦੀ ਤਾਰ ਦੀਆਂ ਦੋ ਭਿੰਨ ਕੁੰਡਲੀਆਂ ਲਓ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਫੋਰਿਆਂ ਦੀ ਸੰਖਿਆ ਮੱਧਮਾਨ ਵਿੱਚ (ਜਿਵੇਂ ਕ੍ਰਮਵਾਰ: 100 ਅਤੇ 50 ਫੋਰੇ) ਹੋਵੇ।ਕੁੰਡਲੀਆਂ ਨੂੰ ਚਿੱਤਰ 13.17 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਕਿਸੇ ਬਿਜਲੀ ਰੋਧਿਤ ਖੋਖਲੇ ਬੇਲਣ ਉੱਤੇ ਚੜ੍ਹਾਓ (ਤੁਸੀਂ ਮੋਟੇ ਕਾਗਜ਼ ਨੂੰ ਵੀ ਖੋਖਲੇ ਬੇਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਲਪੇਟ ਕੇ ਇਹ ਕਾਰਜ ਕਰ ਸਕਦੇ ਹੋ)।
- ਕੁੰਡਲੀ-। ਨੂੰ ਜਿਸ ਵਿੱਚ ਫੇਰਿਆਂ ਦੀ ਸੰਖਿਆ ਵੱਧ ਹੈ ਲੜੀ ਵਿੱਚ ਬੈਟਰੀ ਅਤੇ ਪਲੱਗ ਕੂੰਜੀ ਨਾਲ ਜੋੜੋ। ਦੂਜੀ ਕੁੰਡਲੀ ਨੂੰ ਵੀ ਚਿੱਤਰ 13.7 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਗੈਲਵੈਨੋਮੀਟਰ ਨਾਲ ਜੋੜੇ।
- ਕੂੰਜੀ ਨੂੰ ਪਲੱਗ ਵਿੱਚ ਲਗਾਓ। ਗੈਲਵੈਨੌਮੀਟਰ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਕੀ ਇਸ ਦੀ ਸੂਈ ਕੋਈ ਵਿਖੇਪਣ ਦਰਸਾਉਂਦੀ ਹੈ? ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਗੈਲਵੈਨੌਮੀਟਰ ਦੀ ਸੂਈ ਤੁਰੰਤ ਹੀ ਇੱਕ ਦਿਸ਼ਾ ਵਿੱਚ ਤੀਬਰਤਾ ਨਾਲ ਵਿਖੇਪਿਤ ਹੋ ਕੇ ਉਸ ਗਤੀ ਨਾਲ ਜਲਦੀ ਵਾਪਸ ਜੀਰੋ ਤੇ ਆ ਜਾਂਦੀ ਹੈ। ਇਹ ਕੁੰਡਲੀ -2 ਵਿੱਚ ਅਸਥਾਈ ਬਿਜਲੀ ਧਾਰਾ ਦਾ ਉਤਪੰਨ ਹੋਣਾ ਸੂਚਿਤ ਕਰਦੀ ਹੈ।
- ਬੈਟਰੀ ਤੋਂ ਕੁੰਡਲੀ -1 ਨੂੰ ਕੱਟ ਦਿਓ।

ਚਿੱਤਰ 13.17 ਕੁੰਡਲੀ - *l* ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਪਰਿਵਰਤਿਤ ਕਰਨ ਤੇ ਕੁੰਡਲੀ - 2 ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਪੇਰਿਤ ਹੁੰਦੀ ਹੈ।

ਤੁਸੀਂ ਇਹ ਵੇਖੋਗੇ ਕਿ ਇੰਝ ਕਰਨ ਨਾਲ ਕੁੰਡਲੀ −2 ਵਿੱਚ ਅਸਥਾਈ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਪ੍ਰੰਤੂ ਇਸ ਦੀ ਦਿਸ਼ਾ ਪਹਿਲਾਂ ਨਾਲੋਂ ਉਲਟ ਹੁੰਦੀ ਹੈ।

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਅਸੀਂ ਇਹ ਪ੍ਰੇਖਣ ਕਰਦੇ ਹਾਂ ਕਿ ਜਿਵੇਂ ਹੀ ਕੁੰਡਲੀ-।ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਸਥਾਈ ਜਾਂ ਜ਼ੀਰੋ ਹੁੰਦੀ ਹੈ, ਕੁੰਡਲੀ -2 ਨਾਲ ਜੁੜਿਆ ਗੈਲਵੈਨੋਮੀਟਰ ਕੋਈ ਵਿਖੇਪਨ ਨਹੀਂ ਦਰਸਾਉਂਦਾ।

ਇਹਨਾਂ ਪ੍ਰੇਖਣਾਂ ਤੋਂ ਇਹ ਸਿੱਟਾ ਨਿਕਲਦਾ ਹੈ ਕਿ ਜਦ ਵੀ ਕਦੇ ਕੁੰਡਲੀ-। ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ (ਬਿਜਲੀ ਧਾਰਾ ਆਰੰਭ <mark>ਜਾਂ ਸਮਾਪਤ</mark> ਹੁੰਦੀ ਹੈ) ਤਾਂ ਕੁੰਡਲੀ-2 ਵਿੱਚ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਪ੍ਰੇਰਿਤ ਹੁੰਦਾ ਹੈ। ਕੁੰਡਲੀ -। ਨੂੰ <mark>ਪ੍ਰਾਇਮਰੀ</mark> ਅਤੇ

ਕੁੰਡਲੀ-2 ਨੂੰ ਸੈਕੰਡਰੀ ਕੁੰਡਲੀ ਕਹਿੰਦੇ ਹਨ।ਜਿਵੇਂ ਹੀ ਪ੍ਰਾਇਮਰੀ ਕੁੰਡਲੀ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ, ਉਸੇ ਸੰਬੰਧ ਵਿੱਚ ਚੁੰਬਕੀ ਖੇਤਰ ਵੀ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਸੈਕੰਡਰੀ ਕੁੰਡਲੀ ਦੇ ਚਾਰੇ ਪਾਸੇ ਦੀਆਂ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਵੀ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਸੈਕੰਡਰੀ ਕੁੰਡਲੀ ਨਾਲ ਸੰਬੰਧਿਤ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੀ ਉਸ ਵਿੱਚ ਪ੍ਰੇਰਤ ਬਿਜਲੀ ਧਾਰਾ ਉਤਪੰਨ ਹੋਣ ਦਾ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਉਹ ਪ੍ਰਕਿਰਿਆ ਜਿਸ ਦੁਆਰਾ ਕਿਸੇ ਚਾਲਕ ਦੇ ਪਰਿਵਰਤੀ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਕਾਰਨ ਦੂਜੇ ਚਾਲਕ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰੇਰਤ ਹੁੰਦੀ ਹੈ ਬਿਜਲ ਚੁੰਬਕੀ ਪ੍ਰੇਰਣ ਕਹਾਉਂਦੀ ਹੈ। ਵਿਵਹਾਰ ਵਿੱਚ ਅਸੀਂ ਕਿਸੇ ਕੁੰਡਲੀ ਵਿੱਚ ਪ੍ਰੇਰਤ ਬਿਜਲੀ ਧਾਰਾ ਨੂੰ ਜਾਂ ਤਾਂ ਉਸ ਨੂੰ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਗਤੀ ਕਰਾ ਕੇ ਜਾਂ

ਚਿੱਤਰ 13.18 ਫਲੇਮਿੰਗ ਦਾ ਸੱਜਾ ਹੱਥ ਨਿਯਮ

ਉਸ ਦੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਚੁੰਬਕੀ ਖੇਤਰ ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰਕੇ, ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਬਹੁਤ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਕੁੰਡਲੀ ਨੂੰ ਗਤੀ ਕਰਾ ਕੇ ਪ੍ਰੇਰਿਤ ਬਿਜਲੀ ਧਾਰਾ ਪੈਦਾ ਕਰਨਾ ਵੱਧ ਸੁਵਿਧਾਜਨਕ ਹੁੰਦਾ ਹੈ।

ਜਦ ਕੁੰਡਲੀ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਦੇ ਲੰਬ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਤਦ ਕੁੰਡਲੀ ਵਿੱਚ ਉਤਪੰਨ ਪ੍ਰੇਰਿਤ ਬਿਜਲਈ ਧਾਰਾ ਅਧਿਕਤਮ ਹੁੰਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਗਿਆਤ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਇਕ ਸਰਲ ਨਿਯਮ ਦਾ ਉਪਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਨਿਯਮ ਅਨੁਸਾਰ, ਸੱਜੇ ਹੱਥ ਦੀ ਪਹਿਲੀ ਉਂਗਲੀ, ਵਿਚਕਾਰਲੀ ਉਂਗਲੀ ਅਤੇ ਅੰਗੂਠੇ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਫੈਲਾਓ ਕਿ ਇਹ ਤਿੰਨੋਂ ਇੱਕ ਦੂਜੇ ਦੇ ਲੰਬ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋਣ (ਚਿੱਤਰ 13.18)। ਜੇਕਰ ਪਹਿਲੀ ਉਂਗਲੀ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਸੰਕੇਤ ਕਰੇ ਅਤੇ ਅੰਗੂਠਾ ਚਾਲਕ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਸੰਕੇਤ ਕਰੇ ਤਾਂ ਵਿਚਕਾਰਲੀ ਉਂਗਲੀ ਚਾਲਕ ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਸ ਸਰਲ ਨਿਯਮ ਨੂੰ ਫਲੇਮਿੰਗ ਦਾ ਸੱਜਾ ਹੱਥ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ।

ਪ੍ਰਸ਼ਨ

ਕਿਸੇ ਕੁੰਡਲੀ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰੇਰਿਤ ਕਰਨ ਦੇ ਢੰਗ ਸਪਸ਼ਟ ਕਰੋ।

13.6 ਬਿਜਲੀ ਜਰਨੇਟਰ (Electric Generator)

ਬਿਜਲ-ਚੁੰਬਕੀ ਪੇ੍ਰਣ ਵਰਤਾਰੇ ਉੱਤੇ ਆਧਾਰਿਤ ਜਿਨ੍ਹਾਂ ਪ੍ਰਯੋਗਾਂ ਦਾ ਅਸੀਂ ਉੱਪਰ ਅਧਿਐਨ ਕੀਤਾ ਉਨ੍ਹਾਂ ਵਿੱਚ ਉਤਪੰਨ ਪੇ੍ਰਿਤ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਮਾਤਰਾ ਬਹੁਤ ਥੋੜ੍ਹੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਸਿਧਾਂਤ ਦਾ ਉਪਯੋਗ ਘਰਾਂ ਅਤੇ ਉਦਯੋਗਾਂ ਲਈ ਅਧਿਕਤਮ ਮਾਤਰਾ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਉਤਪੰਨ ਕਰਨ ਵਿੱਚ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬਿਜਲੀ ਜਨਰੇਟਰ ਵਿੱਚ ਯੰਤਰਿਕ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਰੱਖੇ ਕਿਸੇ ਚਾਲਕ ਨੂੰ ਘੁੰਮਣ ਗਤੀ ਪ੍ਰਦਾਨ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਫਲਸਰੂਪ ਬਿਜਲੀ ਧਾਰਾ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ 13,19 ਬਿਜਲਈ ਜਨਰੇਟਰ ਦੇ ਸਿਧਾਂਤ ਦਾ ਪ੍ਰਗਟਾਵਾ

ਚਿੱਤਰ 13.19 ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਬਿਜਲੀ ਜਨਰੇਟਰ ਵਿੱਚ ਇੱਕ ਘੁੰਮਣਸ਼ੀਲ ਆਇਤਾਕਾਰ ਕੁੰਡਲੀ ABCD ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਕਿਸੇ ਸਥਾਈ ਚੁੰਬਕ ਦੇ ਦੋ ਧਰਵਾਂ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਕੁੰਡਲੀ ਦੇ ਦੋ ਸਿਰੇ ਦੋ ਛੱਲਿਆਂ R, ਅਤੇ R, ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਰਿੰਗਾਂ ਦੀ ਅੰਦਰਲੀ ਸਤ੍ਹਾ ਰੋਧਿਤ ਬਣਾਈ ਹੁੰਦੀ ਹੈ। ਦੋ ਸਥਿਰ ਚਾਲਕ ਬੁਰਸ਼ਾਂ B, ਅਤੇ B, ਨੂੰ ਵੱਖ ਵੱਖ ਰੂਪ ਵਿੱਚ ਕਮਵਾਰ ਛੱਲੇ R, ਅਤੇ R, ਉੱਤੇ ਦਬਾ ਕੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਦੋਵੇਂ ਛੱਲੇ R, ਅਤੇ R, ਅੰਦਰ ਤੋਂ ਧੁਰੀ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਅੰਦਰ ਸਥਿਤ ਕੁੰਡਲੀ ਨੂੰ ਘੁੰਮਣ ਗਤੀ ਦੇਣ ਲਈ ਇਸ ਦੀ ਧੁਰੀ ਨੂੰ ਯੰਤ੍ਕਿ ਰੂਪ ਵਿੱਚ ਬਾਹਰੋਂ ਘੁਮਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਦੋਵੇਂ ਬੁਰਸ਼ਾਂ ਦੇ ਬਾਹਰੀ ਸਿਰੇ ਬਾਹਰੀ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਰਵਾਹ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਗੱਲਵੈਨੋਮੀਟਰ ਨਾਲ ਜੋੜੇ ਹੁੰਦੇ ਹਨ।

ਜਦੋਂ ਦੋ ਛੱਲਿਆਂ ਨਾਲ ਜੁੜੀ ਧੂਰੀ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਘੁਮਾਇਆ ਜਾਂਦਾ

ਹੈ ਕਿ ਕੁੰਡਲੀ ਦੀ ਭੂਜਾ AB ਉੱਪਰ ਵੱਲ (ਅਤੇ ਭੂਜਾ CD ਹੇਠਾਂ ਵੱਲ), ਸਥਾਈ ਚੁੰਬਕ

ਦੁਆਰਾ ਉਤਪੰਨ ਖੇਤਰ ਵਿੱਚ ਗਤੀ ਕਰਦੀ ਹੈ ਤਾਂ ਕੁੰਡਲੀ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਨੂੰ ਕੱਟਦੀ ਹੈ। ਮੰਨ ਲਓ ਕੰਡਲੀ ABCD ਨੂੰ ਚਿੱਤਰ 13.19 ਵਿੱਚ ਦਰਸਾਈ ਵਿਵਸਥਾ ਵਿੱਚ ਸੱਜੇ ਗੇੜ (Clockwise) ਘੁਮਾਇਆ ਜਾਂਦਾ ਹੈ। ਤਦ ਫਲੇਮਿੰਗ ਦਾ ਸੱਜਾ ਹੱਥ ਨਿਯਮ ਲਾਗ ਕਰਨ ਤੇ ਇਹਨਾਂ ਭਜਾਵਾਂ ਵਿੱਚ AB ਅਤੇ CD ਦਿਸ਼ਾਵਾਂ ਦੇ ਨਾਲ ਪੈਰਿਤ ਬਿਜਲਈ ਧਰਾਵਾਂ ਪ੍ਵਾਹਿਤ ਹੋਣ ਲੱਗਦੀਆਂ ਹਨ। ਇਸ ਪ੍ਰਕਾਰ ਕੁੰਡਲੀ ਵਿੱਚ ABCD ਦਿਸ਼ਾ ਵਿੱਚ ਪੇਰਿਤ ਬਿਜਲੀ ਧਾਰਾਵਾਂ ਪਵਾਹਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਜੇਕਰ ਕੁੰਡਲੀ ਵਿੱਚ ਫੇਰਿਆਂ ਦੀ ਗਿਣਤੀ ਬਹੁਤ ਵੱਧ ਹੈ ਤਾਂ ਹਰ ਇੱਕ ਫੇਰੇ ਵਿੱਚ ਉਤਪੰਨ ਬਿਜਲੀ ਧਾਰਾ ਇਕੱਠੀ ਹੋ ਕੇ ਕੁੰਡਲੀ ਵਿੱਚ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀ ਹੈ। ਇਸ ਦਾ ਸਿੱਟਾ ਇਹ ਹੈ ਕਿ ਬਾਹਰ ਸਰਕਟ ਵਿੱਚ B, ਤੋਂ B, ਦਿਸ਼ਾ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਪਵਾਹਿਤ ਹੁੰਦੀ ਹੈ।

ਅੱਧਾ ਚੱਕਰ ਘੁੰਮਣ ਮਗਰੋਂ ਭੂਜਾ CD ਉੱਪਰ ਵੱਲ ਅਤੇ ਭੂਜਾ AB ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਲੱਗਦੀ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇਹਨਾਂ ਦੋਵੇਂ ਭਜਾਵਾਂ ਵਿੱਚ ਪੇਰਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਬਦਲ ਜਾਂਦੀ ਹੈ ਅਤੇ DCBA ਦਿਸ਼ਾ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਬਾਹਰੀ ਸਰਕਟ ਵਿੱਚ B. ਤੋਂ B. ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ, ਇਸ ਪ੍ਰਕਾਰ ਹਰ ਅੱਧੇ ਘੁੰਮਣ ਦੇ ਮਗਰੋਂ ਕ੍ਰਮਵਾਰ ਇਹਨਾਂ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਧਰੁਵਤਾ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਅਜਿਹੀ ਬਿਜਲਈ ਧਾਰਾ ਜੋ ਸਮਾਨ ਕਾਲ ਅੰਤਰ ਦੇ ਪਿੱਛੋਂ ਆਪਣੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰ ਲੈਂਦੀ ਹੈ ਉਸ ਨੂੰ ਪਰਤਵੀਂ ਬਿਜਲਈ ਧਾਰਾ (ਸੰਖੇਪ Ac) ਕਹਿੰਦੇ ਹਨ। ਬਿਜਲਈ ਧਾਰਾ ਕਰਨ ਵਾਲੇ ਇਸ ਯੰਤਰ ਨੂੰ ਪਰਤਵੀਂ ਬਿਜਲਈ ਧਾਰਾ ਜਨਰੇਟਰ ਆਖਦੇ ਹਨ। (AC generator)) ਆਖਦੇ ਹਨ।

ਸਿੱਧੀ ਧਾਰਾ (Direct current) (ਅਰਥਾਤ Dc ਜਿਸ ਵਿੱਚ ਸਮੇਂ ਦੇ ਨਾਲ ਦਿਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ) ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਸਪਲਿਟ ਰਿੰਗ ਟਾਈਪ ਦਿਸ਼ਾ ਪਰਾਵਰਤਕ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਬੰਧ ਨਾਲ ਇੱਕ ਬੁਰਸ਼ ਸਦਾ ਹੀ ਉਸ ਭੂਜਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ ਜੋ ਚੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਉੱਪਰ ਵੱਲ ਗਤੀ ਕਰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਦੂਜਾ ਬੂਰਸ਼ ਸਦਾ ਹੇਠਾਂ ਵੱਲ ਗਤੀ ਕਰਨ ਵਾਲੀ ਭੂਜਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ। ਅਸੀਂ ਸਪਲਿਟ ਰਿੰਗ ਟਾਈਪ ਦਿਸ਼ਾ ਪਰਾਵਰਤਕ ਦੀ ਕਾਰਜ ਪ੍ਣਾਲੀ ਬਿਜਲਈ ਮੋਟਰ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਵੇਖ ਚੁੱਕੇ ਹਾਂ (ਵੇਖੋ ਚਿੱਤਰ 13.15)। ਇਸ ਪ੍ਰਕਾਰ ਇਸ ਪ੍ਰਬੰਧ ਨਾਲ ਇੱਕ ਦਿਸ਼ਾਵੀ ਬਿਜਲੀ ਧਾਰਾ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਯੰਤਰ ਨੂੰ ਸਿੱਧੀ ਧਾਰਾ ਜਨਰੇਟਰ (DC generator) ਕਹਿੰਦੇ ਹਨ।

ਸਿੱਧੀ ਧਾਰਾ ਅਤੇ ਪਰਤਵੀਂ ਧਾਰਾ ਵਿੱਚ ਇਹ ਅੰਤਰ ਹੈ ਕਿ ਸਿੱਧੀ ਧਾਰਾ ਸਦਾ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਪਰਤਵੀਂ ਧਾਰਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਕਾਲ ਅੰਤਰ ਦੇ ਪਿੱਛੋਂ ਆਪਣੀ ਦਿਸ਼ਾ ਉਲਟੀ ਕਰਦੀ ਰਹਿੰਦੀ ਹੈ। ਅੱਜ ਕੱਲ ਜਿੰਨੇ ਬਿਜਲੀ ਸ਼ਕਤੀ ਯੰਤਰ ਸਥਾਪਿਤ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ ਉਹਨਾਂ ਵਿੱਚੋਂ ਬਹੁਤਿਆਂ ਵਿੱਚ ਪਰਤਵੀਂ ਬਿਜਲੀ ਧਾਰਾ ਦਾ ਉਤਪਾਦਨ ਹੁੰਦਾ ਹੈ। ਭਾਰਤ ਵਿੱਚ ਉਤਪਾਦਿਤ ਪਰਤਵੀਂ ਬਿਜਲਈ ਧਾਰਾ ਹਰ 1/100 ਸੈਕਿੰਡ ਦੇ ਪਿੱਛੋਂ ਆਪਣੀ ਦਿਸ਼ਾ ਉਲਟਾ ਲੈਂਦੀ ਹੈ ਅਰਥਾਤ ਇਸ ਪਰਤਵੀਂ ਧਾਰਾ (AC) ਦੀ ਆਵਿੱਤੀ 50 ਹਰਟਜ਼ Hz ਹੈ। DC ਦੇ ਟਾਕਰੇ ਵਿੱਚ AC ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਲਾਭ ਇਹ ਹੈ ਕਿ ਬਿਜਲਈ ਸ਼ਕਤੀ ਨੂੰ ਦੂਰ ਸਥਾਨਾਂ ਤੱਕ ਬਿਨਾਂ ਵਧੇਰੇ ਉਰਜਾ ਦਾ ਨੁਕਸਾਨ ਕੀਤੇ ਸੰਚਾਰਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

- ਬਿਜਲੀ ਜਨਰੇਟਰ ਦਾ ਸਿਧਾਂਤ ਲਿਖੋ।
- ਸਿੱਧੀ ਧਾਰਾ DC ਦੇ ਕੁੱਝ ਸ਼ੋਤਾਂ ਦੇ ਨਾਂ ਲਿਖੋ।
- ਪਰਤਵੀ ਸਿੱਧੀ ਧਾਰਾ (AC) ਉਤਪੰਨ ਕਰਨ ਵਾਲੇ ਸੋਤਾਂ ਦੇ ਨਾਂ ਲਿਖੋ।

4. ਠੀਕ ਵਿਕਲਪ ਦੀ ਚੋਣ ਕਰੋ: — ਜ਼ਿਲੀ ਜ਼ਿਲ ਫੀਪ ਨੁੱਘ ਤਾਂਬੇ ਦੀ ਤਾਰ ਦੀ ਇੱਕ ਆਇਤਾਕਾਰ ਕੁੰਡਲੀ ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਘੁੰਮਣ ਗਤੀ ਕਰ ਰਹੀ ਿ ਹੈ। ਇਸ ਕੁੰਡਲੀ ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਕਿੰਨ ਘੁੰਮਣ ਚੱਕਰਾਂ ਦੇ ਪਿੱਛੇ ਪਿਰਵਰਤਨ ਹੁੰਦਾ ਹੈ?

(a) ਦੇ

(b) ਇੱਕ

(c) ਅੱਧੇ

(d) ਚੌਥਾਈ

13.7 ਘਰੇਲੂ ਬਿਜਲਈ ਸਰਕਣ (Domestic Electric Circuits)

ਅਸੀਂ ਆਪਣੇ ਘਰਾਂ ਵਿੱਚ ਬਿਜਲੀ ਸ਼ਕਤੀ ਦੀ ਪੂਰਤੀ ਮੁੱਖ ਤਾਰਾਂ (ਜਿਸ ਨੂੰ ਮੇਨਜ਼ (Mains) ਕਹਿੰਦੇ ਹਨ।) ਤੋਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ। ਇਹ ਮੁੱਖ ਤਾਰ ਜਾਂ ਤਾਂ ਧਰਤੀ ਉੱਤੇ ਲੱਗੇ ਬਿਜਲਈ ਖੇਂਭਿਆਂ ਦੇ ਸਹਾਰੇ ਜਾਂ ਭੂਮੀਗਤ ਕੇਬਲਾਂ ਤੋਂ ਸਾਡੇ ਘਰਾਂ ਤੱਕ ਆਉਂਦੀ ਹੈ। ਇਸ ਪੂਰਤੀ ਦੀਆਂ ਤਾਰਾਂ ਵਿੱਚੋਂ ਇੱਕ ਤਾਰ ਜਿਸ ਉੱਤੇ ਆਮ ਕਰਕੇ ਲਾਲ ਰੋਧਿਤ ਕਵਰ ਹੁੰਦਾ ਹੈ, ਉਸ ਨੂੰ ਲਾਇਵ (Live-wire) ਤਾਰ ਜਾਂ (ਧਨ ਤਾਰ) ਕਹਿੰਦੇ ਹਨ। ਇੱਕ ਹੋਰ ਤਾਰ ਨੂੰ ਜਿਸ ਉੱਤੇ ਕਾਲਾ ਬਿਜਲ ਰੋਧੀ ਕਵਰ ਹੁੰਦਾ ਹੈ, (Neutral- wire) ਉਦਾਸੀਨ ਤਾਰ (ਜਾਂ ਰਿਣ ਤਾਰ) ਆਖਿਆ ਜਾਂਦਾ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਇਹਨਾਂ ਦੋਵੇਂ ਤਾਰਾਂ ਵਿਚਕਾਰ 220 V ਦਾ ਪੁਟੈਂਸ਼ਲ-ਅੰਤਰ ਹੁੰਦਾ ਹੈ।

ਘਰ ਵਿੱਚ ਲੱਗੇ ਮੀਟਰ ਬੋਰਡ ਵਿੱਚ ਇਹ ਤਾਰਾਂ ਮੁੱਖ ਫਿਊਜ਼ ਵਿੱਚੋਂ ਹੁੰਦੀਆਂ ਹੋਈਆਂ ਬਿਜਲੀ ਮੀਟਰ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਮੁੱਖ ਸਵਿੱਚ ਤੋਂ ਹੁੰਦੇ ਹੋਏ ਘਰ ਦੀਆਂ ਤਾਰਾਂ ਵਿੱਚ ਸੰਯੋਜਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਤਾਰਾਂ ਘਰ ਦੇ ਵੱਖ ਵੱਖ ਸਰਕਟਾਂ ਵਿੱਚ ਬਿਜਲੀ ਦੀ ਪੂਰਤੀ ਕਰਦੀਆਂ ਹਨ। ਆਮ ਕਰਕੇ, ਘਰਾਂ ਵਿੱਚ ਦੋ ਵੱਖ ਵੱਖ ਸਰਕਟ ਹੁੰਦੇ ਹਨ। ਇੱਕ 15 A ਬਿਜਲੀ ਧਾਰਾ ਅੰਕਿਤ ਸਰਕਟ ਜਿਸ ਦਾ ਉਪਯੋਗ ਉੱਚ ਸ਼ਕਤੀ ਵਾਲੇ ਬਿਜਲਈ ਯੰਤਰਾਂ ਜਿਵੇਂ ਕਿ ਗੀਜ਼ਰ, ਏਅਰਕੰਡੀਸ਼ਨਰ ਆਦਿ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਦੂਜਾ ਬਿਜਲੀ ਸਰਕਟ 5A ਬਿਜਲੀ ਧਾਰਾ ਅੰਕਿਤ ਸਰਕਟ ਹੈ ਜਿਸ ਨੂੰ ਪੱਖੇ, ਬਲਬ ਆਦਿ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਭੋਂ ਤਾਰ Earth-wire ਜਿਸ ਉੱਤੇ ਹਰੇ ਰੰਗ ਦਾ ਰੋਧਿਤ ਕਵਰ ਹੁੰਦਾ ਹੈ ਘਰ ਦੇ ਨੇੜੇ ਭੂਮੀ ਦੇ ਅੰਦਰ ਕਾਫ਼ੀ ਡੂੰਘਾਈ ਤੇ ਸਥਿਤ ਧਾਤ ਦੀ ਪਲੇਟ ਨਾਲ ਜੋੜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਾਰ ਦਾ ਉਪਯੋਗ ਖਾਸ ਕਰਕੇ ਬਿਜਲੀ ਪ੍ਰੈੱਸ, ਟੋਸਟਰ, ਮੇਜ਼, ਪੱਖਾ, ਰੇਫਰੀਜਰੇਟਰ ਆਦਿ ਧਾਤ ਦੇ ਭਾਗ ਰੱਖਣ ਵਾਲੇ ਉਪਕਰਨਾਂ ਵਿੱਚ ਸੁਰੱਖਿਆ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਧਾਤਵੀਂ ਭਾਗ ਨੂੰ ਭੌਂ ਤਾਰ ਨਾਲ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਹੜੀ

ਚਿੱਤਰ 13.20 ਇੱਕ ਆਮ ਘਰੇਲੂ ਬਿਜਲਈ ਸਰਕਟ ਦਾ ਵਿਉਂਤ ਚਿੱਤਰ

ਬਿਜਲੀ ਧਾਰਾ ਲਈ ਘੱਟ ਪ੍ਰਤਿਰੋਧ ਦਾ ਚਾਲਕ ਰਸਤਾ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਸ ਨਾਲ ਇਹ ਯਕੀਨੀ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਬਿਜਲੀ ਧਾਰਾ ਦੀ ਲੀਕੇਜ਼ ਹੋਣ ਤੇ ਧਾਤਵੀ ਯੰਤਰ ਦੀ ਪੁਟੈਂਸ਼ਲ ਧਰਤੀ ਜਿੰਨੀ ਹੀ ਰਹਿੰਦੀ ਹੈ ਅਤੇ ਉਪਕਰਨ ਵਰਤਣ ਵਾਲੇ ਨੂੰ ਬਿਜਲੀ ਦਾ ਸਖ਼ਤ ਝਟਕਾ ਨਹੀਂ ਲਗਦਾ।

ਚਿੱਤਰ 13.20 ਵਿੱਚ ਆਮ ਘਰੇਲੂ ਬਿਜਲੀ ਸਰਕਟਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦਾ ਵਿਊਂਤ ਚਿੱਤਰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।ਹਰ ਵੱਖਰੇ ਸਰਕਟ ਵਿੱਚ ਵੱਖ ਵੱਖ ਉਪਕਰਨ ਲਾਇਵ ਅਤੇ ਉਦਾਸੀਨ ਤਾਰਾਂ ਵਿੱਚ ਜੋੜੇ ਜਾ ਸਕਦੇ ਹਨ। ਹਰ ਇੱਕ ਉਪਕਰਨ ਬਿਜਲੀ ਦੇ ਵਹਾਓ ਲਈ ਇੱਕ ਵੱਖਰਾ ਆਨ/ ਆਫ਼ ਸਵਿੱਚ ਹੈ।ਉਪਕਰਨਾਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਨਾਲ ਸਮਾਨਾਂਤਰ ਵਿੱਚ ਜੋੜਿਆ ਗਿਆ ਹੈ ਤਾਂ ਜੋ ਹਰ ਇੱਕ ਨੂੰ ਬਰਾਬਰ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਮਿਲ ਸਕੇ।

ਬਿਜਲੀ ਫਿਊਜ਼ ਸਾਰੇ ਘਰੇਲੂ ਸਰਕਟਾਂ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਅੰਗ ਹੁੰਦਾ ਹੈ। ਪਿਛਲੇ ਅਧਿਆਇ (ਅਨੁਸਾਰ 12.7 ਭਾਗ) ਵਿੱਚ ਅਸੀਂ ਬਿਜਲੀ ਫਿਊਜ਼ ਦੇ ਸਿਧਾਂਤ ਅਤੇ ਕਾਰਜ ਵਿਧੀ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਲੱਗਿਆ ਫਿਊਜ਼, ਸਰਕਟ ਅਤੇ ਸਾਧਨਾਂ ਦੀ ਓਵਰ ਲੋਡਿੰਗ ਕਾਰਨ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਤੋਂ ਬਚਾਉਂਦਾ ਹੈ। ਜਦੋਂ ਲਾਇਵ ਤਾਰ ਅਤੇ ਉਦਾਸੀਨ ਤਾਰ ਦੋਵੇਂ ਸਿੱਧੀਆਂ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੀਆਂ ਹਨ ਤਾਂ ਓਵਰ ਲੋਡਿੰਗ (Over-Loading) ਹੋ ਸਕਦੀ ਹੈ। ਇਹ ਤਦ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਤਾਰਾਂ ਦਾ ਬਿਜਲ ਰੋਧਨ ਟੁੱਟ ਜਾਂਦਾ ਹੈ ਜਾਂ ਸਾਧਨ ਵਿੱਚ ਕੋਈ ਨੁਕਸ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਕਿਸੇ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਇੱਕਦਮ ਬਹੁਤ ਅਧਿਕ ਹੋ ਜਾਂਦੀ ਹੈ।ਇਸ ਨੂੰ ਸ਼ਾਰਟ ਸਰਕਟਿੰਗ (Short Circuiting) ਕਹਿੰਦੇ ਹਨ। ਬਿਜਲੀ ਫਿਊਜ਼ ਦੀ ਵਰਤੋਂ ਬਿਜਲਈ ਸਰਕਟ ਅਤੇ ਬਿਜਲਈ ਯੰਤਰਾਂ ਨੂੰ ਅਣਉੱਚਿਤ ਉੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਰਵਾਹ ਨੂੰ ਖਤਮ ਕਰਕੇ, ਸੰਭਾਵਿਤ ਨੁਕਸਾਨ ਤੋਂ ਬਚਾਉਣਾ ਹੈ। ਫਿਊਜ਼ ਵਿੱਚ ਹੋਣ ਵਾਲਾ ਜੂਲ ਤਾਪਨ ਫਿਊਜ਼ ਨੂੰ ਪਿਘਲਾ ਦਿੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਫਿਊਜ਼ ਸਰਕਟ ਟੁੱਟ ਜਾਂਦਾ ਹੈ। ਦਿੱਤੀ ਜਾ ਰਹੀ ਵੋਲਟੇਜ਼ ਵਿੱਚ ਅਚਾਨਕ ਵਾਧੇ ਕਾਰਨ ਵੀ ਓਵਰਲੋਡਿੰਗ ਹੋ ਜਾਂਦੀ ਹੈ। ਕਦੇ ਕਦੇ ਇੱਕ ਹੀ ਸਾਕਿਟ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਯੰਤਰ ਲਗਾਉਣ ਨਾਲ ਵੀ ਓਵਰ ਲੋਡਿੰਗ ਹੋ ਜਾਂਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ

- 1. ਬਿਜਲੀ ਸਰਕਟਾਂ ਅਤੇ ਉਪਕਰਨਾਂ ਵਿੱਚ ਆਮ ਵਰਤੇ ਜਾਂਦੇ ਦੋ ਸੁਰੱਖਿਆ ਉਪਾਵਾਂ ਦੇ ਨਾਂ ਲਿਖੋ।
- 2. 2 KW ਸ਼ਕਤੀ ਅੰਕਿਤ ਦੀ ਬਿਜਲੀ ਓਵਨ ਕਿਸੇ ਘਰੇਲੂ ਬਿਜਲੀ ਸਰਕਟ (220 V) ਵਿੱਚ ਚਲਾਇਆ ਗਿਆ ਹੈ ਜਿਸ ਦਾ ਬਿਜਲਈ ਧਾਰਾ ਅੰਕ 5 A ਹੈ। ਇਸ ਤੋਂ ਤੁਸੀਂ ਕਿਸ ਸਿੱਟੇ ਦੀ ਆਸ ਕਰਦੇ ਹੋ? ਸਪਸ਼ਟ ਕਰੋ।
- ਘਰੇਲੂ ਬਿਜਲਈ ਸਰਕਟ ਵਿੱਚ ਓਵਰ ਲੋਡਿੰਗ ਦੇ ਬਚਾਓ ਲਈ ਤੁਸੀਂ ਕੀ ਸਾਵਧਾਨੀਆਂ ਵਰਤੌਗੇ?

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ?

- ਦਿਸ਼ਾ ਸੂਚਕ ਇੱਕ ਛੋਟਾ ਚੁੰਬਕ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਇੱਕ ਸਿਰਾ ਜੋ ਉੱਤਰ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ, ਉੱਤਰੀ ਧਰੁਵ ਕਹਾਉਂਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਸਿਰਾ ਜੋ ਦੱਖਣ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ ਦੱਖਣੀ ਧਰੁਵ ਕਹਾਉਂਦਾ ਹੈ।
- ਕਿਸੇ ਚੁੰਬਕ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇੱਕ ਚੁੰਬਕੀ ਖੇਤਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਚੁੰਬਕ ਦੀ ਸ਼ਕਤੀ ਦਾ ਪਤਾ ਲਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਚੁੰਬਕੀ ਖੇਤਰ ਰੇਖਾਵਾਂ ਉਹ ਰਸਤਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ ਕਲਪਨਿਕ ਸੁਤੰਤਰ ਉੱਤਰੀ ਧਰੁਵ ਚੱਲਣ ਕਰਨ ਦੀ ਪ੍ਕਿਰਤੀ ਰੱਖਦਾ ਹੈ। ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਉਸ ਬਿੰਦੂ ਤੇ ਰੱਖੇ ਉੱਤਰੀ ਧਰੁਵ ਦੀ ਦਿਸ਼ਾ ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ। ਜਿੱਥੇ ਚੁੰਬਕੀ ਖੇਤਰ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ ਉੱਥੇ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜੇ ਦਿਖਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ।
- ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਰੱਖਣ ਵਾਲੀ ਧਾਤ ਦੀ ਤਾਰ ਨਾਲ ਇੱਕ ਚੁੰਬਕੀ ਖੇਤਰ ਸੰਬੰਧਿਤ ਹੁੰਦਾ ਹੈ। ਤਾਰ ਦੇ ਚਾਰੇ ਪਾਸੇ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਅਨੇਕ ਸਮਕੇਂਦਰੀ ਚੱਕਰਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਦੀ ਦਿਸ਼ਾ ਸੱਜਾ ਹੱਥ ਅੰਗੂਠਾ ਨਿਯਮ ਦੁਆਰਾ ਗਿਆਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- ਬਿਜਲੀ ਚੁੰਬਕ ਵਿੱਚ ਨਰਮ ਲੋਹਾ ਕੋਰ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦੇ ਚਾਰੇ ਪਾਸੇ ਰੋਧਿਤ ਤਾਂਬੇ ਦੇ ਤਾਰ ਦੀ ਕੁੰਡਲੀ ਲਿਪਟੀ ਰਹਿੰਦੀ ਹੈ।
- ਕੋਈ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲਾ ਚਾਲਕ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਰੱਖੇ ਜਾਣ ਤੇ ਬਲ ਦਾ ਅਨੁਭਵ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਚੁੰਬਕੀ ਖੇਤਰ ਅਤੇ ਬਿਜਲੀ ਧਾਰਾ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਇੱਕ ਦੂਜੇ ਤੇ ਲੰਬ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ ਚਾਲਕ ਉੱਤੇ ਲੱਗ ਰਹੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਇਹਨਾਂ ਦੋਵੇਂ ਦਿਸ਼ਾਵਾਂ ਦੇ ਲੰਬ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਫਲੇਮਿੰਗ ਦੇ ਖੱਬੇ ਹੱਥ ਨਿਯਮ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਬਿਜਲੀ ਮੋਟਰ ਦਾ ਅਧਾਰ ਹੈ। ਬਿਜਲੀ ਮੋਟਰ ਇੱਕ ਅਜਿਹੀ ਯੁਕਤੀ ਹੈ ਜੋ ਬਿਲਈ ਊਰਜਾ ਨੂੰ ਯੰਤਰਿਕ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਦੀ ਹੈ।
- ਬਿਜਲੀ-ਚੁੰਬਕੀ ਪ੍ਰੇਣ ਇੱਕ ਅਜਿਹੀ ਘਟਨਾ ਹੈ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਚਾਲਕ ਦੀ ਕੁੰਡਲੀ ਵਿੱਚ ਜੋ ਕਿਸੇ ਅਜਿਹੇ ਖੇਤਰ ਵਿੱਚ ਸਥਿਤ ਹੈ ਜਿੱਥੇ ਸਮੇਂ ਦੇ ਨਾਲ ਚੁੰਬਕੀ ਖੇਤਰ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ, ਇੱਕ ਪ੍ਰੇਰਿਤ ਬਿਜਲਈ ਧਾਰਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਿਸੇ ਚੁੰਬਕ ਅਤੇ ਉਸ ਦੇ ਨੇੜੇ ਸਥਿਤ ਕਿਸੇ ਕੁੰਡਲੀ ਦੇ ਵਿੱਚ ਸਾਪੇਖ ਗਤੀ ਦੇ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਕੁੰਡਲੀ ਕਿਸੇ ਬਿਜਲਈ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਦੇ ਨੇੜੇ ਰੱਖੀ ਹੈ ਤਾਂ ਕੁੰਡਲੀ ਨਾਲ ਸੰਬੰਧਿਤ ਚੁੰਬਕੀ ਖੇਤਰ ਜਾਂ ਚਾਲਕ ਤੋਂ ਪ੍ਰਵਾਹਿਤ ਬਿਜਲੀ ਧਾਰਾ ਵਿੱਚ ਅੰਤਰ ਦੇ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ ਜਾਂ ਚਾਲਕ ਅਤੇ ਕੁੰਡਲੀ ਦੇ ਵਿੱਚ ਸਾਪੇਖ ਗਤੀ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ। ਪ੍ਰੇਰਿਤ ਬਿਜਲਈ ਧਾਰਾ ਦੀ ਦਿਸ਼ਾ ਫਲੇਮਿੰਗ ਦੇ ਸੱਜਾ ਹੱਥ ਨਿਯਮ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- ਬਿਜਲੀ ਜਨਰੇਟਰ ਯੰਤਰਿਕ ਊਰਜਾ ਦੀ ਬਿਜਲਈ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਦਾ ਹੈ। ਇਹ ਬਿਜਲ ਚੁੰਬਕੀ ਪ੍ਰੇਰਣ ਦੇ ਆਧਾਰ ਤੋਂ ਕੰਮ ਕਰਦਾ ਹੈ।
- ਅਸੀਂ ਆਪਣੇ ਘਰਾਂ ਵਿੱਚ ਪਰਤਵੀਂ ਬਿਜਲੀ ਸ਼ਕਤੀ 220 V ਤੇ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਜਿਸ ਦੀ ਆਵ੍ਰਿਤੀ 50 Hz ਹੈ। ਇਸ ਵੰਡ ਦੀ ਇੱਕ ਤਾਰ ਲਾਲ ਬਿਜਲ ਰੋਧਕ ਯੁਕਤ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਧਨ ਤਾਰ ਕਹਿੰਦੇ ਹਨ। ਦੂਜੀ ਤਾਰ ਉੱਤੇ ਕਾਲਾ ਬਿਜਲ ਰੋਧਕ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਉਦਾਸੀਨ ਤਾਰ ਕਹਿੰਦੇ ਹਨ। ਇਹਨਾਂ ਦੋਵੇਂ ਤਾਰਾਂ ਦੇ ਵਿੱਚ 220 V ਦਾ ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਤੀਜੀ ਤਾਰ ਭੋਂ ਤਾਰ ਹੁੰਦੀ ਹੈ ਜਿਸ ਉੱਤੇ ਹਰੇ ਰੰਗਾ ਬਿਜਲ ਰੋਧਕ ਹੁੰਦਾ ਹੈ। ਇਹ ਤਾਰ ਧਰਤੀ ਵਿੱਚ ਡੂੰਘੀ ਦੱਬੀ ਧਾਤ ਦੀ ਪਲੇਟ ਨਾਲ ਜੁੜੀ ਹੁੰਦੀ ਹੈ। ਭੋਂ ਤਾਰ ਸੁਰੱਖਿਆ ਉਪਾਅ ਹੈ ਜੋ ਇਹ ਨਿਸ਼ਚਿਤ ਕਰਦਾ ਹੈ ਕਿ ਯੰਤਰਾਂ ਦੇ ਧਾਤਵੀ ਭਾਗਾਂ ਵਿੱਚ ਜੇਕਰ ਬਿਜਲੀ ਧਾਰਾ ਦਾ ਲੀਕੇਜ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਸ ਯੰਤਰ ਦਾ ਉਪਯੋਗ ਕਰਨ ਨਾਲ ਸੰਬੰਧਿਤ ਵਿਅਕਤੀ ਨੂੰ ਗੰਭੀਰ ਝਟਕਾ ਨਾ ਲੱਗੇ।
- ਬਿਜਲੀ ਸਰਕਟਾਂ ਨੂੰ ਸ਼ਾਰਟ ਸਰਕਟਿੰਗ ਅਤੇ ਓਵਰ ਲੋਡਿੰਗ ਤੋਂ ਬਚਾਉਣ ਲਈ ਫਿਊਜ਼ ਇੱਕ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਸੁਰੱਖਿਅਕ ਯੰਤਰ ਹੈ।

ਅਭਿਆਸ

- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਕਿਸੇ ਲੰਬੀ ਸਿੱਧੀ ਤਾਰ ਦੇ ਨੇੜੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦਾ ਸਹੀ ਵਰਨਣ ਕਰਦਾ ਹੈ?
 - (a) ਤਾਰ ਦੇ ਉੱਪਰ ਸਿੱਧੀਆਂ ਲੰਬ ਰੂਪੀ ਰੇਖਾਵਾਂ ਦਾ ਬਣਦਾ ਖੇਤਰ।
 - (b) ਤਾਰ ਦੇ ਸਮਾਨਾਂਤਰ ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਦਾ ਬਣਦਾ ਖੇਤਰ।
 - (c) ਤਾਰ ਤੋਂ ਪੈਦਾ ਅਰਧ ਵਿਆਸੀ ਰੇਖਾਵਾਂ ਦਾ ਬਣਦਾ ਖੇਤਰ।
 - (d) ਤਾਰ ਦੇ ਦੁਆਲੇ ਸਮਕੇਂਦਰੀ ਚੱਕਰਾਂ ਦਾ ਬਣਦਾ ਖੇਤਰ।
- 2. ਬਿਜਲ-ਚੁੰਬਕੀ ਪ੍ਰੇਰਣ ਦੀ ਘਟਨਾ :-
 - (a) ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਚਾਰਜ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੈ।
 - (b) ਕਿਸੇ ਕੁੰਡਲੀ ਤੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਦੇ ਕਾਰਨ ਚੁੰਬਕੀ ਖੇਤਰ ਉਤਪੰਨ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੈ।
 - (c) ਕੁੰਡਲੀ ਅਤੇ ਚੁੰਬਕ ਦੇ ਵਿੱਚ ਸਾਪੇਖਿਕ ਗਤੀ ਦੇ ਕਾਰਨ ਕੁੰਡਲੀ ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਬਿਜਲੀ ਧਾਰਾ ਪੈਦਾ ਕਰਨਾ।
 - (d) ਕਿਸੇ ਬਿਜਲੀ ਮੋਟਰ ਦੀ ਕੁੰਡਲੀ ਨੂੰ ਘੁਮਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੈ।
- 3. ਬਿ<mark>ਜਲੀ ਧਾਰਾ ਪੈਦਾ ਕਰਨ ਦੀ ਵਿਉਂਤ ਨੂੰ</mark> ਕਹਿੰਦੇ ਹਨ
 - (a) ਜਨਰੇਟਰ
 - (b) ਗੈਲਵੈਨੋਮੀਟਰ
 - (c) ਐਮਮੀਟਰ
 - (d) ਮੋਟਰ
- 4. ਕਿਸੇ AC ਜਰਨੇਟਰ ਅਤੇ DC ਜਨਰੇਟਰ ਵਿੱਚ ਇੱਕ ਮੂਲ ਅੰਤਰ ਹੈ ਕਿ
 - (a) AC ਜਨਰੇਟਰ ਵਿੱਚ ਬਿਜਲੀ ਚੁੰਬਕ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿ DC ਜਨਰੇਟਰ ਵਿੱਚ ਸਥਾਈ ਚੁੰਬਕ ਹੁੰਦਾ ਹੈ।
 - (b) DC ਜਨਰੇਟਰ ਉੱਚੀ ਵੋਲਟਤਾ ਪੈਦਾ ਕਰਦਾ ਹੈ।
 - (c) AC ਜਨਰੇਟਰ ਉੱਚੀ ਵੋਲਟਤਾ ਪੈਦਾ ਕਰਦਾ ਹੈ।
 - (d) AC ਜਨਰੇਟਰ ਵਿੱਚ ਵਿਭੇਦਿਤ ਰਿੰਗ ਹੁੰਦੇ ਹਨ ਜਦੋਂ ਕਿ DCਜਨਰੇਟਰ ਵਿੱਚ ਦਿਸ਼ਾ ਪਰਾਵਰਤਕ (Commutator) ਹੁੰਦਾ ਹੈ।
- 5. ਸ਼ਾਰਟ ਸਰਕਟ ਸਮੇਂ ਸਰਕਟ ਵਿੱਚ ਬਿਜਲਈ ਧਾਰਾ ਦਾ ਮਾਨ : -
 - (a) ਬਹੁਤ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ।
 - (b) ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦਾ।
 - (c) ਬਹੁਤ ਅਧਿਕ ਵੱਧ ਜਾਂਦਾ ਹੈ।
 - (d) ਨਿਰੰਤਰ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ।
- 6. ਹੇਠ ਲਿਖੇ ਕਥਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਸਹੀ ਹੈ ਅਤੇ ਕਿਹੜਾ ਗਲਤ ਹੈ-
 - (a) ਬਿਜਲੀ ਮੋਟਰ ਯੈਤਰਿਕ ਊਰਜਾ ਨੂੰ ਬਿਜਲੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਦੀ ਹੈ।
 - (b) ਬਿਜਲੀ ਜਨਰੇਟਰ ਬਿਜਲ ਚੁੰਬਕੀ ਪ੍ਰੇਰਣ ਦੇ ਸਿਧਾਂਤ ਤੇ ਕਾਰਜ ਕਰਦਾ ਹੈ।
 - (c) ਕਿਸੇ ਲੰਬੀ ਗੋਲਾਕਾਰ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੀ ਕੁੰਡਲੀ ਦੇ ਕੇਂਦਰ ਉੱਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਸਮਾਨਤਰ ਸਿੱਧੀਆਂ ਖੇਤਰੀ ਰੇਖਾਵਾਂ ਹੁੰਦਾ ਹੈ।
 - (d) ਹਰੇ ਬਿਜਲ ਰੋਧਕ ਵਾਲੀ ਤਾਰ ਆਮ ਕਰਕੇ ਬਿਜਲੀ ਸਪਲਾਈ ਦੀ ਲਾਇਵ ਤਾਰ ਹੁੰਦੀ ਹੈ।
- ਚੁੰਬਕੀ ਖੇਤਰ ਉਤਪੰਨ ਕਰਨ ਦੇ ਤਿੰਨ ਢੰਗਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ।

- 8. ਸੋਲੀਨਾਇਡ ਚੁੰਬਕ ਦੀ ਤਰ੍ਹਾਂ ਕਿਵੇਂ ਵਿਵਹਾਰ ਕਰਦੀ ਹੈ? ਕੀ ਤੁਸੀਂ ਛੜ ਚੁੰਬਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਕਿਸੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਸੋਲੀਨਾਇਡ ਦੇ ਉੱਤਰੀ ਧਰੁਵ ਅਤੇ ਦੱਖਣੀ ਧਰੁਵ ਦਾ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ?
- 9. ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਸਥਿਤ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਉੱਤੇ ਲੱਗ ਰਿਹਾ ਬਲ ਕਦੋਂ ਅਧਿਕਤਮ ਹੁੈਦਾ ਹੈ?
- 10. ਮੰਨ ਲਓ ਤੁਸੀਂ ਕਿਸੇ ਚੈਂਬਰ ਵਿੱਚ ਆਪਣੀ ਪਿੱਠ ਨੂੰ ਕਿਸੇ ਇੱਕ ਕੰਧ ਲਗਾ ਕੇ ਬੈਠੇ ਹੋ। ਕੋਈ ਇਲੈੱਕਟਰਾਨ ਪੁੰਜ ਤੁਹਾਡੇ ਪਿੱਛੇ ਦੀ ਕੰਧ ਤੋਂ ਸਾਹਮਣੇ ਵਾਲੀ ਕੰਧ ਵੱਲ ਖਤਿਜ ਗਤੀ ਕਰਦਾ ਹੋਇਆ ਕਿਸੇ ਪ੍ਰਬਲ ਚੁੰਬਕੀ ਖੇਤਰ ਦੁਆਰਾ ਤੁਹਾਡੇ ਸੱਜੇ ਪਾਸੇ ਵਿਖੇਪਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਦਿਸ਼ਾ ਕੀ ਹੈ?
- ਬਿਜਲੀ ਮੋਟਰ ਦਾ ਅੰਕਿਤ ਚਿੱਤਰ ਖਿੱਚੋ। ਇਸ ਦਾ ਸਿਧਾਂਤ ਅਤੇ ਕਾਰਜ ਵਿਧੀ ਸਪਸ਼ਟ ਕਰੋ। ਬਿਜਲੀ ਮੋਟਰ ਵਿੱਚ ਵਿਭੇਦਿਤ ਰਿੰਗ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ।
- 12. ਅਜਿਹੇ ਕੁੱਝ ਯੰਤਰਾਂ ਦੇ ਨਾਂ ਲਿਖੋ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬਿਜਲੀ ਮੋਟਰ ਦਾ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ।
- ਬਿਜਲਰੋਧੀ ਤਾਂਬੇ ਦੀ ਤਾਰ ਦੀ ਕੁੰਡਲੀ ਕਿਸੇ ਗੈਲਵੈਨੋਮੀਟਰ ਨਾਲ ਜੁੜੀ ਹੋਈ ਹੈ। ਕੀ ਹੋਵੇਗਾ ਜੇਕਰ ਕੋਈ ਛੜ ਚੁੰਬਕ –
 - (i) ਕੁੰਡਲੀ ਵਿੱਚ ਧਕੇਲਿਆ ਜਾਂਦਾ ਹੈ?
 - (ii) ਕੁੰਡਲੀ ਦੇ ਅੰਦਰ ਤੋਂ ਬਾਹਰ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ?
 - (iii) ਕੁੰਡਲੀ ਦੇ ਅੰਦਰ ਸਥਿਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ?
- 14. ਦੋ ਗੋਲਾਕਾਰ ਕੁੰਡਲੀਆਂ A ਅਤੇ B ਇੱਕ-ਦੂਜੇ ਦੇ ਨੇੜੇ ਸਥਿਤ ਹਨ। ਜੇਕਰ ਕੁੰਡਲੀ A ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਕਰੀਏ ਤਾਂ ਕੀ ਕੁੰਡਲੀ B ਵਿੱਚ ਕੋਈ ਬਿਜਲਈ ਧਾਰਾ ਪ੍ਰੇਰਤ ਹੋਵੇਗੀ? ਕਾਰਨ ਲਿਖੋ।
- 15. ਨਿਮਨਲਿਖਿਤ ਦੀ ਦਿਸ਼ਾ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਾਲਾ ਨਿਯਮ ਲਿਖੋ
 - 🗓 ਕਿਸੇ ਸਿੱਧੇ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਚਾਲਕ ਦੇ ਆਲੇ ਦੁਆਲੇ ਉਤਪੰਨ ਚੁੰਬਕੀ ਖੇਤਰ।
 - (ii) ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਖੇਤਰ ਦੇ ਲੰਬ ਵੱਲ ਸਥਿਤ ਬਿਜਲੀ ਧਾਰਾ ਵਾਲੇ ਸਿੱਧੇ ਚਾਲਕ ਤੇ ਲੱਗਿਆ ਬਲ ਅਤੇ
 - (ш) ਕਿਸੇ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਕਿਸੇ ਕੁੰਡਲੀ ਦੇ ਘੁੰਮਣ ਤੇ ਉਸ ਕੁੰਡਲੀ ਵਿੱਚ ਉਤਪੰਨ ਪ੍ਰੇਰਿਤ ਬਿਜਲੀ ਧਾਰਾ।
- 16. ਅੰਕਿਤ ਰੇਖਾ ਚਿੱਤਰ ਖਿੱਚ ਕੇ ਕਿਸੇ ਬਿਜਲੀ ਜਨਰੇਟਰ ਦਾ ਮੂਲ ਸਿਧਾਂਤ ਅਤੇ ਕਾਰਜ ਵਿਧੀ ਸਪਸ਼ਟ ਕਰੋ। ਇਸ ਵਿੱਚ ਬੁਰਸ਼ਾਂ ਦਾ ਕੀ ਕੰਮ ਹੈ?
- 17. ਬਿਜਲਈ ਸ਼ਾਰਟ ਸਰਕਟ ਕਦੋਂ ਹੁੰਦਾ ਹੈ?
- 18. ਭੋਂ-ਤਾਰ ਦਾ ਕੀ ਕਾਰਜ ਹੈ? ਧਾਤ ਵਾਲੇ ਯੰਤਰਾਂ ਨੂੰ ਭੌਂ ਸੰਪਰਕ ਕਰਨਾ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ?

ਜਮਾਤ ਨੌਵੀਂ ਵਿੱਚ ਅਸੀਂ ਇਹ ਸਿੱਖਿਆ ਸੀ ਕਿ ਕਿਸੇ ਭੌਤਿਕ ਜਾਂ ਰਸਾਇਣਿਕ ਪ੍ਰਤਿਕਿਰਿਆ ਦੇ ਦੌਰਾਨ ਕੁੱਲ ਊਰਜਾ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ। ਤਾਂ ਫਿਰ ਅਸੀਂ ਊਰਜਾ ਸੰਕਟ ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਇੰਨਾ ਕੁੱਝ ਕਿਉਂ ਸੁਣਦੇ ਰਹਿੰਦੇ ਹਾਂ? ਜੇਕਰ ਊਰਜਾ ਨੂੰ ਨਾ ਤਾਂ ਪੈਦਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਇਸਨੂੰ ਨਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਸਾਨੂੰ ਚਿੰਤਾ ਨਹੀਂ ਹੋਣੀ ਚਾਹੀਦੀ। ਸਾਨੂੰ ਊਰਜਾ ਦੇ ਸਾਧਨਾਂ ਦੀ ਚਿੰਤਾ ਕੀਤੇ ਬਿਨਾਂ ਅਸੀਮਤ ਕਿਰਿਆਵਾਂ ਕਰਨ ਵਿੱਚ ਸਮਰੱਥ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਜੇਕਰ ਅਸੀਂ ਯਾਦ ਕਰੀਏ ਕਿ ਅਸੀਂ ਊਰਜਾ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਇਸ ਦੇ ਇਲਾਵਾ ਹੋਰ ਕੀ-ਕੀ ਸਿੱਖਿਆ ਹੈ ਤਾਂ ਇਸ ਪਹੇਲੀ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਜੇਕਰ ਕਿਸੇ ਪਲੇਟ ਨੂੰ ਉੱਚੇ ਤੋਂ ਹੇਠਾਂ ਸੁੱਟੀਏ ਤਾਂ ਪਲੇਟ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਦਾ ਵਧੇਰੇ ਭਾਗ ਫਰਸ਼ ਨਾਲ ਟਕਰਾਉਂਦੇ ਸਮੇਂ ਧੁਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਮੋਮਬੱਤੀ ਨੂੰ ਜਲਾਉਂਦੇ ਹਾਂ ਤਾਂ ਪ੍ਕਿਰਿਆ ਬਹੁਤ ਤਾਪ ਨਿਕਾਸੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਜਲਣ ਨਾਲ ਮੇਮ ਦੀ ਰਸਾਇਣਿਕ ਊਰਜਾ ਤਾਪ ਊਰਜਾ ਅਤੇ ਪ੍ਕਾਸ਼ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਮੋਮਬੱਤੀ ਨੂੰ ਜਲਾਉਣ ਨਾਲ, ਇਹਨਾਂ ਊਰਜਾਵਾਂ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਕਿਹੜੇ ਉਤਪਾਦ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ?

ਕਿਸੇ ਵੀ ਭੌਤਿਕ ਜਾਂ ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਕੁੱਲ ਊਰਜਾ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ ਪਰ ਜੇਕਰ ਅਸੀਂ ਜਲਦੀ ਹੋਈ ਮੋਮਬੱਤੀ ਉੱਤੇ ਮੁੜ ਵਿਚਾਰ ਕਰੀਏ ਤਾਂ ਕੀ ਅਸੀਂ ਕਿਸੇ ਵੀ ਢੰਗ ਨਾਲ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਤਾਪ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਹੋਰ ਉਤਪਾਦਾਂ ਨਾਲ ਮਿਲਾ ਕੇ ਮੋਮ ਦੇ ਰੂਪ ਵਿੱਚ ਰਸਾਇਣਿਕ ਊਰਜਾ ਵਾਪਸ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ?

ਆਓ ਹੁਣ ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ।ਮੰਨ ਲਓ ਅਸੀਂ $100~\mathrm{mL}$ ਪਾਣੀ ਲੈਂਦੇ ਹਾਂ, ਇਸ ਦਾ ਤਾਪਮਾਨ $348\mathrm{K}$ ($75~\mathrm{^{\circ}C}$) ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਕਿਸੇ ਕਮਰੇ ਵਿੱਚ ਰੱਖ ਦਿੰਦੇ ਹਾਂ ਜਿਸ ਦਾ ਤਾਪਮਾਨ $298~\mathrm{K}$ ($25~\mathrm{^{\circ}C}$) ਹੈ।ਕੁੱਝ ਸਮੇਂ ਪਿੱਛੋਂ ਕੀ ਹੋਵੇਗਾ? ਕੀ ਅਜਿਹਾ ਕੋਈ ਉਪਾਅ ਹੈ ਜਿਸ ਦੁਆਰਾ ਵਾਤਾਵਰਨ ਵਿੱਚ ਗਈ ਸਾਰੀ ਤਾਪ ਊਰਜਾ ਇਕੱਠੀ ਕਰਕੇ ਜੋ ਪਾਣੀ ਇੱਕ ਬਾਰ ਠੰਢਾ ਹੋ ਗਿਆ ਹੈ ਉਸ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾ ਸਕੇ?

ਅਜਿਹੀ ਕੋਈ ਵੀ ਉਦਾਹਰਣ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਚਾਰ ਕਰਨ ਤੇ ਅਸੀਂ ਇਹ ਵੇਖਾਂਗੇ ਕਿ ਉਪਲੱਬਧ ਵਰਤੋਂ ਯੋਗ ਊਰਜਾ ਆਲੇ ਦੁਆਲੇ ਦੇ ਵਾਤਾਵਰਨ ਵਿੱਚ ਘੱਟ ਵਰਤੋਂ ਯੋਗ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਚਲੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਕਾਰਜ ਕਰਨ ਲਈ ਜਿਸ ਕਿਸੇ ਊਰਜਾ ਸਰੋਤ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ ਉਹ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਸ ਦਾ ਮੁੜ ਉਪਯੋਗ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।

14.1 ਊਰਜਾ ਦਾ ਵਧੀਆ ਸੋਮਾ ਕੀ ਹੈ? What is Good Source of Energy?

ਤਦ ਫਿਰ ਕਿਸ ਨੂੰ ਊਰਜਾ ਦਾ ਵਧੀਆ ਸੋਮਾ ਮੰਨਿਆ ਜਾਵੇ? ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਕਾਰਜ ਕਰਨ ਲਈ ਅਸੀਂ ਊਰਜਾ ਦੇ ਕਈ ਸੋਮਿਆਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ। ਰੇਲਗੱਡੀਆਂ ਨੂੰ ਚਲਾਉਣ ਲਈ ਅਸੀਂ ਡੀਜ਼ਲ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ। ਸੜਕਾਂ ਦੇ ਲੈਂਪਾਂ ਨੂੰ ਰੁਸ਼ਨਾਉਣ ਲਈ ਅਸੀਂ ਬਿਜਲੀ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ। ਸਾਈਕਲ ਉੱਤੇ ਸਕੂਲ ਜਾਣ ਲਈ ਪੇਸ਼ੀਆਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਕਿਰਿਆ 14,1

- ਸਵੇਰੇ ਸੌਂ ਕੇ ਉੱਠਣ ਤੋਂ ਮਗਰੋਂ ਸਕੂਲ ਪਹੁੰਚਣ ਤੱਕ ਤੁਸੀਂ ਜਿਨ੍ਹਾਂ ਊਰਜਾ ਰੂਪਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋ ਉਹਨਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਚਾਰ ਊਰਜਾ ਰੂਪਾਂ ਦੀ ਸੂਚੀ ਤਿਆਰ ਕਰੋ।
- ੂ ਇਹਨਾਂ ਭਿੰਨ ਊਰਜਾ ਰੂਪਾਂ ਦੀ ਊਰਜਾ ਅਸੀਂ ਕਿੱਥੋਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ?
- ੂ ਕੀ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ "ਉਰਜਾ ਦੇ ਸੋਮੇ" ਕਹਿ ਸਕਦੇ ਹਾਂ? ਕਿਉਂ ਅਤੇ ਕਿਉਂ ਨਹੀਂ?

ਸਰੀਰਕ ਕਾਰਜਾਂ ਨੂੰ ਕਰਨ ਲਈ ਪੇਸ਼ੀ ਊਰਜਾ, ਵੱਖ-ਵੱਖ ਬਿਜਲਈ ਯੰਤਰਾਂ ਨੂੰ ਚਲਾਉਣ ਲਈ ਬਿਜਲਈ ਊਰਜਾ, ਭੋਜਨ ਪਕਾਉਣ ਅਤੇ ਵਾਹਨਾਂ ਨੂੰ ਚਲਾਉਣ ਲਈ ਰਸਾਇਣਿਕ ਊਰਜਾ, ਇਹ ਸਾਰੀਆਂ ਊਰਜਾਵਾਂ ਕਿਸੇ ਨਾ ਕਿਸੇ ਊਰਜਾ ਸਰੋਤ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਸਾਨੂੰ ਇਹ ਜਾਣਨਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਊਰਜਾ ਨੂੰ ਉਸ ਦੇ ਵਰਤੋਂ ਯੋਗ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਊਰਜਾ ਦੇ ਸੋਮੇ ਦੀ ਚੋਣ ਕਿਵੇਂ ਕੀਤੀ ਜਾਵੇ।

ਕਿਰਿਆ 14.2

- ਭਿੰਨ ਵਿਕਲਪਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ਜੋ ਭੋਜਨ ਪਕਾਉਣ ਲਈ ਬਾਲਣ (Fuel) ਦੀ ਚੋਣ ਕਰਨ ਸਮੇਂ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ।
- ੂ ਕਿਸੇ ਬਾਲਣ ਨੂੰ ਚੰਗੇ ਬਾਲਣ ਦੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਰੱਖਣ ਦੀ ਕੋਸ਼ਿਸ ਕਰਦੇ ਸਮੇਂ ਤੁਸੀਂ ਕਿਹੜੇ ਮਾਪਦੰਡਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋਗੇ?
- ੂ ਕੀ ਤੁਹਾਡੀ ਪਸੰਦ ਵੱਖ ਹੁੰਦੀ ਜੇ ਤੁਸੀਂ -
 - (ੳ) ਜੰਗਲ ਵਿੱਚ ਜੀਵਨ ਨਿਰਵਾਹ ਕਰ ਰਹੇ ਹੁੰਦੇ?
 - (ਅ) ਬਹੁਤ ਦੂਰ ਦੇ ਪਹਾੜੀ ਪਿੰਡ ਵਿੱਚ ਜਾਂ ਕਿਸੇ ਛੋਟੇ ਟਾਪੂ ਵਿੱਚ ਜੀਵਨ ਨਿਰਵਾਹ ਕਰ ਰਹੇ ਹੁੰਦੇ।
 - (ੲ) ਨਵੀਂ ਦਿੱਲੀ ਵਿੱਚ ਜੀਵਨ ਨਿਰਵਾਹ ਕਰ ਰਹੇ ਹੁੰਦੇ?
 - (ਸ) ਪੰਜ ਸ਼ਤਾਬਦੀਆਂ ਪਹਿਲਾਂ ਜੀਵਨ ਨਿਰਵਾਹ ਕਰ ਰਹੇ ਹੁੰਦੇ।
 - ਹਰ ਇੱਕ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਕਾਰਕ ਕਿਸ ਤਰ੍ਹਾਂ ਭਿੰਨ ਹਨ?

ਉਪਰੋਕਤ ਦੋਵੇਂ ਕਿਰਿਆਵਾਂ ਕਰਨ ਉਪਰੰਤ ਸਾਨੂੰ ਇਹ ਜਾਣਕਾਰੀ ਹੋ ਜਾਂਦੀ ਹੈ ਕਿ ਕੁੱਝ ਕਾਰਜ ਕਰਨ ਲਈ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਊਰਜਾ ਸਰੋਤ ਜਾਂ ਬਾਲਣ ਦੀ ਚੋਣ ਬਹੁਤ ਸਾਰੇ ਕਾਰਕਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, ਕਿਸੇ ਬਾਲਣ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ ਸਾਨੂੰ ਆਪਣੇ ਆਪ ਨੂੰ ਇਹ ਪ੍ਰਸ਼ਨ ਪੁੱਛਣੇ ਚਾਹੀਦੇ ਹਨ :-

- (i) ਇਹ ਬਲਣ ਤੇ ਕਿੰਨੀ ਤਾਪ ਊਰਜਾ ਪੈਦਾ ਕਰਦਾ ਹੈ?
- (ii) ਕੀ ਇਹ ਬਹੁਤ ਧੁੰਆਂ ਪੈਦਾ ਕਰਦਾ ਹੈ?
- (iii) ਕੀ ਇਹ ਸੌਖਿਆਂ ਉਪਲੱਬਧ ਹੈ?

ਕੀ ਤੁਸੀਂ ਬਾਲਣ ਬਾਰੇ ਵਿੱਚ ਤਿੰਨ ਹੋਰ ਸੰਬੰਧਿਤ ਪ੍ਰਸ਼ਨ ਸੋਚ ਸਕਦੇ ਹੋ? ਜਿੰਨੀਆਂ ਕਿਸਮਾਂ ਦੇ ਬਾਲਣ ਅੱਜ ਉਪਲੱਬਧ ਹਨ, ਜੇਕਰ ਉਹਨਾਂ ਦੀ ਚੋਣ ਕਰਨੀ ਹੋਵੇ ਤਾਂ ਉਹ ਕਿਹੜੇ ਕਾਰਕ ਹਨ ਜੋ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਜਿਵੇਂ ਕਿ ਭੋਜਨ ਪਕਾਉਣ ਦੇ ਲਈ ਬਾਲਣ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਸਾਡੀ ਚੋਣ ਦੇ ਵਿਕਲਪਾਂ ਨੂੰ ਸੀਮਤ ਕਰ ਦਿੰਦੇ ਹਨ? ਕੀ ਜਿਸ ਬਾਲਣ ਦੀ ਚੋਣ ਕੀਤੀ ਗਈ ਹੈ ਉਹ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਕਾਰਜ ਉੱਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ? ਉਦਾਹਰਣ ਵਜੋਂ, ਕੀ ਅਸੀਂ ਸਰਦੀਆਂ ਵਿੱਚ ਭੋਜਨ ਪਕਾਉਣ ਲਈ ਇੱਕ ਬਾਲਣ ਅਤੇ ਕਮਰੇ ਨੂੰ ਗਰਮ ਕਰਨ ਲਈ ਕੋਈ ਦੂਜਾ ਬਾਲਣ ਚੁਣਾਂਗੇ?

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇੱਕ ਵਧੀਆ ਊਰਜਾ ਸੋਮਾ ਉਹ ਹੈ ਜੋ : -

- 😦 ਪ੍ਤਿ ਇਕਾਈ ਆਇਤਨ ਜਾਂ ਪ੍ਰਤਿ ਇਕਾਈ ਪੁੰਜ ਵਧੇਰੇ ਕਾਰਜ ਕਰੇ।
- 🎍 ਸੌਖ ਨਾਲ ਮਿਲ ਸਕੇ।
- 🍙 ਭੰਡਾਰ ਕਰਨ ਅਤੇ ਇੱਕ ਥਾਂ ਤੋਂ ਦੂਜੀ ਥਾਂ ਲੈ ਜਾਣਾ ਆਸਾਨ ਹੋਵੇ।
- 😱 ਸ਼ਾਇਦ ਸਭ ਤੋਂ ਵੱਧ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਇਹ ਸਸਤਾ ਹੋਵੇ।

ਪ੍ਰਸ਼ਨ

- ਊਰਜਾ ਦਾ ਵਧੀਆ ਸੋਮਾ ਕਿਸ ਨੂੰ ਕਹਿੰਦੇ ਹਨ?
- ਵਧੀਆ ਬਾਲਣ ਕਿਸ ਨੂੰ ਕਹਿੰਦੇ ਹਨ?
- ਜੇਕਰ ਤੁਸੀਂ ਆਪਣੇ ਭੋਜਨ ਨੂੰ ਗਰਮ ਕਰਨ ਲਈ ਕਿਸੇ ਵੀ ਊਰਜਾ ਸੋਮੇ ਦਾ ਉਪਯੋਗ ਕਰ ਸਕਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕਿਸ ਦੀ ਵਰਤੋਂ ਕਰੋਗੇ ਅਤੇ ਕਿਉਂ?

?

14.2 ਊਰਜਾ ਦੇ ਪਰੰਪਰਿਕ ਸਰੋਤ (Conventional Sources of Energy)

14.2.1 ਪਥਰਾਟ ਬਾਲਣ (Fossil Fuels)

ਪ੍ਰਾਚੀਨ ਕਾਲ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਦਾ ਸਭ ਤੋਂ ਵੱਧ ਆਮ ਸੋਮਾ ਲੱਕੜੀ ਸੀ। ਕੁੱਝ ਸੀਮਤ ਕਿਰਿਆਵਾਂ ਲਈ ਪੌਣ ਅਤੇ ਵਗਦੇ ਪਾਣੀ ਦੀ ਊਰਜਾ ਦਾ ਵੀ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਸੀ। ਕੀ ਤੁਸੀਂ ਉਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਉਪਯੋਗ ਦੱਸ ਸਕਦੇ ਹੋ? ਊਰਜਾ ਦੇ ਸੋਮਾ ਰੂਪ ਵਿੱਚ ਕੋਲੇ ਦੇ ਉਪਯੋਗ

ਨੇ ਉਦਯੋਗਿਕ ਕ੍ਰਾਂਤੀ ਨੂੰ ਸੰਭਵ ਬਣਾਇਆ। ਵਧਦੇ ਉਦਯੋਗਾਂ ਨੇ ਸਾਰੇ ਸੰਸਾਰ ਵਿੱਚ ਜੀਵਨ ਦੀ ਗੁਣਵਤਾ ਵਿੱਚ ਵਾਧਾ ਕਰ ਦਿੱਤਾ ਹੈ। ਇਸ ਦੇ ਕਾਰਨ ਸਾਰੇ ਸੰਸਾਰ ਵਿੱਚ ਊਰਜਾ ਦੀ ਮੰਗ ਵਿੱਚ ਹੈਰਾਨ ਕਰਨ ਵਾਲੀ ਦਰ ਨਾਲ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ। ਊਰਜਾ ਦੀ ਵਧਦੀ ਮੰਗ ਦੀ ਵਧੇਰੇ ਕਰਕੇ ਪੂਰਤੀ ਪਥਰਾਟ ਬਾਲਣ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਤੋਂ ਕੀਤੀ ਜਾ ਰਹੀ

ਕੋਲਾ ਪੈਟਰੌਲੀਅਮ ਪਾਣੀ ਜਿਨਊਕਲੀਅਰ ਪੁਣ

ਹੈ। ਮੰਗ ਵਿੱਚ ਵਾਧੇ ਦੇ ਨਾਲ-ਨਾਲ ਇਹਨਾਂ ਊਰਜਾ ਸੋਮਿਆਂ ਦਾ ਉਪਯੋਗ ਕਰਨ ਲਈ ਤਕਨੀਕਾਂ ਵਿੱਚ ਵੀ ਵਿਕਾਸ ਕੀਤਾ ਗਿਆ ਹੈ। ਪਰ ਇਹ ਬਾਲਣ ਕਰੋੜਾਂ ਸਾਲਾਂ ਵਿੱਚ ਬਣੇ ਸਨ ਅਤੇ ਹੁਣ ਇਹਨਾਂ ਦੇ ਕੇਵਲ ਸੀਮਿਤ ਭੰਡਾਰ ਹੀ ਬਚੇ ਹਨ। ਪਥਰਾਟ ਬਾਲਣ ਊਰਜਾ ਦੇ ਪੂਰਤੀ-ਅਯੋਗ ਸੋਮੇ ਹਨ, ਇਸ ਲਈ ਇਹਨੂੰ ਸੁਰੱਖਿਅਤ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਇਹਨਾਂ ਊਰਜਾ ਸੋਮਿਆਂ ਦਾ ਉਪਯੋਗ ਚਿੰਤਾਜਨਕ ਦਰ ਨਾਲ ਕਰਦੇ ਰਹਾਂਗੇ ਤਾਂ ਸਾਡੇ ਇਹ ਭੰਡਾਰ ਛੇਤੀ ਹੀ ਖਤਮ ਹੋ ਜਾਣਗੇ। ਅਜਿਹੀ ਸਥਿਤੀ ਨੂੰ ਟਾਲਣ ਦੇ ਉਦੇਸ਼ ਨਾਲ ਊਰਜਾ ਦੇ ਬਲਦਵੇਂ ਸੋਮਿਆਂ ਦੀ ਖੋਜ ਕੀਤੀ ਗਈ ਹੈ

ਚਿੱਤਰ14.1 ਭਾਰਤ ਵਿੱਚ ਸਾਡੀਆਂ ਲੌੜਾਂ ਲਈ ਊਰਜਾ ਦੇ ਪ੍ਰਮੁੱਖ ਸਰੋਤਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲਾ ਪਾਈ ਚਾਰਟ ਪਰ ਅੱਜ ਵੀ ਅਸੀਂ ਆਪਣੀਆਂ ਊਰਜਾ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਦੀ ਪੂਰਤੀ ਲਈ ਪਥਰਾਟ ਬਾਲਣਾਂ ਉੱਤੇ ਹੀ ਨਿਰਭਰ ਹਾਂ। (ਚਿੱਤਰ 14.1)

ਪਬਰਾਟ ਬਾਲਣ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਬਹੁਤ ਸਾਰੀਆਂ ਹਾਨੀਆਂ ਵੀ ਹਨ।ਅਸੀਂ ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਕੋਲਾ ਜਾਂ ਪੈਟਰੋਲੀਅਮ ਉਤਪਾਦਾਂ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਹੋਣ ਵਾਲੇ ਹਵਾ ਪ੍ਰਦੂਸ਼ਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸਿੱਖਿਆ ਸੀ। ਪਬਰਾਟ ਬਾਲਣ ਨਾਲ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਾਰਬਨ, ਨਾਈਟਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਆਕਸਾਈਡ ਤੇਜ਼ਾਬੀ ਆਕਸਾਈਡ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਤੋਂ ਤੇਜ਼ਾਬੀ ਵਰਖਾ ਪੈਂਦਾ ਹੁੰਦੀ ਹੈ ਜੋ ਸਾਡੇ ਜਲ ਅਤੇ ਮਿੱਟੀ ਦੇ ਸਾਧਨਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ ਦੀ ਸਮੱਸਿਆ ਤੋਂ ਬਿਨਾਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਜਿਹੀਆਂ ਗੈਸਾਂ ਦੇ ਗਰੀਨ ਹਾਊਸ ਪ੍ਰਭਾਵ ਨੂੰ ਯਾਦ ਕਰੋ।

ਇਸ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ

ਜੇਕਰ ਸਾਨੂੰ ਬਿਜਲੀ ਦੀ ਪੂਰਤੀ ਨਾ ਮਿਲੇ ਤਾਂ ਸਾਡੇ ਜੀਵਨ ਵਿੱਚ ਕੀ ਪਰਿਵਰਤਨ ਆ ਜਾਣਗੇ। ਕਿਸੇ ਵੀ ਦੇਸ਼ ਵਿੱਚ ਹਰ ਇੱਕ ਵਿਅਕਤੀ ਦੀ ਬਿਜਲਈ ਊਰਜਾ ਦੀ ਉਪਲਬੱਧਤਾ ਉਸ ਦੇਸ਼ ਦੇ ਵਿਕਾਸ ਦੇ ਮਾਪ ਦਾ ਇੱਕ ਮਾਪਦੇਡ ਹੁੰਦਾ ਹੈ।

ਪਥਰਾਟ ਬਾਲਣ ਜਲਾਉਣ ਦੇ ਕਾਰਨ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਕੁੱਝ ਜਲਣ-ਪ੍ਰਕਿਰਿਆ ਦੀ ਕਾਰਜ ਕੁਸ਼ਲਤਾ ਵਿੱਚ ਵਾਧਾ ਕਰਕੇ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਜਲਣ ਕਾਰਣ ਨਿਕਲਣ ਵਾਲੀਆਂ ਹਾਨੀਕਾਰਕ ਗੈਸਾਂ ਅਤੇ ਸੁਆਹ ਨੂੰ ਵਾਤਵਰਨ ਵਿੱਚ ਜਾਣ ਤੋਂ ਰੋਕਣ ਵਾਲੀਆਂ ਵੱਖ-ਵੱਖ ਤਕਨੀਕਾਂ ਦੁਆਰਾ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਹ ਜਾਣਦੇ ਹੋ ਕਿ ਪਥਰਾਟ ਬਾਲਣਾਂ ਦਾ ਗੈਸ ਸਟੋਵਾਂ ਅਤੇ ਵਾਹਨਾਂ ਵਿੱਚ ਪ੍ਰਤੱਖ ਰੂਪ ਵਿੱਚ ਉਪਯੋਗ ਹੋਣ ਦੇ ਇਲਾਵਾ ਬਿਜਲੀ ਉਤਪੰਨ ਕਰਨ ਲਈ ਵੀ ਪ੍ਰਮੁੱਖ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ।ਆਓ ਹੁਣ ਅਸੀਂ ਇੱਕ ਛੋਟਾ ਜਿਹਾ ਯੋਤਰ ਬਣਾ ਕੇ ਇਸ ਤੋਂ ਕੁੱਝ ਬਿਜਲੀ ਪੈਦਾ ਕਰੀਏ ਅਤੇ ਇਹ ਵੇਖੀਏ ਕਿ ਊਰਜਾ ਦੇ ਇਸ ਮਨਪਸੰਦ ਰੂਪ ਨੂੰ ਪੈਦਾ ਕਰਨ ਲਈ ਕੀ-ਕੀ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

ਕਿਰਿਆ 14.3

- 🧸 ਟੇਬਲ ਟੈਨਿਸ ਦੀ ਇੱਕ ਬਾਲ ਲਓ ਅਤੇ ਉਸ ਵਿੱਚ ਤਿੰਨ ਝਿਰੀਆਂ ਬਣਾਓ।
- ਧਾਤ ਦੀ ਚਾਦਰ ਤੋਂ ਅਰਧ ਗੋਲਾਕਾਰ ਪੰਖੜੀਆਂ ਕੱਟੋ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਬਾਲ ਦੀਆਂ ਡਿਰੀਆਂ ਵਿੱਚ ਲਗਾਓ।
- ਧਾਤ ਦਾ ਇੱਕ ਸਿੱਧਾ ਤਾਰ ਲੈ ਕੇ ਉਸ ਨੂੰ ਬਾਲ ਦੇ ਕੇਂਦਰ ਵਿੱਚੋਂ ਦੀ ਲੰਘਾਓ ਅਤੇ ਤਾਰ ਨੂੰ ਧੁਰੀ ਦੀ ਤਰ੍ਹਾਂ ਪ੍ਰਯੋਗ ਕਰਕੇ ਬਾਲ ਨੂੰ ਸੈੱਟ ਕਰੋ। ਇਹ ਨਿਸ਼ਚਿਤ ਕਰੋ ਕਿ ਬਾਲ ਧੁਰੀ ਦੁਆਲੇ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਘੁੰਮਦੀ ਹੈ।
- 🔐 ਹੁਣ ਇਸ ਦੇ ਨਾਲ ਕੋਈ ਸਾਇਕਲ ਦਾ ਡਾਇਨਮੋ ਜੋੜੇ।
- 🍙 ਡਾਇਨਮੋ ਨਾਲ ਇੱਕ ਟਾਰਚ ਬਲਬ ਜੋੜੋ।
- ਪੰਖੜੀਆਂ ਉੱਪਰ ਪਾਣੀ ਦੀ ਧਾਰਾ ਜਾਂ ਪ੍ਰੈਸ਼ਰ ਕੁੱਕਰ ਵਿੱਚ ਪੈਦਾ ਭਾਫ਼ ਪਾਓ (ਚਿੱਤਰ 14.2)। ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ?

ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਲਈ ਇਹ ਸਾਡਾ ਟਰਬਾਇਨ ਹੈ। ਸਰਲਤਮ ਟਰਬਾਇਨ ਦਾ ਗਤੀਸ਼ੀਲ ਭਾਗ ਇੱਕ ਰੋਟਰ (ਘੁਲਣਸ਼ੀਲ)-ਬਲੇਡ ਸੰਯੋਗ ਹੈ। ਗਤੀਸ਼ੀਲ ਤਰਲ ਬਲੇਡਾਂ (ਪੰਖੜੀਆਂ) ਉੱਤੇ ਉਹਨਾਂ ਨੂੰ ਘੁੰਮਾਉਣ ਲਈ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਅਤੇ ਰੋਟਰ ਨੂੰ ਊਰਜਾ ਪ੍ਦਾਨ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਮੂਲ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਰੋਟਰ ਦੀਆਂ ਪੰਖੜੀਆਂ ਨੂੰ ਗਤੀ ਦੇਣੀ ਹੁੰਦੀ ਹੈ ਤਾਂ ਕਿ ਉਹ ਯੰਤ੍ਕਿ ਊਰਜਾ ਨੂੰ ਬਿਜਲੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨ ਲਈ ਡਾਇਨਮੋਂ ਦੇ ਸ਼ਾਫਟ ਨੂੰ ਘੁੰਮਾ ਦੇਵੇ। ਬਿਜਲੀ ਊਰਜਾ, ਊਰਜਾ ਦਾ ਉਹ ਰੂਪ ਹੈ ਜੋ ਅੱਜ ਦੇ ਸਮੇਂ ਵਿੱਚ ਇੱਕ ਜ਼ਰੂਰਤ ਬਣ ਗਈ ਹੈ। ਡਾਇਨਮੋਂ ਦੇ ਸਾਫ਼ਟ ਨੂੰ ਘੁੰਮਾਉਣ ਲਈ ਵੱਖ-ਵੱਖ ਢੰਗ ਹੋ ਸਕਦੇ ਹਨ ਪਰ ਕਿਹੜਾ ਢੰਗ ਅਪਣਾਇਆ ਜਾਵੇਂ ਇਹ ਸਾਧਨਾਂ ਦੀ ਉਪਲਬਧਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਹੇਠ ਲਿਖੇ ਅਨੁਭਾਗਾਂ ਵਿੱਚ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਟਰਬਾਇਨ ਨੂੰ ਘੁੰਮਾ ਕੇ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਲਈ ਊਰਜਾ ਦੇ ਵੱਖ-ਵੱਖ ਸੋਮਿਆਂ ਦਾ ਕਿਸ ਤਰ੍ਹਾਂ ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਚਿੱਤਰ 14.2 ਤਾਪ ਬਿਜਲੀ ਉਤਪਾਦਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਮਾਡਲ

14.2.2 ਥਰਮਲ (ਤਾਪ) ਪਾਵਰ ਪਲਾਂਟ (Thermal Power Plant)

ਪਾਵਰ ਸਟੇਸ਼ਨਾਂ ਵਿੱਚ ਪ੍ਰਤਿਦਿਨ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਪਥਰਾਟ ਬਾਲਣਾਂ ਨੂੰ ਜਲਾ ਕੇ, ਪਾਣੀ ਉਬਾਲ ਕੇ ਭਾਫ ਬਣਾਈ ਜਾਂਦੀ ਹੈ ਜੋ ਟਰਬਾਇਨ ਨੂੰ ਘੁੰਮਾ ਕੇ ਬਿਜਲੀ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਸਮਾਨ ਦੂਰੀਆਂ ਵਾਸਤੇ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਦੀ ਢੋਆ-ਢੁਆਈ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਿਜਲੀ ਦਾ ਸੰਚਾਰਨ ਵਧੇਰੇ ਸੁਖਾਲਾ ਹੈ। ਇਹੀ ਕਾਰਨ ਹੈ ਕਿ ਬਹੁਤ ਸਾਰੇ ਥਰਮਲ ਪਾਵਰ ਪਲਾਂਟ ਕੋਲੇ ਅਤੇ ਤੇਲ ਦੇ ਖੇਤਰਾਂ ਦੇ ਨੇੜੇ ਸਥਾਪਿਤ ਕੀਤੇ ਗਏ ਹਨ। ਇਹਨਾਂ ਯੰਤਰਾਂ ਨੂੰ ਥਰਮਲ ਪਾਵਰ ਪਲਾਂਟ ਕਹਿਣ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਇਹਨਾਂ ਯੰਤਰਾਂ ਵਿੱਚ ਬਾਲਣ ਨੂੰ ਜਲਾ ਕੇ ਤਾਪ ਊਰਜਾ ਪੈਦਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨੂੰ ਬਿਜਲੀ ਊਰਜਾ ਵਿੱਚ ਰੁਪਾਂਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

14.2.3 ਹਾਈਡਰੋ (ਪਣ) ਪਾਵਰ ਪਲਾਂਟ (Hydro Power Plant)

ਊਰਜਾ ਦਾ ਇੱਕ ਹੋਰ ਪਰੰਪਰਿਕ ਸੋਮਾ ਜਲ ਦੀ ਗਤਿਜ ਊਰਜਾ ਜਾਂ ਕਿਸੇ ਉਚਾਈ ਉੱਤੇ ਸਥਿਤ ਜਲ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਹੈ। ਹਾਈਡਰੋ ਪਾਵਰ ਪਲਾਟਾਂ ਵਿੱਚ ਡਿੱਗਦੇ ਪਾਣੀ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਨੂੰ ਬਿਜਲੀ ਵਿੱਚ ਰੂਪਾਂਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਅਜਿਹੇ ਜਲ ਝਰਨਿਆਂ ਦੀ ਸੰਖਿਆ ਬਹੁਤ ਘੱਟ ਹੈ ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਸਥਿਤਿਜ ਊਰਜਾ ਦੇ ਸਰੋਤ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕੇ ਇਸ ਲਈ ਪਣ ਬਿਜਲਈ ਯੰਤਰਾਂ ਨੂੰ ਬੰਨ੍ਹਾਂ (Dams) ਨਾਲ ਸੰਬੰਧਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਪਿਛਲੀ ਸ਼ਤਾਬਦੀ ਵਿੱਚ ਸਾਰੇ ਸੰਸਾਰ ਵਿੱਚ ਬਹੁਤ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਬੰਨ੍ਹ ਬਣਾਏ ਗਏ ਹਨ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਚਿੱਤਰ 14.1 ਵਿੱਚ ਵੇਖ ਸਕਦੇ ਹਾਂ, ਭਾਰਤ ਵਿੱਚ ਸਾਡੀ ਊਰਜਾ ਦੀ ਮੰਗ ਦੇ ਚੌਥੇ ਭਾਗ ਦੀ ਪੂਰਤੀ ਹਾਈਡਰੋ ਪਾਵਰ ਪਲਾਟਾਂ ਦੁਆਰਾ ਹੁੰਦੀ ਹੈ।

ਪਣ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਲਈ ਨਦੀਆਂ ਦੇ ਪਾਣੀ ਦੇ ਵਹਾਓ ਨੂੰ ਰੋਕ ਕੇ ਪਾਣੀ ਦੇ ਵੱਡੇ ਭੰਡਾਰ ਵਿੱਚ ਪਾਣੀ ਇਕੱਠਾ ਕਰਨ ਲਈ ਉੱਚੇ-ਉੱਚੇ ਬੰਨ੍ਹ ਬਣਾਏ ਜਾਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਪਾਣੀ ਦੇ ਭੰਡਾਰਾਂ

ਚਿੱਤਰ 14.3 ਹਾਈਡਰੋ ਪਾਵਰ ਪਲਾਂਟ ਦਾ ਯੋਜਨਾਬੱਧ ਚਿੱਤਰ

ਵਿੱਚ ਪਾਣੀ ਇਕੱਠਾ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇਹਨਾਂ ਵਿੱਚ ਭਰੇ ਪਾਣੀ ਦਾ ਤਲ ਉੱਚਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਬੈਨ੍ਹ ਦੇ ਉਪਰਲੇ ਭਾਗ ਤੋਂ ਪਾਈਪਾਂ ਦੁਆਰਾ ਪਾਣੀ ਬੈਨ੍ਹ ਦੇ ਆਧਾਰ ਦੇ ਕੋਲ ਸਥਾਪਿਤ ਟਰਬਾਇਨ ਦੇ ਬਲੇਡਾਂ ਉੱਤੇ ਡਿੱਗਦਾ ਹੈ ਜਿਸ ਦੇਨਤੀਜੇ ਵਜੋਂ ਟਰਬਾਇਨ ਦੇ ਬਲੇਡਾ ਘੁੰਮਣ ਗਤੀ ਕਰਦੇ ਹਨ ਅਤੇ ਜਨਰੇਟਰ ਦੁਆਰਾ ਬਿਜਲੀ ਉਤਪਾਦਨ ਹੁੰਦੀ ਹੈ। (ਵੇਖੋ ਚਿੱਤਰ 14. 3)।

ਕਿਉਂਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਵੀ ਵਰਖਾ ਹੁੰਦੀ ਹੈ ਪਾਣੀ ਦਾ ਭੰਡਾਰ ਮੁੜ ਭਰ ਜਾਂਦਾ ਹੈ, ਇਸ ਲਈ ਪਣ ਬਿਜਲਈ ਊਰਜਾ ਇੱਕ ਪੂਰਤੀ ਯੋਗ ਊਰਜਾ ਸੋਮਾ ਹੈ।ਪਥਰਾਟ ਬਾਲਣਾਂ ਦੀ ਤਰ੍ਹਾਂ ਜੋ ਕਿਸੇ ਨਾ ਕਿਸੇ ਦਿਨ ਸਮਾਪਤ ਹੋ ਜਾਣਗੇ, ਸਾਨੂੰ ਪਣ

ਬਿਜਲੀ ਸੋਮਿਆਂ ਦੇ ਸਮਾਪਤ ਹੋਣ ਦੀ ਕੋਈ ਚਿੰਤਾ ਨਹੀਂ ਹੁੰਦੀ। ਕੁੱਝ ਸਮੱਸਿਆਵਾਂ ਵੀ ਜੁੜੀਆਂ ਹੋਈਆਂ ਹਨ। ਬੰਨ੍ਹਾਂ ਦਾ ਨਿਰਮਾਣ ਕੇਵਲ ਸੀਮਿਤ ਖੇਤਰਾਂ ਵਿੱਚ ਹੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇਹਨਾਂ ਲਈ ਪਹਾੜੀ ਖੇਤਰ ਠੀਕ ਮੰਨੇ ਜਾਂਦੇ ਹਨ। ਬੰਨ੍ਹਾਂ ਦੇ ਨਿਰਮਾਣ ਨਾਲ ਬਹੁਤ ਸਾਰੀ ਖੇਤੀ ਯੋਗ ਜ਼ਮੀਨ ਅਤੇ ਮਨੁੱਖੀ ਵਸੋਂ ਵਾਲੇ ਖੇਤਰ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬਣ ਦੇ ਕਾਰਨ ਨਸ਼ਟ ਹੋ ਜਾਂਦੇ ਹਨ। ਬੰਨ੍ਹ ਦੇ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬਣ ਦੇ ਕਾਰਨ ਵੱਡੇ-ਵੱਡੇ ਪਰਿਸਥਿਤਿਕ ਸਿਸਟਮ ਨਸ਼ਟ ਹੋ ਜਾਂਦੇ ਹਨ। ਬੰਨ੍ਹ ਦੇ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬਣ ਦੇ ਕਾਰਨ ਵੱਡੇ-ਵੱਡੇ ਪਰਿਸਥਿਤਿਕ ਸਿਸਟਮ ਨਸ਼ਟ ਹੋ ਜਾਂਦੇ ਹਨ। ਜੋ ਪੇੜ ਪੌਦੇ, ਬਨਸਪਤੀ ਆਦਿ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬ ਜਾਂਦੇ ਹਨ ਉਹ ਆਕਸੀਜਨ ਰਹਿਤ ਸਥਿਤੀ ਵਿੱਚ ਸੜਨ ਲਗਦੇ ਹਨ ਅਤੇ ਵਿਘਟਿਤ ਹੋ ਕੇ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਮੀਥੇਨ ਗੈਸ ਪੈਦਾ ਕਰਦੇ ਹਨ ਜੋ ਕਿ ਇੱਕ ਗਰੀਨ ਹਾਊਸ ਗੈਸ ਹੈ। ਬੰਨ੍ਹਾਂ ਦੇ ਨਿਰਮਾਣ ਕਾਰਣ ਵਿਸਥਾਪਿਤ ਲੋਕਾਂ ਦੇ ਸੰਤੋਖਜਨਕ ਪੁਨਰਵਾਸ ਅਤੇ ਨੁਕਸਾਨ ਦੀ ਪੂਰਤੀ ਦਾ ਮਸਲਾ ਬਹੁਤ ਸਮੇਂ ਲਈ ਲਟਕਿਆ ਰਹਿੰਦਾ ਹੈ। ਗੰਗਾ ਨਦੀ ਉੱਤੇ ਟਿਹਰੀ ਬੰਨ੍ਹ ਦੇ ਨਿਰਮਾਣ ਅਤੇ ਨਰਮਦਾ ਨਦੀ ਉੱਤੇ ਸਰਦਾਰ ਸਰੋਵਰ ਬੰਨ੍ਹ ਦੇ ਨਿਰਮਾਣ ਦੀਆਂ ਯੋਜਨਾਵਾਂ ਦਾ ਵਿਰੋਧ ਇਸੀ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਦੇ ਕਾਰਨ ਹੀ ਹੋਇਆ ਹੈ।

14.2.4 ਊਰਜਾ ਦੇ ਪਰੰਪਰਿਕ ਸੋਮਿਆਂ ਦੇ ਉਪਯੋਗ ਲਈ ਤਕਨੀਕ ਵਿੱਚ ਸੁਧਾਰ

ਜੀਵ-ਪੁੰਜ ਜਾਂ ਬਾਇਓ-ਮਾਸ

ਅਸੀਂ ਇਹ ਵਰਨਣ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪ੍ਰਾਚੀਨ ਕਾਲ ਤੋਂ ਹੀ ਲੱਕੜੀ ਦਾ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਰਿਹਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਇਹ ਨਿਸ਼ਚਿਤ ਕਰ ਲਈਏ ਕਿ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਰੁੱਖ ਲਗਾਉਂਦੇ ਰਹਾਂਗੇ ਤਾਂ ਜਲਾਉਣ ਵਾਲੀ ਲੱਕੜੀ ਦੀ ਨਿਰੰਤਰ ਪੂਰਤੀ ਸੰਭਵ ਹੋ ਸਕਦੀ ਹੈ। ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਥੀਆਂ (ਓਪਲੇ) ਦੇ ਜਲਾਉਣ ਬਾਰੇ ਤੁਸੀਂ ਭਲੀਭਾਂਤ ਜਾਣੂ ਹੋ। ਭਾਰਤ ਵਿੱਚ ਪਸ਼ੂਧਨ ਦੀ ਵਿਸ਼ਾਲ ਸੰਖਿਆ ਵੀ ਸਾਨੂੰ ਬਾਲਣ ਦੇ ਸਥਿਰ ਸੋਮੇ ਦੀ ਉਪਲਬੱਧਤਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਭਰੋਸਾ ਦੁਆ ਸਕਦੀ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਬਾਲਣ ਪੌਦੇ ਅਤੇ ਪਸ਼ੂ ਉਤਪਾਦ ਹੈ। ਇਸ ਲਈ ਇਹਨਾਂ ਬਾਲਣਾਂ ਦੇ ਸੋਮੇ ਨੂੰ ਅਸੀਂ ਜੀਵ ਪੁੰਜ ਕਹਿੰਦੇ ਹਾਂ। ਪਰ ਇਹ ਬਾਲਣ ਵਧੇਰੇ ਤਾਪ ਪੈਦਾ ਨਹੀਂ ਕਰਦੇ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਬਹੁਤ ਧੂੰਆਂ ਨਿਕਲਦਾ ਹੈ, ਇਸ ਲਈ ਇਹਨਾਂ ਬਾਲਣਾਂ ਦੀ ਕੁਸ਼ਲਤਾ ਵਧਾਉਣ ਲਈ ਤਕਨਾਲੋਜੀ ਦਾ ਸਹਾਰਾ ਲੈਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਜਦੋਂ ਲੱਕੜ ਨੂੰ ਆਕਸੀਜਨ (ਹਵਾ) ਦੀ ਸੀਮਿਤ ਮਾਤਰਾ ਵਿੱਚ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਵਿੱਚ ਮੌਜ਼ੂਦ ਪਾਣੀ ਅਤੇ ਵਾਸ਼ਪਸ਼ੀਲ ਪਦਾਰਥ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਅਵਸ਼ੇਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਚਾਰਕੋਲ (ਲੱਕੜ ਦਾ ਕੋਲਾ) ਪਿੱਛੇ ਰਹਿ ਜਾਂਦਾ ਹੈ। ਚਾਰਕੋਲ ਬਿਨਾਂ ਲਾਟ ਦੇ ਜਲਦਾ ਹੈ, ਇਸ ਤੋਂ ਤੁਲਾਨਤਮਕ ਘੱਟ ਧੂੰਆਂ ਨਿਕਲਦਾ ਹੈ ਅਤੇ ਇਸ ਦੀ ਤਾਪ ਪੈਦਾ ਕਰਨ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਵੀ ਵੱਧ ਹੁੰਦੀ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ ਗੋਹਾ (ਗੋਬਰ), ਫਸਲਾਂ ਦੇ ਕੱਟਣ ਤੋਂ ਬਾਅਦ ਬਚੀ ਰਹਿੰਦ ਖੂੰਹਦ, ਸਬਜ਼ੀਆਂ ਦੇ ਵਾਧੂ ਪਦਾਰਥ ਅਤੇ ਮਲ ਮੂਤਰ ਜਦੋਂ ਆਕਸੀਜਨ ਦੀ ਅਣਹੋਂਦ ਵਿੱਚ ਅਪਘਟਿਤ ਹੁੰਦੇ ਹਨ ਤਾਂ ਬਾਇਓਗੈਸ (ਜੀਵ-ਗੈਸ) ਨਿਕਲਦੀ ਹੈ। ਕਿਉਂਕਿ ਇਸ ਗੈਸ ਨੂੰ ਬਣਾਉਣ ਵਿੱਚ ਉਪਯੋਗ ਹੋਣ ਵਾਲਾ ਆਰੰਭਿਕ ਪਦਾਰਥ ਮੁੱਖ ਤੌਰ ਤੇ ਗੋਬਰ ਹੈ। ਇਸ ਲਈ ਇਸ ਦਾ ਪ੍ਚੱਲਿਤ ਨਾਂ ਗੋਬਰ ਗੈਸ ਹੈ। ਬਾਇਓਗੈਸ ਨੂੰ ਇੱਕ ਪਲਾਂਟ ਵਿੱਚ ਪੈਦਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨੂੰ ਚਿੱਤਰ 14.4 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਇਸ ਪਲਾਂਟ ਵਿੱਚ ਇੱਟਾਂ ਤੋਂ ਬਣੀ ਗੁੰਬਦ ਜਿਹੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ। ਬਾਇਓਗੈਸ ਬਣਾਉਣ ਲਈ ਮਿਸ਼ਰਣ ਟੈਂਕ ਵਿੱਚ ਗੋਹੇ ਅਤੇ ਪਾਣੀ ਦਾ ਇੱਕ ਗਾੜ੍ਹਾ ਮਿਸ਼ਰਣ ਜਿਸ ਨੂੰ ਸਲੱਗੀ (Slurry) ਕਹਿੰਦੇ ਹਨ, ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿੱਥੋਂ ਇਸ ਨੂੰ ਡਾਈਜੈਸਟਰ ਵਿੱਚ ਪਾ ਦਿੰਦੇ ਹਨ। ਡਾਈਜੈਸਟਰ

(Digester) ਚਾਰੇ ਪਾਸੇ ਤੋਂ ਬੈਦ ਇੱਕ ਚੈਂਬਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਆਕਸੀਜਨ ਨਹੀਂ ਹੁੰਦੀ।ਅਣ-ਆਕਸੀ ਸੂਖਮਜੀਵ (Anaerobic micro-organisms), ਜਿਨ੍ਹਾਂ ਨੂੰ ਜੀਵਤ ਰਹਿਣ ਲਈ ਆਕਸੀਜਨ(ਹਵਾ) ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ, ਗੋਹੇ ਦੀ ਸਲੱਗੇ ਦੇ ਜਟਿਲ ਯੋਗਿਕਾਂ ਨੂੰ ਅਪਘਟਿਤ ਕਰ ਦਿੰਦੇ ਹਨ।ਅਪਘਟਨ ਪ੍ਰਕਿਰਿਆ ਪੂਰੀ ਹੋਣ ਅਤੇ ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮੀਥੇਨ, ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ, ਹਾਈਡਰੋਜਨ ਅਤੇ ਹਾਈਡਰੋਜਨ ਸਲਫਾਈਡ ਜਿਹੀਆਂ ਗੈਸਾਂ ਪੈਦਾ ਹੋਣ ਨੂੰ ਕੁੱਝ ਦਿਨ ਲੱਗਦੇ ਹਨ।ਬਾਇਓ ਗੈਸ ਨੂੰ ਡਾਇਜੈਸਟਰ ਉੱਪਰ ਬਣੀ ਗੈਸ ਟੈਂਕੀ ਵਿੱਚ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਬਾਇਓਗੈਸ ਨੂੰ ਗੈਸ ਟੈਂਕੀ ਤੋਂ ਉਪਯੋਗ ਲਈ ਪਾਈਪਾਂ ਦੁਆਰਾ ਬਾਹਰ ਕੱਢ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਬਾਇਓਗੈਸ ਇੱਕ ਵਧੀਆ ਬਾਲਣ ਹੈ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ 75 ਪ੍ਰਤਿਸ਼ਤ ਤੱਕ ਮੀਥੇਨ ਗੈਸ ਹੁੰਦੀ ਹੈ। ਇਹ ਧੁੰਆਂ ਪੈਦਾ ਕੀਤੇ ਬਿਨਾਂ ਜਲਦੀ ਹੈ।

ਲੱਕੜੀ, ਚਾਰਕੋਲ ਅਤੇ ਕੋਲੇ ਦੇ ਵਿਪਰੀਤ ਇਸ (ਬਾਇਓਮੈਸ) ਦੇ ਜਲਣ ਪਿੱਛੋਂ ਸੁਆਹ ਵਰਗਾ ਕੁਝ ਬਾਕੀ ਨਹੀਂ ਬਚਦਾ। ਇਸ ਦੀ ਤਾਪਨ ਸਮਰੱਥਾ ਉੱਚੀ ਹੁੰਦੀ ਹੈ। ਬਾਇਓਗੈਸ ਦਾ ਉਪਯੋਗ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੋਮੇ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬਾਇਓਗੈਸ ਪਲਾਂਟ ਵਿੱਚ ਬਾਕੀ ਬਚੀ ਸਲੱਗੀ ਨੂੰ ਸਮੇਂ-ਸਮੇਂ ਤੇ ਪਲਾਂਟ ਤੋਂ ਬਾਹਰ ਕੱਢਦੇ ਹਨ। ਇਸ ਬਚੀ ਸੱਲਰੀ ਅੰਦਰ ਯੋਗਿਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਨਾਈਟਰੋਜਨ

ਅਤੇ ਫਾਸਫੋਰਸ ਉੱਚ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਇੱਕ ਉੱਤਮ ਖਾਦ ਦੇ ਰੂਪ ਵਿੱਚ ਕੰਮ ਆਉਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਜੀਵ ਰਹਿੰਦ ਖੂੰਹਦ ਅਤੇ ਮਲਮੂਤਰ ਦੇ ਉਪਯੋਗ ਦੁਆਰਾ ਬਾਇਓ ਗੈਸ ਪੈਦਾ ਕਰਨ ਨਾਲ ਸਾਡੇ ਕਈ ਉਦੇਸ਼ਾਂ ਦੀ ਪੂਰਤੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਤੋਂ ਸਾਨੂੰ ਊਰਜਾ ਦਾ ਸੁਵਿਧਾਜਨਕ ਭਰਪੂਰ ਸੋਮਾ ਮਿਲਦਾ ਹੈ, ਵਧੀਆ ਖਾਦ ਮਿਲਦੀ ਹੈ ਅਤੇ ਨਾਲ ਹੀ ਵਾਧੂ ਪਦਾਰਥਾਂ ਦੇ ਨਿਪਟਾਰੇ ਦਾ ਸੁਰੱਖਿਅਤ ਢੰਗ ਵੀ ਮਿਲ ਜਾਂਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋ ਕਿ ਬਾਇਓਮਾਸ ਊਰਜਾ ਦਾ ਪੂਰਤੀਯੋਗ ਸੋਮਾ ਹੈ?

ਪੌਣ (ਪਵਨ) ਉਰਜਾ (Wind Energy)

ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੇਖਿਆ ਸੀ ਕਿ ਕਿਸ ਤਰ੍ਹਾਂ ਸੂਰਜ ਦੀਆਂ ਵਿਕਿਰਣਾਂ ਦੁਆਰਾ ਭੂ ਖੰਡਾਂ ਦੇ ਇੱਕੋ ਜਿਹਾ ਗਰਮ ਨਾ ਹੋਣ ਦੇ ਕਾਰਨ ਹਵਾ ਵਿੱਚ ਗਤੀ ਪੈਂਦਾ ਹੁੰਦੀ ਹੈ ਅਤੇ ਪੌਣਾਂ ਦਾ ਪ੍ਰਵਾਹ ਹੁੰਦਾ ਹੈ। ਪੌਣਾਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਕਾਰਜ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪੌਣ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਸੈਂਕੜੇ ਸਾਲਾਂ ਤੋਂ ਪੌਣ ਚੱਕੀਆਂ (WINDMILL)ਦੁਆਰਾ ਯੰਤਰਿਕ ਕਾਰਜ ਕਰਨ ਵਿੱਚ ਹੁੰਦਾ ਰਿਹਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਕਿਸੇ ਪੌਣ ਚੱਕੀ ਦੀਆਂ ਪੰਖੜੀਆਂ ਦੀ ਘੁੰਮਣ ਗਤੀ

ਚਿੱਤਰ 14.4 ਬਾਇਓਗੈਸ ਪਲਾਂਟ ਦਾ ਵਿਉਂਤਬੱਧ ਚਿੱਤਰ

ਚਿੱਤਰ 14.5 ਪੌਣ ਚੱਕੀ

(ROTATORY MOTION) ਦਾ ਉਪਯੋਗ ਖੂਹਾਂ ਵਿੱਚੋਂ ਪਾਣੀ ਖਿੱਚਣ ਦੇ ਲਈ ਹੁੰਦਾ ਹੈ। ਅੱਜ ਕੱਲ, ਪੌਣ ਚੱਕੀ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਵਿੱਚ ਵੀ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ। ਪੌਣ ਚੱਕੀ ਦੀ ਰਚਨਾ ਮੁੱਖ ਤੌਰ ਤੇ ਕਿਸੇ ਵਿਸ਼ਾਲ ਬਿਜਲੀ ਪੱਖੇ ਦੇ ਸਮਾਨ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਕਿਸੇ ਮਜ਼ਬੂਤ ਆਧਾਰ ਉੱਤੇ ਕੁੱਝ ਉਚਾਈ ਉੱਤੇ ਖੜਾ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। (ਚਿੱਤਰ14.5)।

ਪੌਣ ਚੱਕੀ ਦੀ ਘੁੰਮਣ ਗਤੀ ਦਾ ਉਪਯੋਗ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਲਈ ਬਿਜਲੀ ਜਨਰੇਟਰ ਦੇ ਟਰਬਾਇਨ ਨੂੰ ਘੁਮਾਉਣ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਇਕੱਲੀ ਪੌਣ ਚੱਕੀ ਦੀ ਪੈਦਾ ਕੀਤੀ ਬਿਜਲੀ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦਾ ਵਪਾਰਿਕ ਉਪਯੋਗ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ ਇਸ ਲਈ ਕਿਸੇ ਵੱਡੇ ਖੇਤਰ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਪੌਣ-ਚੱਕੀਆਂ ਲਗਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਇਸ ਖੇਤਰ ਨੂੰ ਪੌਣ ਊਰਜਾ ਫਾਰਮ (WIND ENERGY FARM) ਕਹਿੰਦੇ ਹਨ। ਵਪਾਰਿਕ ਤੌਰ ਤੇ ਬਿਜਲੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਿਸੇ ਪੌਣ ਊਰਜਾ ਫਾਰਮ ਦੀਆਂ ਸਾਰੀਆਂ ਪੌਣ-ਚੱਕੀਆਂ ਨੂੰ ਪਰਸਪਰ ਜੋੜ ਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਪ੍ਰਾਪਤ ਕੁੱਲ ਊਰਜਾ ਸਾਰੀਆਂ ਪੌਣ ਚੱਕੀਆਂ ਦੁਆਰਾ ਪੈਦਾ ਬਿਜਲਈ ਊਰਜਾਵਾਂ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

3<u>4444444444444444444444444444444</u>

ਡੇਨਮਾਰਕ ਨੂੰ "ਪੌਣਾ ਦਾ ਦੇਸ਼" ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੇਸ਼ ਦੀ 25 ਪ੍ਰਤਿਸ਼ਤ ਤੋਂ ਵੀ ਵੱਧ ਬਿਜਲੀ ਦੀ ਪੂਰਤੀ ਪੌਣ ਚੱਕੀਆਂ ਦੇ ਵਿਸ਼ਾਲ ਨੈਟਵਰਕ ਦੁਆਰਾ ਬਿਜਲੀ ਪੈਦਾ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਜਰਮਨੀ ਵੀ ਇਸ ਖੇਤਰ ਵਿੱਚ ਅੱਗੇ ਹੈ, ਜਦੋਂ ਕਿ ਭਾਰਤ ਦਾ ਪੌਣ ਊਰਜਾ ਦੁਆਰਾ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਦੇਸ਼ਾਂ ਵਿੱਚ ਪੰਜਵਾਂ ਸਥਾਨ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਪੌਣ ਦੁਆਰਾ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਵਾਲੀ ਸਮਰੱਥਾ ਦਾ ਪੂਰਾ ਉਪਯੋਗ ਕਰੀਏ ਤਾਂ ਇੱਕ ਅਨੁਮਾਨ ਅਨੁਸਾਰ ਲਗਪਗ 45,000 MW ਬਿਜਲੀ ਸ਼ਕਤੀ ਦਾ ਉਤਪਾਦਨ ਕਰ ਸਕਦੇ ਹਾਂ। ਤਾਮਿਲਨਾਡੂ ਵਿੱਚ ਕੈਨਿਆ ਕੁਮਾਰੀ ਦੇ ਨੇੜੇ ਭਾਰਤ ਦਾ ਸਭ ਤੋਂ ਵੱਡਾ ਪੌਣ ਊਰਜਾ ਫਾਰਮ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਹ 380 MW ਬਿਜਲੀ ਪੈਦਾ ਕਰਦਾ ਹੈ।

ਪੌਣ ਊਰਜਾ ਪੂਰਤੀਯੋਗ ਊਰਜਾ ਦਾ ਇੱਕ ਵਾਤਾਵਰਨ ਸਨੇਹੀ ਅਤੇ ਕੁਸ਼ਲ ਸੋਮਾ ਹੈ। ਇਸ ਦੁਆਰਾ ਬਿਜਲੀ ਉਤਪਾਦਨ ਦੇ ਲਈ ਬਾਰ-ਬਾਰ ਧੰਨ ਖਰਚਣ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ ਪਰ ਪੌਣ ਊਰਜਾ ਦੀ ਵਰਤੋਂ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਸੀਮਾਵਾਂ ਹਨ। ਪਹਿਲੀ ਸੀਮਾ ਇਹ ਹੈ ਕਿ ਪੌਣ ਊਰਜਾ ਫਾਰਮ ਕੇਵਲ ਉਹਨਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਸਥਾਪਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ਜਿੱਥੇ ਸਾਲ ਦੇ ਵਧੇਰੇ ਦਿਨਾਂ ਵਿੱਚ ਤੇਜ ਪੌਣ ਚੱਲਦੀ ਹੋਵੇ। ਟਰਬਾਇਨ ਦੀ ਲੋੜੀਂਦੀ ਚਾਲ ਬਣਾਈ ਰੱਖਣ ਲਈ ਪੌਣ ਦੀ ਚਾਲ 15 km/h ਤੋਂ ਵੱਧ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਇਸ ਦੇ ਨਾਲ ਸਟੋਰੇਜ਼ ਸੈੱਲਾਂ ਜਿਹੀ ਕੋਈ ਪੂਰਤੀ ਸੁਵਿਧਾ ਵੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਜਿਸ ਦਾ ਉਪਯੋਗ ਊਰਜਾ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਦੀ ਪੂਰਤੀ ਲਈ ਉਸ ਸਮੇਂ ਕੀਤਾ ਜਾ ਸਕੇ ਜਦੋਂ ਪੌਣ ਨਹੀਂ ਚੱਲਦੀ ਹੋਵੇ। ਊਰਜਾ ਫਾਰਮ ਸਥਾਪਿਤ ਕਰਨ ਲਈ ਇੱਕ ਵਿਸ਼ਾਲ ਖੇਤਰ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇੱਕ MW ਦੇ ਜਨਰੇਟਰ ਦੇ ਪੌਣ ਫਾਰਮ ਲਈ ਲਗਪਗ ਦੋ ਹੈਕਟੇਅਰ ਜ਼ਮੀਨ ਚਾਹੀਦੀ ਹੈ। ਪੌਣ ਊਰਜਾ ਫਾਰਮ ਸਥਾਪਿਤ ਕਰਨ ਲਈ ਲਗਪਗ ਦੋ ਹੈਕਟੇਅਰ ਜ਼ਮੀਨ ਚਾਹੀਦੀ ਹੈ। ਪੌਣ ਊਰਜਾ ਫਾਰਮ ਸਥਾਪਿਤ ਕਰਨ ਲਈ ਆਰੰਭਿਕ ਲਾਗਤ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੇ ਇਲਾਵਾ ਪੌਣ ਚੱਕੀਆਂ ਦੇ ਮਜ਼ਬੂਤ ਆਧਾਰ ਅਤੇ ਪੰਖੜੀਆਂ ਵਾਯੂ ਮੰਡਲ ਵਿੱਚ ਖੁੱਲ੍ਹੇ ਹੋਣ ਦੇ ਕਾਰਨ ਵਰਖਾ, ਚੱਕਰਵਾਤ, ਧੁੱਪ, ਹਨੇਰੀ ਆਦਿ ਕੁਦਰਤੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਪ੍ਰਭਾਵ ਹੇਠ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਇਹਨਾਂ ਵਾਸਤੇ ਉੱਚ ਪੱਧਰ ਦੇ ਰੱਖ ਰਖਾਓ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

5 36

ਪ੍ਰਸ਼ਨ

- ਪਥਰਾਟ ਬਾਲਣਾਂ ਦੀਆਂ ਕੀ ਹਾਨੀਆਂ ਹਨ?
- ਅਸੀਂ ਊਰਜਾ ਦੇ ਬਦਲਵੇਂ ਸੋਮਿਆਂ ਵੱਲ ਕਿਉਂ ਧਿਆਨ ਦੇ ਰਹੇ ਹਾਂ?
- ਸਾਡੀ ਸੁਵਿਧਾ ਲਈ ਪੌਣ ਅਤੇ ਪਣ ਊਰਜਾ ਦੇ ਪਰੰਪਰਿਕ ਉਪਯੋਗਾਂ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਸੁਧਾਰ ਕੀਤੇ ਗਏ ਹਨ?

14.3 ਬਦਲਵੇਂ ਜਾਂ ਗੈਰ-ਪਰੰਪਰਾਗਤ ਊਰਜਾ ਸੋਮੇ (Non-Conventional Sources of Energy)

ਤਕਨੀਕੀ ਉੱਨਤੀ ਦੇ ਨਾਲ ਹੀ ਸਾਡੀ ਊਰਜਾ ਦੀ ਮੰਗ ਦਿਨੋਂ ਦਿਨ ਵਧਦੀ ਜਾ ਰਹੀ ਹੈ। ਸਾਡੀ ਜੀਵਨ ਸ਼ੈਲੀ ਵਿੱਚ ਵੀ ਨਿਰੰਤਰ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ।ਅਸੀਂ ਆਪਣੇ ਕਾਰਜ ਕਰਨ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਮਸ਼ੀਨਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ। ਜਿਵੇਂ-ਜਿਵੇਂ ਉਦਯੋਗੀਕਰਨ ਤੋਂ ਸਾਡਾ ਜੀਵਨ ਪੱਧਰ ਉੱਨਤ ਹੋ ਰਿਹਾ ਹੈ, ਸਾਡੀਆਂ ਮੂਲ ਜ਼ਰੂਰਤਾਂ ਵਿੱਚ ਵੀ ਨਿਰੰਤਰ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ।

ਕਿਰਿਆ 14.4

- ਆਪਣੇ ਦਾਦਾ-ਦਾਦੀ ਜਾਂ ਦੂਜੇ ਬਜ਼ੁਰਗਾਂ ਤੋਂ ਇਹ ਪਤਾ ਕਰੋ ਕਿ ਉਹ : -
 - (ੳ) ਆਪਣੇ ਸਕੂਲ ਕਿਵੇਂ ਜਾਂਦੇ ਸਨ≀
 - (ਅ) ਆਪਣੇ ਬਚਪਨ ਵਿੱਚ ਦੈਨਿਕ ਜ਼ਰੂਰਤਾਂ ਲਈ ਪਾਣੀ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਸਨ?
 - (ੲ) ਮਨੋਰੰਜਨ ਦੇ ਕਿਹੜੇ ਸਾਧਨ ਵਰਤਦੇ ਸਨ?
- ਉਪਰੋਕਤ ਉੱਤਰਾਂ ਦੀ ਤੁਲਨਾ ਇਸ ਪ੍ਰਸ਼ਨ ਦੇ ਉੱਤਰਾਂ ਨਾਲ ਕਰੋ ਕਿ "ਹੁਣ ਤੁਸੀਂ ਇਹਨਾਂ ਕਾਰਜਾਂ ਨੂੰ ਕਿਵੇਂ ਕਰਦੇ ਹੋ?"
- ਕੀ ਇਹਨਾਂ ਉੱਤਰਾਂ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਹੈ? ਜੇਕਰ ਹਾਂ, ਤਾਂ ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਬਾਹਰੀ ਸੋਮਿਆਂ ਤੋਂ ਵਧੇਰੇ ਉਰਜਾ ਵਰਤੀ ਗਈ?

ਜਿਵੇਂ-ਜਿਵੇਂ ਸਾਡੀ ਊਰਜਾ ਦੀ ਮੰਗ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ ਤਿਵੇਂ-ਤਿਵੇਂ ਸਾਨੂੰ ਵਧੇਰੇ ਊਰਜਾ ਸੋਮਿਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਉਪਲੱਬਧ ਅਤੇ ਗਿਆਤ ਊਰਜਾ ਸੋਮਿਆਂ ਤੋਂ ਵਧੇਰੇ ਕੁਸ਼ਲ ਉਪਯੋਗ ਲਈ ਤਕਨੀਕਾਂ ਵਿਕਸਿਤ ਕਰਦੇ ਹਾਂ ਅਤੇ ਊਰਜਾ ਦੇ ਨਵੇਂ ਸੋਮਿਆਂ ਦੀ ਖੋਜ ਕਰਦੇ ਹਾਂ।ਜਿਸ ਕਿਸੇ ਵੀ ਊਰਜਾ ਦੇ ਨਵੇਂ ਸੋਮੇ ਨੂੰ ਅਸੀਂ ਖੋਜਦੇ ਹਾਂ ਉਸ ਦੇ ਉਪਯੋਗਾਂ ਨੂੰ ਦਿਮਾਗ ਵਿੱਚ ਰੱਖ ਕੇ ਖਾਸ ਤਰਕੀਬਾਂ ਵਿਕਸਿਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।ਹੁਣ ਅਸੀਂ ਊਰਜਾ ਦੇ ਉਹਨਾਂ ਨਵੇਂ ਸੋਮਿਆਂ ਉੱਤੇ ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਅਸੀਂ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ ਅਤੇ ਉਸ ਤਕਨੀਕ ਦੇ ਵੱਲ ਜਿਸ ਨੂੰ ਇਹਨਾਂ ਸੋਮਿਆਂ ਵਿੱਚ ਸੰਚਿਤ ਊਰਜਾ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਡਿਜ਼ਾਇਨ ਕੀਤਾ ਗਿਆ ਹੈ, ਆਪਣੀ ਦ੍ਰਿਸ਼ਟੀ ਕਰਦੇ ਹਾਂ:

ਇਸ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ।

ਕੁੱਝ ਲੋਕੀ ਇਹ ਕਹਿੰਦੇ ਹਨ ਕਿ ਜੇਕਰ ਅਸੀਂ ਆਪਣੇ ਵੱਡੇ ਵਡੇਰਿਆਂ ਦੀ ਤਰ੍ਹਾਂ ਰਹਿਣਾ ਆਰੰਭ ਕਰ ਦੇਈਏ ਤਾਂ ਇਸ ਨਾਲ ਸਾਡੇ ਊਰਜਾ ਸੋਮੇ ਅਤੇ ਸਾਡਾ ਵਾਤਾਵਰਨ ਸੁਰੱਖਿਅਤ ਰਹੇਗਾ। ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਕੀ ਇਹ ਧਾਰਨਾ ਉੱਚਿਤ ਹੈ?

14.3.1 ਸੂਰਜੀ ਊਰਜਾ (Solar Energy)

ਸੂਰਜ ਲਗਭਗ 5 ਅਰਬ ਸਾਲ ਤੋਂ ਵਰਤਮਾਨ ਦਰ ਤੇ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਊਰਜਾ ਵਿਕਿਰਣ (Radiating) ਰਿਹਾ ਹੈ ਅਤੇ ਇਸੇ ਦਾ ਨਾਲ ਭਵਿੱਖ ਵਿੱਚ ਲੱਗਪਗ 5 ਕਰੋੜ ਸਾਲ ਤੱਕ ਊਰਜਾ ਵਿਕਿਰਣ ਕਰਦਾ ਰਹੇਗਾ। ਸੂਰਜੀ ਊਰਜਾ ਦਾ ਕੇਵਲ ਇੱਕ ਬਹੁਤ ਥੋੜ੍ਹਾ ਭਾਗ ਹੀ ਪ੍ਰਿਥਵੀ ਦੇ ਵਾਯੂਮੰਡਲ ਦੀਆਂ ਬਾਹਰਲੀਆਂ ਪਰਤਾਂ ਉੱਤੇ ਪਹੁੰਚਦਾ ਹੈ। ਇਸ ਦਾ ਲਗਭਗ ਅੱਧਾ ਭਾਗ ਵਾਯੂਮੰਡਲ ਵਿੱਚੋਂ ਲੰਘਦੇ ਸਮੇਂ ਸੋਖਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਬਾਕੀ ਦਾ ਭਾਗ ਪ੍ਰਿਥਵੀ ਦੇ ਤਲ ਉੱਤੇ ਪਹੁੰਚਦਾ ਹੈ।

ਭਾਰਤ ਇੱਕ ਖੁਸ਼ਕਿਸਮਤ ਦੇਸ ਹੈ ਕਿਉਂਕਿ ਸਾਲ ਦੇ ਵਧੇਰੇ ਦਿਨਾਂ ਵਿੱਚ ਸਾਨੂੰ ਸੂਰਜੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਲਗਾਏ ਗਏ ਅਨੁਮਾਨ ਅਨੁਸਾਰ ਸਾਡਾ ਦੇਸ਼ ਹਰੇਕ ਸਾਲ 500,000,000 ਕਰੋੜ ਕਿਲੋਵਾਟ ਘੰਟਾ (ਅਰਥਾਤ 5000 ਟ੍ਰਿਲਿਅਨ ਕਿਲੋਵਾਟ ਘੰਟਾ) ਸੂਰਜੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਸਾਫ ਅਕਾਸ਼ (ਬੱਦਲ ਰਹਿਤ) ਦੀ ਸਥਿਤੀ ਹੋਣ ਤੇ ਪ੍ਰਿਥਵੀ ਦੇ ਕਿਸੇ ਖੇਤਰ ਵਿੱਚ ਪ੍ਰਤਿ ਦਿਨ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੀ ਸੂਰਜੀ ਊਰਜਾ ਦਾ ਔਸਤ ਮਾਨ 4 ਤੋਂ 7 kWh/m² ਦੇ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਿਥਵੀ ਦੇ ਵਾਯੂਮੰਡਲ ਦੀ ਬਾਹਰਲੀ ਸੀਮਾ ਸੂਰਜ ਦੀਆਂ ਕਿਰਨਾਂ ਦੇ ਲੰਬ ਰੂਪ ਵਿੱਚ ਸਥਿਤ ਖੁੱਲ੍ਹੇ ਖੇਤਰ ਦੇ ਪ੍ਰਤਿ ਇਕਾਈ ਖੇਤਰਫਲ ਤੇ ਪ੍ਰਤਿ ਸੈਕਿੰਡ ਪਹੁੰਚਣ ਵਾਲੀ ਸੂਰਜੀ ਊਰਜਾ ਨੂੰ ਸੂਰਜੀ ਸਥਿਰ ਅੰਕ (Solar Constant) ਕਹਿੰਦੇ ਹਨ। ਜਦੋਂ ਕਿ ਇਸ ਖੇਤਰ ਨੂੰ ਸੂਰਜ ਤੋਂ ਪ੍ਰਿਥਵੀ ਦੇ ਵਿੱਚ ਦੀ ਔਸਤ ਦੂਰੀ ਉੱਤੇ ਮੰਨਿਆ ਗਿਆ ਹੈ। ਇਸ ਦਾ ਅਨੁਮਾਨਤ ਲੱਗਪਗ ਮਾਨ: 1.4 kJ ਪ੍ਰਤਿ ਸੈਕਿੰਡ ਪ੍ਰਤਿ ਵਰਗਮੀਟਰ ਜਾਂ 1.4 kW/m² ਹੈ।

ਕਿਰਿਆ 14.5

- ਦੋ ਕੋਨੀਕਲ ਫਲਾਸਕਾਂ ਲਓ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਬਾਹਰੋਂ ਕਾਲਾ ਅਤੇ ਦੂਜੀ ਨੂੰ ਚਿੱਟਾ ਪੇਂਟ ਕਰੋ। ਦੋਵਾਂ ਵਿੱਚ ਪਾਣੀ ਪਾਓ।
- । ਇਹਨਾਂ ਕੋਨੀਕਲ ਫਲਾਸਕਾਂ ਨੂੰ ਇੱਕ ਤੋਂ ਡੇਢ ਘੰਟੇ ਤੱਕ ਸਿੱਧੀ ਧੁੱਪਾਂ ਵਿੱਚ ਰੱਖੋ।
- ਦੋਵੇਂ ਫਲਾਸਕਾਂ ਨੂੰ ਸਪਰਸ਼ ਕਰੋ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਵਧੇਰੇ ਗਰਮ ਹੈ?
 ਤੁਸੀਂ ਇਹਨਾਂ ਫਲਾਸਕਾਂ ਦੇ ਪਾਣੀ ਦਾ ਤਾਪਮਾਨ ਥਰਮਾਮੀਟਰ ਨਾਲ ਨੋਟ ਕਰੋ।
- ਕੀ ਤੁਸੀਂ ਕੋਈ ਅਜਿਹਾ ਢੰਗ ਸੋਚ ਸਕਦੇ ਜਿਸ ਦੁਆਰਾ ਇਸ ਗਿਆਨ ਦਾ ਉਪਯੋਗ ਤੁਸੀਂ ਆਪਣੇ ਦੈਨਿਕ ਜੀਵਨ ਵਿੱਚ ਕਰ ਸਕਦੇ ਹੋ।

ਚਿੱਤਰ 14.6 ਇੱਕ ਸੂਰਜੀ ਕੁੱਕਰ

ਇੱਕੋ ਜਿਹੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਪਰਾਵਰਤਕ ਜਾਂ ਚਿੱਟੀ ਸਤ੍ਹਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਾਲੀ ਸਤ੍ਹਾ ਵੱਧ ਤਾਪ ਸੋਖਦੀ ਹੈ। ਸੂਰਜੀ ਕੁੱਕਰਾਂ (ਚਿੱਤਰ 14.6) ਅਤੇ ਸੂਰਜੀ ਪਾਣੀ ਹੀਟਰਾਂ ਦੀ ਕਾਰਜ ਵਿਧੀ ਵਿੱਚ ਇਸੇ ਗੁਣ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕੁੱਝ ਹੋਰ ਕੁੱਕਰਾਂ ਵਿੱਚ ਸੂਰਜ ਦੀਆਂ ਕਿਰਨਾਂ ਨੂੰ ਫੋਕਸ ਕਰਨ ਲਈ ਦਰਪਣਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਇਹਨਾਂ ਦਾ ਤਾਪਮਾਨ ਹੋਰ ਉੱਚਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਸੂਰਜੀ ਕੁੱਕਰਾਂ ਵਿੱਚ ਕੱਚ ਦੀ ਸੀਟ ਦਾ ਢੱਕਣ ਹੁੰਦਾ ਹੈ। ਯਾਦ ਕਰੋ ਗਰੀਨ ਹਾਊਸ ਪ੍ਰਭਾਵ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅਸੀਂ ਕੀ ਸਿੱਖਿਆ ਸੀ? ਕੀ ਇਸ ਨਾਲ ਕੱਚ ਦੇ ਢੱਕਣ ਦਾ ਉਪਯੋਗ ਕਰਨ ਦਾ ਕਾਰਨ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ?

ਗਿਰਿਆ 14.6

- ਕਿਸੇ ਸੂਰਜੀ ਕੁੱਕਰ ਅਤੇ ਜਾਂ ਸੂਰਜੀ ਜਲ ਹੀਟਰ ਦੀ ਰਚਨਾ ਅਤੇ ਕਾਰਜ ਪ੍ਣਾਲੀ ਦਾ ਵਿਸ਼ੇਸ਼ ਕਰ ਇਸ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਅਧਿਐਨ ਕਰੋ ਕਿ ਉਸ ਵਿੱਚ ਤਾਪ ਰੋਧਨ (Heat Insulation)ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਵਧੇਰੇ ਤਾਪ ਸੋਖਣ (Heat Absorption)ਕਿਵੇਂ ਨਿਸ਼ਚਿਤ ਕਰਦੇ ਹਨ।
- ਸਸਤੀ ਅਤੇ ਸੌਖਿਆਂ ਉਪਲਬੱਧ ਸਮੱਗਰੀ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਕਿਸੇ ਸੂਰਜੀ ਕੁੱਕਰ ਅਤੇ ਸੂਰਜੀ ਜਲ ਹੀਟਰ ਦਾ ਡਿਜ਼ਾਇਨ ਬਣਾ ਕੇ ਰਚਨਾ ਕਰੋ ਅਤੇ ਇਹ ਜਾਂਚ ਕਰੋ ਕਿ ਤੁਹਾਡੀ ਇਸ ਤਰਤੀਬ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਕਿੰਨਾ ਤਾਪਮਾਨ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਸੂਰਜੀ ਕੁੱਕਰ ਅਤੇ ਸੂਰਜੀ ਜਲ ਹੀਟਰ ਦੇ ਉਪਯੋਗਾਂ ਦੀਆਂ ਲਾਭਾਂ ਅਤੇ ਕਮੀਆਂ ਉੱਤੇ ਚਰਚਾ ਕਰੋ।

ਇਹ ਸੌਖਿਆਂ ਹੀ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਇਹ ਤਰਕੀਬਾਂ ਦਿਨ ਦੇ ਕੁੱਝ ਨਿਸਚਿਤ ਸਮੇਂ ਤੇ ਹੀ ਉਪਯੋਗੀ ਹੁੰਦੀਆਂ ਹਨ। ਸੂਰਜੀ ਊਰਜਾ ਦੇ ਉਪਯੋਗ ਦੀ ਇਸ ਸੀਮਾ (ਘਾਟ) ਉੱਤੇ ਸੂਰਜੀ ਸੈੱਲ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਕਾਬੂ ਪਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਸੂਰਜੀ ਸੈੱਲ, ਸੂਰਜੀ ਊਰਜਾ ਨੂੰ ਬਿਜਲਈ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਦੇ ਹਨ। ਧੁੱਪ ਵਿੱਚ ਰੱਖੇ ਜਾਣ ਤੇ ਕਿਸੇ ਨਮੂਨੇ ਦੇ ਸੂਰਜੀ ਸੈੱਲ ਤੋਂ 0.5-1.0 V ਤੱਕ ਵੋਲਟਤਾ ਵਿਕਸਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਲੱਗਪਗ 0.7 W ਬਿਜਲੀ ਪੈਦਾ ਕਰ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਬਹੁਤ ਸਾਰੀ ਸੰਖਿਆ ਵਿੱਚ ਸੂਰਜੀ ਸੈੱਲਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਢੰਗ ਨਾਲ ਜੋੜਦੇ ਹਾਂ ਤਾਂ ਇਹ ਵਿਵਸਥਾ ਸੂਰਜੀ ਸੈੱਲ ਪੈਨਲ (Solar Cell Panel) ਕਹਾਉਂਦੀ ਹੈ। (ਚਿੱਤਰ 14.7) ਜਿਸ ਤੋਂ ਵਿਵਹਾਰਕ ਉਪਯੋਗ ਲਈ ਲੋੜੀਂਦੀ ਬਿਜਲੀ ਪਾਪਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਸੂਰਜੀ ਸੈੱਲਾਂ ਨਾਲ ਸੰਬੰਧਿਤ ਮੁੱਖ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕੋਈ ਵੀ ਗਤੀਮਾਨ ਪੁਰਜਾ ਨਹੀਂ ਹੁੰਦਾ ਇਸ ਲਈ ਇਹਨਾਂ ਦਾ ਰੱਖ ਰਖਾਓ ਸਸਤਾ ਹੈ ਅਤੇ ਇਹ ਬਿਨਾਂ ਕਿਸੇ ਫੋਕਸਿੰਗ ਤਰਕੀਬ ਕਰਨ ਦੇ ਕਾਫੀ ਸੰਤੋਖਜਨਕ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਸੂਰਜੀ ਸੈੱਲਾਂ ਦੇ ਉਪਯੋਗ ਕਰਨ ਦਾ ਇੱਕ ਹੋਰ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਹਨਾਂ ਨੂੰ ਦੂਰ ਅਤੇ ਲੱਗਪਗ ਅਪਹੁੰਚ ਸਥਾਨਾਂ ਤੇ ਸਥਾਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ ਨੂੰ ਘੱਟ ਵਸੋਂ ਵਾਲੇ ਖੇਤਰਾਂ ਵਿੱਚ ਵੀ ਸਥਾਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿੱਥੇ ਬਿਜਲੀ ਦੇ ਸੰਚਾਰਨ ਲਈ ਲਾਈਨਾਂ ਸਥਾਪਿਤ ਕਰਨੀਆਂ ਮਹਿੰਗੀਆਂ ਅਤੇ ਲਾਭਹੀਨ ਹੁੰਦੀਆਂ ਹਨ।

ਸੂਰਜੀ ਸੈੱਲ ਬਣਾਉਣ ਲਈ ਸਿਲੀਕਾਨ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਕੁਦਰਤ ਵਿੱਚ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਉਪਲਬੱਧ ਹੈ ਪਰ ਸੂਰਜੀ ਸੈੱਲਾਂ ਨੂੰ ਬਣਾਉਣ ਵਿੱਚ ਉਪਯੋਗ ਹੋਣ ਵਾਲੀ ਖਾਸ ਸ਼੍ਰੇਣੀ ਦੀ ਸਿਲੀਕਾਨ ਦੀ ਉਪਲੱਬਧਤਾ ਸੀਮਤ ਹੈ। ਸੂਰਜੀ ਸੈੱਲਾਂ ਦੇ ਉਤਪਾਦਨ ਦੀ ਸਾਰੀ ਕਿਰਿਆ ਅਜੇ ਵੀ ਬਹੁਤ ਮਹਿੰਗੀ ਹੈ। ਸੂਰਜੀ ਸੈੱਲਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਜੋੜ ਕੇ ਸੂਰਜੀ ਸੈੱਲ ਪੈਨਲ ਬਣਾਉਣ ਵਿੱਚ ਸਿਲਵਰ (ਚਾਂਦੀ) ਦਾ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦੇ ਕਾਰਨ ਲਾਗਤ ਵਿੱਚ ਹੋਰ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਉੱਚ ਲਾਗਤ ਅਤੇ ਘੱਟ ਕੁਸ਼ਲਤਾ ਹੋਣ ਤੇ ਵੀ ਸੂਰਜੀ ਸੈੱਲਾਂ ਦਾ ਉਪਯੋਗ ਬਹੁਤ ਸਾਰੇ ਵਿਗਿਆਨਿਕ ਅਤੇ ਤਕਨੀਕੀ ਕੰਮਾਂ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬਣਾਉਟੀ ਉਪ ਗ੍ਰਹਿਆਂ ਅਤੇ ਪੁਲਾੜ ਖੋਜ ਯਾਨਾਂ ਜਿਵੇਂ ਮੰਗਲ ਆਰਬਿਟਰਜ਼ ਵਿੱਚ ਸੂਰਜੀ ਸੈੱਲਾਂ ਦਾ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ। ਰੇਡੀਓ ਅਤੇ ਵਾਇਰਲੈਸ ਸੰਚਾਰ ਯੰਤਰਾਂ ਅਤੇ ਦੂਰ ਖੇਤਰ ਦੇ ਟੀ. ਵੀ. ਗੋਲੇਅ ਕੇਂਦਰਾਂ ਵਿੱਚ ਸੂਰਜੀ ਸੈੱਲ ਪੈਨਲ ਉਪਯੋਗ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। ਟ੍ਰੈਫਿਕ ਸਿਗਨਲਾਂ, ਕੈਲਕੂਲੇਟਰਾਂ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਖਿਡਾਉਣਿਆਂ ਵਿੱਚ ਸੂਰਜੀ ਸੈੱਲ ਲੱਗੇ ਹੁੰਦੇ ਹਨ। ਸੂਰਜੀ ਸੈੱਲ ਪੈਨਲ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਡਿਜ਼ਾਇਨ ਕੀਤੀਆਂ ਗਈਆਂ ਝੁਕੀਆਂ ਛੱਤਾਂ ਉੱਤੇ ਸਥਾਪਿਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਤਾਂ ਜੋ ਇਹਨਾਂ ਉੱਤੇ ਵੱਧ ਤੋਂ

ਚਿੱਤਰ 14.7 ਸੂਰਜੀ ਸੈੱਲ ਪੈਨਲ

ਵੱਧ ਸੂਰਜੀ ਊਰਜਾ ਆਪਤਿਤ (Incident) ਹੋਵੇ। ਪਰ ਮਹਿੰਗਾ ਹੋਣ ਕਾਰਨ ਸੂਰਜੀ ਸੈੱਲ ਦਾ ਘਰੇਲੂ ਉਪਯੋਗ ਅਜੇ ਤੱਕ ਸੀਮਿਤ ਹੈ।

14.3.2 ਸਮੁੰਦਰਾਂ ਤੋਂ ਊਰਜਾ(Energy from the Sea)

A. ਜਵਾਰ ਉਰਜਾ (Tidal Energy)

ਘੁੰਮਣ ਗਤੀ ਕਰਦੀ ਪਿ੍ਥਵੀ ਮੁੱਖ ਰੂਪ ਤੋਂ ਚੰਦਰਮਾ ਦੇ ਗੁਰੂਤਾ ਖਿੱਚ ਦੇ ਕਾਰਨ ਸਮੁੰਦਰਾਂ ਵਿੱਚ ਪਾਣੀ ਦਾ ਪੱਧਰ ਚੜ੍ਹਦਾ ਅਤੇ ਉੱਤਰਦਾ ਰਹਿੰਦਾ ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਸਮੁੰਦਰ ਦੇ ਨੇੜੇ ਰਹਿੰਦੇ ਹੋ ਜਾਂ ਕਦੇ ਸਮੁੰਦਰ ਦੇ ਨੇੜੇ ਕਿਸੇ ਸਥਾਨ ਉੱਤੇ ਜਾਂਦੇ ਹੋ ਤਾਂ ਯਤਨ ਕਰੋ ਕਿ ਤੁਸੀਂ ਇਹ ਪ੍ਰੇਖਣ ਕਰ ਸਕੋ ਕਿ ਸਮੁੰਦਰ ਵਿੱਚ ਪਾਣੀ ਦੇ ਪੱਧਰ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਰਤਾਰੇ ਨੂੰ ਜਵਾਰ-ਭਾਟਾ ਕਹਿੰਦੇ ਹਨ। ਜਵਾਰ-ਭਾਟੇ ਵਿੱਚ ਪਾਣੀ ਦੇ ਪੱਧਰ ਦੇ ਚੜ੍ਹਨ ਅਤੇ ਉੱਤਰਨ ਨਾਲ ਸਾਨੂੰ ਜਵਾਰ ਊਰਜਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਜਵਾਰ ਊਰਜਾ ਦੀ ਪ੍ਰਾਪਤੀ ਸਮੁੰਦਰੀ ਦੇ ਕਿਸੇ ਤੰਗ ਖੇਤਰ ਉੱਤੇ ਬੰਨ੍ਹ ਦਾ ਨਿਰਮਾਣ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਬੰਨ੍ਹ ਦੇ ਦਰਵਾਜ਼ੇ ਉੱਤੇ ਸਥਾਪਿਤ ਟਰਬਾਇਨ ਜਵਾਰ ਊਰਜਾ ਨੂੰ ਬਿਜਲਈ ਊਰਜਾ ਵਿੱਚ ਰੁਪਾਂਤਰਿਤ ਕਰ ਦਿੰਦੀ ਹੈ। ਤੁਸੀਂ ਆਪ ਇਹ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹੋ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਬੰਨ੍ਹ ਨਿਰਮਿਤ ਕੀਤੇ ਜਾ ਸਕਣ ਵਾਲੇ ਸਥਾਨ ਸੀਮਿਤ ਹੁੰਦੇ ਹਨ।

B. ਤਰੰਗ ਊਰਜਾ (Wave Energy)

ਇਸੇ ਤਰ੍ਹਾਂ, ਸਮੁੰਦਰ ਦੇ ਕੰਢੇ ਦੇ ਨੇੜੇ ਵਿਸ਼ਾਲ ਤਰੰਗਾਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਨੂੰ ਵੀ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਲਈ ਇਸੇ ਢੰਗ ਨਾਲ ਟ੍ਰੈਪ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਮਹਾਂ ਸਾਗਰਾਂ ਦੇ ਤਲ ਉੱਤੇ ਆਰ-ਪਾਰ ਵਗਣ ਵਾਲੀ ਤੇਜ ਪੌਣ ਤਰੰਗ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਤਰੰਗ ਊਰਜਾ ਦਾ ਉੱਥੇ ਹੀ ਵਿਵਹਾਰਕ ਉਪਯੋਗ ਹੋ ਸਕਦਾ ਹੈ ਜਿੱਥੇ ਤਰੰਗ ਅਤਿ ਪ੍ਬਲ ਹੁੰਦੀ ਹੈ। ਤਰੰਗ ਊਰਜਾ ਨੂੰ ਟ੍ਰੈਪ ਕਰਨ ਲਈ ਕਈ ਤਰਕੀਬਾਂ ਵਿਕਸਿਤ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ ਤਾਂ ਜੋ ਟਰਬਾਇਨ ਨੂੰ ਘੁਮਾ ਕੇ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਲਈ ਇਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕੇ।

C. ਸਮੁੰਦਰੀ ਤਾਪ ਉਰਜਾ (Ocean Thermal Energy)

ਸਮੁੰਦਰਾਂ ਜਾਂ ਮਹਾਂਸਾਗਰਾਂ ਦੇ ਤਲ ਦਾ ਪਾਣੀ ਸੂਰਜ ਦੁਆਰਾ ਗਰਮ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਇਹਨਾਂ ਦੇ ਗਹਿਰਾਈ ਵਾਲੇ ਭਾਗ ਦਾ ਪਾਣੀ, ਸਾਪੇਖਿਕ ਠੰਢਾ ਹੁੰਦਾ ਹੈ। ਤਾਪਮਾਨ ਵਿੱਚ ਇਸ ਅੰਤਰ ਦਾ ਉਪਯੋਗ ਸਮੁੰਦਰੀ ਤਾਪ ਊਰਜਾ ਰੂਪਾਂਤਰਣ ਪਲਾਂਟ (Ocean Thermal Energy Conversion Plant ਜਾਂ OTEC Plant) ਵਿੱਚ ਬਿਜਲੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਪਲਾਂਟ ਕੇਵਲ ਤਦ ਹੀ ਕੰਮ ਕਰਦੇ ਹਨ ਜਦੋਂ ਮਹਾਂਸਾਗਰਾਂ ਦੇ ਤਲ ਤੇ ਪਾਣੀ ਦੇ ਤਾਪਮਾਨ ਅਤੇ 2 km ਤੱਕ ਦੀ ਗਹਿਰਾਈ ਤੇ ਪਾਣੀ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ 20 °C (293K) ਜਾਂ ਵੱਧ ਦਾ ਅੰਤਰ ਹੋਵੇ। ਤਲ ਦੇ ਗਰਮ ਪਾਣੀ ਦਾ ਉਪਯੋਗ ਅਮੋਨਿਆ ਜਿਹੇ ਵਾਸ਼ਪਸ਼ੀਲ ਦਵ ਨੂੰ ਉਬਾਲਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬਣੇ ਦਵ ਦੇ ਵਾਸ਼ਪ ਜਨਰੇਟਰ ਦੀ ਟਰਬਾਇਨ ਨੂੰ ਘੁਮਾਉਂਦੇ ਹਨ। ਮਹਾਂਸਾਗਰ ਦੀ ਗਹਿਰਾਈ ਤੋਂ ਠੰਢੇ ਪਾਣੀ ਨੂੰ ਪੰਪਾਂ ਰਾਹੀਂ ਖਿੱਚ ਕੇ ਵਾਸ਼ਪਾਂ ਨੂੰ ਠੰਢਾ ਕਰਕੇ ਫਿਰ ਤੋਂ ਦ੍ਵ ਵਿੱਚ ਸੰਘਣਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਮਹਾਂਸਾਗਰਾਂ ਦੀ ਊਰਜਾ (ਜਵਾਰ ਊਰਜਾ, ਤਰੰਗ ਊਰਜਾ, ਸਮੁੰਦਰੀ ਤਾਪ ਊਰਜਾ) ਦਾ ਪੁਟੈਂਸ਼ਲ ਬਹੁਤ ਜ਼ਿਆਦਾ ਵਿਸ਼ਾਲ ਹੈ ਪਰ ਇਸ ਦੇ ਕੁਸ਼ਲਤਾ ਪੂਰਵਕ ਵਪਾਰਿਕ ਪ੍ਰਾਪਤੀ ਵਿੱਚ ਕਠਿਨਾਈ ਹੈ। 14.3.3 ਭੂ-ਤਾਪ ਊਰਜਾ (Geo thermal Energy)

ਭੂਮੀ ਦੇ ਅੰਦਰ ਪਰਿਵਰਤਨਾਂ ਦੇ ਕਾਰਨ ਪ੍ਰਿਥਵੀ ਦੀ ਪੇਪੜੀ ਵਿੱਚ ਡੂੰਘਾਈ ਤੇ ਗਰਮ ਖੇਤਰਾਂ ਵਿੱਚ ਮੌਜੂਦ ਪਿਘਲੀਆਂ ਚਟਾਨਾਂ ਉੱਪਰ ਧਕੇਲ ਦਿੱਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਜਦੋਂ ਭੂਮੀ ਅੰਦਰਲਾ ਪਾਣੀ ਇਹਨਾਂ ਗਰਮ ਸਥਾਨਾਂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦਾ ਹੈ ਤਾਂ ਭਾਫ਼ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਕਦੇ-ਕਦੇ ਇਸੇ ਗਰਮ-ਪਾਣੀ ਨੂੰ ਪ੍ਰਿਥਵੀ ਦੇ ਤਲ ਤੋਂ ਬਾਹਰ ਨਿਕਲਣ ਨੂੰ ਨਿਕਾਸ ਮਾਰਗ ਮਿਲ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਨਿਕਾਸ ਮਾਰਗਾਂ ਨੂੰ ਗਰਮ ਚਸ਼ਮਾ (Hot Springs) ਕਹਿੰਦੇ ਹਨ। ਕਦੇ-ਕਦੇ ਇਹ ਭਾਫ਼ ਚਟਾਨਾਂ ਦੇ ਵਿੱਚ ਫਸ ਜਾਂਦੀ ਹੈ ਅਤੇ ਉੱਥੇ ਇਸ ਦਾ ਦਬਾਅ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਗਰਮ ਸਥਾਨਾਂ ਤੱਕ

ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ?

ਪਾਈਪ ਪਾ ਕੇ ਇਸ ਭਾਫ਼ ਨੂੰ ਬਾਹਰ ਕੱਢ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਉੱਚ ਦਬਾਓ ਉੱਤੇ ਨਿਕਲੀ ਇਹ ਭਾਫ਼ ਬਿਜਲਈ ਜਨਰੇਟਰਾਂ ਦੀ ਟਰਬਾਇਨ ਨੂੰ ਘੁਮਾਉਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਬਿਜਲੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬਿਜਲੀ ਉਤਪਾਦਨ ਦੀ ਲਾਗਤ ਵੱਧ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ਪਰ ਅਜਿਹੇ ਬਹੁਤ ਘੱਟ ਖੇਤਰ ਹਨ ਜਿੱਥੇ ਵਪਾਰਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਇਸ ਤਰ੍ਹਾਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵਿਵਹਾਰਕ ਹੋਵੇ। ਨਿਊਜੀਲੈਂਡ ਅਤੇ ਸੰਯੁਕਤ ਰਾਜ ਅਮੇਰਿਕਾ ਵਿੱਚ ਭੂ-ਤਾਪ ਊਰਜਾ ਉੱਤੇ ਆਧਾਰਿਤ ਕਈ ਪਾਵਰ ਪਲਾਂਟ ਕੰਮ ਕਰ ਰਹੇ ਹਨ।

14.3.4 ਨਿਊਕਲੀਅਰ ਊਰਜਾ (Nuclear Energy)

ਨਿਊਕਲੀਅਰ ਊਰਜਾ ਕਿਵੇਂ ਪੈਦਾ ਹੁੰਦੀ ਹੈ? ਨਿਊਕਲੀਅਰ ਵਿਖੰਡਨ ਇੱਕ ਅਜਿਹੀ ਪ੍ਰਕਿਰਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਭਾਰੀ ਪਰਮਾਣੂ (ਜਿਵੇਂ ਯੂਰੇਨੀਅਮ, ਥੋਰੀਅਮ) ਦੇ ਨਿਊਕਲੀਅਸ ਨੂੰ ਘੱਟ ਊਰਜਾ ਵਾਲੇ ਨਿਊਟ੍ਰਾਨ ਨਾਲ ਬੰਬਾਰੀ ਕਰਕੇ ਉਹਨਾਂ ਨੂੰ ਹਲਕੇ ਨਿਊਕਲੀਅਸਾਂ ਵਿੱਚ ਤੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਅਜਿਹਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਊਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਤਦ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਮੂਲ ਨਿਊਕਲੀਅਸ ਦਾ ਪੁੰਜ ਵੱਖ-ਵੱਖ ਉਤਪਾਦ ਦੇ ਪੁੰਜ ਦੇ ਜੋੜ ਤੋਂ ਕੁੱਝ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਯੂਰੇਨੀਅਮ ਦੇ ਇੱਕ ਪ੍ਰਮਾਣੂ ਦੇ ਵਿਖੰਡਨ ਵਿੱਚ ਜੋ ਊਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ ਉਹ ਕੋਲੇ ਦੇ ਕਿਸੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਜਲਣ ਨਾਲ ਪੈਦਾ ਊਰਜਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ 1 ਕਰੋੜ ਗੁਣਾ ਵੱਧ ਹੁੰਦੀ ਹੈ। ਬਿਜਲੀ ਉਤਪਾਦਨ ਦੇ ਲਈ ਡਿਜ਼ਾਇਨ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਨਿਊਕਲੀ ਯੰਤਰ ਵਿੱਚ ਇਸ ਪ੍ਰਕਾਰ ਦਾ ਨਿਊਕਲੀਅਰ ਰਿਐਕਟਰ ਸਵੈ ਵਿਖੰਡਨ ਲੜੀ ਪ੍ਰਤਿਕਿਰਿਆ ਦਾ ਇੱਕ ਭਾਗ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਨਿਯੰਤਰਿਤ ਦਰ ਤੇ ਊਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਮੁਕਤ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਭਾਫ਼ ਬਣਾ ਕੇ ਬਿਜਲੀ ਪੈਦਾ ਕਰਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

^^^^^^

ਨਿਊਕਲੀਅਰ ਵਿਖੰਡਨ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਮੂਲ ਨਿਊਕਲੀਅਸ ਅਤੇ ਉਤਪਾਦ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਪੁੰਜਾਂ ਦਾ ਅੰਤਰ Δm , ਊਰਜਾ E ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਊਰਜਾ E ਦੀ ਦਰ ਸੰਨ 1905 ਵਿੱਚ ਅਲਬਰਟ ਆਇਨਸਟਾਇਨ ਦੁਆਰਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਦਿੱਤੀ ਸਿੱਧ ਸਮੀਕਰਨ, $E=\Delta m\,c^2$ ਦੁਆਰਾ ਨਿਯੰਤਰਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇੱਥੇ c ਪ੍ਰਕਾਸ਼ ਦੀ ਖਲਾਅ ਵਿੱਚ ਚਾਲ ਹੈ। ਨਿਊਕਲੀਅਰ ਵਿਗਿਆਨ ਵਿੱਚ ਊਰਜਾ ਨੂੰ ਇਲੈੱਕਟਰਾਨ ਵੋਲਟ (eV) ਦੁਆਰਾ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। $1 \text{ eV} = 1.602 \times 10^{-19}$ ਜੂਲ. ਉਪਰੋਕਤ ਸਮੀਕਰਨ ਦੁਆਰਾ ਇਹ ਆਸਾਨੀ ਨਾਲ ਜਾਂਚਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਇੱਕ ਪਰਮਾਣੂ ਪੁੰਜ, ਇਕਾਈ (u) ਲਗਭਗ 931 ਮੈਗਾ ਇਲੈੱਕਟ੍ਰਾਨ ਵੋਲਟ (MeV) ਊਰਜਾ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਤਾਰਾਪੁਰ (ਮਹਾਂਰਾਸ਼ਟਰ), ਰਾਣਾ ਪ੍ਰਤਾਪ ਸਾਗਰ (ਰਾਜਸਥਾਨ), ਕਲਪਕੱਮ (ਤਾਮਿਲਨਾਡੂ), ਨਰੋਰਾ (ਉੱਤਰ ਪ੍ਦੇਸ਼), ਕਾਕਰਾਪਾਰ (ਗੁਜਰਾਤ) ਅਤੇ ਕੈਗਾ (ਕਰਨਾਟਕ) ਵਿਖੇ ਸਥਿਤ ਨਿਊਕਲੀਅਰ ਪਾਵਰ ਰਿਐਕਟਰਾਂ ਦੀ ਸਥਾਪਿਤ ਸਮਰੱਥਾ ਸਾਡੇ ਦੇਸ਼ ਦੀ ਕੁੱਲ ਬਿਜਲੀ ਉਤਪਾਦਨ ਸਮਰੱਥਾ ਦੀ ਮਾਤਰਾ ਦੇ 3% ਤੋਂ ਵੀ ਘੱਟ ਹੈ। ਫਿਰ ਵੀ, ਬਹੁਤ ਸਾਰੇ ਉਦਯੋਗਿਕ ਦੇਸ਼ ਆਪਣੀ ਕੁੱਲ ਬਿਜਲੀ ਸ਼ਕਤੀ ਦੀ ਜ਼ਰੂਰਤ ਦੀ 30% ਤੋਂ ਵੀ ਵੱਧ ਦੀ ਪੂਰਤੀ ਨਿਊਕਲੀਅਰ ਰਿਐਕਟਰਾਂ ਤੋਂ ਕਰ ਰਹੇ ਹਨ।

ਨਿਊਕਲੀਅਰ ਬਿਜਲੀ ਸ਼ਕਤੀ ਪੈਦਾ ਕਰਨ ਉਪਰੰਤ ਬਾਕੀ ਬਚੇ ਨਿਊਕਲੀ ਬਾਲਣ ਦਾ ਭੰਡਾਰਨ ਅਤੇ ਨਿਪਟਾਰਾ ਕਰਨਾ ਇੱਕ ਖਤਰਨਾਕ ਮਸਲਾ ਹੈ ਕਿਉਂਕਿ ਬਾਕੀ ਬਚੇ ਬਾਲਣ ਦਾ ਯੂਰੇਨਿਅਮ ਅਜੇ ਵੀ ਹਾਨੀਕਾਰਕ (ਘਾਤਕ) ਕਣਾਂ (ਵਿਕਿਰਨਾਂ) ਵਿੱਚ ਖੈ (Decay) ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਨਿਊਕਲੀਅਰ ਵਾਧੂ ਪਦਾਰਥਾਂ ਦਾ ਭੰਡਾਰਨ ਅਤੇ ਨਿਪਟਾਰਾ ਉੱਚਿਤ ਤਰ੍ਹਾਂ ਨਾਲ ਨਹੀਂ ਹੁੰਦਾ ਤਾਂ ਇਸ ਨਾਲ ਵਾਤਾਵਰਨ ਦੂਸ਼ਿਤ ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਨਿਊਕਲੀਅਰ ਵਿਕਿਰਨਾਂ ਦਾ ਦੁਰਘਟਨਾ ਕਾਰਨ ਰਿਸਾਓ ਦਾ ਖਤਰਾ ਵੀ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ। ਨਿਊਕਲੀਅਰ ਪਾਵਰ ਪਲਾਟਾਂ ਦੀ ਸਥਾਪਤੀ ਦਾ ਉੱਚ ਖਰਚਾ, ਵਾਤਾਵਰਨ ਦੂਸ਼ਿਤ ਹੋਣ ਦਾ ਖਤਰਾ ਅਤੇ ਯੂਰੇਨੀਅਮ ਦੀ ਸੀਮਤ ਉਪਲੱਬਧਤਾ ਵੱਡੇ ਪੱਧਰ ਤੇ ਨਿਊਕਲੀ ਊਰਜਾ ਦੇ ਉਪਯੋਗ ਨੂੰ ਵਰਜਿਤ ਬਣਾ ਦਿੰਦੇ ਹਨ।

ਨਿਊਕਲੀਅਰ ਪਾਵਰ ਸਟੇਸ਼ਨਾਂ ਦੇ ਨਿਰਮਾਣ ਤੋਂ ਪਹਿਲਾਂ ਨਿਊਕਲੀਅਰ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਵਿਨਾਸ਼ਕਾਰੀ ਕੰਮਾਂ ਲਈ ਕੀਤਾ ਗਿਆ। ਕਿਸੇ ਨਿਊਕਲੀਅਰ ਹਥਿਆਰ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਲੜੀ ਵਿਖੰਡਨ ਪ੍ਰਤਿਕਿਰਿਆ ਦਾ ਮੂਲ ਸਿਧਾਂਤ ਨਿਯੰਤਰਿਤ ਨਿਊਕਲੀਅਰ ਰਿਐਕਟਰ ਦੇ ਸਿਧਾਂਤ ਦੇ ਬਰਾਬਰ ਹੈ ਪਰ ਦੋਵੇਂ ਤਰ੍ਹਾਂ ਦੀਆਂ ਜੁਗਤਾਂ ਦਾ ਨਿਰਮਾਣ ਇੱਕ ਦੂਜੇ ਤੋਂ ਪੂਰਨ ਤੌਰ ਤੇ ਭਿੰਨ ਹੁੰਦਾ ਹੈ।

ਨਿਊਕਲੀ ਸੰਯੋਜਨ (Nuclear Fusion)

ਅੱਜ ਕੱਲ ਦੇ ਸਾਰੇ ਵਪਾਰਿਕ ਨਿਊਕਲੀਅਰ ਰਿਐਕਟਰ ਨਿਊਕਲੀਅਰ ਵਿਖੰਡਨ ਉੱਤੇ ਆਧਾਰਿਤ ਹਨ ਪਰ ਇੱਕ ਹੋਰ ਸੰਭਾਵਿਤ ਸੁਰੱਖਿਤ ਪ੍ਰਕਿਰਿਆ, ਜਿਸ ਨੂੰ ਨਿਊਕਲੀ ਸੰਯੋਜਨ ਕਹਿੰਦੇ ਹਨ, ਦੁਆਰਾ ਵੀ ਨਿਊਕਲੀਅਰ ਊਰਜਾ ਪੈਦਾ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਦੱਸੀ ਜਾ ਰਹੀ ਹੈ। ਸੰਯੋਜਨ ਦਾ ਅਰਥ ਹੈ ਦੇ ਹਲਕੇ ਨਿਊਕਲੀਅਸਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇੱਕ ਭਾਰੀ ਨਿਊਕਲੀਅਸ ਬਣਾਉਣਾ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਹਾਈਡਰੋਜਨ ਅਤੇ ਉਸ ਦੇ ਸਮਸਥਾਨਕਾਂ ਤੋਂ ਹੀਲੀਅਮ ਪੈਦਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ:

2H+2H→3He+1n)

ਇਸ ਵਿੱਚ ਵੀ ਆਇਨਸਟਾਇਨ ਸਮੀਕਰਨ ਦੇ ਅਨੁਸਾਰ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਊਰਜਾ ਨਿਕਲਦੀ ਹੈ। ਊਰਜਾ ਨਿਕਲਣ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਪ੍ਤਿਕਿਰਿਆ ਵਿੱਚ ਪੈਦਾ ਉਤਪਾਦਾਂ ਦਾ ਪੁੰਜ ਪ੍ਤਿਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਮੂਲ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਪੁੰਜ ਦੇ ਜੋੜ ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਨਿਊਕਲੀਅਰ ਸੰਯੋਜਨ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਸੂਰਜ ਅਤੇ ਹੋਰ ਤਾਰਿਆਂ ਦੀ ਵਿਸ਼ਾਲ ਊਰਜਾ ਦਾ ਸੋਮਾ ਹਨ। ਨਿਊਕਲੀਅਰ ਸੰਯੋਜਨ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਨਿਊਕਲੀਅਸਾਂ ਨੂੰ ਪਰਸਪਰ ਸੰਯੋਜਿਤ ਹੋਣ ਲਈ ਬਹੁਤ ਊਰਜਾ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੇ ਹੋਣ ਲਈ ਸ਼ਰਤਾਂ ਚਰਮ ਸੀਮਾ (ਅਤਿ ਸਖਤ) ਦੀਆਂ ਹਨ-ਮਿਲੀਅਨ ਡਿਗਰੀ ਤਾਪਮਾਨ ਅਤੇ ਮਿਲੀਅਨ ਪਾਸਕਲ ਦਬਾਓ।

ਹਾਈਡਰੋਜ਼ਨ ਬੰਬ ਤਾਪ ਨਿਊਕਲੀਅਰ ਪ੍ਰਤਿਕਿਰਿਆ ਉੱਤੇ ਆਧਾਰਿਤ ਹੁੰਦਾ ਹੈ। ਹਾਈਡਰੋਜਨ ਬੰਬ ਦੀ ਕੋਰ ਵਿੱਚ ਯੂਰੇਨੀਅਮ ਅਤੇ ਪਲੂਟੋਨੀਅਮ ਦੇ ਵਿਖੰਡਨ ਤੇ ਆਧਾਰਿਤ ਕਿਸੇ ਨਿਊਕਲੀ ਬੰਬ ਨੂੰ ਰੱਖ ਦਿੰਦੇ ਹਨ। ਇਹ ਨਿਊਕਲੀਅਰ ਬੰਬ ਇੱਕ ਅਜਿਹੇ ਪਦਾਰਥ ਵਿੱਚ ਰੱਖ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਡਿਊਟੀਰੀਅਮ ਅਤੇ ਲਿਥੀਅਮ ਹੁੰਦੇ ਹਨ। ਜਦੋਂ ਇਸੇ ਨਿਊਕਲੀਅਰ ਬੰਬ (ਜੋ ਵਿਖੰਡਨ ਤੇ ਆਧਾਰਿਤ ਹੈ) ਨੂੰ ਵਿਸਫੋਟਿਤ ਕਰਦੇ ਹਾਂ ਤਾਂ ਇਸ ਪਦਾਰਥ ਦਾ ਤਾਪਮਾਨ ਕੁੱਝ ਹੀ ਮਾਇਕਰੋ ਸੈਕਿੰਡਾਂ ਵਿੱਚ 107K ਤੱਕ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਇਹ ਅਤਿ ਉੱਚ ਤਾਪ ਹਲਕੇ ਨਿਊਕਲੀਅਸਾਂ ਨੂੰ ਸੰਯੋਜਿਤ ਹੋਣ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਪੈਦਾ ਕਰ ਦਿੰਦਾ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਅਤਿ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਉਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ 14.7

- ਜਮਾਤ ਵਿੱਚ ਇਸ ਪ੍ਰਸ਼ਨ ਤੇ ਚਰਚਾ ਕਰੋ ਕਿ ਮਹਾਂਸਾਗਰੀ ਤਾਪ ਊਰਜਾ, ਪੌਣ ਊਰਜਾ ਅਤੇ ਜੀਵ ਪੁੰਜ ਊਰਜਾ ਦੇ ਅੰਤਲੇ ਸੋਮੇ ਕੀ ਹੈ?
- 🎍 ਕੀ ਇਸ ਸੰਬੰਧ ਵਿੱਚ ਭੂ-ਤਾਪ ਉਰਜਾ ਅਤੇ ਨਿਊਕਲੀਅਰ ਉਰਜਾ ਭਿੰਨ ਹਨ? ਕਿਉਂ?
- 🕡 ਤੁਸੀਂ ਪਣ ਬਿਜਲੀ ਉਰਜਾ ਅਤੇ ਤਰੰਗ ਉਰਜਾ ਨੂੰ ਕਿਸ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਰੱਖੋਗੇ?

ਪ੍ਰਸ਼ਨ

- ਸੂਰਜੀ ਕੁੱਕਰ ਲਈ ਕਿਹੜਾ ਦਰਪਣ-ਅਵਤਲ, ਉੱਤਲ ਜਾਂ ਸਮਤਲ ਵਧੇਰੇ ਢੁਕਵਾਂ ਹੁੰਦਾ ਹੈ? ਕਿਉਂ?
- ਮਹਾਂਸਾਗਰਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋ ਸਕਣ ਵਾਲੀ ਉਰਜਾ ਦੀਆਂ ਕੀ ਕਮੀਆਂ ਹਨ?
- ਭੂ–ਤਾਪ ਉਰਜਾ ਕੀ ਹੁੰਦੀ ਹੈ?
- 4. ਨਿਊਕਲੀਅਰ ਊਰਜਾ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ?

ਪਿਛਲੇ ਅਨੁਭਾਗ ਵਿੱਚ ਅਸੀਂ ਊਰਜਾ ਦੇ ਵੱਖ-ਵੱਖ ਸੋਮਿਆਂ ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਅਧਿਐਨ ਕੀਤਾ ਸੀ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਸੀ ਵੀ ਤਰ੍ਹਾਂ ਦੀ ਊਰਜਾ ਦੀ ਪ੍ਰਾਪਤੀ ਵਾਤਾਵਰਨ ਵਿੱਚ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਵਿਘਨ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਊਰਜਾ ਸੋਮੇ ਨੂੰ ਚੁਣਦੇ ਹਾਂ ਤਾਂ ਉਹ ਹੇਠ ਲਿਖੇ ਕਾਰਕਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ –

- ਉਸ ਊਰਜਾ ਸਰੋਤ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਵਿੱਚ ਸੁਵਿਧਾ,
- ਉਸ ਊਰਜਾ ਸਰੋਤ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਖਰਚਾ,
- ਉਸ ਊਰਜਾ ਸਰੋਤ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਉਪਲਬੱਧ ਤਕਨੀਕ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ,
- ਉਸ ਉਰਜਾ ਸਰੋਤ ਨੂੰ ਉਪਯੋਗ ਕਰਨ ਤੇ ਵਾਤਾਵਰਨ ਨੂੰ ਹੋਣ ਵਾਲੀ ਹਾਨੀ।

ਭਾਵੇਂ ਅਸੀਂ ਸੀ. ਐਨ. ਜੀ. (CNG) (ਸੰਪੀੜਿਤ ਕੁਦਰਤੀ ਗੈਸ) ਜਿਹੇ ਸਾਫ਼ ਸੁੱਥਰੇ ਬਾਲਣ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਗੱਲ ਕਰਦੇ ਹਾਂ ਪਰ ਇਹ ਕਹਿਣਾ ਵਧੇਰੇ ਸਹੀ ਹੁੰਦਾ ਹੈ ਕਿ ਕਿਹੜਾ ਸੋਮਾ ਕਿਹੜੇ ਸੋਮੇ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਵਧੇਰੇ ਸਾਫ਼ ਸੁੱਥਰਾ ਹੈ। ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਵੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪਥਰਾਟ ਬਾਲਣ ਜਲਾਉਣ ਨਾਲ ਹਵਾ ਪ੍ਰਦੂਸ਼ਿਤ ਹੁੰਦੀ ਹੈ। ਕੁੱਝ ਹਾਲਤਾਂ ਵਿੱਚ ਜਿਵੇਂ ਕਿ ਸੂਰਜੀ ਸੈੱਲ ਜਿਹੀਆਂ ਕੁੱਝ ਜੁਗਤਾਂ ਦਾ ਵਾਸਤਵਿਕ ਚੱਲਣਾ ਪ੍ਰਦੂਸ਼ਣ ਮੁਕਤ ਹੋ ਸਕਦਾ ਹੈ ਪਰ ਇਹ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਉਸ ਜੁਗਤ ਦੇ ਸੰਯੋਜਨ ਵਿੱਚ ਵਾਤਾਵਰਨ ਨੂੰ ਨੁਕਸਾਨ ਹੋਇਆ ਹੋਵੇ। ਇਸ ਖੇਤਰ ਵਿੱਚ ਨਿਰੰਤਰ ਖੋਜ ਹੋ ਰਹੀ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਜੁਗਤਾਂ ਦੇ ਨਿਰਮਾਣ ਦੇ ਲਈ ਯਤਨ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ ਜੋ ਵੱਧ ਸਮੇਂ ਤੱਕ ਕਾਰਜ ਕਰ ਸਕਣ ਅਤੇ ਆਪਣੇ ਪੂਰੇ ਕਾਰਜਕਾਲ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਨੁਕਸਾਨ ਪਹੁੰਚਾਉਣ।

ਕਿਰਿਆ 14.8

- ਵੱਖ-ਵੱਖ ਊਰਜਾ ਸੋਮਿਆਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਜਾਣਕਾਰੀ ਇੱਕਠੀ ਕਰੋ ਅਤੇ ਪਤਾ ਕਰੋ ਕਿ ਉਹਨਾਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਵਾਤਾਵਰਨ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ?
- ਹਰ ਊਰਜਾ ਸੋਮੇ ਦੇ ਲਾਭ ਅਤੇ ਹਾਨੀਆਂ ਉੱਤੇ ਵਾਦ ਵਿਵਾਦ ਕਰੋ ਅਤੇ ਇਸ ਆਧਾਰ ਤੇ ਊਰਜਾ ਦਾ ਸਭ ਤੋਂ ਵਧੀਆ ਸੋਮਾ ਚੁਣ।

ਪਸ਼ਨ

ਕੀ ਕੋਈ ਊਰਜਾ ਸੋਮਾ ਪ੍ਰਦੂਸ਼ਣ ਰਹਿਤ ਹੋ ਸਕਦਾ ਹੈ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ? ਰਾੱਕੇਟ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਹਾਈਡਰੋਜਨ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਰਿਹਾ ਹੈ? ਕੀ ਤੁਸੀਂ ਇਸ ਨੂੰ ਸੀ. ਐਨ. ਜੀ. (CNG) ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਵਧੇਰੇ ਸਾਫ਼–ਸੂਥਰਾ ਬਾਲਣ ਮੰਨਦੇ ਹੋ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?

14.5 ਕੋਈ ਊਰਜਾ ਸੋਮਾ ਸਾਡੇ ਲਈ ਕਦੋਂ ਤੱਕ ਬਣਿਆ ਰਹਿ ਸਕਦਾ ਹੈ? How long will an Energy Source Last Us?

ਅਸੀਂ ਪਹਿਲਾਂ ਇਹ ਵੇਖ ਲਿਆ ਹੈ ਕਿ ਅਸੀਂ ਵਧੇਰੇ ਸਮੇਂ ਤੱਕ ਪਥਰਾਟ ਬਾਲਣਾਂ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਰਹਿ ਸਕਦੇ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਊਰਜਾ ਸੋਮੇ ਜੋ ਕਿਸੇ ਨਾ ਕਿਸੇ ਦਿਨ ਸਮਾਪਤ ਹੋ ਜਾਣਗੇ, ਉਹਨਾਂ ਨੂੰ ਮੁੱਕਣ ਯੋਗ ਸੋਮੇ ਜਾਂ ਪੂਰਤੀ ਅਯੋਗ ਸੋਮੇ ਜਾਂ ਨਾ-ਨਵਿਆਉਣਯੋਗ ਸੋਮੇ ਕਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਜੇਕਰ ਅਸੀਂ ਲੱਕੜੀ ਜਲਾਉਣ ਵਿੱਚ ਉਪਯੋਗ ਹੋਣ ਵਾਲੇ ਰੁੱਖਾਂ ਨੂੰ ਪ੍ਰਤਿ ਸਥਾਪਿਤ ਕਰਕੇ ਜੀਵ-ਪੁੰਜ ਦਾ ਪ੍ਰਬੰਧ ਕਰੀਏ ਤਾਂ ਅਸੀਂ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਦਰ ਨਾਲ ਊਰਜਾ ਦੀ ਨਿਯਮਤ ਪੂਰਤੀ ਨਿਸ਼ਚਿਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਊਰਜਾ ਸੋਮੇ ਜਿਨ੍ਹਾਂ ਦੀ ਮੁੜ ਪੂਰਤੀ ਹੋ ਸਕਦੀ ਹੈ ਉਹਨਾਂ ਊਰਜਾ ਸੋਮਿਆਂ ਨੂੰ ਪੂਰਤੀ ਯੋਗ ਜਾਂ ਨਵਿਆਉਣਯੋਗ ਸੋਮੇ ਜਾਂ ਨਾ ਮੁਕਣ ਯੋਗ ਸਰੋਤ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਸਾਡੇ ਕੁਦਰਤੀ ਵਾਤਾਵਰਨ ਵਿੱਚ ਨਵਿਆਉਣਯੋਗ ਊਰਜਾ ਉਪਲਬੱਧ ਹੈ। ਇਹ ਊਰਜਾ, ਊਰਜਾ ਦੀਆਂ ਲਗਾਤਾਰ ਜਾਂ ਆਵਰਤੀ ਧਾਰਾਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਂ ਪ੍ਰਿਥਵੀ ਅੰਦਰ ਭੰਡਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਇੰਨੀ ਵਿਸ਼ਾਲ ਮਾਤਰਾ ਵਿੱਚ ਹੈ ਕਿ ਇਹਨਾਂ ਭੰਡਾਰਾਂ ਦੇ ਖਤਮ ਹੋਣ ਦੀ ਦਰ ਵਿਵਹਾਰਕ ਦਿਸ਼ਟੀ ਤੋਂ ਨਿਗਣੀ ਹੈ।

ਕਿਰਿਆ 14.9

- ਜਮਾਤ ਵਿੱਚ ਇਹਨਾਂ ਦੋ ਸਮੱਸਿਆਵਾਂ ਉੱਤੇ ਵਾਦ-ਵਿਵਾਦ ਕਰੋ :-
 - (ੳ) ਇਹ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਇੱਕ ਅਨੁਮਾਨ ਅਨੁਸਾਰ ਕੋਲੇ ਦੇ ਭੰਡਾਰ ਆਉਣ ਵਾਲੇ ਦੋ ਸੌ ਸਾਲ ਲਈ ਉਪਲਬੱਧ ਹਨ। ਕੀ ਸਾਨੂੰ ਚਿੰਤਾ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਕਿ ਸਾਡੇ ਕੋਲੇ ਦੇ ਭੰਡਾਰ ਘੱਟ ਰਹੇ ਹਨ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?
 - (ਅ) ਅਜਿਹਾ ਅਨੁਮਾਨ ਹੈ ਕਿ ਸੂਰਜ ਆਉਣ ਵਾਲੇ 5 ਅਰਬ ਸਾਲਾਂ ਤੱਕ ਜੀਵਤ ਰਹੇਗਾ।ਕੀ ਸਾਨੂੰ ਇਹ ਚਿੰਤਾ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ਕਿ ਸੂਰਜੀ ਊਰਜਾ ਸਮਾਪਤ ਹੋ ਰਹੀ ਹੈ? ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ?
- ਵਾਦ-ਵਿਵਾਦ ਦੇ ਆਧਾਰ ਤੇ ਇਹ ਨਿਰਣਾ ਕਰੋ ਕਿ ਕਿਹੜਾ ਊਰਜਾ ਸਰੋਤ :
 (ੳ) ਸਮਾਪਤ ਹੋਣ ਯੋਗ (ਅ) ਨਾ ਸਮਾਪਤ ਹੋਣ ਯੋਗ (ੲ) ਨਵਿਆਉਣਯੋਗ (ਸ) ਨਾ-ਨਵਿਆਉਣਯੋਗ ਹੈ।ਆਪਣੀ ਚੋਣ ਲਈ ਦਲੀਲ ਦਿਓ।

ਪ੍ਰਸ਼ਨ

- ਅਜਿਹੇ ਦੋ ਊਰਜਾ ਸੋਮਿਆਂ ਦੇ ਨਾਂ ਲਓ ਜਿਨ੍ਹਾਂ ਨੂੰ ਤੁਸੀਂ ਨਵਿਆਉਣਯੋਗ ਯੋਗ ਮੰਨਦੇ ਹੋ। ਆਪਣੀ ਚੋਣ ਲਈ ਤਰਕ (ਕਾਰਨ) ਦਿਓ।
- ਅਜਿਹੇ ਦੋ ਊਰਜਾ ਸੋਮਿਆਂ ਦੇ ਨਾਂ ਲਓ ਜਿਨ੍ਹਾਂ ਨੂੰ ਤੁਸੀਂ ਮੁੱਕਣ ਯੋਗ ਸਮਝਦੇ ਹੋ। ਆਪਣੀ ਚੋਣ ਲਈ ਦਲੀਲ ਦਿਓ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ਹੈ?

- ਸਾਡੀ ਜੀਵਨ ਸ਼ੈਲੀ ਦੇ ਪੱਧਰ ਵਿੱਚ ਵਾਧੇ ਦੇ ਨਾਲ ਸਾਡੀਆਂ ਊਰਜਾ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।
- ਸਾਡੀਆਂ ਊਰਜਾ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਦੀ ਪੂਰਤੀ ਕਰਨ ਲਈ ਸਾਨੂੰ ਊਰਜਾ ਦੇ ਵਰਤਣ ਦੀ ਕੁਸ਼ਲਤਾ ਵਿੱਚ ਸੁਧਾਰ ਕਰਨ ਦਾ ਯਤਨ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਸਾਨੂੰ ਊਰਜਾ ਦੇ ਨਵੇਂ ਸੌਮਿਆਂ ਦੀ ਭਾਲ ਅਤੇ ਵਰਤੋਂ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ।

- ਸਾਨੂੰ ਊਰਜਾ ਦੇ ਨਵੇਂ ਸੋਮਿਆਂ ਵੱਲ ਧਿਆਨ ਦੇਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਕਿਉਂਕਿ ਸਾਰੇ ਪਰੰਪਰਾਗਤ ਊਰਜਾ ਸੋਮੇ ਜਿਵੇਂ ਪਥਰਾਟ ਬਾਲਣ ਖਤਰੇ ਵਿੱਚ ਹਨ ਅਤੇ ਛੇਤੀ ਹੀ ਮੁੱਕ ਜਾਣਗੇ।
- ਸਾਡੀ ਊਰਜਾ ਸੋਮਿਆਂ ਦੀ ਚੋਣ ਊਰਜਾ ਨਿਸ਼ਕਰਸ਼ਨ ਦੀ ਸੁਵਿਧਾ ਅਤੇ ਲਾਗਤ, ਊਰਜਾ ਸੋਮਿਆਂ ਦੇ ਲਈ ਉਪਲੱਬਧ ਤਕਨੀਕ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਅਤੇ ਊਰਜਾ ਸੋਮੇ ਦੇ ਉਪਯੋਗ ਦਾ ਵਾਤਾਵਰਨ ਉੱਤੇ ਪ੍ਰਭਾਵ ਜਿਹੇ ਕਾਰਕਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।
- ਸਾਡੇ ਬਹੁਤੇ ਊਰਜਾ ਸੋਮੇ ਅੰਤ ਵਿੱਚ ਸੂਰਜ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।

ਅਭਿਆਸ

(Q)	ਧੁੱਪ ਵਾਲੇ ਦਿਨ	(%)	ਬੱਦਲਾਂ ਵਾਲੇ ਦਿਨ	
(E)	ਗਰਮ ਦਿਨ	(H)	ਪੈਣ ਵਾਲੇ ਦਿਨ	
2. ਹੇਠ	ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਬਾਇਓ ਪੁੰਜ ਊਰਜਾ ਦਾ ਸਰੋਤ ਨਹੀਂ ਹੈ-			
(Q)	ਲੱਕੜ	(541)	ਗੰਬਰ ਗੈਸ	
(8)	ਨਿਊਕਲੀਅਰ ਉਰਜਾ	(FI)	ਕੋਲਾ	

- (ੳ) ਭੂ-ਤਾਪ ਊਰਜਾ (ਅ) ਪੌਣ ਊਰਜਾ (ੲ) ਨਿਊਕਲੀਅਰ ਉਰਜਾ (ਸ) ਬਾਇਓ ਪੌਜ
- 4. ਊਰਜਾ ਸੋਮੇ ਦੇ ਰੂਪ ਵਿੱਚ ਪਥਰਾਟ ਬਾਲਣ ਅਤੇ ਸੂਰਜ ਦੀ ਤੁਲਨਾ ਕਰੋ ਅਤੇ ਇਹਨਾਂ ਵਿੱਚ ਅੰਤਰ ਲਿਖੋ।
- 5. ਊਰਜਾ ਸਰੋਤਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਜੀਵ ਪੁੰਜ ਅਤੇ ਪਣ ਬਿਜਲੀ ਦੀ ਤੁਲਨਾ ਕਰੋ ਅਤੇ ਇਹਨਾਂ ਵਿੱਚ ਅੰਤਰ ਲਿਖੇ।
- 6. ਨਿਮਨ ਲਿਖਿਤ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀਆਂ ਸੀਮਾਵਾਂ (Limitations) ਲਿਖੋ :
 - (ੳ) ਪੌਣ

- (ਅ) ਤਰੰਗਾਂ
- (ੲ) ਜਵਾਰਭਾਟਾ
- 7. ਉਰਜਾ ਸੋਮਿਆਂ ਦਾ ਵਰਗੀਕਰਨ ਨਿਮਨਲਿਖਤ ਵਰਗਾਂ ਵਿੱਚ ਕਿਸ ਆਧਾਰ ਤੇ ਕਰੋਗੇ : -
 - (ਰੈ) ਨਵਿਆਉਣਯੋਗ ਅਤੇ ਨਾ-ਨਵਿਆਉਣਯੋਗ
 - (ਅ) ਮੁੱਕਣ ਯੋਗ ਅਤੇ ਨਾ ਮੁੱਕਣ ਯੋਗ ਕੀ (ੳ) ਅਤੇ (ਅ) ਵਿੱਚ ਦਿੱਤੇ ਵਿਕਲਪ ਸਮਾਨ ਹਨ?
- 8. ਊਰਜਾ ਦੇ ਆਦਰਸ਼ ਸੋਮੇ ਵਿੱਚ ਕੀ ਗਣ ਹੁੰਦੇ ਹਨ?
- 9. ਸੂਰਜੀ ਕੁੱਕਰ ਦਾ ਉਪਯੋਗ ਕਰਨ ਦੇ ਕੀ ਲਾਭ ਅਤੇ ਹਾਨੀਆਂ ਹਨ? ਕੀ ਅਜਿਹੇ ਵੀ ਖੇਤਰ ਹਨ ਜਿੱਥੇ ਸੂਰਜੀ ਕੁੱਕਰਾਂ ਦੀ ਸੀਮਤ ਉਪਯੋਗਤਾ ਹੈ?
- 10. ਊਰਜਾ ਦੀ ਵਧਦੀ ਮੰਗ ਦੇ ਵਾਤਾਵਰਨੀ ਨਤੀਜੇ ਕੀ ਹਨ? ਊਰਜਾ ਦੀ ਖਪਤ ਨੂੰ ਘੱਟ ਕਰਨ ਦੇ ਉਪਾਅ ਲਿਖੋ?

_{ਅਧਿਆਇ}15 ਸਾਡਾ ਵਾਤਾਵਰਨ

(Our Environment)

ਸੀਂ ਵਾਤਾਵਰਨ ਸ਼ਬਦ ਤੋਂ ਭਲੀ ਪ੍ਕਾਰ ਜਾਣੂ ਹਾਂ। ਇਸ ਸ਼ਬਦ ਦਾ ਪ੍ਯੋਗ ਟੈਲੀਵੀਯਨ, ਸਮਾਚਾਰ ਪੱਤਰਾਂ ਅਤੇ ਸਾਡੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਲੋਕਾਂ ਵੱਲੋਂ ਆਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਾਡੇ ਬਜ਼ੁਰਗ ਸਾਨੂੰ ਕਹਿੰਦੇ ਹਨ ਕਿ ਹੁਣ ਉਹ ਵਾਤਾਵਰਨ ਨਹੀਂ ਰਿਹਾ ਜਿਹਾ ਕਿ ਪਹਿਲਾਂ ਸੀ, ਦੂਜੇ ਕਹਿੰਦੇ ਹਨ ਕਿ ਸਾਨੂੰ ਸਵੱਛ ਵਾਤਾਵਰਨ ਵਿੱਚ ਕੰਮ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਵਾਤਾਵਰਨੀ ਸਮੱਸਿਆਵਾਂ ਉੱਤੇ ਚਰਚਾ ਲਈ ਵਿਕਸਿਤ ਅਤੇ ਵਿਕਾਸਸ਼ੀਲ ਦੇਸ਼ਾਂ ਵੱਲੋਂ ਨਿਯਮਿਤ ਰੂਪ ਵਿੱਚ ਵਿਸ਼ਵ ਸੰਮੇਲਨ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਚਰਚਾ ਕਰਾਂਗੇ ਕਿ ਭਿੰਨ-ਭਿੰਨ ਕਾਰਕ ਵਾਤਾਵਰਨ ਵਿੱਚ ਕਿਸ ਪ੍ਕਾਰ ਆਪਸੀ ਪ੍ਰਤਿਕਿਰਿਆਵਾਂ ਕਰਦੇ ਹਨ ਅਤੇ ਅਸੀਂ ਵਾਤਾਵਰਨ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਾਂ। ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਪੜ੍ਹਿਆ ਸੀ ਕਿ ਭਿੰਨ-ਭਿੰਨ ਪਦਾਰਥਾਂ ਦਾ ਪੁਨਰ ਚੱਕਰ ਵਾਤਾਵਰਨ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਜੈਵ-ਭੂ-ਰਸਾਇਣਿਕ ਚੱਕਰਾਂ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਇਹਨਾਂ ਚੱਕਰਾਂ ਵਿੱਚ ਜ਼ਰੂਰੀ ਪੋਸ਼ਕ ਜਿਵੇਂ ਨਾਈਟਰੋਜਨ, ਕਾਰਬਨ, ਆਕਸੀਜਨ ਅਤੇ ਪਾਣੀ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਬਦਲਦੇ ਹਨ। ਅਸੀਂ ਹੁਣ ਪੜ੍ਹਾਂਗੇ ਕਿ ਮਨੁੱਖ ਦੀਆਂ ਗਤੀਵਿਧੀਆਂ ਇਹਨਾਂ ਚੱਕਰਾਂ ਨੂੰ ਕਿਸ ਪ੍ਕਾਰ ਪਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ।

15.1 ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਅਸੀਂ ਆਪਣੇ ਵਾਧੂ ਪਦਾਰਥ ਵਾਤਾਵਰਨ ਵਿੱਚ ਪਾਉਂਦੇ ਹਾਂ?

> (WHAT HAPPENS WHEN WE ADD OUR WASTE TO THE ENVIRONMENT)

ਆਪਣੀਆਂ ਦੈਨਿਕ ਗਤੀਵਿਧੀਆਂ ਵਿੱਚ ਅਸੀਂ ਬਹੁਤ ਸਾਰੇ ਅਜਿਹੇ ਪਦਾਰਥ ਉਤਪੰਨ ਕਰਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸੁੱਟਣਾ ਪੈਂਦਾ ਹੈ।ਇਹਨਾਂ ਵਿੱਚੋਂ ਵਾਧੂ ਪਦਾਰਥ ਕਿਹੜੇ ਹਨ? ਜਦੋਂ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ ਸੁੱਟ ਦਿੰਦੇ ਹਾਂ ਤਾਂ ਇਹਨਾਂ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ? ਆਓ ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਜਾਨਣ ਲਈ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰਦੇ ਹਾਂ।

ਕਿਰਿਆ 15,1

- ਆਪਣੇ ਘਰ ਤੋਂ ਕੂੜਾ-ਕਰਕਟ ਇਕੱਠਾ ਕਰੋ। ਇਸ ਵਿੱਚ ਪੂਰੇ ਦਿਨ ਵਿੱਚ ਉਤਪੰਨ ਕੂੜਾ-ਕਰਕਟ ਜਿਵੇਂ ਕਿ ਰਸੋਈ ਦਾ ਕੂੜਾ (ਖ਼ਰਾਬ ਹੋਇਆ ਭੋਜਨ, ਸਬਜ਼ੀਆਂ ਦੇ ਛਿਲਕੇ, ਚਾਹ ਦੀਆਂ ਵਰਤੀਆਂ ਹੋਈਆਂ ਪੱਤੀਆਂ, ਦੁੱਧ ਦੀਆਂ ਖਾਲੀ ਬੈਲੀਆਂ ਅਤੇ ਖਾਲੀ ਡੱਬੇ), ਰੱਦੀ ਕਾਗਜ਼, ਦਵਾਈ ਦੀਆਂ ਖਾਲੀ ਸ਼ੀਸ਼ੀਆਂ/ਸਟ੍ਰਿਪ, ਬਬਲ ਪੈਕ, ਪੁਰਾਣੇ ਫਟੇ ਕੱਪੜੇ ਅਤੇ ਟੁੱਟੇ ਹੋਏ ਜੁੱਤੇ ਆਦਿ ਹੋ ਸਕਦੇ ਹਨ।
- ਇਸ ਨੂੰ ਸਕੂਲ ਦੇ ਬਗੀਚੇ ਅੰਦਰ ਇੱਕ ਡੂੰਘੇ ਟੋਏ ਵਿੱਚ ਦੱਬ ਦਿਓ। ਜੇਕਰ ਅਜਿਹਾ ਸਥਾਨ ਉਪਲਬਧ ਨਾ ਹੋਵੇ ਤਾਂ ਇਸ ਕਚਰੇ ਨੂੰ ਕਿਸੇ ਪੁਰਾਣੀ ਬਾਲਟੀ ਜਾਂ ਗਮਲੇ ਵਿੱਚ ਇਕੱਤਰ ਕਰਕੇ ਉਸ ਨੂੰ 15 ਸੈ: ਮੀ: ਮੋਟੀ ਮਿੱਟੀ ਦੀ ਪਰਤ ਨਾਲ ਢਕ ਦਿਓ।
- 🌞 ਇਸ ਨੂੰ ਗਿੱਲਾ ਰੱਖੋ ਅਤੇ 15 ਦਿਨਾਂ ਦੇ ਅੰਤਰ ਪਿੱਛੋਂ ਇਸ ਦਾ ਪ੍ਰੇਖਣ ਕਰਦੇ ਰਹੋ।
- 🎍 ਉਹ ਕਿਹੜੇ ਪਦਾਰਥ ਹਨ ਜੋ ਲੈਬੇ ਸਮੇਂ ਪਿੱਛੋਂ ਵੀ ਨਹੀਂ ਬਦਲੇ।

- ਉਹ ਕਿਹੜੇ ਪਦਾਰਥ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਸਰੂਪ ਅਤੇ ਰਚਨਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਆਇਆ ਹੈ?
- ਜਿਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਆਇਆ ਹੈ ਉਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਪਦਾਰਥ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਤੇਜ਼ੀ ਨਾਲ ਪਰਿਵਰਤਨ ਆਇਆ ਹੈ?

ਅਸੀਂ ਜੀਵ ਪ੍ਕਿਰਿਆ ਵਾਲੇ ਅਧਿਆਇ ਵਿੱਚ ਪੜ੍ਹਿਆ ਹੈ ਕਿ ਸਾਡੇ ਦੁਆਰਾ ਖਾਧੇ ਗਏ ਭੋਜਨ ਦਾ ਪਾਚਨ ਭਿੰਨ ਐਨਜ਼ਾਈਮਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਕਦੇ ਸੋਚਿਆ ਹੈ ਕਿ ਇੱਕ ਹੀ ਐਨਜ਼ਾਈਮ ਭੋਜਨ ਦੇ ਸਾਰੇ ਪਦਾਰਥਾਂ ਦਾ ਪਾਚਨ ਕਿਵੇਂ ਕਰ ਸਕਦਾ ਹੈ? ਹਰ ਐਨਜ਼ਾਈਮ ਦੀ ਆਪਣੀ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪ੍ਕਾਰ ਦੇ ਪਦਾਰਥ ਦੇ ਪਾਚਣ ਲਈ ਵਿਸ਼ੇਸ਼ ਐਨਜ਼ਾਈਮ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਕੋਲਾ ਖਾਣ ਨਾਲ ਸਾਨੂੰ ਊਰਜਾ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੋ ਸਕਦੀ। ਇਸੇ ਪ੍ਕਾਰ ਬਹੁਤ ਸਾਰੇ ਮਨੁੱਖ ਨਿਰਮਿਤ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਪਲਾਸਟਿਕ ਦਾ ਅਪਘਟਨ ਜੀਵਾਣੂ ਜਾਂ ਦੂਜੇ ਮ੍ਰਿਤਜੀਵੀਆਂ ਦੁਆਰਾ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਉੱਤੇ ਭੌਤਿਕ ਪ੍ਰਕਿਰਿਆ ਜਿਵੇਂ ਕਿ ਤਾਪ ਅਤੇ ਦਬਾਉ ਦਾ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ਪ੍ਰੰਤੂ ਆਮ ਹਾਲਾਤਾਂ ਵਿੱਚ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਵਾਤਾਵਰਨ ਵਿੱਚ ਇਹ ਆਪਣੇ ਹੀ ਰੂਪ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ।

ਉਹ ਪਦਾਰਥ ਜੋ ਜੈਵ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਉਹਨਾਂ ਨੂੰ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਕਹਿੰਦੇ ਹਨ। ਤੁਹਾਡੇ ਦੁਆਰਾ ਦਬਾਏ ਗਏ ਪਦਾਰਥਾਂ ਵਿੱਚੋਂ ਕਿੰਨੇ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਸੀ? ਉਹ ਪਦਾਰਥ ਜੋ ਇਸ ਪ੍ਕਾਰ ਅਪਘਟਿਤ ਨਹੀਂ ਹੁੰਦੇ ਉਹ ਜੈਵ ਅਵਿਘਟਨਸ਼ੀਲ ਕਹਾਉਂਦੇ ਹਨ। ਇਹ ਪਦਾਰਥ ਆਮ ਕਰਕੇ ਅਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਵਾਤਾਵਰਨ ਵਿੱਚ ਉਸੇ ਤਰ੍ਹਾਂ ਬਣੇ ਰਹਿੰਦੇ ਹਨ ਜਾਂ ਵਾਤਾਵਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਅੰਗਾਂ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾਉਂਦੇ ਹਨ।

ਕਿਰਿਆ 15.2

- ਲਾਇਬਰੇਰੀ ਜਾਂ ਇੰਟਰਨੈੱਟ ਦੁਆਰਾ ਜੈਵਿਕ−ਵਿਘਟਨ ਅਤੇ ਅਜੈਵਿਕ−ਵਿਘਟਨ ਵਾਲੇ ਪਦਾਰਥਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ।
- ਅਜੈਵਿਕ ਵਿਘਟਨ ਪਦਾਰਥ ਕਿੰਨੇ ਸਮੇਂ ਤੀਕ ਵਾਤਾਵਰਨ ਵਿੱਚ ਉਸੇ ਰੂਪ ਵਿੱਚ ਬਣੇ ਰਹਿ ਸਕਦੇ ਹਨ?
- ਅੱਜ ਕੱਲ੍ਹ ਜੈਵ-ਵਿਘਟਨਸ਼ੀਲ ਪਲਾਸਟਿਕ ਉਪਲਬਧ ਹੈ। ਇਸ ਪਦਾਰਥ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਹੋਰ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ ਅਤੇ ਪਤਾ ਕਰੋ ਕਿ ਕੀ ਉਸ ਨਾਲ ਵਾਤਾਵਰਨ ਦੀ ਹਾਨੀ ਹੁੰਦੀ ਹੈ ਜਾਂ ਨਹੀਂ।

ਪ੍ਰਸ਼ਨ

- ਕੀ ਕਾਰਨ ਹੈ ਕਿ ਕੁੱਝ ਪਦਾਰਥ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਕੁੱਝ ਜੈਵ ਅਵਿਘਟਨਸ਼ੀਲ?
- 2 ਅਜਿਹੇ ਦੇ ਢੰਗ ਦੱਸੇ ਜਿਨ੍ਹਾਂ ਨਾਲ ਜੈਵ ਅਵਿਘਟਨਸ਼ੀਲ ਪਦਾਰਥ ਵਾਤਾਵਰਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।
- ਅਜਿਹੇ ਦੇ ਢੰਗ ਦੱਸੇ ਜਿਨ੍ਹਾਂ ਦੁਆਰਾ ਜੈਵ-ਅਵਿਘਟਨਸ਼ੀਲ ਪਦਾਰਬ ਵਾਤਾਵਰਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।

15.2 ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ—ਇਸ ਦੇ ਘਟਕ ਕੀ ਹਨ?

(ECO-SYSTEM WHAT ARE ITS COMPONENTS?)

ਸਾਰੇ ਜੀਵ ਜਿਵੇਂ ਕਿ ਪੌਦੇ, ਜੰਤੂ, ਸੂਖ਼ਮਜੀਵ, ਮਨੁੱਖ ਅਤੇ ਭੌਤਿਕ ਕਾਰਕਾਂ ਵਿੱਚ ਪਰਸਪਰ ਅੰਤਰ ਕਿਰਿਆ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ ਅਤੇ ਇਹ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਸੰਤੁਲਨ ਬਣਾਈ ਰੱਖਦੇ ਹਨ। ਕਿਸੇ ਖੇਤਰ ਦੇ ਸਾਰੇ ਜੀਵ ਅਤੇ ਵਾਤਾਵਰਨ ਦੇ ਨਿਰਜੀਵ ਕਾਰਕ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ (ਈਕੋ ਸਿਸਟਮ) ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਲਈ ਇੱਕ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਵਿੱਚ ਸਾਰੇ ਜੀਵਾਂ ਦੇ ਜੀਵ ਘਟਕ ਅਤੇ ਨਿਰਜੀਵ ਘਟਕ ਹੁੰਦੇ ਹਨ। ਭੌਤਿਕ ਕਾਰਕ ਜਿਵੇਂ ਤਾਪ, ਵਰਖਾ, ਧੁੱਪ, ਮਿੱਟੀ ਅਤੇ ਖਣਿਜ ਆਦਿ ਨਿਰਜੀਵ ਘਟਕ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇਕਰ ਤੁਸੀਂ ਬਗ਼ੀਚੀ ਵਿੱਚ ਜਾਓ ਤਾਂ ਤੁਹਾਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਪੌਦੇ ਜਿਵੇਂ ਕਿ ਘਾਹ, ਰੁੱਖ, ਫੁੱਲਾਂ ਵਾਲੇ ਸਜਾਵਟੀ ਪੌਦੇ ਜਿਵੇਂ ਕਿ ਗੁਲਾਬ, ਚਮੇਲੀ, ਸੂਰਜਮੁਖੀ ਅਤੇ ਡੱਡੂ, ਕੀਟ ਅਤੇ ਪੰਛੀ ਜਿਹੇ ਜੇਤੂ ਵਿਖਾਈ ਦੇਣਗੇ। ਇਹ ਸਾਰੇ ਸਜੀਵ ਪਰਸਪਰ ਅੰਤਰ ਕਿਰਿਆ ਕਰਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਦਾ ਵਾਧਾ ਜਣਨ ਅਤੇ ਹੋਰ ਕਿਰਿਆਵਾਂ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਦੇ ਨਿਰਜੀਵ ਘਟਕਾਂ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇੱਕ ਬਗੀਚਾ ਇੱਕ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਹੈ। ਜੰਗਲ, ਛੱਪੜ ਅਤੇ ਝੀਲ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਦੇ ਹੋਰ ਪ੍ਰਕਾਰ ਹਨ। ਇਹ ਕੁਦਰਤੀ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਹਨ ਜਦੋਂ ਕਿ ਬਗੀਚਾ ਅਤੇ ਖੇਤ ਮਾਨਵ ਨਿਰਮਤ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਹੈ।

ਕਿਰਿਆ 15,3

- ਸੰਭਵ ਹੈ ਕਿ ਤੁਸੀਂ ਜਲ ਜੀਵਸ਼ਾਲਾ (aquarium) ਵੇਖੀ ਹੋਵੇਗੀ। ਆਓ, ਇਸ ਨੂੰ ਬਣਾਉਣ ਦਾ ਯਤਨ ਕਰੀਏ।
- ਜਲ ਜੀਵਸ਼ਾਲਾ ਬਣਾਉਂਦੇ ਸਮੇਂ ਸਾਨੂੰ ਕਿਹੜੀਆਂ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ? ਮੱਛੀਆਂ ਨੂੰ ਤੈਰਨ ਲਈ ਲੋੜੀਂਦਾ ਸਥਾਨ (ਇੱਕ ਵੱਡਾ ਜਾਰ ਵੀ ਲੈ ਸਕਦੇ ਹੋ)
 ਪਾਣੀ, ਆਕਸੀਜਨ ਯੁਕਤ ਹਵਾ ਅਤੇ ਭੋਜਨ।
- ਅਸੀਂ ਇੱਕ ਹਵਾ ਪੰਪ ਦੁਆਰਾ ਆਕਸੀਜਨ (ਹਵਾ) ਪੰਪ ਕਰ ਸਕਦੇ ਹਾਂ ਅਤੇ ਮੱਛੀ ਦਾ ਭੋਜਨ ਬਾਜ਼ਾਰ ਵਿੱਚ ਉਪਲਬਧ ਹੈ।
- ਜੇਕਰ ਇਸ ਵਿੱਚ ਅਸੀਂ ਕੁੱਝ ਪੌਦੇ ਲਗਾ ਦੇਈਏ ਤਾਂ ਇਹ ਇੱਕ ਸਵੈ ਨਿਰਵਾਰ ਸਿਸਟਮ ਬਣ ਜਾਵੇਗਾ।ਕੀ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ? ਇਹ ਜਲ− ਜੀਵਸ਼ਾਲਾ ਮਾਨਵ−ਨਿਰਮਤ ਈਕੋ ਸਿਸਟਮ ਦਾ ਉਦਾਹਰਨ ਹੈ।
- ਕੀ ਅਸੀਂ ਜਲ-ਜੀਵਸ਼ਾਲਾ ਬਣਾਉਣ ਉਪਰੰਤ ਇਸ ਨੂੰ ਇਸੇ ਤਰ੍ਹਾਂ ਹੀ ਛੱਡ ਸਕਦੇ ਹਾਂ?
 ਕੀ ਕਦੇ-ਕਦੇ ਇਸ ਦੀ ਸਫਾਈ ਦੀ ਲੋੜ ਹੈ? ਕੀ ਸਾਨੂੰ ਇਸੇ ਪ੍ਰਕਾਰ ਤਲਾਬਾਂ ਅਤੇ ਝੀਲਾਂ ਦੀ ਸਫ਼ਾਈ ਵੀ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ। ਕਿਉਂ ਅਤੇ ਕਿਉਂ ਨਹੀਂ?

ਅਸੀਂ ਪਿਛਲੀ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਜੀਵਨ ਨਿਰਵਾਹ ਦੇ ਆਧਾਰ ਤੇ ਜੀਵਾਂ ਨੂੰ ਉਤਪਾਦਕ, ਖਪਤਕਾਰ ਅਤੇ ਅਪਘਟਕ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਜੋ ਸਵੈਨਿਰਵਾਹ ਈਕੋ ਸਿਸਟਮ ਆਪ ਬਣਾਇਆ ਸੀ ਆਓ ਉਸ ਨੂੰ ਯਾਦ ਕਰਨ ਦਾ ਯਤਨ ਕਰੀਏ। ਕਿਹੜੇ ਜੀਵ ਸੂਰਜ ਦੇ ਪ੍ਕਾਸ਼ ਅਤੇ ਕਲੌਰੋਫ਼ਿਲ ਦੀ ਹੋਂਦ ਵਿੱਚ ਅਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਤੋਂ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਸ਼ੂਗਰ (ਸ਼ੱਕਰ) ਅਤੇ ਸਟਾਰਚ ਦਾ ਨਿਰਮਾਣ ਕਰ ਸਕਦੇ ਹਨ? ਸਾਰੇ ਹਰੇ ਪੌਦੇ ਅਤੇ ਵਿਸ਼ੇਸ਼ ਨੀਲੀ – ਹਰੀ ਕਾਈ (Blue green algae) ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਸੰਸਲੇਸ਼ਨ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ ਇਸੇ ਵਰਗ ਵਿੱਚ ਆਉਂਦੇ ਹਨ ਅਤੇ ਉਤਪਾਦਕ ਕਹਾਉਂਦੇ ਹਨ।

ਸਾਰੇ ਜੀਵ ਸਿੱਧੇ ਜਾਂ ਅਸਿੱਧੇ ਤੌਰ ਤੇ ਆਪਣੇ ਭੋਜਨ ਲਈ ਉਤਪਾਦਕਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ।ਉਹ ਜੀਵ ਜੋ ਉਤਪਾਦਕ ਦੁਆਰਾ ਉਤਪਾਦਿਤ ਭੋਜਨ ਉੱਤੇ ਸਿੱਧੇ ਜਾਂ ਅਸਿੱਧੇ ਤੌਰ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਖਪਤਕਾਰ ਕਹਿੰਦੇ ਹਨ।ਖਪਤਕਾਰਾਂ ਨੂੰ ਮੁੱਖ ਤੌਰ ਤੇ ਸ਼ਾਕਾਹਾਰੀ, ਮਾਸਾਹਾਰੀ, ਸਰਬਆਹਾਰੀ ਅਤੇ ਪਰਜੀਵੀ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ।ਕੀ ਤੁਸੀਂ ਇਹਨਾਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਵਰਗ ਦੀ ਉਦਾਹਰਣ ਦੱਸ ਸਕਦੇ ਹੋ?

■ ਅਜਿਹੀ ਸਥਿਤੀ ਦੀ ਕਲਪਨਾ ਕਰੋ ਜਦੋਂ ਤੁਸੀਂ ਜਲ ਜੀਵਸ਼ਾਲਾ ਨੂੰ ਸਾਫ਼ ਕਰਨਾ ਛੱਡ ਦਿੰਦੇ ਹੋ ਅਤੇ ਕੁੱਝ ਮੱਛੀਆਂ ਅਤੇ ਪੌਦੇ ਇਸ ਵਿੱਚ ਮਰ ਵੀ ਗਏ ਹੋਣ।ਕੀ ਤੁਸੀਂ ਕਦੇ ਸੋਚਿਆ ਹੈ ਕਿ ਕੀ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਇੱਕ ਜੀਵ ਮਰ ਜਾਂਦਾ ਹੈ? ਜੀਵਾਣੂ ਅਤੇ ਉੱਲੀ ਜਿਹੇ ਸੂਖ਼ਮਜੀਵ ਮਰੇ ਜੀਵ ਦੇ ਅਵਸ਼ੇਸ਼ਾਂ ਦਾ ਵਿਘਟਨ ਕਰਦੇ ਹਨ। ਇਹ ਸੂਖ਼ਮ ਜੀਵ ਨਿਖੇੜਕ (Decomposer) ਹਨ ਕਿਉਂਕਿ ਇਹ ਜਟਿਲ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਨੂੰ ਸਰਲ ਅਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ ਜੋ ਮਿੱਟੀ ਵਿੱਚ ਰਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਪੌਦਿਆਂ ਦੁਆਰਾ ਮੁੜ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆਂਦੇ ਜਾਂਦੇ ਹਨ। ਇਹਨਾਂ ਦੀ ਅਣਹੋਂਦ ਦਾ ਮਰੇ ਜੰਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪਵੇਗਾ? ਕੀ ਨਿਖੇੜਕ ਦੇ ਨਾ ਹੋਣ ਤੇ ਮਿੱਟੀ ਦੀ ਕੁਦਰਤੀ ਰੂਪ ਵਿੱਚ ਪ੍ਰਤੀ ਪੂਰਤੀ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ।

ਕਿਰਿਆ 15.4

 \rightarrow

- ਜਲ ਜੀਵਸ਼ਾਲਾ ਬਣਾਉਂਦੇ ਸਮੇਂ ਕੀ ਤੁਸੀਂ ਇਸ ਗੱਲ ਦਾ ਧਿਆਨ ਰੱਖਿਆ ਸੀ ਕਿ ਅਜਿਹੇ ਜਲੀ ਜੀਵ ਇਕੱਠੇ ਨਾ ਰੱਖੇ ਜਾਣ ਜੋ ਦੂਜਿਆਂ ਨੂੰ ਖਾ ਜਾਣ? ਜੇਕਰ ਇਹ ਧਿਆਨ ਨਾ ਰੱਖਿਆ ਹੁੰਦਾ ਤਾਂ ਕੀ ਹੋਣਾ ਸੀ?
- ਫੋਲੀਆਂ ਬਣਾਓ ਅਤੇ ਚਰਚਾ ਕਰੋ ਕਿ ਉੱਪਰ ਦੱਸੇ ਗਰੁੱਪਾਂ ਵਿੱਚ ਜੀਵ ਇੱਕ ਦੂਜੇ ਉੱਤੇ ਕਿਵੇਂ ਨਿਰਕਰ ਕਰਦੇ ਹਨ?
- ਜੀਵਾਂ ਦੇ ਨਾਂ ਉਸੇ ਕ੍ਮ ਵਿੱਚ ਲਿਖੋ ਜਿਸ ਵਿੱਚ ਇੱਕ ਜੀਵ ਦੂਜੇ ਨੂੰ ਖਾਂਦਾ ਹੈ ਅਤੇ ਇੱਕ ਲੜੀ ਬਣਾਓ ਜਿਸ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਤਿੰਨ ਪੜਾਅ ਹੋਣ।
- ਕੀ ਤੁਸੀਂ ਕਿਸੇ ਇੱਕ ਪੜਾਅ ਨੂੰ ਸਭ ਤੋਂ ਵੱਧ ਮਹੱਤਵਪੂਰਨ ਮੰਨਦੇ ਹੋ? ਕਿਉਂ ਅਤੇ ਕਿਉਂ ਨਹੀਂ?

15.2.1 ਭੋਜਨ ਲੜੀ ਅਤੇ ਭੋਜਨ ਜਾਲ (Food Chain and Food Web)

ਕਿਰਿਆ 15.4 ਵਿੱਚ ਅਸੀਂ ਜੀਵਾਂ ਦੀ ਇੱਕ ਲੜੀ ਬਣਾਈ ਸੀ ਜੋ ਇੱਕ ਦੂਜੇ ਨੂੰ ਖਾਂਦੇ ਹਨ। ਭਿੰਨ ਜੈਵਿਕ-ਪੱਧਰਾਂ ਉੱਤੇ ਭਾਗ ਲੈਣ ਵਾਲੇ ਜੀਵਾਂ ਦੀ ਇਹ ਲੜੀ ਭੋਜਨ ਲੜੀ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀ ਹੈ (ਚਿੱਤਰ 15.1)।

ਭੋਜਨ ਲੜੀ ਦਾ ਹਰ ਪੜਾਅ ਜਾਂ ਕੜੀ ਇੱਕ ਆਹਾਰੀ ਪੱਧਰ ਬਣਾਉਂਦੀ ਹੈ। ਸਵੈਪੇਸ਼ੀ ਜਾਂ ਉਤਪਾਦਕ ਪਹਿਲਾ ਅਹਾਰੀ ਪੱਧਰ ਹੈ ਅਤੇ ਸੂਰਜੀ ਊਰਜਾ ਦਾ ਸਥਿਰੀਕਰਨ ਕਰਕੇ ਉਸ ਨੂੰ ਪਰਪੋਸ਼ੀਆਂ ਜਾਂ ਖਪਤਕਾਰਾਂ ਲਈ ਉਪਲਬੱਧ ਕਰਾਉਂਦੇ ਹਨ।ਸ਼ਾਕਾਹਾਰੀ ਅਤੇ ਪਹਿਲੇ ਖਪਤਕਾਰ ਦੂਜੇ ਆਹਾਰੀ ਪੱਧਰ, ਛੋਟੇ ਮਾਸਾਹਾਰੀ ਜਾਂ ਦੂਜੇ ਖਪਤਕਾਰ ਤੀਜੇ ਆਹਾਰੀ ਪੱਧਰ ਅਤੇ ਵੱਡੇ ਮਾਸਾਹਾਰੀ ਜਾਂ ਤੀਜੇ ਖਪਤਕਾਰ ਚੌਥੇ ਆਹਾਰੀ ਪੱਧਰ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। (ਚਿੱਤਰ 15.2)।

ਊਰਜਾ ਦਾ ਪ੍ਵਾਹ (Flow of Energy)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜੋ ਭੋਜਨ ਅਸੀਂ ਖਾਂਦੇ ਹਾਂ ਉਹ ਸਾਡੇ ਲਈ ਊਰਜਾ ਦੇ ਸਰੋਤ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ ਭਿੰਨ-ਭਿੰਨ ਕਾਰਜਾਂ ਲਈ ਊਰਜਾ ਪ੍ਦਾਨ ਕਰਦਾ ਹੈ। ਇਸ ਲਈ ਵਾਤਾਵਰਨ ਦੇ ਭਿੰਨ ਘਟਕਾਂ ਦੀ ਅੰਤਰ ਕਿਰਿਆ ਵਿੱਚ ਇੱਕ ਘਟਕ ਤੋਂ ਦੂਜੇ ਵਿੱਚ ਊਰਜਾ ਦਾ ਪ੍ਵਾਹ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਸਵੈਪੋਸ਼ੀ ਸੂਰਜੀ ਪ੍ਕਾਸ਼ ਦੀ ਊਰਜਾ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਕੇ ਰਸਾਇਣਿਕ ਊਰਜਾ ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ। ਇਹ ਊਰਜਾ ਸੰਸਾਰ ਦੇ ਸਾਰੇ ਜੀਵਾਂ ਦੀਆਂ ਜੈਵ ਕਿਰਿਆਵਾਂ ਲਈ ਸਹਾਇਕ ਹੁੰਦੀ ਹੈ। ਸਵੈਪੋਸ਼ੀ ਤੋਂ ਊਰਜਾ ਪਰਪੋਸ਼ੀ ਅਤੇ ਨਿਖੇੜਕਾਂ ਤੱਕ ਜਾਂਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਊਰਜਾ ਦੇ ਸਰੋਤ ਨਾਂ ਦੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਜਾਣਿਆ ਸੀ ਕਿ ਜਦੋਂ ਊਰਜਾ ਦਾ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਊਰਜਾ ਦੀ ਕੁੱਝ ਮਾਤਰਾ ਵਾਤਾਵਰਨ ਵਿੱਚ ਚਲੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਦੀ ਵਰਤੋਂ ਮੁੜ ਨਹੀਂ ਹੋ ਸਕਦੀ। ਵਾਤਾਵਰਨ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਘਟਕਾਂ ਵਿੱਚ ਊਰਜਾ ਦੇ ਪ੍ਵਾਹ ਦਾ ਵਿਸਥਾਰ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਗਿਆ ਅਤੇ ਇਹ ਪਤਾ ਲੱਗਿਆ ਕਿ :

ਕੁਦਰਤ ਵਿੱਚ ਭੋਜਨ ਲੜੀਆਂ (ੳ) ਜੰਗਲ ਵਿੱਚ (ਅ) ਘਾਹ ਦੇ ਮੈਦਾਨ ਵਿੱਚ (ੲ) ਤਲਾਬ ਵਿੱਚ

ਚਿੱਤਰ 15.2 ਆਹਾਰੀ ਪੱਧਰ

ਚਿੱਤਰ 15,3 ਅਨੇਕ ਭੋਜਨ ਲੜੀਆਂ ਤੋਂ ਬਣਿਆ ਭੋਜਨ ਜਾਲ

- ਇੱਕ ਸਥਲੀ ਪਰਿਸਥਿਤਿਕ ਪ੍ਬੰਧ ਵਿਚਲੇ ਪੌਦਿਆਂ ਦੀਆਂ ਪੱਤੀਆਂ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਸੂਰਜੀ ਊਰਜਾ ਦਾ ਲੱਗਪਗ 1% ਭਾਗ ਭੋਜਨ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ।
- ਜਦੋਂ ਹਰੇ ਪੌਦੇ ਪਹਿਲੇ ਖਪਤਕਾਰ ਦੁਆਰਾ ਖਾਧੇ ਜਾਂਦੇ ਹਨ ਤਾਂ ਊਰਜਾ ਦੀ ਵੱਡੀ ਮਾਤਰਾ ਤਾਪ ਦੇ ਰੂਪ ਵਿੱਚ ਵਾਤਾਵਰਨ ਵਿੱਚ ਚਲੀ ਜਾਂਦੀ ਹੈ, ਕੁੱਝ ਮਾਤਰਾ ਦਾ ਉਪਯੋਗ ਪਾਚਨ, ਵਿਭਿੰਨ ਜੀਵ ਕਿਰਿਆਵਾਂ ਵਿੱਚ, ਵਾਧੇ ਅਤੇ ਜਣਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਖਾਧੇ ਗਏ ਭੋਜਨ ਦੀ ਮਾਤਰਾ ਦਾ ਲੱਗਪਗ 10% ਹੀ ਜੀਵ ਪੁੰਜ ਵਿੱਚ ਬਦਲਦਾ ਹੈ ਅਤੇ ਅਗਲੇ ਪੱਧਰ ਦੇ ਖਪਤਕਾਰ ਨੂੰ ਉਪਲਬੱਧ ਹੁੰਦਾ ਹੈ।
- ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਹਰ ਇੱਕ ਪੱਧਰ ਉੱਤੇ ਉਪਲਬੱਧ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੀ ਮਾਤਰਾ ਦਾ ਔਸਤਨ 10% ਹੀ ਅਗਲੇ ਪੱਧਰ ਖਪਤਕਾਰਾਂ ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ।
- ਕਿਉਂਕਿ ਖਪਤਕਾਰਾਂ ਦੇ ਅਗਲੇ ਪੱਧਰ ਦੇ ਲਈ ਊਰਜਾ ਦੀ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਉਪਲਬੱਧ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ ਭੋਜਨ ਲੜੀ ਆਮ ਕਰਕੇ ਤਿੰਨ ਜਾਂ ਚਾਰ ਪੜਾਵਾਂ ਦੀ ਹੁੰਦੀ ਹੈ। ਹਰ ਇੱਕ ਪੜਾਅ ਉੱਤੇ ਊਰਜਾ ਦੀ ਹਾਨੀ ਇੰਨੀ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ ਕਿ ਚੌਥੇ ਆਹਾਰੀ ਪੱਧਰ ਦੇ ਮਗਰੋਂ ਉਪਯੋਗੀ ਊਰਜਾ ਦੀ ਮਾਤਰਾ ਬਹੁਤ ਘੱਟ ਹੋ

ਜਾਂਦੀ ਹੈ।

- ਆਮ ਤੌਰ ਤੇ ਹੇਠਲੇ ਆਹਾਰੀ ਪੱਧਰ ਉੱਤੇ ਜੀਵਾਂ ਦੀ ਸੰਖਿਆ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਉਤਪਾਦਾਂ ਦੀ ਸੰਖਿਆ ਸਭ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ।
- ਭਿੰਨ ਭੋਜਨ ਲੜੀਆਂ ਦੀ ਲੰਬਾਈ ਅਤੇ ਜਟਿਲਤਾ ਵਿੱਚ ਕਾਫੀ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਹਰ ਇੱਕ ਜੀਵ ਨੂੰ ਦੋ ਜਾਂ ਵੱਧ ਪ੍ਰਕਾਰ ਦੇ ਜੀਵਾਂ ਵਲੋਂ ਖਾਧਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਆਪ ਅਨੇਕ ਪ੍ਰਕਾਰ ਦੇ ਜੀਵਾਂ ਦਾ ਭੋਜਨ ਬਣਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਸਰਲਰੇਖੀ ਲੜੀ ਦੀ ਥਾਂ ਕਈ ਸ਼ਾਖਾਦਾਰ ਲੜੀਆਂ ਦਾ ਇੱਕ ਜਾਲ ਬਣਦਾ ਹੈ ਜਿਸਨੂੰ ਭੋਜਨ ਜਾਲ (Food web) ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 15.3)।

ਊਰਜਾ ਪ੍ਵਾਹ ਦੇ ਚਿੱਤਰ (15.4) ਤੋਂ ਦੋ ਗੱਲਾਂ ਸਪੱਸ਼ਟ ਹੁੰਦੀਆਂ ਹਨ। ਪਹਿਲਾ, ਊਰਜਾ ਦਾ ਪ੍ਵਾਹ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਸਵੈਪੋਸ਼ੀ ਜੀਵਾਂ ਦੁਆਰਾ ਗ੍ਰਹਿਣ ਕੀਤੀ ਗਈ ਊਰਜਾ ਮੁੜ ਸੂਰਜੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਸ਼ਾਕਾਹਾਰੀਆਂ ਦੇ ਹਵਾਲੇ ਕੀਤੀ ਗਈ ਊਰਜਾ ਮੁੜ ਸਵੈਪੋਸ਼ੀ ਜੀਵਾਂ ਨੂੰ ਉਪਲਬੱਧ ਨਹੀਂ ਹੁੰਦੀ ਹੈ। ਕਿਉਂਕਿਂ ਇਹ ਭਿੰਨ ਆਹਾਰੀ ਪੱਧਰਾਂ ਉੱਤੇ ਕ੍ਰਮਵਾਰ ਸਥਾਨਾਂਤਰਿਤ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਆਪਣੇ ਤੋਂ ਪਿਛਲੇ ਪੱਧਰ ਲਈ ਉਪਲਬੱਧ ਨਹੀਂ ਹੁੰਦੀ।

ਭੋਜਨ ਲੜੀਆਂ ਦਾ ਇੱਕ ਦੂਜਾ ਦਿਲਚਸਪ ਪੱਖ ਇਹ ਵੀ ਹੈ ਕਿ ਸਾਡੀ ਜਾਣਕਾਰੀ ਤੋਂ ਬਿਨਾਂ ਹੀ ਕੁੱਝ ਹਾਨੀਕਾਰਕ ਰਸਾਇਣਿਕ ਪਦਾਰਥ ਭੋਜਨ ਲੜੀ ਰਾਹੀਂ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਂਦੇ ਹਨ। ਤੁਸੀਂ ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ ਕਿ ਜਲ ਪ੍ਰਦੂਸ਼ਣ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਇੱਕ ਕਾਰਨ ਇਹ ਵੀ ਹੈ ਕਿ ਭਿੰਨ ਫਸਲਾਂ ਨੂੰ ਰੋਗਾਂ ਅਤੇ ਕੀਟਾਂ ਤੋਂ ਬਚਾਉਣ ਲਈ ਕੀਟਨਾਸ਼ਕ ਅਤੇ ਰਸਾਇਣਾਂ ਦਾ

ਚਿੱਤਰ 15.4 ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਵਿੱਚ ਊਰਜਾ ਦੇ ਪ੍ਰਵਾਹ ਨੂੰ ਦਰਸਾਉਂਦਾ ਚਿੱਤਰ

ਲੋੜ ਨਾਲੋਂ ਵੱਧ ਪ੍ਯੋਗ ਕਰਨਾ ਹੈ। ਇਹ ਰਸਾਇਣ ਵਹਿ ਕੇ ਮਿੱਟੀ ਵਿੱਚ ਅਤੇ ਜਲ ਸਰੋਤਾਂ ਵਿੱਚ ਚਲੇ ਜਾਂਦੇ ਹਨ। ਮਿੱਟੀ ਤੋਂ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਦਾ ਸੋਖਣ ਪੌਦਿਆਂ ਦੁਆਰਾ ਪਾਣੀ ਅਤੇ ਖਣਿਜਾਂ ਦੇ ਨਾਲ ਨਾਲ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪਾਣੀ ਦੇ ਭੰਡਾਰਾਂ ਤੋਂ ਇਹ ਜਲੀ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰ ਜਾਂਦੇ ਹਨ। ਇਹ ਕੇਵਲ ਇੱਕ ਤਰੀਕਾ ਹੈ ਜਿਸ ਨਾਲ ਉਹ ਭੋਜਨ ਲੜੀ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਹ ਪਦਾਰਥ ਜੈਵ ਅਵਿਘਟਨਸ਼ੀਲ ਹਨ ਇਸ ਲਈ ਇਹ ਹਰ ਇੱਕ ਆਹਾਰੀ ਪੱਧਰ ਉੱਤੇ ਲਗਾਤਾਰ ਸੰਗ੍ਰਹਿਤ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। ਕਿਉਂਕਿ ਕਿਸੇ ਵੀ ਭੋਜਨ ਲੜੀ ਵਿੱਚ ਮਨੁੱਖ ਸਿਖਰ ਸਥਾਨ ਉੱਤੇ ਹੈ ਇਸ ਲਈ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਇਹ ਰਸਾਇਣ ਸਭ ਤੋਂ ਵੱਧ ਮਾਤਰਾ ਵਿੱਚ ਜਮ੍ਹਾਂ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਨੂੰ ਜੈਵਿਕ ਵਧਾਓ (Biological Magnification) ਕਹਿੰਦੇ ਹਨ। ਇਹੋ ਹੀ ਕਾਰਨ ਹੈ ਕਿ ਸਾਡੇ ਭੋਜਨ ਪਦਾਰਥ ਜਿਵੇਂ ਕਿ ਕਣਕ, ਚਾਵਲ, ਸਬਜ਼ੀਆਂ, ਫ਼ਲ ਅਤੇ ਮਾਸ ਵਿੱਚ ਕੀਟਨਾਸ਼ਕ ਰਸਾਇਣਾਂ ਦੀ ਰਹਿੰਦ ਖੂੰਹਦ ਭਿੰਨ ਮਾਤਰਾ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ। ਉਹਨਾਂ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਧੋ ਕੇ ਜਾਂ ਦੂਜੇ ਤਰੀਕਿਆਂ ਨਾਲ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।

ਕਿਰਿਆ 15.5

- ਤਿਆਰ ਭੋਜਨ ਸਮੱਗਰੀ ਅਤੇ ਭੋਜਨ ਪਦਾਰਥਾਂ ਵਿੱਚ ਕੀਟਨਾਸ਼ਕ ਅਤੇ ਰਸਾਇਣਾਂ ਦੀ ਮਾਤਰਾ ਦੀ ਹੋਂਦ ਬਾਰੇ ਸਮਾਚਾਰ ਪੱਤਰ ਆਮ ਕਰਕੇ ਸਮਾਚਾਰ ਛਾਪਦੇ ਰਹਿੰਦੇ ਹਨ।ਕੁੱਝ ਰਾਜਾਂ ਨੇ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਉੱਤੇ ਰੋਕ ਵੀ ਲਾ ਦਿੱਤੀ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਦੀ ਰੋਕ ਦੇ ਉੱਚਿਤ ਹੋਣ ਬਾਰੇ ਚਰਚਾ ਕਰੋ।
- ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਇਨ੍ਹਾਂ ਭੋਜਨ ਪਦਾਰਥਾਂ ਵਿੱਚ ਕੀਟਨਾਸ਼ਕਾਂ ਦਾ ਸਰੋਤ ਕੀ ਹੈ? ਕੀ ਇਹ ਕੀਟਨਾਸ਼ਕ ਹੋਰ ਭੋਜਨ ਸਰੋਤਾਂ ਦੇ ਮਾਧਿਅਮ ਤੋਂ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਪਹੁੰਚ ਸਕਦੇ ਹਨ?
- ਕਿਹੜੀਆਂ ਵਿਧੀਆਂ ਦੁਆਰਾ ਸਰੀਰ ਵਿੱਚ ਇਹਨਾਂ ਕੀਟਨਾਸ਼ਕਾਂ ਦੀ ਮਾਤਰਾ ਘੱਟ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ? ਚਰਚਾ ਕਰੋ।

थुप्तर

- ਆਹਾਰੀ ਪੱਧਰ ਕੀ ਹੈ? ਇੱਕ ਭੋਜਨ ਲੜੀ ਦੀ ਉਦਾਹਰਣ ਦਿਓ ਅਤੇ ਇਸ ਵਿੱਚ ਭਿੰਨ ਆਹਾਰੀ ਪੱਧਰ ਦੱਸੋ।
- ?

ਪ੍ਰਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਵਿੱਚ ਨਿਖੇੜਕਾਂ ਦੀ ਕੀ ਭੂਮਿਕਾ ਹੈ?

15.3 ਸਾਡੀਆਂ ਕਿਰਿਆਵਾਂ ਵਾਤਾਵਰਨ ਨੂੰ ਕਿਸ ਪ੍ਕਾਰ ਪ੍ਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ?

HOW DO OUR ACTIVITIES AFFECT THE ENVIRONMENT?

ਅਸੀਂ ਸਾਰੇ ਵਾਤਾਵਰਨ ਦਾ ਅਨਿੱਖੜਵਾਂ ਭਾਗ ਹਾਂ। ਵਾਤਾਵਰਨ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨ ਸਾਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ ਅਤੇ ਸਾਡੀਆਂ ਕਿਰਿਆਵਾਂ/ਗਤੀਵਿਧੀਆਂ ਸਾਡੇ ਚਾਰੇ ਪਾਸੇ ਦੇ ਵਾਤਾਵਰਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ। ਨੌਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਸਾਡੀਆਂ ਕਿਰਿਆਵਾਂ ਵਾਤਾਵਰਨ ਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਵਾਤਾਵਰਨ ਸੰਬੰਧੀ ਦੇ ਸਮੱਸਿਆਵਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵਿਸਥਾਰ ਨਾਲ ਚਰਚਾ ਕਰਾਂਗੇ, ਉਹ ਹਨ ਓਜ਼ੋਨ ਪਰਤ ਦਾ ਨਸ਼ਟ ਹੋਣਾ ਅਤੇ ਰਹਿੰਦ-ਖੁੰਹਦ ਦਾ ਨਿਪਟਾਰਾ।

15.3.1 ਓਜ਼ੋਨ ਪਰਤ ਅਤੇ ਇਹ ਕਿਵੇਂ ਨਸ਼ਟ ਹੋ ਰਹੀ ਹੈ?

(OZONE LAYER AND HOW IT IS GETTING DEPLETED)

ਓਜ਼ੋਨ ('O₃') ਦੇ ਅਣੂ ਆਕਸੀਜਨ ਦੇ ਤਿੰਨ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣਦੇ ਹਨ ਜਦੋਂ ਕਿ O₂ ਜਿਸ ਨੂੰ ਆਕਸੀਜਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਉਸ ਦਾ ਅਣੂ ਦੋ ਪ੍ਰਮਾਣੂਆਂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ।ਆਕਸੀਜਨ ਸਾਰੇ ਆਕਸੀ–ਜੀਵੀ ਜੀਵਾਂ ਲਈ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਓਜ਼ੋਨ ਇੱਕ ਘਾਤਕ ਜ਼ਹਿਰ ਹੈ ਪਰ ਵਾਯੂਮੰਡਲ ਦੇ ਉਪਰਲੇ ਪੱਧਰ ਤੇ ਓਜ਼ੋਨ ਇੱਕ ਬਹੁਤ ਜ਼ਰੂਰੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਨਿਭਾਉਂਦੀ ਹੈ। ਇਹ ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲੀਆਂ ਪਰਾਵੈਂਗਣੀ ਵਿਕਿਰਨਾਂ ਤੋਂ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਨੂੰ ਬਚਾਉਂਦੀ ਹੈ, ਇਹ ਵਿਕਿਰਨਾਂ ਜੀਵਾਂ ਲਈ ਅਤਿਅੰਤ ਹਾਨੀਕਾਰਕ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ ਇਹ ਵਿਕਿਰਨਾਂ ਮਨੁੱਖ ਵਿੱਚ ਚਮੜੀ ਦੇ ਕੈਂਸਰ ਦਾ ਕਾਰਨ ਬਣਦੀਆਂ ਹਨ।

ਵਾਯੂਮੰਡਲ ਦੇ ਉਪਰਲੇ ਪੱਧਰ ਉੱਤੇ ਪਰਾਵੈਂਗਣੀ (UV) ਵਿਕਿਰਨਾਂ ਦੇ ਪ੍ਰਭਾਵ ਨਾਲ ਆਕਸੀਜਨ (O₂) ਅਣੂਆਂ ਤੋਂ ਓਜ਼ੋਨ ਬਣਦੀ ਹੈ। ਉੱਚ ਊਰਜਾ ਵਾਲੀਆਂ ਪਰਾਬੈਂਗਣੀ ਵਿਕਿਰਨਾਂ ਆਕਸੀਜਨ ਅਣੂ ਦਾ ਵਿਘਟਨ ਕਰਕੇ ਸੁਤੰਤਰ ਆਕਸੀਜਨ (O) ਪਰਮਾਣੂ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਆਕਸੀਜਨ ਦੇ ਇਹ ਸੁਤੰਤਰ ਪਰਮਾਣੂ ਆਕਸੀਜਨ ਦੇ ਅਣੂਆਂ ਨਾਲ ਜੁੜ ਹੋ ਕੇ ਓਜ਼ੋਨ ਬਣਾਉਂਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਸਮੀਕਰਨ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ:

$$O_2$$
 ਪਰਾਵੇਂਗਣੀ (UV) $O+O$
 $O+O_2 \rightarrow O_3$
(ਓਜ਼ੋਨ)

1980 ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਓਜ਼ੋਨ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਤੇਜ਼ੀ ਨਾਲ ਕਮੀ ਹੋਣ ਲੱਗੀ।ਮਨੁੱਖ ਵੱਲੋਂ ਸੈਸਲਿਸ਼ਟ ਕਲੌਰੋ ਫਲੌਰੋ ਕਾਰਬਨ (CFCs) ਜਿਹੇ ਰਸਾਇਣਾਂ ਨੂੰ ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਕ ਮੰਨਿਆ ਗਿਆ। ਇਹਨਾਂ ਦਾ ਉਪਯੋਗ ਰੇਫਰੀਜਰੇਟਰਾਂ ਅਤੇ ਅੱਗ ਬੁਝਾਊ ਯੰਤਰਾਂ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। 1987 ਵਿੱਚ ਸੈਯੁਕਤ ਰਾਸ਼ਟਰ ਵਾਤਾਵਰਨ ਪ੍ਰੋਗਰਾਮ (UNEP) ਵਿੱਚ ਸਰਬਸੰਮਤੀ ਨਾਲ CFC ਦੇ ਉਤਪਾਦਨ ਦਾ ਪੱਧਰ 1986 ਦੇ ਪੱਧਰ ਬਰਾਬਰ ਹੀ ਸੀਮਤ ਰੱਖਣ ਦਾ ਮਤਾ ਪਾਸ ਕੀਤਾ ਗਿਆ।

ਕਿਰਿਆ 15.6

- ਲਾਇਬਰੇਰੀ, ਇੰਟਰਨੈੱਟ ਅਤੇ ਸਮਾਚਾਰ ਪੱਤਰਾਂ ਤੋਂ ਪਤਾ ਲਗਾਓ ਕਿ ਕਿਹੜੇ ਰਸਾਇਣ ਓਜ਼ੋਨ ਪਰਤ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚਾਉਂਦੇ ਹਨ?
- ਪਤਾ ਕਰੋਂ ਕਿ ਇਹਨਾਂ ਪਦਾਰਥਾਂ ਦੇ ਉਤਪਾਦਨ ਅਤੇ ਉਤਸਰਜਨ ਸੰਬੰਧੀ ਕਾਨੂੰਨ ਓਜ਼ੋਨ ਪਰਤ ਨੂੰ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਨੂੰ ਘੱਟ ਕਰਨ ਵਿੱਚ ਕਿੰਨੇ ਸਫਲ ਰਹੇ ਹਨ। ਕੀ ਪਿਛਲੇ ਕੁੱਝ ਸਾਲਾਂ ਵਿੱਚ ਓਜ਼ੋਨ ਛੇਕ ਦੇ ਆਕਾਰ ਵਿੱਚ ਕੁੱਝ ਪਰਿਵਰਤਨ ਆਇਆ ਹੈ?

15.3.2 ਕੁੜੇ-ਕਰਕਟ ਦਾ ਪ੍ਰਬੰਧ

(Managing the Garbage we Produce)

ਕਿਸੇ ਵੀ ਨਗਰ ਜਾਂ ਸ਼ਹਿਰ ਵਿੱਚ ਜਾਓ। ਚਾਰੇ ਪਾਸੇ ਕੂੜੇ-ਕਰਕਟ ਦੇ ਢੇਰ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ। ਕਿਸੇ ਸੈਰ ਸਪਾਟੇ ਵਾਲੀ ਥਾਂ ਤੇ ਜਾਓ ਤਾਂ ਉੱਥੇ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਖਾਣ ਯੋਗ ਪਦਾਰਥਾਂ ਦੀਆਂ ਖਾਲੀ ਥੈਲੀਆਂ ਇੱਧਰ ਉੱਧਰ ਫੈਲੀਆਂ ਹੋਈਆਂ ਵਿਖਾਈ ਦੇਣਗੀਆਂ। ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਅਸੀਂ ਮਨੁੱਖ ਦੁਆਰਾ ਪੈਦਾ ਕੂੜੇ-ਕਰਕਟ ਦੇ ਨਿਪਟਾਰੇ ਦੇ ਢੰਗਾਂ ਬਾਰੇ ਗੱਲਬਾਤ ਕੀਤੀ ਸੀ। ਆਓ, ਇਸ ਸਮੱਸਿਆ ਉੱਤੇ ਵਧੇਰੇ ਗੰਭੀਰਤਾ ਨਾਲ ਵਿਚਾਰ ਕਰੀਏ।

ਕਿਰਿਆ 15.7

- ਪਤਾ ਕਰੋ ਕਿ ਘਰਾਂ ਵਿੱਚ ਪੈਦਾ ਕੂੜੇ-ਕਰਕਟ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ? ਕੀ ਇਸ ਨੂੰ ਇਕੱਤਰ ਕਰਨ ਦਾ ਕੋਈ ਪ੍ਰਬੰਧ ਹੈ?
- ਪਤਾ ਕਰੋ ਕਿ ਸਥਾਨਕ ਪ੍ਰਬੰਧਾਂ (ਪੰਚਾਇਤ, ਨਗਰਪਾਲਿਕਾ, ਨਿਵਾਸ ਕਲਿਆਣ ਸੰਮਤੀ) ਦੁਆਰਾ ਇਸ ਦਾ ਨਿਪਟਾਰਾ ਕਿਸ ਪ੍ਰਕਾਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ? ਕੀ ਉੱਥੇ ਜੈਵ ਵਿਘਟਿਤ ਅਤੇ ਜੈਵ ਅਵਿਘਟਿਤ ਕੁੜੇ ਕਰਕਟ ਨੂੰ ਵੱਖ-ਵੱਖ ਕਰਨ ਦਾ ਪ੍ਰਬੰਧ ਹੈ?

ਕਿਰਿਆ 15.8

- ਪਤਾ ਕਰੋ ਕਿ ਇੱਕ ਦਿਨ ਵਿੱਚ ਘਰ ਤੋਂ ਕਿੰਨਾ ਕੁੜਾ-ਕਰਕਟ ਪੈਦਾ ਹੁੰਦਾ ਹੈ?
- ਇਸ ਵਿੱਚ ਕਿੰਨਾ ਕੁੜਾ-ਕਰਕਟ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਯੋਗ ਹੈ?
- ਪਤਾ ਕਰੋ ਕਿ ਜਮਾਤ ਵਿੱਚ ਪ੍ਰਤਿ ਦਿਨ ਕਿੰਨਾ ਕੂੜਾ-ਕਰਕਟ ਪੈਦਾ ਹੁੰਦਾ ਹੈ?
- ਇਸ ਵਿੱਚ ਕਿੰਨਾ ਕੁੜਾ-ਕਰਕਟ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਹੈ?
- ਇਸ ਕੂੜੇ-ਕਰਕਟ ਦੇ ਨਿਪਟਾਰੇ ਦੇ ਕੁੱਝ ਢੰਗ ਦੱਸੋ।

ਕਿਰਿਆ 15.9

- ਪਤਾ ਕਰੋ ਕਿ ਤੁਹਾਡੇ ਇਲਾਕੇ ਵਿੱਚ ਮਲ-ਪ੍ਵਾਹ ਦਾ ਉਪਚਾਰ ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ? ਕੀ ਉੱਥੇ ਅਜਿਹਾ ਪ੍ਥੰਧ ਹੈ ਕਿ ਸਥਾਨਕ ਜਲ ਭੰਡਾਰ ਅਤੇ ਜਲ ਸਰੋਤ ਅਣਉਪਚਾਰਿਤ ਵਹਿੰਦੇ ਮਲ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਨਾ ਹੋਣ।
- ਆਪਣੇ ਖੇਤਰ ਵਿੱਚ ਪਤਾ ਕਰੋ ਕਿ ਤੁਹਾਡੇ ਇਲਾਕੇ ਦੇ ਸਥਾਨਕ ਉਦਯੋਗ ਆਪਣੇ ਵਿਅਰਥ ਪਦਾਰਥਾਂ (ਕੂੜੇ-ਕਰਕਟ, ਅਤੇ ਰਹਿੰਦ-ਖੂਹਦ) ਦੇ ਨਿਪਟਾਰੇ ਦਾ ਕੀ ਪ੍ਰਬੰਧ ਕਰਦੇ ਹਨ? ਕੀ ਉੱਥੇ ਅਜਿਹਾ ਕੋਈ ਪ੍ਰਬੰਧ ਹੈ ਜਿਸ ਨਾਲ ਨਿਸ਼ਚਿਤ ਹੋ ਸਕੇ ਕਿ ਇਹਨਾਂ ਪਦਾਰਥਾਂ ਨਾਲ ਭੂਮੀ ਅਤੇ ਪਾਣੀ ਦਾ ਪ੍ਰਦੂਸ਼ਣ ਨਹੀਂ ਹੁੰਦਾ।

ਸਾਡੀ ਜੀਵਨ ਸ਼ੈਲੀ ਵਿੱਚ ਸੁਧਾਰ ਦੇ ਨਾਲ ਸਾਡੇ ਵੱਲੋਂ ਪੈਦਾ ਕੀਤੇ ਕੂੜੇ-ਕਰਕਟ ਦੀ ਮਾਤਰਾ ਵੀ ਬਹੁਤ ਜ਼ਿਆਦਾ ਵੱਧ ਗਈ ਹੈ।ਸਾਡੇ ਦ੍ਸ਼ਿਟੀਕੋਣ ਵਿੱਚ ਹੋਏ ਪਰਿਵਰਤਨ ਵੀ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੇ ਹਨ।ਸਾਡੇ ਦੁਆਰਾ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਵਧੇਰੇ ਵਸਤੂਆਂ ਇੱਕ ਵਾਰ ਵਰਤ ਕੇ ਸੁੱਟਣਯੋਗ ਹੁੰਦੀਆਂ ਹਨ।ਪੈਕਿੰਗ ਦੇ ਤਰੀਕਿਆਂ ਵਿੱਚ ਬਦਲਾਓ ਨਾਲ ਅਵਿਘਟਨਸ਼ੀਲ ਵਸਤੂਆਂ ਦੇ ਰਹਿੰਦ-ਖੂੰਹਦ ਵਿੱਚ ਬਹੁਤ ਵਾਧਾ ਹੋਇਆ ਹੈ। ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਇਹਨਾਂ ਸਭ ਦਾ ਸਾਡੇ ਵਾਤਾਵਰਨ ਉੱਤੇ ਕੀ ਪਭਾਵ ਪੈ ਸਕਦਾ ਹੈ?

ਇਸ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ !

ਰੇਲਗੱਡੀਆਂ ਵਿੱਚ ਪ੍ਰਯੋਗ ਹੋਣ ਵਾਲ਼ੇ ਡਿਸਪੋਜ਼ੇਬਲ (Disposable) ਕੱਪ

ਜੇਕਰ ਤੁਸੀਂ ਆਪਣੇ ਮਾਤਾ-ਪਿਤਾ ਤੋਂ ਪੁੱਛੋਗੇ ਤਾਂ ਸੰਭਵ ਹੈ ਉਹਨਾਂ ਨੂੰ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਰੇਲ ਗੱਡੀਆਂ ਵਿੱਚ ਚਾਹ ਕੱਚ ਦੇ ਗਿਲਾਸਾਂ ਵਿੱਚ ਦਿੱਤੀ ਜਾਂਦੀ ਸੀ ਜੋ ਚਾਹ ਵਾਲੇ ਨੂੰ ਵਾਪਸ ਕਰ ਦਿੱਤੇ ਜਾਂਦੇ ਸਨ। ਡਿਸਪੋਜ਼ੇਬਲ ਕੱਪ ਅਤੇ ਗਿਲਾਸ ਦੇ ਉਪਯੋਗ ਨੂੰ ਇਸ ਆਧਾਰ ਤੇ ਉਤਸ਼ਾਹ ਮਿਲਿਆ ਕਿ ਉਹ ਸਾਫ਼ ਅਤੇ ਸਿਹਤ ਲਈ ਸੁਰੱਖਿਅਤ ਹਨ। ਉਸ ਸਮੇਂ ਕਿਸੇ ਨੇ ਵੀ ਕਲਪਨਾ ਨਹੀਂ ਕੀਤੀ ਸੀ ਕਿ ਪ੍ਰਤਿਦਿਨ ਲੱਖਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਉਪਯੋਗ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਇਹਨਾਂ ਕੱਪਾਂ ਦਾ ਵਾਤਾਵਰਨ 'ਤੇ ਕੀ ਪ੍ਰਭਾਵ (Impact) ਹੋਵੇਗਾ। ਕੁੱਝ ਸਮਾਂ ਪਹਿਲਾਂ ਕੁਲਹੜ (ਮਿੱਟੀ ਦੇ ਬਰਤਨ) ਇੱਕ ਬਦਲਾਵ ਦੇ ਰੂਪ ਵਿੱਚ ਅਪਨਾਏ ਗਏ। ਪਰ ਇਸ ਉੱਤੇ ਵਿਚਾਰ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਕਿ ਇਨੀ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਕੁਲਹੜ ਬਣਾਉਣ ਲਈ ਕਿੰਨੀ ਉਪਜਾਊ ਮਿੱਟੀ ਦਾ ਉਪਯੋਗ ਹੋਵੇਗਾ। ਹੁਣ ਕਾਗਜ਼ ਦੇ ਡਿਸਪੋਜ਼ੇਬਲ ਕੱਪਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਰਹੀ ਹੈ। ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਡਿਸਪੋਜ਼ੇਬਲ ਪਲਾਸਟਿਕ ਕੱਪ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਕਾਗਜ਼ ਦੇ ਡਿਸਪੋਜ਼ੇਬਲ ਕੱਪਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਕੀ ਲਾਭ ਹਨ?

ਕਿਰਿਆ 15,10

- ਇੰਟਰਨੈੱਟ ਜਾਂ ਲਾਇਬਰੇਰੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪਤਾ ਕਰੋ ਕਿ ਇਲੈੱਕਟਰਾਨਿਕ ਵਸਤੂਆਂ ਦੇ ਨਿਪਟਾਰੇ ਸਮੇਂ ਕਿਹੜੇ ਖ਼ਤਰਨਾਕ ਪਦਾਰਥਾਂ ਨਾਲ ਨਿਪਟਣਾ ਪੈਂਦਾ ਹੈ? ਇਹ ਪਦਾਰਥ ਵਾਤਾਵਰਨ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ?
- ਪਤਾ ਕਰੋ ਕਿ ਪਲਾਸਟਿਕ ਨੂੰ ਮੁੜ ਵਰਤੋਂ ਯੋਗ ਕਿਵੇਂ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ? ਕੀ ਪਲਾਸਟਿਕ ਨੂੰ ਮੁੜ ਵਰਤੋਂਯੋਗ ਬਣਾਉਣ ਨਾਲ ਵਾਤਾਵਰਨ ਉੱਤੇ ਕੋਈ ਮਾੜਾ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ?

ਪ੍ਰਸ਼ਨ

- ਓਜ਼ੋਨ ਕੀ ਹੈ ਅਤੇ ਇਹ ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ?
- ਤੁਸੀਂ ਕੂੜੇ ਕਰਕਟ ਦੇ ਨਿਪਟਾਰੇ ਦੀ ਸਮੱਸਿਆ ਘੱਟ ਕਰਨ ਵਿੱਚ ਕੀ ਯੋਗਦਾਨ ਪਾ ਸਕਦੇ ਹੈ। ਕੋਈ ਦੋ ਤਰੀਕਿਆਂ ਦਾ ਵਰਨਣ ਕਰੋ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਪਰਿਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਦੇ ਘਟਕ ਆਪੋ ਵਿੱਚ ਨਿਰਭਰ ਹੁੰਦੇ ਹਨ।
- ਉਤਪਾਦਕ ਸੂਰਜ ਤੋਂ ਪ੍ਰਾਪਤ ਊਰਜਾ ਪਰਿਸਥਿਤਿਕ ਪ੍ਬੰਧ ਦੇ ਮੈਂਬਰਾਂ ਨੂੰ ਉਪਲਬੱਧ ਕਰਾਉਂਦੇ ਹਨ।
- ਜਦੋਂ ਅਸੀਂ ਇੱਕ ਆਹਾਰੀ ਪੱਧਰ ਤੋਂ ਦੂਜੇ ਆਹਾਰੀ ਪੱਧਰ ਤੱਕ ਜਾਂਦੇ ਹਾਂ ਤਾਂ ਊਰਜਾ ਦੀ ਹਾਨੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਭੋਜਨ ਲੜੀਆਂ ਵਿੱਚ ਆਹਾਰੀ ਪੱਧਰਾਂ ਨੂੰ ਸੀਮਤ ਕਰ ਦਿੰਦੀ ਹੈ।

- ਮਨੁੱਖੀ ਗਤੀਵਿਧੀਆਂ ਦਾ ਵਾਤਾਵਰਨ ਉੱਤੇ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ।
- CFCs ਜਿਹੇ ਰਸਾਇਣਾਂ ਨੇ ਓਜ਼ੋਨ ਪਰਤ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚਾਇਆ ਹੈ। ਕਿਉਂਕਿ ਓਜ਼ੋਨ ਪਰਤ ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲੀਆਂ ਪਰਾਵੈਂਗਣੀ (UV) ਵਿਕਿਰਨਾਂ ਤੋਂ ਸੁਰੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਹੋਣ ਵਾਲੀ ਹਾਨੀ ਨਾਲ ਵਾਤਾਵਰਨ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚ ਸਕਦਾ ਹੈ।
- ਸਾਡੇ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤਾ ਕੂੜਾ ਕਰਕਟ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਅਤੇ ਅਵਿਘਟਨਸ਼ੀਲ ਹੋ ਸਕਦਾ ਹੈ।
- ਸਾਡੇ ਦੁਆਰਾ ਪੈਦਾ ਕੂੜਾ ਕਰਕਟ ਦਾ ਨਿਪਟਾਰਾ ਇੱਕ ਗੰਭੀਰ ਵਾਤਾਵਰਨੀ ਸਮੱਸਿਆ ਹੈ।

ਅਭਿਆਸ

- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਸਮੂਹਾਂ ਵਿੱਚ ਕੇਵਲ ਜੈਵ-ਵਿਘਟਨਸ਼ੀਲ ਪਦਾਰਥ ਹਨ -
 - (a) ਘਾਹ, ਫੁੱਲ ਅਤੇ ਚਮੜਾ
 - (b) ਘਾਹ, ਲੱਕੜੀ ਅਤੇ ਪਲਾਸਟਿਕ
 - (c) ਫ਼ਲਾਂ ਦੇ ਛਿੱਲੜ, ਕੇਕ ਅਤੇ ਨਿੰਬੂ ਦਾ ਰਸ
 - (d) ਕੋਕ, ਲੱਕੜੀ ਅਤੇ ਘਾਹ
- ਹੇਠ ਦਿੱਤਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਭੋਜਨ ਲੜੀ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ : --
 - (a) ਘਾਹ, ਕਣਕ ਅਤੇ ਅੰਬ
 - (b) ਘਾਹ, ਬੱਕਰੀ ਅਤੇ ਮਨੁੱਖ
 - (c) ਬੱਕਰੀ, ਗਾਂ ਅਤੇ ਹਾਥੀਂ
 - (ਰ) ਘਾਹ, ਮੱਛੀ ਅਤੇ ਬੱਕਰੀ
- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਵਾਤਾਵਰਨ ਪੱਖੀ ਵਿਵਹਾਰ ਦਰਸਾਉਂਦਾ ਹੈ :-
 - (a) ਬਾਜ਼ਾਰ ਜਾਂਦੇ ਸਮੇਂ ਸਮਾਨ ਲਈ ਕੱਪੜੇ ਦਾ ਬੈਲਾ ਲੈ ਜਾਣਾ।
 - (b) ਕਾਰਜ ਸਮਾਪਤ ਹੋਣ ਤੇ ਲਾਈਟ (ਬਲਬ) ਅਤੇ ਪੱਖ ਦਾ ਸਵਿੱਚ ਬੈਦ ਕਰਨਾ।
 - (c) ਮਾਂ ਦੁਆਰਾ ਸਕੂਟਰ ਤੇ ਸਕੂਲ ਛੱਡਣ ਦੀ ਬਜਾਏ ਤੁਹਾਡਾ ਸਕੂਲ ਨੂੰ ਪੈਦਲ ਜਾਣਾ।
 - (d) ਉਪਰੋਕਤ ਸਾਰੇ।
- ਕੀ ਹੋਵੇਗਾ ਜੇ ਅਸੀਂ ਇੱਕ ਆਹਾਰੀ ਪੱਧਰ ਦੇ ਸਾਰੇ ਜੀਵਾਂ ਨੂੰ ਮਾਰ ਦੇਈਏ।
- 5. ਕੀ ਕਿਸੀ ਆਹਾਰੀ ਪੱਧਰ ਦੇ ਸਾਰੇ ਮੈਂਬਰਾਂ ਨੂੰ ਹਟਾਉਣ ਦਾ ਪ੍ਰਭਾਵ ਭਿੰਨ ਭਿੰਨ ਆਹਾਰੀ ਪੱਧਰਾਂ ਲਈ ਵੱਖ–ਵੱਖ ਹੋਵੇਗਾ? ਕੀ ਕਿਸੇ ਆਹਾਰੀ ਪੱਧਰ ਦੇ ਜੀਵਾਂ ਨੂੰ ਪਰਿਸਥਿਤਿਕ ਪ੍ਬੰਧ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕੀਤੇ ਬਿਨਾਂ ਹਟਾਉਣਾ ਸੰਭਵ ਹੈ?
- 6. ਜੈਵਿਕ ਵਧਾਓ (Biological magnification) ਕੀ ਹੈ? ਕੀ ਪਰਸਥਿਤਿਕ ਪ੍ਰਬੰਧ ਦੇ ਭਿੰਨ ਪੱਧਰਾਂ ਉੱਤੇ ਜੈਵਿਕ ਵਧਾਓ ਦਾ ਪ੍ਰਭਾਵ ਵੀ ਵੱਖ-ਵੱਖ ਹੋਵੇਗਾ?
- 7. ਸਾਡੇ ਦੁਆਰਾ ਪੈਦਾ ਜੈਵ-ਅਵਿਘਟਨਸ਼ੀਲ ਕਚਰੇ ਤੋਂ ਕਿਹੜੀਆਂ ਮੁਸ਼ਕਲਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ?
- 8. ਜੇਕਰ ਸਾਡੇ ਦੁਆਰਾ ਪੈਦਾ ਸਾਰਾ ਕਚਰਾ ਜੈਵ ਵਿਘਟਨਸ਼ੀਲ ਹੋਵੇ ਤਾਂ ਕੀ ਇਸ ਦਾ ਸਾਡੇ ਵਾਤਾਵਰਨ ਉੱਤੇ ਕੋਈ ਪਭਾਵ ਨਹੀਂ ਪਵੇਗਾ?
- 9. ਓਜ਼ੇਨ ਪਰਤ ਦੀ ਹਾਨੀ ਸਾਡੇ ਲਈ ਚਿੰਤਾ ਦਾ ਵਿਸ਼ਾ ਹੈ। ਇਸ ਹਾਨੀ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਕੀ ਕਦਮ ਉਠਾਏ ਗਏ ਹਨ?

ਅਧਿਆਇ 16

ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦਾ ਪ੍ਰਬੰਧ (Management of Natural Resources)

ਣੀ ਨੌਵੀਂ ਵਿੱਚ ਅਸੀਂ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਜਿਵੇਂ ਕਿ ਮਿੱਟੀ, ਹਵਾ ਅਤੇ ਪਾਣੀ ਦੇ ਬਾਰੇ ਵਿੱਚ ਪੜ੍ਹਿਆ ਸੀ ਅਤੇ ਇਹ ਵੀ ਜਾਣਿਆ ਸੀ ਕਿ ਭਿੰਨ-ਭਿੰਨ ਘਟਕਾਂ ਦਾ ਕੁਦਰਤ ਵਿੱਚ ਬਾਰ ਬਾਰ ਆਉਣ ਜਾਣ ਕਿਸ ਪ੍ਕਾਰ ਹੁੰਦਾ ਹੈ? ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੀ ਪੜ੍ਹਿਆ ਕਿ ਸਾਡੀਆਂ ਕਿਰਿਆਵਾਂ ਕਾਰਨ ਇਹ ਸਾਧਨ ਪ੍ਰਦੂਸ਼ਿਤ ਹੋ ਰਹੇ ਹਨ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਕੁੱਝ ਸਾਧਨਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ ਅਤੇ ਇਹ ਵੀ ਜਾਣਾਂਗੇ ਕਿ ਅਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਇਹਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹਾਂ? ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਅਸੀਂ ਇਹ ਵੀ ਸੋਚ ਸਕੀਏ ਕਿ ਸਾਨੂੰ ਆਪਣੇ ਸਾਧਨਾਂ ਦਾ ਉਪਯੋਗ ਇਸ ਤਰ੍ਹਾਂ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਜਿਸ ਨਾਲ ਕਿ ਸਾਧਨਾਂ ਦੀ ਪੂਰਤੀ ਵੀ ਹੋ ਸਕੇ ਅਤੇ ਅਸੀਂ ਆਪਣੇ ਵਾਤਾਵਰਨ ਦੀ ਰੱਖਿਆ ਵੀ ਕਰ ਸਕੀਏ। ਅਸੀਂ ਜੰਗਲ, ਜੰਗਲੀ ਜੀਵਨ, ਪਾਣੀ, ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਵਰਗੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ ਅਤੇ ਉਹਨਾਂ ਸਮੱਸਿਆਵਾਂ ਤੇ ਵੀ ਵਿਚਾਰ ਕਰਾਂਗੇ ਜੋ ਇਨ੍ਹਾਂ ਸਾਧਨਾਂ ਦੇ ਸੰਪੋਸ਼ਿਤ ਵਿਕਾਸ ਲਈ ਪ੍ਰਬੰਧ ਹਿੱਤ ਪੇਸ਼ ਆਉਂਦੀਆਂ ਹਨ।

ਅਸੀਂ ਅਕਸਰ ਹੀ ਵਾਤਾਵਰਨ ਸੈਬੰਧੀ ਸਮੱਸਿਆਵਾਂ ਬਾਰੇ ਸੁਣਦੇ ਜਾਂ ਪੜ੍ਹਦੇ ਹਾਂ। ਇਹ ਵਧੇਰੇ ਕਰਕੇ ਵਿਸ਼ਵ ਵਿਆਪੀ ਸਮੱਸਿਆਵਾਂ ਹਨ ਅਤੇ ਇਹਨਾਂ ਵਿੱਚ ਕਿਸੇ ਪਰਿਵਰਤਨ ਲਈ ਅਸੀਂ ਆਪਣੇ ਆਪ ਨੂੰ ਬੇਵੱਸ ਮਹਿਸੂਸ ਕਰਦੇ ਹਾਂ। ਇਹਨਾਂ ਲਈ ਅਨੇਕ ਅੰਤਰਰਾਸ਼ਟਰੀ ਕਾਨੂੰਨ ਅਤੇ ਨਿਯਮ ਹਨ ਅਤੇ ਸਾਡੇ ਦੇਸ਼ ਵਿੱਚ ਵੀ ਵਾਤਾਵਰਨ ਸੁਰੱਖਿਆ ਵਾਸਤੇ ਅਨੇਕਾਂ ਕਾਨੂੰਨ ਅਤੇ ਐਕਟ ਹਨ। ਅਨੇਕ ਰਾਸ਼ਟਰੀ ਅਤੇ ਅੰਤਰਰਾਸ਼ਟਰੀ ਸੰਗਠਨ ਵੀ ਵਾਤਾਵਰਨ ਦੀ ਸੁਰੱਖਿਆ ਹਿਤ ਕੰਮ ਕਰ ਰਹੇ ਹਨ।

ਕਿਰਿਆ 16.1

- ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੇ ਉਤਸਰਜਨ ਨੂੰ ਨਿਯਮਿਤ ਕਰਨ ਲਈ ਅੰਤਰਰਾਸ਼ਟਰੀ ਮਾਪਦੰਡ ਪਤਾ ਕਰੋ।
- ਜਮਾਤ ਵਿੱਚ ਚਰਚਾ ਕਰੋ ਕਿ ਅਸੀਂ ਇਹ ਮਾਪਦੰਡ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਿਸ ਤਰ੍ਹਾਂ ਸਹਿਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ?

ਕਿਰਿਆ 16.2

- ਅਜਿਹੇ ਬਹੁਤ ਸੰਗਠਨ ਹਨ ਜੋ ਵਾਤਾਵਰਨ ਸੰਬੰਧੀ ਜਾਗਰੂਕਤਾ ਫੈਲਾਉਣ ਵਿੱਚ ਲੱਗੇ ਹੋਏ ਹਨ। ਉਹ ਅਜਿਹੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਵੀ ਉਤਸ਼ਾਹਿਤ ਕਰਦੇ ਹਨ ਜਿਸ ਨਾਲ ਸਾਡੇ ਵਾਤਾਵਰਨ ਅਤੇ ਕੁਦਰਤੀ ਸੁਰੱਖਿਆ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਆਪਣੇ ਨੇੜੇ ਦੇ ਖੇਤਰ/ ਸ਼ਹਿਰੀ/ਕਸਬੇ/ਪਿੰਡ ਵਿੱਚ ਕੰਮ ਕਰਨ ਵਾਲੇ ਸੰਗਠਨਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ।
- 🏮 ਪਤਾ ਕਰੋ ਕਿ ਇਸ ਉਦੇਸ਼ ਦੀ ਪ੍ਰਾਪਤੀ ਲਈ ਤੁਸੀਂ ਕੀ ਯੋਗਦਾਨ ਪਾ ਸਕਦੇ ਹੋ।

ਸਾਧਨਾਂ ਦੀ ਬਿਨਾਂ ਸੋਚੇ ਸਮਝੇ ਵਰਤੋਂ ਕਰਨ ਨਾਲ ਪੈਦਾ ਸਮੱਸਿਆਵਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਜਾਗਰੂਕਤਾ ਸਾਡੇ ਸਮਾਜ ਵਿੱਚ ਪੈਦਾ ਇੱਕ ਨਵਾਂ ਵਰਤਾਰਾ ਹੈ। ਜਦੋਂ ਇਹ ਜਾਗਰੂਕਤਾ ਵਧਦੀ ਹੈ ਤਾਂ ਕੁੱਝ ਨਾ ਕੁੱਝ ਕਦਮ ਵੀ ਪੁੱਟੇ ਜਾਂਦੇ ਹਨ। ਤੁਸੀਂ ਗੰਗਾ ਸਫਾਈ ਯੋਜਨਾ (Ganga Action Plan) ਵਿਸ਼ੇ ਬਾਰੇ ਜ਼ਰੂਰ ਸੁਣਿਆ ਹੋਵੇਗਾ। ਕਈ ਕਰੋੜ ਦੀ ਇਹ ਯੋਜਨਾ 1985 ਵਿੱਚ ਇਸ ਲਈ ਆਰੰਭ ਕੀਤੀ ਗਈ ਕਿਉਂਕਿ ਗੰਗਾ ਦੇ ਪਾਣੀ ਦੀ ਗੁਣਵੱਤਾ ਬਹੁਤ ਘੱਟ ਹੋ ਗਈ ਸੀ (ਚਿੱਤਰ 16.1)। ਕੋਲਿਫਾਰਮ (Coliform) ਜੀਵਾਣੂ, ਜੀਵਾਣੂਆਂ ਦਾ ਇੱਕ ਅਜਿਹਾ ਵਰਗ ਹੈ ਜੋ ਮਨੁੱਖ ਦੀਆਂ ਆਂਦਰਾਂ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਇਸ ਦੀ ਮੌਜੂਦਗੀ ਜੀਵਾਣੂਆਂ ਦੁਆਰਾ ਪਾਣੀ ਦਾ ਦੂਸ਼ਿਤ ਹੋਣਾ ਦਰਸਾਉਂਦੀ ਹੈ।

MPN (Most Probable Number ਸਰਬ ਸੰਭਾਵੀ ਸੰਬਿਆ: u/s (upstream): ਉੱਤੇ ਪ੍ਵਾਰ mL (millilitre): ਮਿਲੀਲਿਟਰ d/s (downstream): ਹੇਠਾਂ ਪ੍ਵਾਰ

ਚਿੱਤਰ 16.1 ਗੈਗਾ ਜਲ ਵਿੱਚ ਕੋਲਿਫਾਰਮ ਦੀ ਸੰਪੂਰਨ ਗਣਨ ਸਤਰ (1993-1994)

ਸਰੋਤ : ਐਨਾਨ 1996-ਪਾਣੀ ਗੁਣਵਤਾ-ਸਟੇਟਸ ਅਤੇ ਸਟੈਟਿਸਟਿਕਜ਼ (1993-1994), ਕੇਂਦਰੀ ਪ੍ਰਦੂਸ਼ਨ ਨਿਯੰਤਰਨ ਬੋਰਡ ਦਿੱਲੀ ਪੰਨਾ 11

ਗੰਗਾ ਦਾ ਪ੍ਰਦੂਸ਼ਣ

ਗੰਗਾ ਹਿਮਾਲਿਆ ਵਿੱਚ ਸਥਿਤ ਆਪਣੇ ਨਿਕਾਸ ਗੰਗੋਤਰੀ ਤੋਂ ਬੰਗਾਲ ਦੀ ਖਾੜੀ ਵਿਚਲੇ ਗੰਗਾ ਸਾਗਰ ਤੱਕ 2500 km ਤੱਕ ਦੀ ਯਾਤਰਾ ਕਰਦੀ ਹੈ। ਇਸ ਦੇ ਕਿਨਾਰੇ ਸਥਿਤ ਉੱਤਰ ਪ੍ਦੇਸ਼, ਬਿਹਾਰ ਅਤੇ ਬੰਗਾਲ ਦੇ 100 ਤੋਂ ਵੱਧ ਨਗਰਾਂ ਨੇ ਇਸ ਨੂੰ ਇੱਕ ਨਾਲੇ ਵਿੱਚ ਬਦਲ ਦਿੱਤਾ ਹੈ। ਇਸ ਦਾ ਮੁੱਖ ਕਾਰਨ ਇਹਨਾਂ ਨਗਰਾਂ ਦੁਆਰਾ ਪੈਦਾ ਕਚਰੇ ਅਤੇ ਮਲ ਮੂਤਰ ਦਾ ਇਸ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਕੀਤਾ ਜਾਣਾ ਹੈ? ਇਸ ਤੋਂ ਇਲਾਵਾ ਮਨੁੱਖ ਦੀਆਂ ਹੋਰ ਪ੍ਕਿਰਿਆਵਾਂ ਜਿਵੇਂ ਕਿ ਨਹਾਉਣਾ, ਕੱਪੜੇ ਧੋਣਾ, ਮੁਰਦਾ ਵਿਅਕਤੀਆਂ ਦੀ ਰਾਖ ਅਤੇ ਲਾਸ਼ਾਂ ਦਾ ਵਹਾਉਣਾ ਹੈ। ਇਹ ਹੀ ਨਹੀਂ ਉਦਯੋਗਾਂ ਦੁਆਰਾ ਉਤਪਾਦਿਤ ਰਸਾਇਣਿਕ ਉਤਸਰਜਨ ਨੇ ਗੰਗਾ ਦਾ ਪ੍ਰਦੂਸ਼ਣ ਸਤਰ ਇੰਨਾ ਵਧਾ ਦਿੱਤਾ ਕਿ ਇਸ ਦੇ ਵਿਸ਼ੈਲੇ ਹੋਣ ਕਾਰਨ ਇਸ ਵਿੱਚ ਮੱਛੀਆਂ ਮਰਨ ਲੱਗੀਆਂ।

ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਕੁੱਝ ਮਾਪਣਯੋਗ ਕਾਰਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪਾਣੀ ਦੀ ਗੁਣਵੱਤਾ ਦਾ ਨਿਰਧਾਰਨ ਜਾਂ ਪ੍ਰਦੂਸ਼ਣ ਮਾਪਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਕੁੱਝ ਪ੍ਰਦੂਸ਼ਕ ਥੋੜੀ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੇ ਹੋਏ ਵੀ ਹਾਨੀਕਾਰਕ ਹੋ ਸਕਦੇ ਹਨ। ਉਹਨਾਂ ਦੇ ਮਾਪਣ ਲਈ ਸੰਵੇਦਨਸ਼ੀਲ ਯੰਤਰਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਅਧਿਆਇ 2 ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੀ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪਾਣੀ ਦੀ pH ਆਸਾਨੀ ਨਾਲ ਵਿਸ਼ਵ ਵਿਆਪੀ ਸੂਚਕ (universal indicator)ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਮਾਪੀ ਜਾ ਸਕਦੀ ਹੈ।

ਕਿਰਿਆ 16.3

- ਸੂਚਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਆਪਣੇ ਘਰ ਵਿੱਚ ਆਉਂਦੇ ਪਾਣੀ ਦੀ (universal indicator) pH ਪਤਾ ਕਰੋ।
- ਆਪਣੇ ਆਲੇ ਦੁਆਲੇ ਜਲ ਭੰਡਾਰਾਂ (ਤਾਲਾਬ, ਝੀਲ, ਨਦੀ, ਝਰਨੇ) ਦੇ ਪਾਣੀ ਦੀ pH ਪਤਾ ਕਰੋ।
- ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਪੇਖਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਪਾਣੀ ਪਦਸ਼ਿਤ ਹੈ ਜਾਂ ਨਹੀਂ?

ਪਰ ਸਮੱਸਿਆ ਨੂੰ ਵਿਸ਼ਾਲ ਰੂਪ ਵਿੱਚ ਵੇਖ ਕੇ ਸਾਨੂੰ ਨਿਰਾਸ਼ ਹੋਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਅਜਿਹੇ ਕਈ ਸੁਝਾਅ ਹਨ ਜਿਨ੍ਹਾਂ ਦੁਆਰਾ ਅਸੀਂ ਸਥਿਤੀ ਵਿੱਚ ਅੰਤਰ ਲਿਆ ਸਕਦੇ ਹਾਂ। ਆਪਣੇ ਵਾਤਾਵਰਨ ਨੂੰ ਬਚਾਉਣ ਲਈ ਤਿੰਨ ਪਕਾਰ ਦੇ 'R' ਦੇ ਬਾਰੇ ਤਾਂ ਤੁਸੀਂ ਜ਼ਰੂਰ ਸੁਣਿਆ ਹੋਵੇਗਾ। Reduce (ਘੱਟ ਉਪਯੋਗ), Recycle (ਮੜ ਚੱਕਰ) ਅਤੇ Reuse (ਮੜ ਉਪਯੋਗ)। ਇਹ ਕੀ ਦੱਸਦੇ ਹਨ?

ਘੱਟ ਉਪਯੋਗ : ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਤਹਾਨੂੰ ਘੱਟ ਤੋਂ ਘੱਟ ਵਸਤੂਆਂ ਦਾ ਉਪਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਤੁਸੀਂ ਬਿਨਾਂ ਲੋੜ ਤੋਂ ਚੱਲ ਰਹੇ ਬਿਜਲੀ ਦੇ ਪੱਖੇ ਅਤੇ ਬੱਲਬ ਦਾ ਸਵਿੱਚ ਬੰਦ ਕਰਕੇ ਬਿਜਲੀ ਬਚਾਅ ਸਕਦੇ ਹੈ। ਪਾਣੀ ਟਪਕਾਉਂਦੀ ਟਟੀ ਦੀ ਮੁਰੰਮਤ ਕਰਵਾ ਕੇ ਪਾਣੀ ਦੀ ਬੱਚਤ ਕਰ ਸਕਦੇ ਹੋ। ਤੁਹਾਨੂੰ ਭੋਜਨ ਵਿਅਰਬ ਨਹੀਂ ਗੁਆਉਣਾ ਚਾਹੀਦਾ।ਕੀ ਤੁਸੀਂ ਕੁਝ ਹੋਰ ਵਸਤੁਆਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚ ਸਕਦੇ ਹੋ

ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਪਲਾਸਟਿਕ, ਕਾਗਜ਼, ਕੱਚ, ਧਾਤ ਦੀਆਂ ਵਸਤਾਂ ਅਤੇ ਪਨਰ ਚੱਕਰ : ਅਜਿਹੇ ਹੀ ਪਦਾਰਥ ਮੁੜ ਵਰਤਣਯੋਗ ਬਣਾ ਕੇ ਉਪਯੋਗੀ ਵਸਤੂਆਂ ਬਣਾਉਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ। ਜਦੋਂ ਤੱਕ ਬਹੁਤ ਜ਼ਰੂਰੀ ਨਾ ਹੋਵੇ ਇਹਨਾਂ ਦਾ ਨਵਾਂ ਉਤਪਾਦਨ/ਸੰਸਲੇਸ਼ਣ ਕਰਨਾ ਅਕਲਮੰਦੀ ਨਹੀਂ ਹੈ। ਇਨ੍ਹਾਂ ਨੂੰ ਮੁੜ ਵਰਤਣ ਯੋਗ ਬਨਾਉਣ ਲਈ ਪਹਿਲਾਂ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਨੂੰ ਵਾਧੂ ਪਦਾਰਥਾਂ ਤੋਂ ਵੱਖ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ ਜਿਸ ਨਾਲ ਮੁੜ ਵਰਤਣਯੋਗ ਵਸਤੂਆਂ ਨੂੰ ਵਾਧੂ ਪਦਾਰਥਾਂ ਵਿੱਚ ਨਾ ਸੁੱਟ ਦਿੱਤਾ ਜਾਵੇ। ਕੀ ਤੁਹਾਡੇ ਪਿੰਡ, ਕਸਬੇ ਅਤੇ ਨਗਰ ਵਿੱਚ ਅਜਿਹਾ ਕੋਈ ਪਬੰਧ ਹੈ ਜਿਸ ਤੋਂ ਇਹਨਾਂ ਪਦਾਰਥਾਂ ਦੀ ਮੜ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕੇ?

ਇਹ ਮੜ ਵਰਤੋਂ ਤੋਂ ਵੀ ਚੰਗਾ ਤਰੀਕਾ ਹੈ ਕਿਉਂਕਿ ਮੜ ਵਰਤੋਂ ਵਿੱਚ ਕੁੱਝ ਨਾ ਕੁਝ ਮੁੜ ਉਪਯੋਗ : ਉਰਜਾ ਖਰਚ ਹੁੰਦੀ ਹੈ। ਮੁੜ ਵਰਤੋਂ ਦੇ ਢੰਗ ਵਿੱਚ ਤੁਸੀਂ ਕਿਸੇ ਵਸਤੂ ਦਾ ਬਾਰ-ਬਾਰ ਉਪਯੋਗ ਕਰਦੇ ਹੋ। ਲਫਾਫਿਆਂ ਨੂੰ ਸੁੱਟਣ ਦੀ ਬਜਾਏ ਉਹਨਾਂ ਨੂੰ ਮੁੜ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆ ਸਕਦੇ ਹੋ। ਭਿੰਨ-ਭਿੰਨ ਭੋਜਨ ਪਦਾਰਥਾਂ ਵਾਲੀਆਂ ਬੋਤਲਾਂ. ਡੱਬੇ ਆਦਿ ਦਾ ਉਪਯੋਗ ਰਸੋਈ ਵਿੱਚ ਵਸਤੂਆਂ ਨੂੰ ਸਾਂਭ ਕੇ ਰੱਖਣ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਹ ਕਿਹੜੀਆਂ ਹੋਰ ਵਸਤਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਮੜ

ਉਪਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?

ਇਹ ਹੀ ਨਹੀਂ, ਸਗੋਂ ਅਸੀਂ ਆਪਣੀਆਂ ਨਿੱਤ ਦੀਆਂ ਲੋੜਾਂ ਲਈ ਚੋਣ ਕਰਦੇ ਸਮੇਂ ਵੀ ਵਾਤਾਵਰਨ ਸੰਬੰਧੀ ਨਿਰਣੇ ਲੈ ਸਕਦੇ ਹਾਂ। ਇਹ ਕਰਨ ਲਈ ਸਾਨੂੰ ਸਮਝਣ ਦੀ ਲੋੜ ਹੈ ਕਿ ਸਾਡੀ ਚੋਣ ਤੋਂ ਵਾਤਾਵਰਨ ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈ ਸਕਦਾ ਹੈ, ਇਹ ਪ੍ਰਭਾਵ ਤਤਕਾਲੀ, ਲੰਬੇ ਸਮੇਂ ਦੇ ਜਾਂ ਸਦਾ ਲਈ ਹੋ ਸਕਦੇ ਹਨ।ਦੀਰਘਕਾਲੀਨ ਜਾਂ ਟਿਕਾਊ ਵਿਕਾਸ ਦੀ ਧਾਰਨਾ ਮਨੁੱਖ ਦੀਆਂ ਵਰਤਮਾਨ ਮੁਢਲੀਆਂ ਲੋੜਾਂ ਦੀ ਪੂਰਤੀ ਅਤੇ ਵਿਕਾਸ ਨੂੰ ਉਤਸ਼ਾਹਿਤ ਤਾਂ ਕਰਦੀ ਹੀ ਹੈ, ਨਾਲ ਹੀ ਅਗਲੀਆਂ ਪੀੜ੍ਹੀਆਂ ਲਈ ਸਾਧਨਾਂ ਨੂੰ ਸੁਰੱਖਿਅਤ ਵੀ ਕਰਦੀ ਹੈ।ਆਰਥਿਕ ਵਿਕਾਸ ਵਾਤਾਵਰਨ ਦੀ ਸਾਂਭ-ਸੰਭਾਲ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। ਇਸ ਲਈ ਦੀਰਘਕਾਲੀਨ ਵਿਕਾਸ ਨਾਲ ਜੀਵਨ ਦੇ ਸਾਰੇ ਪੱਖਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਆਉਂਦਾ ਹੈ। ਇਹ ਲੋਕਾਂ ਉੱਤੇ ਨਿਰਭਰ ਹੈ ਕਿ ਉਹ ਆਪਣੇ ਚਾਰੇ ਪਾਸੇ ਦੀਆਂ ਆਰਥਿਕ, ਸਮਾਜਿਕ ਅਤੇ ਵਾਤਾਵਰਨੀ ਸਥਿਤੀਆਂ ਪ੍ਰਤੀ ਆਪਣੇ ਦ੍ਸ਼ਿਟੀਕੋਣ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਣ ਅਤੇ ਹਰ ਇੱਕ ਵਿਅਕਤੀ ਨੂੰ ਕੁਦਰਤ ਦੇ ਸਾਧਨਾਂ ਦੇ ਵਰਤਮਾਨ ਉਪਯੋਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਈ ਤਿਆਰ ਰਹਿਣਾ ਹੋਵੇਗਾ।

ਕਿਰਿਆ 16.4

- ਕੀ ਤੁਸੀਂ ਕਈ ਸਾਲਾਂ ਪਿੱਛੋਂ ਕਿਸੇ ਪਿੰਡ ਜਾਂ ਸ਼ਹਿਰ ਵਿੱਚ ਗਏ ਹੋ? ਜੇਕਰ ਹਾਂ, ਤਾਂ ਕੀ
 ਪਿਛਲੀ ਵਾਰ ਦੇ ਟਾਕਰੇ ਵਿੱਚ ਨਵੇਂ ਘਰ ਅਤੇ ਸੜਕਾਂ ਬਣ ਗਈਆਂ ਹਨ? ਤੁਹਾਡੇ
 ਵਿਚਾਰ ਵਿੱਚ ਇਹਨਾਂ ਨੂੰ ਬਨਾਉਣ ਲਈ ਲੌੜੀਂਦੀਆਂ ਵਸਤੂਆਂ ਕਿੱਥੋਂ ਪ੍ਰਾਪਤ ਹੋਣਗੀਆਂ?
- ਉਹਨਾਂ ਵਸਤੂਆਂ/ਪਦਾਰਥਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਅਤੇ ਉਹਨਾਂ ਦੇ ਸ਼੍ਰੋਤਾਂ ਦਾ ਵੀ ਪਤਾ ਕਰੋ।
- ਇਸ ਬਾਰੇ ਆਪਣੇ ਸਹਿਪਾਠੀਆਂ ਨਾਲ ਚਰਚਾ ਕਰੋ ਕੀ ਤੁਸੀਂ ਅਜਿਹੇ ਉਪਾਏ ਸੁਝਾਅ ਸਕਦੇ ਹੋ ਜਿਸ ਨਾਲ ਇਹਨਾਂ ਵਸਤੂਆਂ ਦੋ ਉਪਯੋਗ ਵਿੱਚ ਕਮੀ ਲਿਆਂਦੀ ਜਾ ਸਕੇ?

16.1 ਸਾਨੂੰ ਸਾਧਨਾਂ ਦੇ ਪਬੰਧ ਦੀ ਕਿਉਂ ਜ਼ਰੂਰਤ ਹੈ?

ਕੇਵਲ ਸੜਕਾਂ ਅਤੇ ਇਮਾਰਤਾਂ ਹੀ ਨਹੀਂ ਸਗੋਂ ਉਹ ਸਾਰੀਆਂ ਵਸਤਾਂ ਜਿਨ੍ਹਾਂ ਦੀ ਅਸੀਂ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਜਿਵੇਂ –ਭੋਜਨ, ਕੱਪੜੇ, ਪੁਸਤਕਾਂ, ਫਰਨੀਚਰ, ਔਜ਼ਾਰ ਅਤੇ ਵਾਹਨ ਆਦਿ ਸਾਰੇ ਹੀ ਸਾਨੂੰ ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਉਪਲਬੱਧ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਸਾਨੂੰ ਕੇਵਲ ਇੱਕ ਹੀ ਵਸਤੂ ਪ੍ਰਿਥਵੀ ਦੇ ਬਾਹਰੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, ਉਹ ਹੈ ਊਰਜਾ, ਜੋ ਸਾਨੂੰ ਸੂਰਜ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਊਰਜਾ ਵੀ ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਮੌਜੂਦ ਜੀਵਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਵੱਲੋਂ ਕੀਤੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਹੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

ਸਾਨੂੰ ਆਪਣੇ ਸਾਧਨਾਂ ਦੀ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਵਰਤੋਂ ਦੀ ਕਿਉਂ ਲੋੜ ਹੈ? ਕਿਉਂਕਿ ਇਹ ਸਾਧਨ ਅਸੀਮਤ ਨਹੀਂ ਹਨ ਅਤੇ ਸਿਹਤ ਸੇਵਾਵਾਂ ਵਿੱਚ ਸੁਧਾਰ ਆਉਣ ਦੇ ਕਾਰਨ ਸਾਡੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ।ਜਨਸੰਖਿਆ ਵਿੱਚ ਵਾਧੇ ਦੇ ਕਾਰਨ ਸਾਡੇ ਜਨਸੰਖਿਆ ਵਿੱਚ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ।ਜਨਸੰਖਿਆ ਵਿੱਚ ਵਾਧੇ ਦੇ ਕਾਰਨ ਸਾਰੇ ਸਾਧਨਾਂ ਦੀ ਮੰਗ ਵੀ ਕਈ ਗੁਣਾ ਤੇਜ਼ੀ ਨਾਲ ਵਧੀ ਹੈ।ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦਾ ਪ੍ਰਬੰਧ ਕਰਦੇ ਸਮੇਂ ਲੰਬੇ ਸਮੇਂ ਦੇ ਦ੍ਰਿਸ਼ਟੀ ਕੋਣ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਹੋਵੇਗਾ ਤਾਂ ਕਿ ਇਹ ਅਗਲੀਆਂ ਕਈ ਪੀੜ੍ਹੀਆਂ ਤੱਕ ਉਪਲਬੱਧ ਹੋ ਸਕਣ।ਸਾਧਨਾਂ ਦੇ ਪ੍ਰਬੰਧ ਤੋਂ ਭਾਵ ਇਹਨਾਂ ਦੀ ਵਰਤੋਂ ਜਾਂ ਸ਼ੋਸ਼ਣ ਨਹੀਂ ਹੈ, ਇਸ ਪ੍ਰਬੰਧ ਵਿੱਚ ਇਸ ਗੱਲ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਦੀ ਲੋੜ ਹੈ ਕਿ ਇਹਨਾਂ ਦਾ ਵਿਤਰਨ ਸਾਰੇ ਵਰਗਾਂ ਵਿੱਚ ਸਮਾਨ ਰੂਪ ਨਾਲ ਹੋਵੇ ਨਾ ਕਿ ਸਿਰਫ਼ ਮੁੱਠੀ ਭਰ ਅਮੀਰ ਅਤੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਲੋਕਾਂ ਨੂੰ ਹੀ ਇਹਨਾਂ ਦਾ ਲਾਭ ਮਿਲੇ।

ਇੱਕ ਹੋਰ ਪੱਖ ਜਿਸ ਉਤੇ ਧਿਆਨ ਦੇਣ ਦੀ ਲੋੜ ਹੈ ਉਹ ਇਹ ਕਿ ਇਹਨਾਂ ਸਾਧਨਾਂ ਦੀ ਉਤਪੱਤੀ ਜਾਂ ਵਰਤੋਂ ਕਰਦੇ ਸਮੇਂ ਵਾਤਾਵਰਨ ਨੂੰ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਬਾਰੇ ਧਿਆਨ ਦਿੱਤਾ ਜਾਵੇ।ਉਦਾਹਰਣ ਵਜੋਂ ਖਾਨਾਂ ਪੁੱਟਣ ਨਾਲ ਪ੍ਰਦੂਸ਼ਣ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਧਾਤਾਂ ਦੇ ਨਿਸ਼ਕਰਸ਼ਨ ਦੇ ਨਾਲ∹ਨਾਲ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਧਾਤਮੈਲ ਵੀ ਨਿਕਲਦੀ ਹੈ ਜਿਸਨੂੰ ਵਾਤਾਵਰਨ ਵਿੱਚ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ।ਇਸ ਲਈ ਦੀਰਘਕਾਲੀਨ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦੇ ਪ੍ਰਬੰਧ ਵਿੱਚ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਦੇ ਸੁਰੱਖਿਅਤ ਨਿਪਟਾਰੇ ਦੀ ਵੀ ਵਿਵਸਥਾ ਲਈ ਵੀ ਸੋਚਣਾ ਚਾਹੀਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਵਾਤਾਵਰਨ ਪੱਖੀ ਬਣਨ ਲਈ ਤੁਸੀਂ ਆਪਣੀਆਂ ਆਦਤਾਂ ਵਿੱਚ ਕਿਹੜੇ ਪਰਿਵਰਤਨ ਲਿਆ ਸਕਦੇ ਹੋ?
- 2. ਸਾਧਨਾਂ ਦੀ ਵਰਤੋਂ ਲਈ ਲਘੂ-ਕਾਲੀਨ ਉਦੇਸ਼ ਦੇ ਕੀ ਲਾਭ ਹੋ ਸਕਦੇ ਹਨ?
- 3. ਇਹ ਲਾਭ ਦੀਰਘਕਾਲੀਨ ਉਦੇਸ਼ਾਂ ਦੇ ਲਾਭਾਂ ਤੋਂ ਕਿਸ ਪ੍ਰਕਾਰ ਭਿੰਨ ਹਨ?
- 4. ਕੀ ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਸਾਧਨਾਂ ਦੀ ਵੰਡ ਬਰਾਬਰ ਮਾਤਰਾ ਵਿੱਚ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ? ਸਾਧਨਾਂ ਦੀ ਬਰਾਬਰ ਮਾਤਰਾ ਵਿੱਚ ਵੰਡ ਦੇ ਵਿਰੁੱਧ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਤਾਕਤਾਂ ਕੰਮ ਕਰ ਸਕਦੀਆਂ ਹਨ?

16.2 ਜੰਗਲ ਅਤੇ ਜੰਗਲੀ ਜੀਵਨ (Forests and Wild life) ਜੰਗਲ 'ਜੀਵ ਵਿਭਿਨਤਾ ਦੇ ਵਿਸ਼ੇਸ਼ ਸਥਲ' (Hotspots) ਹਨ। ਜੀਵ ਵਿਭਿਨਤਾ ਦਾ ਇੱਕ ਆਧਾਰ ਉਸ ਖੇਤਰ ਵਿੱਚ ਪਾਈਆ ਜਾਣ ਵਾਲੀਆਂ ਭਿੰਨ ਪ੍ਰਜਾਤੀਆਂ ਦੀ ਸੰਖਿਆ ਹੈ। ਜੀਵਾਂ ਦੇ ਭਿੰਨ ਸਰੂਪ (ਜੀਵਾਣੂ, ਉੱਲੀ, ਫਰਨ, ਫੁੱਲਦਾਰ ਪੌਦੇ, ਨੀਮੇਟੋਡਜ਼, ਕੀਟ, ਪੰਛੀ, ਗੋਂਗਣ ਵਾਲੇ ਜੀਵ ਆਦਿ) ਵੀ ਮਹੱਤਵਪੂਰਨ ਹਨ। ਵਿਰਸੇ ਵਿੱਚ ਪ੍ਰਾਪਤ ਜੀਵ ਵਿਭਿਨੰਤਾ ਨੂੰ ਸੁਰੱਖਿਅਤ ਕਰਨ ਦਾ ਯਤਨ ਕੁਦਰਤੀ ਸੁਰੱਖਿਅਕ ਦੇ ਮੁੱਖ ਉਦੇਸ਼ਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ। ਪ੍ਰਯੋਗਾਂ ਅਤੇ ਖੇਤਰੀ ਅਧਿਐਨਾਂ ਤੋਂ ਸਾਨੂੰ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਵਿਭਿਨੰਤਾ ਦੇ ਨਸ਼ਟ ਹੋਣ ਨਾਲ ਵਾਤਾਵਰਨਿਕ ਸਥਿਰਤਾ ਵੀ ਨਸ਼ਟ ਹੋ ਸਕਦੀ ਹੈ।

ਕਿਰਿਆ 16.5

ਜੰਗਲ ਦੇ ਜਿਨ੍ਹਾਂ ਉਤਪਾਦਾਂ ਦੀ ਤੁਸੀਂ ਵਰਤੋਂ ਕਰਦੇ ਹੋ ਉਹਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ। ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਜੰਗਲ ਦੇ ਨੇੜੇ ਰਹਿਣ ਵਾਲਾ ਵਿਅਕਤੀ ਕਿਹੜੀਆਂ ਵਸਤੂਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੋਵੇਗਾ?

ਜੰਗਲ ਦੇ ਵਿੱਚ ਰਹਿਣ ਵਾਲਾ ਵਿਅਕਤੀ ਕਿਹੜੀਆਂ ਵਸਤੂਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੋਵੇਗਾ? ਆਪਣੇ ਸਹਿਪਾਠੀਆਂ ਦੇ ਨਾਲ ਚਰਚਾ ਕਰੋ ਕਿ ਉਪਰੋਕਤ ਵਿਅਕਤੀਆਂ ਦੀਆਂ ਲੋੜਾਂ ਵਿੱਚ ਕੀ ਕੋਈ ਅੰਤਰ ਹੈ ਜੇ ਕੋਈ ਅੰਤਰ ਨਹੀਂ ਹੈ ਅਤੇ ਇਸ ਦੇ ਕਾਰਨਾਂ ਦਾ ਵੀ ਪਤਾ ਕਰੋ।

16.2.1 ਸਟੇਕਹੋਲਡਰ (ਦਾਵੇਦਾਰ)

ਅਸੀਂ ਸਾਰੇ ਜੰਗਲ ਦੇ ਭਿੰਨ ਭਿੰਨ ਉਤਪਾਦਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਾਂ ਪ੍ਰੰਤੂ ਜੰਗਲੀ ਸਾਧਨਾਂ ਉੱਪਰ ਸਾਡੀ ਨਿਰਭਰਤਾ ਵਿੱਚ ਅੰਤਰ ਹੈ। ਸਾਡੇ ਵਿੱਚੋਂ ਕੁੱਝ ਲੋਕਾਂ ਕੋਲ ਬਦਲਵੇਂ ਪ੍ਰਬੰਧਾਂ ਲਈ ਪਹੁੰਚ ਹੁੰਦੀ ਹੈ। ਵਿਕਲਪ ਹਨ। ਪਰ ਕੁੱਝ ਕੋਲ ਨਹੀਂ। ਜਦੋਂ ਅਸੀਂ ਜੰਗਲ ਦੀ ਸੁਰੱਖਿਆ ਦੀ ਗੱਲ ਕਰਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਇਹ ਵੀ ਸੋਚਣਾ ਹੋਵੇਗਾ ਕਿ ਇਸ ਦੇ ਦਾਵੇਦਾਰ ਕੌਣ ਹਨ: -

- (i) ਜੰਗਲ ਵਿੱਚ ਅਤੇ ਇਸ ਦੇ ਨੇੜੇ ਰਹਿਣ ਵਾਲੇ ਲੋਕ ਆਪਣੀਆਂ ਅਨੇਕਾਂ ਲੋੜਾਂ ਲਈ ਜੰਗਲ ਉੱਤੇ ਨਿਰਭਰ ਰਹਿੰਦੇ ਹਨ।
- (ii) ਸਰਕਾਰ ਦਾ ਜੰਗਲਾਤ ਵਿਭਾਗ ਜੰਗਲ ਦੀ ਜ਼ਮੀਨ ਜਿਸਦੀ ਹੈ ਅਤੇ ਉਹ ਜੰਗਲਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਸਾਧਨਾਂ ਉੱਤੇ ਨਿਯੰਤਰਨ ਰੱਖਦਾ ਹੈ।
- (iii) ਉਹ ਉਦਯੋਗਪਤੀ ਜੋ ਤੇਂਦੂ ਪੱਤਿਆਂ ਦੀ ਵਰਤੋਂ ਬੀੜੀ ਬਣਾਉਣ ਲਈ ਕਰਦੇ ਹਨ, ਕਾਗਜ਼ ਮਿੱਲ ਦੇ ਮਾਲਕ ਜੋ ਭਿੰਨ-ਭਿੰਨ ਜੰਗਲੀ ਉਤਪਾਦਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ਪਰ ਉਹ ਜੰਗਲਾਂ ਦੇ ਕਿਸੀ ਵੀ ਇੱਕ ਖੇਤਰ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੇ।

(iv) ਜੰਗਲੀ ਜੀਵਨ ਅਤੇ ਕੁਦਰਤਾ ਪ੍ਰੇਮੀ ਜੋ ਪ੍ਰਕਿਰਤੀ ਦਾ ਸੁਰੱਖਿਅਣ ਇਸ ਦੀ ਮੁਢਲੀ ਅਵੱਸਥਾ ਵਾਂਗ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਨ।

ਆਓ ਵੇਖੀਏ ਕਿ ਜੰਗਲ ਤੋਂ ਉਪਰੋਕਤ ਹਰ ਸਮੂਹ ਦੀਆਂ ਕੀ ਲੋੜਾਂ ਪੂਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਸਥਾਨਕ ਲੋਕਾਂ ਨੂੰ ਬਾਲਣ ਦੇ ਲਈ ਜਲਣਯੋਗ ਛੋਟੀਆਂ ਲੱਕੜੀਆਂ ਅਤੇ ਛੱਪਰਾਂ ਲਈ ਲੱਕੜੀਆਂ ਦੀ ਕਾਫ਼ੀ ਮਾਤਰਾ ਵਿੱਚ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਬਾਂਸ ਦਾ ਉਪਯੋਗ ਝੌਂਪੜੀਆਂ ਬਣਾਉਣ, ਭੋਜਨ ਇਕੱਤਰ

ਕਰਨ, ਖੇਤੀ ਦੇ ਸੈਦ, ਮੱਛੀਆਂ ਪਕੜਣ ਅਤੇ ਸ਼ਿਕਾਰ ਕਰਨ ਵਾਲੇ ਔਜ਼ਾਰ ਮੁੱਖ ਤੌਰ ਤੇ ਲੱਕੜੀ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਜੰਗਲ ਮੱਛੀ ਪਕੜਣ ਅਤੇ ਸ਼ਿਕਾਰ ਸਥਲ ਵੀ ਹੁੰਦੇ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਵੱਖ-ਵੱਖ ਮਨੁੱਖ ਫਲ, ਨਟਸ, ਸੁੱਕੇ ਮੇਵੇ ਅਤੇ ਦਵਾਈਆਂ ਇੱਕਠਾ ਕਰਨ ਦੇ ਨਾਲ-ਨਾਲ ਆਪਣੇ ਪਸ਼ੂਆਂ ਨੂੰ ਜੰਗਲ ਵਿੱਚ ਚਰਾਉਂਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦਾ ਚਾਰਾ ਜੰਗਲਾਂ ਤੋਂ ਇਕੱਠਾ ਕਰਦੇ ਹਨ।

ਕੀ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋ ਕਿ ਜੰਗਲਾਂ ਦੇ ਸਾਧਨਾਂ ਦੀ ਇਸ ਤਰ੍ਹਾਂ ਵਰਤੋਂ ਕਰਨ ਨਾਲ ਇਹ ਸਾਧਨ ਖਤਮ ਹੋ ਜਾਣਗੇ? ਇਹ ਨਾ ਭੁੱਲੋਂ ਕਿ ਅੰਗਰੇਜ਼ਾਂ ਦੇ ਭਾਰਤ ਆਉਣ ਤੋਂ ਪਹਿਲਾਂ ਲੋਕ ਇਹਨਾਂ ਜੰਗਲਾਂ ਵਿੱਚ ਸਦੀਆਂ ਤੋਂ ਰਹਿ ਰਹੇ ਸਨ।ਅੰਗਰੇਜ਼ਾਂ ਨੇ ਜੰਗਲਾਂ ਦਾ ਨਿਯੰਤਰਨ ਆਪਣੇ ਹੱਥਾਂ ਵਿੱਚ ਲੈ ਲਿਆ। ਉਹਨਾਂ ਤੋਂ ਪਹਿਲਾਂ ਇੱਥੋਂ ਦੇ ਮੂਲ

ਚਿਤਰ 16.2 ਜੰਗਲੀ ਜੀਵਨ ਦਾ ਇੱਕ ਦ੍ਰਿਸ਼

ਨਿਵਾਸੀਆਂ ਨੇ ਅਜਿਹੀਆਂ ਵਿਧੀਆਂ ਦਾ ਵਿਕਾਸ ਕੀਤਾ ਜਿਸ ਨਾਲ ਸੰਧੋਸ਼ਨ ਵੀ ਹੁੰਦਾ ਰਹੇ। ਅੰਗਰੇਜ਼ਾਂ ਨੇ ਨਾ ਕੇਵਲ ਜੰਗਲਾਂ ਉੱਤੇ ਅਧਿਕਾਰ ਜਮਾਇਆ ਸਗੋਂ ਆਪਣੇ ਸੁਆਰਥਾਂ ਲਈ ਉਹਨਾਂ ਦਾ ਬੇਰਹਿਮੀ ਨਾਲ ਸ਼ੋਸ਼ਨ ਵੀ ਕੀਤਾ। ਇੱਥੋਂ ਦੇ ਮੂਲ ਨਿਵਾਸੀਆਂ ਨੂੰ ਇੱਕ ਸੀਮਤ ਖੇਤਰ ਵਿੱਚ ਰਹਿਣ ਲਈ ਮਜ਼ਬੂਰ ਕੀਤਾ ਗਿਆ ਅਤੇ ਜੰਗਲ ਸਾਧਨਾਂ ਦਾ ਕਿਸੇ ਸੀਮਾ ਤੱਕ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸ਼ੋਸ਼ਨ ਵੀ ਆਰੰਭ ਹੋ ਗਿਆ। ਸੁਤੰਤਰਤਾ ਤੋਂ ਪਿੱਛੋਂ ਜੰਗਲਾਤ ਵਿਭਾਗ ਨੇ ਅੰਗਰੇਜ਼ਾਂ ਤੋਂ ਜੰਗਲਾਂ ਦਾ ਨਿਯੰਤਰਨ ਤਾਂ ਆਪਣੇ ਹੱਥ ਵਿੱਚ ਲੈ ਲਿਆ ਪਰ ਪ੍ਬੰਧਕੀ ਵਿਵਹਾਰ ਵਿੱਚ ਸਥਾਨਿਕ ਲੋਕਾਂ ਦੀਆਂ ਲੋੜਾਂ ਅਤੇ ਗਿਆਨ ਦੀ ਅਣਦੇਖੀ ਹੁੰਦੀ ਰਹੀ। ਇਸ ਲਈ ਜੰਗਲਾਂ ਦੇ ਬਹੁਤ ਵੱਡੇ ਖੇਤਰ ਕੇਵਲ ਇੱਕ ਹੀ ਪ੍ਰਕਾਰ ਦੇ ਰੁੱਖਾਂ ਜਿਵੇਂ ਕਿ ਪਾਈਨ (ਚੀੜ) ਟੀਕ ਜਾਂ ਸਫੈਦੇ ਦੇ ਜੰਗਲਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਗਏ। ਇਹਨਾਂ ਰੁੱਖਾਂ ਨੂੰ ਉਗਾਉਣ ਲਈ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸਾਰੇ ਖੇਤਰ ਤੋਂ ਸਾਰੇ ਪੌਦਿਆਂ ਨੂੰ ਹਟਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਖੇਤਰ ਦੀ ਜੀਵ ਵਿਭਿੰਨਤਾ ਵੱਡੇ ਪੱਧਰ ਤੇ ਨਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਹੀ ਨਹੀਂ ਸਥਾਨਿਕ ਲੋਕਾਂ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਲੋੜਾਂ ਜਿਵੇਂ ਕਿ ਪਸ਼ੂਆਂ ਲਈ ਚਾਰਾ, ਦੁਆਈਆਂ ਵਾਲੀ ਬਨਸਪਤੀ, ਫਲ ਅਤੇ ਸੁਕੇ ਮੇਵੇ ਆਦਿ ਦੀ ਪੂਰਤੀ ਵੀ ਨਹੀਂ ਹੋ ਸਕੀ। ਇਸ ਪ੍ਕਾਰ ਦੇ ਦਰੱਖਤ ਲਗਾਉਣ ਨਾਲ ਉਦਯੋਗਾਂ ਨੂੰ ਲਾਭ ਮਿਲਿਆ ਜੋ ਜੰਗਲ ਵਿਭਾਗ ਨੂੰ ਵੱਡੀ ਆਮਦਨ ਦਾ ਮੁੱਖ ਸਰੋਤ ਬਣ ਗਏ।

ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਿੰਨੇ ਉਦਯੋਗ ਜੈਗਲੀ ਉਤਪਾਦਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ? ਟਿੰਬਰ (ਇਮਾਰਤੀ ਲੱਕੜੀ), ਕਾਗਜ਼, ਲਾਖ ਅਤੇ ਖੇਡਾਂ ਦੇ ਸਮਾਨ ਇਸ ਦੇ ਕੁੱਝ ਉਦਾਹਰਣ ਹਨ।

ਉਦਯੋਗ ਇਨ੍ਹਾਂ ਜੰਗਲਾਂ ਨੂੰ ਆਪਣੀਆਂ ਫੈਕਟਰੀਆਂ ਲਈ ਕੱਚੇ ਮਾਲ ਦਾ ਸਰੋਤ ਮਾਤਰ ਹੀ ਮੰਨਦੇ ਹਨ।ਸਵਾਰਥੀ ਲੋਕਾਂ ਦਾ ਇੱਕ ਵੱਡਾ ਗਰੁੱਪ ਸਰਕਾਰ ਤੋਂ ਉਦਯੋਗਾਂ ਲਈ ਕੱਚਾ ਮਾਲ ਬਹੁਤ

ਗਿਰਿਆ 16.6

ਕਿਸੇ ਵੀ ਦੋ ਅਜਿਹੇ ਜੰਗਲੀ ਉਤਪਾਦਾਂ ਦਾ ਪਤਾ ਕਰੋ ਜੋ ਕਿਸੇ ਉਦਯੋਗ ਦੇ ਆਧਾਰ ਹਨ।

ਚਰਚਾ ਕਰੋ ਕਿ ਇਹ ਉਦਯੋਗ ਲੈਬੇ ਸਮੇਂ ਤੱਕ ਜਾਰੀ ਰਹਿ ਸਕਦਾ ਹੈ? ਜਾਂ ਸਾਨੂੰ ਇਸ ਦੇ ਉਤਪਾਦਾਂ ਦੀ ਖਪਤ ਤੇ ਨਿਯੋਤਰਨ ਕਰਨ ਦੀ ਲੋੜ ਹੈ? ਘੱਟ ਮੁੱਲ ਤੇ ਪ੍ਰਾਪਤ ਕਰਨ ਵਿੱਚ ਲੱਗਾ ਰਹਿੰਦਾ ਹੈ ਕਿਉਂਕਿ ਸਥਾਨਕ ਨਿਵਾਸੀਆਂ ਤੋਂ ਉਲਟ ਇਹਨਾਂ ਵਿਅਕਤੀਆਂ ਦੀ ਪਹੁੰਚ ਸਰਕਾਰ ਵਿੱਚ ਕਾਫ਼ੀ ਉੱਪਰ ਤੱਕ ਹੁੰਦੀ ਹੈ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਇਸ ਖੇਤਰ ਦੇ ਦੀਰਘਕਾਲੀਨ ਵਿਕਾਸ ਵਿੱਚ ਕੋਈ ਰੁਚੀ ਨਹੀਂ ਹੁੰਦੀ।ਉਦਾਹਰਣ ਲਈ ਕਿਸੇ ਇੱਕ ਜੰਗਲ ਦੇ ਟੀਕ ਦੇ ਸਾਰੇ ਦਰਖਤਾਂ ਨੂੰ ਕੱਟਣ ਮਗਰੋਂ ਉਹ ਦੂਰ ਸਥਿਤ ਜੰਗਲਾਂ ਤੋਂ ਟੀਕ ਪ੍ਰਾਪਤ ਕਰਨ ਲੱਗਣਗੇ।ਉਹਨਾਂ ਨੂੰ ਇਸ ਗੱਲ ਵਿੱਚ ਕੋਈ ਦਿਲਚਸਪੀ ਨਹੀਂ ਕਿ ਉਹਨਾਂ ਦਾ ਉਦਯੋਗ ਅਜਿਹਾ ਪ੍ਰਬੰਧ ਵੀ ਕਰੇ ਜਿਸ ਨਾਲ ਉਹ ਸੰਸਾਧਨ ਅੱਗੇ ਆਉਣ ਵਾਲੀਆਂ ਪੀੜ੍ਹੀਆਂ ਨੂੰ ਵੀ ਉਪਲਬੱਧ ਹੋ ਸਕਣ।ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਲੋਕਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵਿਵਹਾਰ ਕਰਨ ਤੋਂ ਕਿਵੇਂ ਰੋਕਿਆ ਜਾ ਸਕਦਾ ਹੈ?

ਅੰਤ ਵਿੱਚ ਅਸੀਂ ਚਰਚਾ ਕਰਦੇ ਹਾਂ ਕੁਦਰਤ ਅਤੇ ਜੰਗਲੀ ਜੀਵਨ ਪ੍ਰੇਮੀਆਂ ਦੀ ਜੋ ਜੰਗਲ ਉੱਤੇ ਨਿਰਭਰ ਤਾਂ ਨਹੀਂ ਪਰ ਜੰਗਲਾਂ ਦੇ ਪ੍ਰਬੰਧ ਵਿੱਚ ਉਹਨਾਂ ਦੀ ਗੱਲ ਨੂੰ ਬਹੁਤ ਮਹੱਤਵ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਸੁਰੱਖਿਅਣ ਦਾ ਆਰੰਭ ਵੱਡੇ ਜੰਤੂਆਂ ਜਿਵੇਂ ਕਿ ਸ਼ੇਰ, ਚੀਤਾ, ਹਾਥੀ ਅਤੇ ਗੈਂਡਾ ਤੋਂ ਹੋਇਆ ਸੀ, ਹੁਣ ਉਹਨਾਂ ਨੇ ਸੰਪੂਰਨ ਜੀਵ ਵਿਭਿੰਨਤਾ ਨੂੰ ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਸੁਰੱਖਿਅਤ ਰੱਖਣ ਦੇ ਮਹੱਤਵ ਨੂੰ ਸਮਝ ਲਿਆ ਹੈ। ਪਰ ਕੀ ਸਾਨੂੰ ਅਜਿਹੇ ਵਿਅਕਤੀਆਂ ਨੂੰ ਲੋੜੀਂਦਾ ਮਹੱਤਵ ਨਹੀਂ ਦੇਣਾ ਚਾਹੀਦਾ ਜੋ ਜੰਗਲ ਸਿਸਟਮ ਦਾ ਭਾਗ ਬਣ ਗਏ ਹਨ? ਇਸ ਗੱਲ ਦੇ ਪ੍ਰਮਾਣ ਮਿਲਦੇ ਹਨ ਕਿ ਸਥਾਨਕ ਨਿਵਾਸੀ ਪਰੰਪਰਾ ਅਨੁਸਾਰ ਜੰਗਲਾਂ ਦੀ ਸੁਰੱਖਿਆ ਦਾ ਯਤਨ ਕਰ ਰਹੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਰਾਜਸਥਾਨ ਦੇ ਬਿਸ਼ਨੋਈ ਸਮੁਦਾਇ ਲਈ ਜੰਗਲ ਅਤੇ ਜੰਗਲੀ ਪ੍ਰਾਣੀਆਂ ਦਾ ਸੁਰੱਖਿਅਣ ਉਹਨਾਂ ਦੇ ਧਾਰਮਿਕ ਵਿਸ਼ਵਾਸ ਦਾ ਹਿੱਸਾ ਹੈ। ਭਾਰਤ ਸਰਕਾਰ ਨੇ ਪਿਛਲੇ ਦਿਨਾਂ ਵਿੱਚ ਜੀਵ ਸੁਰੱਖਿਅਣ ਹਿੱਤ ਅਮਰਿਤਾ ਦੇਵੀ ਬਿਸ਼ਨੋਈ ਰਾਸ਼ਟਰੀ ਪੁਰਸਕਾਰ ਦੀ ਸ਼ੁਰੂਆਤ ਕੀਤੀ ਹੈ। ਇਹ ਪੁਰਸਕਾਰ ਅਮਰਿਤਾ ਦੇਵੀ ਬਿਸ਼ਨੋਈ ਦੀ ਯਾਦ ਵਿੱਚ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੇ ਸੰਨ 1731 ਵਿੱਚ ਰਾਜਸਥਾਨ ਦੇ ਜੇਧਪੁਰ ਨੇੜੇ ਖੇਜ਼ਰਾਲੀ ਪਿੰਡ ਵਿੱਚ ਖੇਜਰੀ ਰੱਖਾਂ ਨੂੰ ਬਚਾਉਣ ਹਿੱਤ 363 ਲੋਕਾਂ ਸਮੇਤ ਆਪਣੇ ਆਪ ਨੂੰ ਬਲੀਦਾਨ ਕਰ ਦਿੱਤਾ ਸੀ।

ਅਧਿਐਨ ਨਾਲ ਇਹ ਗੱਲ ਸਪੱਸ਼ਟ ਹੋ ਗਈ ਹੈ ਕਿ ਜੰਗਲਾਂ ਦੇ ਉਪਯੋਗ ਦੇ ਪਰੰਪਰਾਗਤ ਢੰਗਾਂ ਦੇ ਵਿਰੁੱਧ ਪੱਖਪਾਤ ਦਾ ਕੋਈ ਠੋਸ ਆਧਾਰ ਨਹੀਂ ਹੈ।ਉਦਾਹਰਣ ਲਈ ਵਿਸ਼ਾਲ ਹਿਮਾਲਿਆ ਰਾਸ਼ਟਰੀ ਪਾਰਕ ਦੇ ਸੁਰੱਖਿਅਤ ਖੇਤਰ ਵਿੱਚ ਐਲਪਾਈਨ ਦੇ ਜੰਗਲ ਹਨ ਜੋ ਭੇਡਾਂ ਦੇ ਚਰਾਗਾਹ ਸਨ। ਖਾਨਾਬਦੋਸ਼ ਚਰਵਾਹੇ ਹਰ ਸਾਲ ਗਰਮੀ ਦੇ ਮੌਸਮ ਵਿੱਚ ਆਪਣੀਆਂ ਭੇਡਾਂ ਘਾਟੀ ਤੋਂ ਇਸ ਖੇਤਰ ਵਿੱਚ ਚਰਾਉਣ ਲਈ ਲੈ ਜਾਂਦੇ ਸਨ ਪਰ ਇਸ ਰਾਸ਼ਟਰੀ ਪਾਰਕ ਦੀ ਸਥਾਪਨਾ ਉਪਰੰਤ ਇਸ ਪਰੰਪਰਾ ਨੂੰ ਰੋਕ ਦਿੱਤਾ ਗਿਆ।ਹੁਣ ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਭੇਡਾਂ ਵਲੋਂ ਨਿਯਮਿਤ ਤੌਰ ਤੇ ਘਾਹ ਨਾ ਚਰਨ ਕਾਰਣ ਪਹਿਲਾਂ ਤਾਂ ਇੱਥੇ ਘਾਹ ਬਹੁਤ ਲੰਬੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਫਿਰ ਲੰਬਾਈ ਕਾਰਨ ਜ਼ਮੀਨ ਉੱਤੇ ਗਿਰ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨਾਲ ਨਵੀਂ ਘਾਹ ਦੀ ਵ੍ਰਿਧੀ ਰੁਕ ਜਾਂਦੀ ਹੈ।ਸੁਰੱਖਿਅਤ ਖੇਤਰਾਂ ਵਿੱਚ ਸਥਾਨਿਕ ਨਿਵਾਸੀਆਂ ਨੂੰ ਬਲ ਨਾਲ ਰੋਕਣ ਦੀ ਨੀਤੀ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਸਫਲ ਨਾ ਹੋ ਸਕੀ। ਕਿਸੀ ਵੀ ਹਾਲਤ ਵਿੱਚ ਜੰਗਲਾਂ ਨੂੰ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਲਈ ਕੇਵਲ ਸਥਾਨਿਕ ਨਿਵਾਸੀਆਂ ਨੂੰ ਹੀ ਉੱਤਰਦਾਈ ਠਹਿਰਾਉਣਾ ਠੀਕ ਨਹੀਂ ਹੈ।ਅਸੀਂ ਉਦਯੋਗਿਕ ਲੋੜ ਅਤੇ ਵਿਕਾਸ ਯੋਜਨਾਵਾਂ ਜਿਵੇਂ ਕਿ ਸੜਕ ਜਾਂ ਬੰਨ੍ਹ ਨਿਰਮਾਣ ਨਾਲ ਜੰਗਲਾਂ ਦੇ ਵਿਨਾਸ਼ ਜਾਂ ਇਸ ਨੂੰ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਤੋਂ ਅੱਖਾਂ ਬੰਦ ਨਹੀਂ ਕਰ ਸਕਦੇ।ਇਹਨਾਂ ਸੁਰੱਖਿਅਤ ਖੇਤਰਾਂ ਵਿੱਚ ਸੈਲਾਨੀਆਂ ਦੁਆਰਾ ਜਾਂ ਉਹਨਾਂ ਦੀ ਸੁਵਿਧਾ ਲਈ ਕੀਤੇ ਗਏ ਪ੍ਰਬੰਧਾਂ ਤੋਂ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਬਾਰੇ ਵੀ ਵਿਚਾਰ ਕਰਨਾ ਹੋਵੇਗਾ।

ਸਾਨੂੰ ਇਹ ਮੰਨਣਾ ਪਵੇਗਾ ਕਿ ਜੰਗਲਾਂ ਦੀ ਕੁਦਰਤੀ ਦਿੱਖ ਵਿੱਚ ਮਨੁੱਖ ਦਾ ਦਖ਼ਲ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੈ। ਸਾਨੂੰ ਕੁਦਰਤ ਵਿੱਚ ਇਸ ਮਨੁੱਖੀ ਦਖਲ ਦੀ ਸੀਮਾ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨਾ ਹੋਵੇਗਾ। ਜੰਗਲੀ ਸਾਧਨਾਂ ਦਾ ਉਪਯੋਗ ਇਸ ਪ੍ਰਕਾਰ ਕਰਨਾ ਹੋਵੇਗਾ ਜੋ ਵਾਤਾਵਰਨ ਅਤੇ ਵਿਕਾਸ ਦੋਵਾਂ ਦੇ ਹਿੱਤ ਵਿੱਚ ਹੋਵੇ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਜਦੋਂ ਵਾਤਾਵਰਨ ਤੇ ਜੰਗਲ ਸੁਰੱਖਿਅਤ ਕੀਤੇ ਜਾਣ ਤਾਂ ਉਹਨਾਂ ਦੇ ਨਿਯੰਤ੍ਰਿਤ ਉਪਯੋਗਾਂ ਦਾ ਲਾਭ ਸਥਾਨਿਕ ਨਿਵਾਸੀਆਂ ਨੂੰ ਵੀ ਮਿਲੇ। ਇਹ ਵਿਕੇਂਦਰੀਕਰਨ ਦੀ ਇੱਕ ਅਜਿਹੀ ਵਿਵਸਥਾ ਹੈ ਜਿਸ ਵਿੱਚ ਆਰਥਿਕ ਵਿਕਾਸ ਅਤੇ ਵਾਤਾਵਰਨ ਸੁਰੱਖਿਆ ਦੋਵੇਂ ਨਾਲ-ਨਾਲ ਚੱਲ ਸਕਦੇ ਹਨ। ਜਿਸ ਤਰ੍ਹਾਂ ਦਾ ਆਰਥਿਕ ਅਤੇ ਸਮਾਜਿਕ ਵਿਕਾਸ ਅਸੀਂ ਚਾਹੁੰਦੇ ਹਾਂ, ਉਸ ਤੋਂ ਹੀ ਇਹ ਨਿਰਧਾਰਿਤ ਹੋਵੇਗਾ ਕਿ ਉਸ ਨਾਲ ਵਾਤਾਵਰਨ ਦਾ ਸੁਰੱਖਿਅਣ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਇਸ ਦੀ ਹੋਰ ਹਾਨੀ ਹੋ ਰਹੀ ਹੈ। ਵਾਤਾਵਰਨ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਦਾ ਸਜਾਵਟੀ ਇੱਕਠ ਮਾਤਰ ਨਹੀਂ ਮੰਨਿਆ ਜਾ ਸਕਦਾ। ਇਹ ਇੱਕ ਜਟਿਲ ਵਿਵਸਥਾ ਹੈ ਜਿਸ ਤੋਂ ਸਾਨੂੰ ਉਪਯੋਗ ਹਿਤ ਅਨੇਕ ਤਰ੍ਹਾਂ ਦੇ ਕੁਦਰਤੀ ਸਾਧਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਸਾਨੂੰ ਆਪਣੇ ਆਰਥਿਕ ਅਤੇ ਸਮਾਜਿਕ ਵਿਕਾਸ ਦੀ ਪੂਰਤੀ ਹਿੱਤ ਇਨ੍ਹਾਂ ਸਾਧਨਾਂ ਦਾ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਉਪਯੋਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

16.2.2 ਦੀਰਘਕਾਲੀਨ ਪ੍ਰਬੰਧ (Sustainable Mangement)

ਸਾਨੂੰ ਇਸ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨਾ ਹੋਵੇਗਾ ਕਿ ਕੀ ਉਪਰੋਕਤ ਸਾਰੇ ਦਾਵੇਦਾਰਾਂ ਦੇ ਟੀਚੇ ਜੰਗਲ ਪ੍ਬੰਧ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਇੱਕੋ ਜਿਹੇ ਹਨ? ਵਧੇਰੇ ਕਰਕੇ ਉਦਯੋਗਾਂ ਨੂੰ ਜੰਗਲੀ ਸਾਧਨ ਬਾਜ਼ਾਰ ਦੇ ਮੁੱਲ ਤੋਂ ਬਹੁਤ ਘੱਟ ਮੁੱਲ ਤੇ ਉਪਲਬੱਧ ਕਰਾਏ ਜਾਂਦੇ ਹਨ ਜਦੋਂ ਕਿ ਸਥਾਨਕ ਨਿਵਾਸੀਆਂ ਨੂੰ ਉਹਨਾਂ ਤੋਂ ਵੰਚਿਤ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।'ਚਿਪਕੋ ਅੰਦੋਲਨ' ਸਥਾਨਿਕ ਨਿਵਾਸੀਆਂ ਨੂੰ ਜੰਗਲਾਂ ਤੋਂ ਵੱਖ ਕਰਨ ਦੀ ਨੀਤੀ ਦੇ ਖਾਤਮੇ ਲਈ ਇੱਕ ਛੋਟੀ ਜਿਹੀ ਕੋਸ਼ਿਸ ਦਾ ਹਿੱਸਾ ਸੀ।ਇਹ ਅੰਦੋਲਨ 1970 ਦੇ ਆਰੰਭਕ ਦਸ਼ਕ ਵਿੱਚ ਹਿਮਾਲਿਆ ਦੀ ਉੱਚੀ ਪਰਬਤ ਲੜੀ ਵਿੱਚ ਗੜ੍ਹਵਾਲ ਦੇ 'ਰੇਨੀ' ਨਾਂ ਦੇ ਪਿੰਡ ਵਿੱਚ ਇੱਕ ਘਟਨਾ ਤੋਂ ਅਰੰਭ ਹੋਇਆ ਸੀ।ਇਹ ਵਿਵਾਦ ਲੱਕੜੀ ਦੇ ਠੇਕੇਦਾਰ ਅਤੇ ਸਥਾਨਿਕ ਲੋਕਾਂ ਦੇ ਵਿੱਚ ਆਰੰਭ ਹੋਇਆ ਕਿਉਂਕਿ ਪਿੰਡ ਦੇ ਲਾਗੇ ਦੇ ਦਰੱਖਤ ਕੱਟਣ ਦਾ ਅਧਿਕਾਰ ਉਸ ਨੂੰ ਦੇ ਦਿੱਤਾ ਗਿਆ ਸੀ।ਇੱਕ ਨਿਸ਼ਚਿਤ ਦਿਨ ਠੇਕੇਦਾਰ ਦੇ ਆਦਮੀ ਦਰਖਤ ਕੱਟਣ ਲਈ ਆਏ ਜਦੋਂ ਉੱਥੋਂ ਦੇ ਪੁਰਸ਼ ਨਿਵਾਸੀ ਉੱਥੇ ਨਹੀਂ ਸਨ।ਬਿਨਾਂ ਕਿਸੇ ਡਰ ਦੇ ਉੱਥੋਂ ਦੀਆਂ ਇਸਤਰੀਆਂ ਫੌਰਨ ਉੱਥੇ ਪਹੁੰਚ ਗਈਆਂ ਅਤੇ ਉਹਨਾਂ ਨੇ ਦਰਖਤਾਂ ਨੂੰ ਆਪਣੀਆਂ ਬਾਹਵਾਂ ਵਿੱਚ ਭਰ ਕੇ (ਚਿਪਕ ਕੇ)ਠੇਕੇਦਾਰ ਦੇ ਆਦਮੀਆਂ ਨੂੰ ਦਰੱਖਤ ਕੱਟਣ ਤੋਂ ਰੋਕਿਆ।ਇਸ ਲਈ ਠੇਕੇਦਾਰ ਨੂੰ ਆਪਣਾ ਕੰਮ ਬੰਦ ਕਰਨਾ ਪਿਆ।

ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦੇ ਨਿਯੰਤਰਨ ਦੀ ਇਸ ਪ੍ਰਤਿਯੋਗਤਾ ਵਿੱਚ ਮੁੜ ਪੂਰਤੀ ਹੋਣ ਵਾਲੇ ਇਨ੍ਹਾਂ ਸਾਧਨਾਂ ਦਾ ਸੁਰੱਖਿਅਣ ਸੁਭਾਵਿਕ ਹੈ। ਇਸੀ ਉਦੇਸ਼ ਤੋਂ ਇਨ੍ਹਾਂ ਦੇ ਉਪਯੋਗ ਦੇ ਤਰੀਕੇ ਉੱਤੇ ਪ੍ਰਸ਼ਨ ਉਠਾਏ ਗਏ। ਲੱਕੜੀ ਦੇ ਠੇਕੇਦਾਰ ਨੇ ਉਸ ਖੇਤਰ ਦੇ ਸਾਰੇ ਦਰੱਖਤਾਂ ਨੂੰ ਕੱਟ ਕੇ ਗਿਰਾ ਦਿੱਤਾ ਹੁੰਦਾ ਅਤੇ ਖੇਤਰ ਸਦਾ ਲਈ ਦਰੱਖਤਹੀਣ ਹੋ ਜਾਂਦਾ। ਸਥਾਨਕ ਸਮੁਦਾਇ ਦਰਖਤਾਂ ਉੱਤੇ ਚੜ੍ਹ ਕੇ ਕੁੱਝ ਸ਼ਾਖ਼ਾਵਾਂ ਅਤੇ ਪੱਤੀਆਂ ਹੀ ਕੱਟਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸਮੇਂ ਦੇ ਨਾਲ ਉਹਨਾਂ ਦੀ ਪੂਰਤੀ ਵੀ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਚਿਪਕੋ ਅੰਦੋਲਨ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਬਹੁਤ ਸਾਰੇ ਸਮੁਦਾਇਆਂ ਵਿੱਚ ਫੈਲ ਗਿਆ ਅਤੇ ਜਨ- ਸੰਚਾਰ ਨੇ ਵੀ ਇਸ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਇਆ ਅਤੇ ਸਰਕਾਰ ਨੂੰ ਇਹ ਸੋਚਣ ਉੱਤੇ ਮਜ਼ਬੂਰ ਕਰ ਦਿੱਤਾ ਕਿ ਜੰਗਲ ਕਿਸਦੇ ਹਨ ਅਤੇ ਜੰਗਲੀ ਸਾਧਨਾਂ ਦੇ ਉੱਚਿਤ ਉਪਯੋਗ ਦੇ ਲਈ ਪਹਿਲ ਨਿਸ਼ਚਿਤ ਕਰਨ ਲਈ ਪੁਨਰ ਵਿਚਾਰ ਕਰਨ ਉੱਤੇ ਮਜ਼ਬੂਰ ਕਰ ਦਿੱਤਾ। ਲੋਕਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਅਨੁਭਵ ਨੇ ਸਿਖਾ ਦਿੱਤਾ ਕਿ ਜੰਗਲਾਂ ਦੇ ਵਿਨਾਸ਼ ਤੋਂ ਕੇਵਲ ਜੰਗਲ ਦੀ ਉਪਲਭਤਾ ਹੀ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦੀ ਸਗੋਂ ਮਿੱਟੀ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਜਲ ਸਰੋਤ ਵੀ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੇ ਹਨ। ਸਥਾਨਿਕ ਲੋਕਾਂ ਦੀ ਭਾਗੀਦਾਰੀ ਨਾਲ ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਜੰਗਲਾਂ ਦੇ ਪ੍ਰਬੰਧ ਦੀ ਕੁਸ਼ਲਤਾ ਵਧੇਗੀ।

ਜੰਗਲਾਂ ਦੇ ਪ੍ਰਬੰਧ ਵਿੱਚ ਲੋਕਾਂ ਦੀ ਸਾਂਝੇਦਾਰੀ ਦੀ ਇੱਕ ਉਦਾਹਰਣ

1972 ਵਿੱਚ ਪੱਛਮੀ ਬੰਗਾਲ ਦੇ ਜੰਗਲ ਵਿਭਾਗ ਨੂੰ ਰਾਜ ਦੇ ਦੱਖਣੀ-ਪੱਛਮੀ ਜ਼ਿਲ੍ਹਿਆਂ ਵਿੱਚ ਨਸ਼ਟ ਹੋਏ ਸਾਲ ਦੇ ਜੰਗਲਾਂ ਦੀ ਮੁੜ ਪੂਰਤੀ ਕਰਨ ਦੀ ਆਪਣੀ ਯੋਜਨਾ ਦੇ ਅਸਫਲ ਹੋਣ ਦੇ ਕਾਰਨ ਦਾ ਪਤਾ ਲੱਗਿਆ। ਚੌਕਸੀ ਦੀਆਂ ਪਰੰਪਰਾਗਤ ਵਿਧੀਆਂ ਅਤੇ ਪੁਲੀਸ ਦੀ ਕਾਰਵਾਈ ਕਾਰਨ ਸਥਾਨਿਕ ਲੋਕਾਂ ਅਤੇ ਪ੍ਰਸ਼ਾਸਨ ਵਿੱਚ ਬਹੁਤ ਦੂਰੀ ਪੈਦਾ ਹੋ ਗਈ ਜਿਸ ਦੇ ਕਾਰਨ ਜੰਗਲਾਤ ਮਹਿਕਮੇ ਦੇ ਕਰਮਚਾਰੀਆਂ ਅਤੇ ਪਿੰਡ ਵਾਸੀਆਂ ਵਿੱਚ ਅਕਸਰ ਝੜਪਾਂ ਹੋਣ ਲੱਗੀਆਂ। ਇਹਨਾਂ ਝਗੜਿਆਂ ਨੇ ਨਕਸਲੀ ਹਿੰਸਕ ਅੰਦੋਲਨਾਂ ਨੂੰ ਵੀ ਹੋਰ ਹਵਾ ਦਿੱਤੀ।

ਇਸ ਸਾਰੇ ਕੁਝ ਕਾਰਨ ਜੰਗਲਾਤ ਵਿਭਾਗ ਨੇ ਆਪੇ ਨੀਤੀ ਵਿੱਚ ਬਦਲਾਓ ਲਿਆਂਦਾ ਅਤੇ ਮਿਦਨਾਪੁਰ ਦੇ ਆਰਾਬਾੜੀ ਜੰਗਲ ਖੇਤਰ ਵਿੱਚ ਇੱਕ ਯੋਜਨਾ ਆਰੰਭ ਕੀਤੀ। ਇੱਥੇ ਜੰਗਲਾਤ ਵਿਭਾਗ ਦੇ ਇੱਕ ਦੂਰਦਰਸ਼ੀ ਅਧਿਕਾਰੀ ਏ. ਕੇ. ਬੈਨਰਜੀ ਨੇ ਪਿੰਡ ਵਾਸੀਆਂ ਨੂੰ ਆਪਣੀ ਯੋਜਨਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਕੀਤਾ ਅਤੇ ਉਹਨਾਂ ਦੇ ਸਹਿਯੋਗ ਨਾਲ ਬੁਰੀ ਤਰ੍ਹਾਂ ਨਾਲ ਬਰਬਾਦ ਸਾਲ ਦੇ ਜੰਗਲ ਦੇ 1272 ਹੇਕਟੇਅਰ ਖੇਤਰ ਦਾ ਸੁਰੱਖਿਅਣ ਕੀਤਾ।ਇਸ ਦੇ ਬਦਲੇ ਨਿਵਾਸੀਆਂ ਨੂੰ ਖੇਤਰ ਦੀ ਦੇਖ ਭਾਲ ਦੀ ਜ਼ੁੰਮੇਵਾਰੀ ਲਈ ਰੁਜ਼ਗਾਰ ਮਿਲਿਆ ਅਤੇ ਨਾਲ ਹੀ ਉਹਨਾਂ ਨੂੰ ਉੱਥੇ ਦੀ ਉਪਜ ਦੀ 25 ਪ੍ਰਤਿਸ਼ਤ ਉਪਯੋਗ ਦਾ ਅਧਿਕਾਰ ਵੀ ਮਿਲਿਆ ਅਤੇ ਬਹੁਤ ਘੱਟ ਮੁੱਲ ਉੱਤੇ ਬਾਲਣ ਲਈ ਲੱਕੜੀ ਅਤੇ ਪਸ਼ੂਆਂ ਨੂੰ ਚਰਾਉਣ ਦੀ ਆਗਿਆ ਵੀ ਦਿੱਤੀ ਗਈ। ਸਥਾਨਿਕ ਸਮੁਦਾਇ ਦੀ ਸਹਿਮਤੀ ਅਤੇ ਸਰਗਰਮ ਸਾਂਝੇਦਾਰੀ ਨਾਲ 1983 ਤੱਕ ਅਰਾਵਾੜੀ ਦਾ ਸਾਲ ਜੰਗਲ ਸਮਰਿੱਧ ਹੋ ਗਿਆ ਅਤੇ ਪਹਿਲੇ ਬੇਕਾਰ ਕਹੇ ਜਾਣ ਵਾਲੇ ਜੰਗਲ ਦਾ ਮੁੱਲ 12.5 ਕਰੋੜ ਪਿਆ।

ਕਿਰਿਆ 16.7

ਹੇਠ ਲਿਖਿਆਂ ਦੁਆਰਾ ਜੰਗਲਾਂ ਨੂੰ ਹੋਣ ਵਾਲੀ ਹਾਨੀ ਤੇ ਚਰਚਾ ਕਰੋ।

- ਰਾਸ਼ਟਰੀ ਪਾਰਕਾਂ ਵਿੱਚ ਸੈਰ ਸਪਾਟਾ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਆਰਾਮ ਘਰ (Rest house) ਦਾ ਨਿਰਮਾਣ ਕਰਨਾ।
- 2. ਰਾਸ਼ਟਰੀ ਪਾਰਕਾਂ ਵਿੱਚ ਪਾਲਤੂ ਪਸ਼ੂਆਂ ਨੂੰ ਚਰਾਉਣਾ।
- 3. ਸੈਰ ਸਪਾਟੇ ਕਰਨ ਵਾਲਿਆਂ ਦੁਆਰਾ ਪਲਾਸਟਿਕ ਬੋਤਲਾਂ, ਬੈਲੀਆਂ ਅਤੇ ਹੋਰ ਕਚਰੇ ਨੂੰ ਰਾਸ਼ਟਰੀ ਪਾਰਕਾਂ ਵਿੱਚ ਸੱਟਣਾ।

ਪਸ਼ਨ

- ਸਾਨੂੰ ਜੰਗਲਾਂ ਅਤੇ ਜੰਗਲੀ ਜੀਵਨ ਦਾ ਸੁਰੱਖਿਅਣ ਕਿਉਂ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ?
- ਜੰਗਲਾਂ ਅਤੇ ਜੰਗਲੀ ਜੀਵਨ ਦੀ ਸੁਰੱਖਿਆ ਲਈ ਕੁਝ ਉਪਾਅ ਸੁਝਾਓ।

?

16.3 ਸਭ ਲਈ ਪਾਣੀ (Water for all)

ਕਿਰਿਆ 16.8

ਮਹਾਰਾਸ਼ਟਰ ਦੇ ਇੱਕ ਪਿੰਡ ਵਿੱਚ ਪਾਣੀ ਦੀ ਕਮੀ ਦੀ ਲੰਮੇਂ-ਸਮੇਂ ਤੋਂ ਚਲੀ ਆ ਰਹੀ ਸਮੱਸਿਆ ਨਾਲ ਜੂਝ ਰਹੇ ਪੇਂਡੂ ਲੋਕ ਇੱਕ ਜਲੀ ਮਨੋਰੰਜਨ ਪਾਰਕ ਦਾ ਘਿਰਾਵ ਕਰ ਲੈਂਦੇ ਹਨ। ਇਸ ਉੱਤੇ ਚਰਚਾ ਕਰੋ ਕਿ ਕੀ ਇਹ ਉਪਲਬੱਧ ਪਾਣੀ ਦਾ ਉੱਚਿਤ ਉਪਯੋਗ ਹੈ?

ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਰਹਿਣ ਵਾਲੇ ਜੀਵਾਂ ਦੀ ਮੂਲ ਲੋੜ ਪਾਣੀ ਹੈ। ਅਸੀਂ ਜਮਾਤ 9 ਵਿੱਚ ਸਾਧਨ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਣੀ ਦੇ ਮਹੱਤਵ ਅਤੇ ਪਾਣੀ ਦੇ ਚੱਕਰ ਦੇ ਬਾਰੇ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਮਨੁੱਖ ਨੇ ਕਿਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਸਰੋਤਾਂ ਨੂੰ ਪ੍ਰਦੂਸ਼ਿਤ ਕੀਤਾ ਹੈ? ਮਨੁੱਖ ਨੇ ਕੁਦਰਤ ਵਿੱਚ ਦਖਲ ਦੇ ਕੇ ਅਨੇਕ ਖੇਤਰਾਂ ਵਿੱਚ ਪਾਣੀ ਦੀ ਉਪਲਬਧੀ ਵੀ ਪ੍ਰਭਾਵਿਤ ਕੀਤੀ ਹੈ।

ਕਿਰਿਆ 16.9

ਇੱਕ ਐਟਲਸ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਭਾਰਤ ਵਿੱਚ ਮੀਂਹ ਦੇ ਪੈੱਟ<mark>੍ਨ ਦਾ ਅਧਿਐਨ ਕਰੋ।</mark> ਅਜਿਹੇ ਖੇਤਰਾਂ ਦੀ ਪਹਿਚਾਣ ਕਰੋ ਜਿੱਥੋਂ ਪਾਣੀ ਦੀ ਬਹੁਤਾਤ ਹੈ ਜਾਂ ਅਜਿਹੇ ਖੇਤਰਾਂ ਜਿੱਥੇ ਪਾਣੀ ਦੀ ਬਹੁਤ ਕਮੀ ਹੈ।

ਉਪਰੋਕਤ ਕਿਰਿਆ ਦੇ ਪਿੱਛੋਂ ਤੁਹਾਨੂੰ ਜਾਣ ਕੇ ਹੈਰਾਨੀ ਹੋਵੇਗੀ ਕਿ ਪਾਣੀ ਦੀ ਕਮੀ ਵਾਲੇ ਖੇਤਰਾਂ ਅਤੇ ਵਧੇਰੇ ਗਰੀਬੀ ਵਾਲੇ ਖੇਤਰਾਂ ਦਾ ਆਪੋ ਵਿੱਚ ਗੂੜ੍ਹਾ ਸੰਬੰਧ ਹੈ।

ਵਰਖਾ ਦੇ ਪੈਟ੍ਨ ਦੇ ਅਧਿਐਨ ਨਾਲ ਭਾਰਤ ਦੇ ਭਿੰਨ ਭਿੰਨ ਖੇਤਰਾਂ ਵਿੱਚ ਪਾਣੀ ਦੀ ਉਪਲਬੱਧਤਾ ਬਾਰੇ ਪੂਰਾ ਸੱਚ ਸਾਹਮਣੇ ਨਹੀਂ ਆਉਂਦਾ। ਭਾਰਤ ਵਿੱਚ ਵਰਖਾ ਮੁੱਖ ਤੌਰ ਤੇ ਮਾਨਸੂਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਵਰਖਾਂ ਦੀ ਅਵਧੀ ਸਾਲ ਦੇ ਕੁੱਝ ਮਹੀਨਿਆਂ ਤੱਕ ਸੀਮਿਤ ਹੈ। ਕੁਦਰਤ ਵਿੱਚ ਮਾਨਸੂਨ ਦੀ ਚੰਗੀ ਮਾਤਰਾ ਹੋਣ ਦੇ ਬਾਵਜੂਦ ਵੀ ਭੂ-ਜਲ ਪੱਧਰ ਵਿੱਚ ਕਮੀ ਹੋਣ ਦਾ ਮੁੱਖ ਕਾਰਨ ਬਨਸਪਤੀ ਦਾ ਘਟ ਜਾਣਾ ਹੈ। ਫਸਲਾਂ ਲਈ ਪਾਣੀ ਦੀ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਦੀ ਮੰਗ, ਉਦਯੋਗਾਂ ਤੋਂ ਪਰਵਾਹਿਤ ਪ੍ਰਦੂਸ਼ਨ ਅਤੇ ਨਗਰਾਂ ਦੇ ਕੂੜੇ ਕਰਕਟ ਨੇ ਪਾਣੀ ਨੂੰ ਪ੍ਰਦੂਸ਼ਿਤ ਕਰਕੇ ਇਸ ਦੀ ਉਪਲਬੱਧਤਾ ਦੀ ਸਮੱਸਿਆ ਨੂੰ ਹੋਰ ਜ਼ਿਆਦਾ ਜਟਿਲ ਬਣਾ ਦਿੱਤਾ ਹੈ। ਬੰਨ੍ਹ, ਟੈਂਕ ਅਤੇ ਨਹਿਰਾਂ ਦਾ ਉਪਯੋਗ ਭਾਰਤ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਖੇਤਰਾਂ ਵਿੱਚ ਸਿੰਚਾਈ ਲਈ ਪ੍ਰਾਚੀਨ ਕਾਲ ਤੋਂ ਕੀਤਾ ਜਾਂਦਾ ਰਿਹਾ ਹੈ। ਪਹਿਲਾਂ ਇਹਨਾਂ ਤਕਨੀਕਾਂ ਦਾ ਉਪਯੋਗ ਸਥਾਨਕ ਲੋਕਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਰਿਹਾ ਹੈ। ਸਥਾਨਕ ਨਿਵਾਸੀ ਇਸ ਦਾ ਪ੍ਰਬੰਧ ਖੇਤੀ ਬਾੜੀ ਅਤੇ ਨਿੱਤ ਦੀਆਂ ਲੋੜਾਂ ਦੀ ਪੂਰਤੀ ਲਈ ਕਰਦੇ ਸਨ ਜਿਸ ਨਾਲ ਪਾਣੀ ਪੂਰੇ ਸਾਲ ਉਪਲਬੱਧ ਰਹਿੰਦਾ ਸੀ। ਭੰਡਾਰਿਤ ਕੀਤੇ ਇਸ ਪਾਣੀ ਦਾ ਨਿਯੰਤਰਣ ਭਲੀ ਪ੍ਕਾਰ ਕੀਤਾ ਜਾਂਦਾ ਸੀ ਅਤੇ ਪਾਣੀ ਦੀ ਉਪਲਬਧਤਾ ਅਨੁਸਾਰ ਅਨੁਭਵ ਦੇ ਆਧਾਰ ਤੇ ਫਸਲੀ ਚੱਕਰ ਅਪਣਾਏ ਜਾਂਦੇ ਸਨ। ਸਿੰਚਾਈ ਦੇ ਇਹਨਾਂ ਸਾਧਨਾਂ ਦਾ ਰੱਖ ਰਖਾਵ ਵੀ ਸਥਾਨਕ ਲੋਕਾਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਸੀ।

ਅੰਗਰੇਜ਼ਾਂ ਨੇ ਭਾਰਤ ਆ ਕੇ ਹੋਰ ਗੱਲਾਂ ਦੇ ਨਾਲ-ਨਾਲ ਇਸ ਪੱਧਤੀ ਨੂੰ ਵੀ ਬਦਲ ਦਿੱਤਾ। ਵੱਡੀਆਂ ਯੋਜਨਾਵਾਂ ਜਿਵੇਂ ਕਿ ਵਿਸ਼ਾਲ ਬੰਨ੍ਹ ਅਤੇ ਦੂਰ ਤੱਕ ਜਾਣ ਵਾਲੀਆਂ ਵੱਡੀਆਂ-ਵੱਡੀਆਂ ਨਹਿਰਾਂ ਨੂੰ ਪਹਿਲ ਦੇ ਆਧਾਰ ਤੇ ਅਰੰਭਿਆ ਗਿਆ ਕਾਰਜ ਵੀ ਅੰਗਰੇਜ਼ਾਂ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਜਿਸ ਨੂੰ ਸੁਤੰਤਰ ਹੋਣ ਤੋਂ ਬਾਅਦ ਸਾਡੀ ਸਰਕਾਰ ਨੇ ਵੀ ਪੂਰੇ ਜੋਸ਼ ਨਾਲ ਅਪਣਾਇਆ। ਇਹਨਾਂ ਵਿਸ਼ਾਲ ਯੋਜਨਾਵਾਂ ਕਾਰਨ ਸਿੰਚਾਈ ਦੇ ਸਥਾਨਿਕ ਤਰੀਕੇ ਘਟਦੇ ਗਏ ਅਤੇ ਸਰਕਾਰ ਹੌਲੇ-ਹੌਲੇ ਇਹਨਾਂ ਦਾ ਪ੍ਰਬੰਧ ਅਤੇ ਪ੍ਰਸਾਸ਼ਨ ਆਪਣੇ ਹੱਥਾਂ ਵਿੱਚ ਲੈਂਦੀ ਚਲੀ ਗਈ ਜਿਸ ਨਾਲ ਪਾਣੀ ਦੇ ਸਥਾਨਿਕ ਸਰੋਤਾਂ ਉੱਤੇ ਸਥਾਨਕ ਨਿਵਾਸੀਆਂ ਦਾ ਅਧਿਕਾਰ/ਨਿਯੰਤ੍ਣ ਸਮਾਪਤ ਹੋ ਗਿਆ।

ਹਿਮਾਚਲ ਪ੍ਰਦੇਸ਼ ਵਿੱਚ ਕੁਲ੍ਹ

ਲੱਗਪਗ 400 ਸਾਲ ਪੂਰਵ ਹਿਮਾਚਲ ਪ੍ਰਦੇਸ਼ ਦੇ ਕੁੱਝ ਖੇਤਰਾਂ ਵਿੱਚ ਨਹਿਰੀ ਸਿੰਚਾਈ ਦੀ ਸਥਾਨਕ ਪ੍ਰਣਾਲੀ ਦਾ ਵਿਕਾਸ ਹੋਇਆ। ਇਸ ਨੂੰ 'ਕੂਲ੍ਹ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਝਰਨਿਆਂ ਵਿੱਚ ਨਿਕਲਣ ਵਾਲੇ ਪਾਣੀ ਨੂੰ ਮਨੁੱਖ ਨਿਰਮਤ ਛੋਟੇ ਛੋਟੇ ਨਾਲਿਆਂ ਤੋਂ ਪਹਾੜੀ ਉੱਤੇ ਸਥਿਤ ਹੇਠਲੇ ਪਿੰਡਾਂ ਤੱਕ ਲੈ ਜਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਕੂਲ੍ਹਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਪਾਣੀ ਦਾ ਪ੍ਰਬੰਧ ਖੇਤਰ ਦੇ ਸਾਰੇ ਪਿੰਡਾਂ ਦੀ ਸਹਿਮਤੀ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਸੀ। ਤੁਹਾਨੂੰ ਇਹ ਜਾਣ ਕੇ ਹੈਰਾਨੀ ਹੋਵੇਗੀ ਕਿ ਖੇਤੀ ਦੇ ਮੌਸਮ ਵਿੱਚ ਪਾਣੀ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਦੂਰ ਦੇ ਪਿੰਡ ਨੂੰ ਦਿੱਤਾ ਜਾਂਦਾ ਸੀ ਅਤੇ ਫਿਰ ਉੱਪਰਲੀ ਉਚਾਈ ਵਾਲੇ ਪਿੰਡ ਉਸ ਪਾਣੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਸਨ। ਕੂਲ੍ਹ ਦੇ ਦੇਖਭਾਲ ਅਤੇ ਪ੍ਰਬੰਧ ਲਈ ਦੋ ਜਾਂ ਤਿੰਨ ਵਿਅਕਤੀ ਰੱਖੇ ਜਾਂਦੇ ਸਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਪਿੰਡ ਵਾਲੇ ਤਨਖਾਹ ਦਿੰਦੇ ਸਨ। ਸਿੰਚਾਈ ਤੋਂ ਇਲਾਵਾਂ ਇਹਨਾਂ ਕੂਲ੍ਹਾਂ ਤੋਂ ਭੂਮੀ ਅੰਦਰ ਪਾਣੀ ਸਿਮਦਾ ਰਹਿੰਦਾ ਸੀ ਜੋ ਵੱਖ-ਵੱਖ ਸਥਾਨਾਂ ਤੇ ਝਰਨਿਆਂ ਦਾ ਪੂਰਕ ਹੁੰਦਾ ਸੀ। ਸਰਕਾਰ ਦੁਆਰਾ ਇਹਨਾਂ ਕੂਲ੍ਹਾਂ ਨੂੰ ਆਪਣੇ ਹੱਥ ਵਿੱਚ ਲੈਣ ਮਗਰੋਂ ਇਹਨਾਂ ਵਿੱਚੋਂ ਬਹੁਤ ਸਾਰੀਆਂ ਕੂਲ੍ਹਾਂ ਕਿਰਿਆਹੀਨ ਹੋ ਗਈਆਂ ਹਨ ਅਤੇ ਪਾਣੀ ਦੇ ਵਿਤਰਣ ਦੀ ਆਪਸੀ ਭਾਗਦਾਰੀ ਦੀ ਪਹਿਲਾਂ ਜਿਹੀ ਵਿਵਸਥਾ ਸਮਾਪਤ ਹੋ ਗਈ ਹੈ।

16.3.1 ਬੰਨ੍ਹ (Dams)

ਅਸੀਂ ਬੰਨ੍ਹ ਕਿਉਂ ਬਣਾਉਣਾ ਚਾਹੁੰਦੇ ਹਾਂ? ਵੱਡੇ ਬੰਨ੍ਹ ਵਿੱਚ ਪਾਣੀ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਇਕੱਠਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਦਾ ਉਪਯੋਗ ਕੇਵਲ ਸਿੰਚਾਈ ਲਈ ਹੀ ਨਹੀਂ ਸਗੋਂ ਬਿਜਲੀ ਉਤਪਾਦਨ ਲਈ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤੁਸੀਂ ਪਹਿਲਾਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ। ਇਹਨਾਂ ਤੋਂ ਨਿਕਲਣ ਵਾਲੀਆਂ ਨਹਿਰਾਂ ਪਾਣੀ ਦੀ ਵੱਡੀ ਮਾਤਰਾ ਨੂੰ ਦੂਰ ਦੇ ਸਥਾਨਾਂ ਤੱਕ ਲੈ ਜਾਂਦੀਆਂ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਇੰਦਰਾ ਗਾਂਧੀ ਨਹਿਰ ਤੋਂ ਰਾਜਸਥਾਨ ਦੇ ਕਾਫੀ ਵੱਡੇ ਖੇਤਰ ਵਿੱਚ ਹਰਿਆਲੀ ਆ ਗਈ ਹੈ ਪਰ ਪਾਣੀ ਦੇ ਗਲਤ ਪ੍ਰਬੰਧ ਕਾਰਨ ਕੇਵਲ ਗਿਣਤੀ ਦੇ ਲੋਕ ਹੀ। ਇਸ ਦਾ ਲਾਭ ਉਠਾ ਰਹੇ ਹਨ ਅਤੇ ਬਹੁਤ ਸਾਰਿਆਂ ਨੂੰ ਲਾਭ ਨਹੀਂ ਹੋਇਆ ਹੈ। ਪਾਣੀ ਦੀ ਵੰਡ ਬਰਾਬਰ ਨਹੀਂ ਹੈ ਇਸ ਲਈ ਪਾਣੀ ਦੇ ਸਰੋਤ ਦੇ ਨੇੜੇ ਵਾਲੇ ਕਿਸਾਨ ਗੰਨਾਂ ਅਤੇ ਧਾਨ ਜਿਹੀਆਂ ਵਧੇਰੇ ਪਾਣੀ ਖਪਤ ਕਰਨ ਵਾਲੀਆਂ ਫਸਲਾਂ ਉਗਾ ਲੈਂਦੇ ਹਨ ਜਦੋਂ ਕਿ ਦੂਰ ਦੇ ਲੋਕਾਂ ਨੂੰ ਪਾਣੀ ਮਿਲਦਾ ਹੀ ਨਹੀਂ। ਉਹਨਾਂ ਲੋਕਾਂ ਦੀ ਮੁਸ਼ਕਲਾਂ ਹੋਰ ਵੀ ਵੱਧ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਅਸੰਤੇਸ਼ ਹੁੰਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਬੰਨ੍ਹ ਅਤੇ ਨਹਿਰ ਬਣਾਉਣ ਸਮੇਂ ਉੱਥੋਂ ਉਠਾਇਆ ਗਿਆ ਸੀ ਅਤੇ ਉਸ ਸਮੇਂ ਕੀਤੇ ਗਏ ਵਾਅਦੇ ਪੂਰੇ ਨਹੀਂ ਕੀਤੇ ਗਏ।

ਵੱਡੇ ਬੰਨ੍ਹ ਬਣਾਉਣ ਦੇ ਵਿਰੋਧ ਦੇ ਕਾਰਨਾਂ ਦੀ ਚਰਚਾ ਅਸੀਂ ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਗੰਗਾ ਨਦੀ ਉੱਤੇ ਬਣਿਆ ਟੀਹਰੀ ਬੰਨ੍ਹ ਇਸ ਦਾ ਇੱਕ ਉਦਾਹਰਨ ਹੈ। ਤੁਸੀਂ 'ਨਰਮਦਾ ਬਚਾਓ ਅੰਦੋਲਨ' ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਵੀ ਜਰੂਰ ਪੜ੍ਹਿਆ ਹੋਵੇਗਾ ਜਿਸ ਵਿੱਚ ਨਰਮਦਾ ਨਦੀ ਉੱਤੇ ਬਣਨ ਵਾਲੇ ਬੰਨ੍ਹ ਦੀ ਉਚਾਈ ਵਧਾਉਣ ਦਾ ਵਿਰੋਧ ਹੋ ਰਿਹਾ ਹੈ। ਵੱਡੇ ਬੰਨ੍ਹ ਦੇ ਵਿਰੋਧ ਵਿੱਚ ਮੁੱਖ ਤਿੰਨ ਸਮੱਸਿਆਵਾਂ ਦੀ ਚਰਚਾ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ: –

- (i) ਸਮਾਜਿਕ ਸਮੱਸਿਆਵਾਂ ਕਿਉਂਕਿ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਕਿਸਾਨ ਅਤੇ ਆਦਿਵਾਸੀ ਉਥੋ ਉਠਾਏ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਸਹੀ ਮੁਆਵਜ਼ਾ ਵੀ ਨਹੀਂ ਮਿਲਦਾ।
- (ii) ਆਰਥਿਕ ਸਮੱਸਿਆਵਾਂ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਜਨਤਾ ਦਾ ਬਹੁਤ ਸਾਰਾ ਧੈਨ ਲਗਦਾ ਹੈ ਅਤੇ ਉਸ ਅਨੁਪਾਤ ਵਿੱਚ ਲਾਭ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦਾ।
- (iv) ਵਾਤਾਵਰਨੀ ਸਮੱਸਿਆ ਕਿਉਂਕਿ ਇਸ ਨਾਲ ਵੱਡੇ ਪੱਧਰ ਤੇ ਜੰਗਲਾਂ ਦਾ ਵਿਨਾਸ਼ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜੀਵ ਵਿਭਿੰਨਤਾ ਦੀ ਹਾਨੀ ਹੁੰਦੀ ਹੈ।

ਵਿਕਾਸ ਦੀਆਂ ਭਿੰਨ- ਭਿੰਨ ਯੋਜਨਾਵਾਂ ਵਿੱਚ ਉਜੜਨ ਵਾਲੇ ਵਧੇਰੇ ਵਿਅਕਤੀ ਗਰੀਬ ਆਦਿਵਾਸੀ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਇਹਨਾਂ ਯੋਜਨਾਵਾਂ ਤੋਂ ਕੋਈ ਲਾਭ ਵੀ ਨਹੀਂ ਹੁੰਦਾ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਆਪਣੀ ਭੂਮੀ ਅਤੇ ਜੰਗਲਾਂ ਤੋਂ ਵੀ ਹੱਥ ਧੋਣਾ ਪੈਂਦਾ ਹੈ ਜਿਸ ਦਾ ਮੁਆਵਜਾ ਵੀ ਨਹੀਂ ਮਿਲਦਾ। 1970 ਵਿੱਚ ਬਣੇ ਤਾਵਾ ਬੰਨ੍ਹ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਲੋਕਾਂ ਨੂੰ ਬਣਦਾ ਲਾਭ ਹੁਣ ਤੱਕ ਨਹੀਂ ਮਿਲ ਸਕਿਆ ਜਿਸ ਦਾ ਉਹਨਾਂ ਨੂੰ ਵਾਅਦਾ ਕੀਤਾ ਗਿਆ ਸੀ।

16.3.2 ਜਲ ਭੰਡਾਰਨ (Water Harvesting)

ਜਲ ਵਿਭਾਜਨ (ਵਾਟਰ ਸੈੱਡ) ਪ੍ਬੰਧ ਵਿੱਚ ਮਿੱਟੀ ਅਤੇ ਪਾਣੀ ਦੇ ਵਿਗਿਆਨਿਕ ਸੁਰੱਖਿਅਣ ਉੱਤੇ ਜ਼ੋਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਜੀਵ ਪੁੰਜ ਉਤਪਾਦਨ ਵਿੱਚ ਵਾਧਾ ਹੋ ਸਕੇ। ਇਸ ਦਾ ਪ੍ਰਮੁੱਖ ਉਦੇਸ਼ ਭੂਮੀ ਅਤੇ ਪਾਣੀ ਦੇ ਪ੍ਰਾਇਮਰੀ ਸਾਧਨਾਂ ਦਾ ਵਿਕਾਸ ਅਤੇ ਸੈਕੰਡਰੀ ਸਾਧਨਾਂ, ਪੌਦੇ ਅਤੇ ਜੰਤੂਆਂ ਦਾ ਉਤਪਾਦਨ ਇਸ ਪ੍ਕਾਰ ਕਰਨਾ ਜਿਸ ਤੋਂ ਪਰਿਸਥਿਤਕ ਅਸੰਤੁਲਨ ਪੈਦਾ ਨਾ ਹੋਵੇ। ਜਲ ਵਿਭਾਜਨ ਪ੍ਰਬੰਧ ਨਾਲ ਨਾ ਕੇਵਲ ਜਲ ਵਿਭਾਜਨ ਸਮੁਦਾਇ ਦਾ ਉਤਪਾਦਨ ਅਤੇ ਆਮਦਨ ਵਧਦੀ ਹੈ ਸਗੋਂ ਸੋਕੇ ਅਤੇ ਹੜ੍ਹਾਂ ਨੂੰ ਵੀ ਸ਼ਾਂਤ ਕਰਦਾ ਹੈ ਅਤੇ ਹੇਠਲੇ ਬੰਨ੍ਹ ਅਤੇ ਜਲ ਭੰਡਾਰਾਂ ਦਾ ਸੇਵਾ ਕਾਲ ਵੀ ਵਧਾਉਂਦਾ ਹੈ।ਪ੍ਰਾਚੀਨ ਕਾਲ ਦੀਆਂ ਜਲ ਸੁਰੱਖਿਅਣ ਪ੍ਰਣਾਲੀਆਂ ਨੂੰ ਪੁਨਰਜੀਵਿਤ ਕਰਨ ਵਿੱਚ ਅਨੇਕ ਸੰਗਠਨ ਲੱਗੇ ਹੋਏ ਹਨ ਜੋ ਬੰਨ੍ਹ ਜਿਹੀ ਵੱਡੀ ਯੋਜਨਾਵਾਂ ਦਾ ਸਹੀ ਬਦਲ ਬਣ ਸਕਦੇ ਹਨ। ਇਹਨਾਂ ਸਮੁਦਾਇਆਂ ਨੇ ਜਲ ਸੁਰੱਖਿਅਣ ਦੇ ਅਜਿਹੇ ਸੈੱਕੜੇ ਤਰੀਕੇ ਵਿਕਸਿਤ ਕੀਤੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੁਆਰਾ ਧਰਤੀ ਉੱਤੇ ਪੈਣ ਵਾਲੀ ਹਰ ਬੂੰਦ ਨੂੰ ਸੰਭਾਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿਵੇਂ ਛੋਟੇ ਟੋਏ ਪੁੱਟਣਾ, ਝੀਲਾਂ ਦਾ ਨਿਰਮਾਣ, ਸਾਧਾਰਨ ਜਲ ਵਿਭਾਜਕ ਵਿਵਸਥਾ ਦੀ ਸਥਾਪਨਾ, ਮਿੱਟੀ ਦੇ ਛੋਟੇ ਬੰਨ੍ਹ ਬਣਾਉਣਾ, ਰੇਤ ਅਤੇ ਚੂਨੇ ਦੇ ਪੱਥਰ ਦੇ ਭੰਡਾਰ ਬਣਾਉਣਾ ਅਤੇ ਘਰ ਦੀਆਂ ਛੱਤਾਂ ਤੋਂ ਪਾਣੀ ਇਕੱਠਾ ਕਰਨਾ। ਇਸ ਨਾਲ ਭੂਮੀ ਦਾ ਜਲ ਪੱਧਰ ਵੱਧ ਜਾਂਦਾ ਹੈ ਅਤੇ ਨਦੀ ਵੀ ਮੁੜ ਜੀਵਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।

ਚਿੱਤਰ :16.3 ਜਲ ਭੌਡਾਰਨ ਦੀ ਪਰੰਪਰਿਕ ਵਿਵਸਥਾ, ਖਾਦਿਨ ਪੱਧਤੀ ਦਾ ਆਦਰਸ਼ ਵਿਵਸਥਾਪਨ

ਜਲ ਭੰਡਾਰਨ (Water harvesting) ਭਾਰਤ ਦਾ ਸਦੀਆਂ ਪੁਰਾਣਾ ਢੰਗ ਹੈ। ਰਾਜਸਥਾਨ ਵਿੱਚ ਖਾਦਿਨ, ਵੱਡੀਆਂ ਟੈਂਕੀਆਂ ਅਤੇ ਨਾਦੀ, ਮਹਾਰਾਸ਼ਟਰ ਦੇ ਬੰਧਾਰਸ ਅਤੇ ਤਾਲ, ਮੱਧਪ੍ਦੇਸ਼ ਅਤੇ ਉੱਤਰ ਪ੍ਦੇਸ਼ ਵਿੱਚ ਬੰਧਿਸ, ਬਿਹਾਰ ਵਿੱਚ ਅਹਾਰ ਅਤੇ ਪਾਇਨ, ਹਿਮਾਚਲ ਪ੍ਦੇਸ਼ ਵਿੱਚ ਕੂਲ੍ਹ, ਜੰਮੂ ਦੇ ਕਾਂਦੀ ਖੇਤਰ ਵਿੱਚ ਤਾਲਾਬ, ਤਾਮਿਲਨਾਡੂ ਵਿੱਚ ਐਰਿਸ (Tank), ਕੇਰਲ ਵਿੱਚ ਸੁਰੰਗਮ, ਕਰਨਾਟਕ ਵਿੱਚ ਕੱਟਾ ਆਦਿ ਪ੍ਰਾਚੀਨ ਜਲ ਭੰਡਾਰਨ ਅਤੇ ਜਲ ਪਰਿਵਹਿਨ ਰਚਨਾ ਅਜੇ ਵੀ ਉਪਯੋਗ ਵਿੱਚ ਹਨ। ਉਦਾਹਰਣ ਲਈ ਚਿੱਤਰ 16.3 ਵੇਖੋ। ਜਲ ਭੰਡਾਰਨ ਤਕਨੀਕ, ਸਥਾਨਕ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਦੇ ਲਾਭ ਵੀ ਸਥਾਨਕ/ ਸੀਮਿਤ ਖੇਤਰ ਨੂੰ ਹੁੰਦਾ ਹੈ। ਸਥਾਨਕ ਨਿਵਾਸੀਆਂ ਨੂੰ ਜਲ-ਸੁਰੱਖਿਆ ਦਾ ਕੰਟਰੋਲ ਦੇਣ ਨਾਲ ਇਨ੍ਹਾਂ ਸਾਧਨਾਂ ਦੀ ਦੁਰਵਰਤੋਂ ਅਤੇ ਲੋੜ ਤੋਂ ਵੱਧ ਵਰਤੋਂ ਦੇ ਮਾਮਲੇ ਘੱਟ ਹੁੰਦੇ ਹਨ।

ਵੱਡੇ ਸਮਤਲ ਭੂ ਭਾਗ ਵਿੱਚ ਜਲ ਸੰਗ੍ਰਹਿਣ ਸਥਲ ਮੁੱਖ ਤੌਰ ਤੇ ਅਰਧ ਚੰਦ ਆਕਾਰ ਮਿੱਟੀ ਦੇ ਟੋਏ ਜਾਂ ਨੀਵੇਂ ਸਥਾਨ, ਵਰਖਾ ਰੁੱਤ ਵਿੱਚ ਪੂਰੀ ਤਰ੍ਹਾਂ ਭਰ ਜਾਣ ਵਾਲੀਆਂ ਨਾਲੀਆਂ ਜਾਂ ਕੁਦਰਤੀ ਜਲ ਮਾਰਗਾਂ ਤੇ ਬਣਾਏ ਗਏ ਚੈੱਕ ਡੈਮ ਜੋ ਕੈਕਰੀਟ ਅਤੇ ਛੋਟੀ ਬਜਰੀ ਦੁਆਰਾ ਬਣਾਏ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਛੋਟੇ ਬੰਨ੍ਹਾਂ ਦੀ ਰੋਕ ਕਾਰਨ ਮਾਨਸੂਨ ਦਾ ਜਲ ਇਸ ਦੇ ਪਿੱਛੇ ਤਾਲਾਬਾਂ ਵਿੱਚ ਭਰ ਜਾਂਦਾ ਹੈ। ਵੱਡੇ ਜਲ ਭੰਡਾਰਾਂ ਵਿੱਚ ਪਾਣੀ ਪੂਰੇ ਸਾਲ ਰਹਿੰਦਾ ਹੈ ਪਰ ਛੋਟੇ ਭੰਡਾਰਾਂ ਵਿੱਚ ਪਾਣੀ ਛੇ ਮਹੀਨੇ ਜਾਂ ਇਸ ਤੋਂ ਵੀ ਘੱਟ ਸਮੇਂ ਲਈ ਟਿਕਦਾ ਹੈ, ਉਸ ਦੇ ਪਿੱਛੋਂ ਇਹ ਸੁੱਕ ਜਾਂਦੇ ਹਨ। ਇਹਨਾਂ ਦਾ ਮੁੱਖ ਉਦੇਸ਼ ਜਲ ਸੰਗ੍ਰਹਿਣ ਨਹੀਂ ਹੈ ਪਰ ਭੂਜਲ ਪੱਧਰ ਵਿੱਚ ਸੁਧਾਰ ਕਰਨਾ ਹੈ। ਧਰਤੀ ਅੰਦਰ ਸਟੋਰ ਕੀਤੇ ਪਾਣੀ ਦੇ ਬਹੁਤ ਲਾਭ ਹਨ : ਇਹ ਪਾਣੀ ਵਾਸ਼ਪ ਬਣ ਕੇ ਉੱਡਦਾ ਨਹੀਂ ਹੈ ਪਰ ਧਰਤੀ ਹੇਠ ਆਲੇ ਦੁਆਲੇ ਫੈਲ ਜਾਂਦਾ ਹੈ। ਵੱਡੇ ਖੇਤਰ ਵਿੱਚ ਬਨਸਪਤੀ ਨੂੰ ਨਮੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਇਸ 'ਤੇ ਮੱਛਰਾਂ ਦੇ ਪੈਦਾ ਹੋਣ ਦੀ ਸਮੱਸਿਆ ਵੀ ਨਹੀਂ ਹੁੰਦੀ। ਭੂਮੀ ਹੇਠਲਾ ਪਾਣੀ ਮਨੁੱਖ ਅਤੇ ਜੰਤੂਆਂ ਦੇ ਮਲਮਤਰ ਤੋਂ, ਝੀਲਾਂ ਅਤੇ ਤਾਲਾਬਾਂ ਦੇ ਪਾਣੀ ਦੇ ਮੁਕਾਬਲੇ ਵੱਧ ਸੁਰੱਖਿਅਤ ਹੁੰਦਾ ਹੈ।

ਪ੍ਰਸ਼ਨ

- ਆਪਣੇ ਨਿਵਾਸ ਸਥਾਨ ਦੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਦੇ ਖੇਤਰ ਵਿੱਚ ਜਲ ਸੰਗ੍ਰਹਿਣ ਦੀ ਪਰੰਪਰਾਗਤ ਪੱਧਤੀ ਦਾ ਪਤਾ ਕਰੋ।
- ਇਸ ਪੱਧਤੀ ਦੀ ਤੁਲਨਾ ਪਰਬਤੀ ਖੇਤਰ, ਮੈਦਾਨੀ ਖੇਤਰ ਅਤੇ ਪਠਾਰ ਖੇਤਰ ਵਿੱਚ ਜਲ ਵਿਵਸਥਾ ਨਾਲ ਕਰੋ।
- ਆਪਣੇ ਖੇਤਰ ਵਿੱਚ ਪਾਣੀ ਦੇ ਸੋਮੇਂ ਦਾ ਪਤਾ ਕਰੋ। ਕੀ ਇਸ ਸੋਮੇ ਤੋਂ ਪ੍ਰਾਪਤ ਪਾਣੀ ਉਸ ਖੇਤਰ ਦੇ ਸਾਰੇ ਨਿਵਾਸੀਆਂ ਨੂੰ ਉਪਲਬੱਧ ਹੈ?

16.4 ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ (Coal and Petroleum)

ਅਸੀਂ ਕੁੱਝ ਸੋਮਿਆਂ ਜਿਵੇਂ ਕਿ ਜੰਗਲ, ਜੰਗਲੀ ਜੀਵਨ ਅਤੇ ਜਲ ਦੇ ਸੁਰੱਖਿਅਣ ਅਤੇ ਦੀਰਘਕਾਲੀਨ ਵਰਤੋਂ ਨਾਲ ਸੰਬੰਧਿਤ ਅਨੇਕ ਸਮੱਸਿਆਵਾਂ ਦੀ ਚਰਚਾ ਕੀਤੀ ਹੈ।ਜੇਕਰ ਅਸੀਂ ਇਹ ਢੰਗ ਅਪਨਾਵਾਂਗੇ ਤਾਂ ਇਸ ਤੋਂ ਸਾਡੀਆਂ ਲੋੜਾਂ ਦੀ ਲੰਮੇ ਸਮੇਂ ਤੱਕ ਪੂਰਤੀ ਵੀ ਹੁੰਦੀ ਰਹੇਗੀ। ਹੁਣ ਅਸੀਂ ਇੱਕ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਸਾਧਨ ਪਥਰਾਟ ਬਾਲਣ ਭਾਵ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ ਜੋ ਊਰਜਾ ਦੇ ਪ੍ਰਮੁੱਖ ਸੋਮੇ ਹਨ।ਉਦਯੋਗਿਕ ਕ੍ਰਾਂਤੀ ਦੇ ਸਮੇਂ ਤੋਂ ਅਸੀਂ ਲਗਾਤਾਰ ਵਾਧੂ ਊਰਜਾ ਦੀ ਖਪਤ ਕਰ ਰਹੇ ਹਾਂ। ਇਸ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਅਸੀਂ ਨਿੱਤ ਦਿਨ ਦੀਆਂ ਊਰਜਾ ਲੋੜਾਂ ਦੀ ਪੂਰਤੀ ਅਤੇ ਜੀਵਨ ਉਪਯੋਗੀ ਪਦਾਰਥਾਂ ਦੇ ਉਤਪਾਦਨ ਹਿੱਤ ਕਰ ਰਹੇ ਹਾਂ। ਊਰਜਾ ਸੰਬੰਧੀ ਇਹ ਲੋੜਾਂ ਕੋਲ ਅਨੇ ਪੈਟਰੋਲੀਅਮ ਤੋਂ ਪੂਰੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

ਇਹਨਾਂ ਊਰਜਾ ਸੋਮਿਆਂ ਦਾ ਪ੍ਬੰਧ ਦੂਜੇ ਸਾਧਨਾਂ ਦੇ ਮੁਕਾਬਲੇ ਕੁੱਝ ਵੱਖਰੇ ਤਰੀਕੇ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪੈਟਰੋਲੀਅਮ ਅਤੇ ਕੋਲਾ ਲੱਖਾਂ ਹੀ ਸਾਲਾਂ ਪਹਿਲਾਂ ਜੀਵਾਂ ਦੇ ਜੀਵ ਪੁੰਜ ਦੇ ਅਪਘਟਨ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਏ ਹਨ। ਇਸ ਲਈ ਅਸੀਂ ਬੇਸ਼ਕ ਜਿੰਨੀ ਵੀ ਸਾਵਧਾਨੀ ਨਾਲ ਇਹਨਾਂ ਦਾ ਉਪਯੋਗ ਕਰੀਏ ਫਿਰ ਵੀ ਇਹ ਸਰੋਤ ਭਵਿੱਖ ਵਿੱਚ ਸਮਾਪਤ ਹੋ ਹੀ ਜਾਣਗੇ। ਇਸ ਲਈ ਸਾਨੂੰ ਊਰਜਾ ਦੇ ਬਦਲਵੇਂ ਸਰੋਤਾਂ ਦੀ ਖੋਜ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ। ਇਹ ਸਾਧਨ ਜੇਕਰ ਵਰਤਮਾਨ ਦਰ ਨਾਲ ਪ੍ਰਯੋਗ ਹੁੰਦੇ ਰਹੇ ਤਾਂ ਇਹ ਕਿੰਨੇ ਸਮੇਂ ਤੱਕ ਉਪਲਬੱਧ ਰਹਿਣਗੇ, ਇਸ ਬਾਰੇ ਵਿੱਚ ਅੰਦਾਜ਼ਿਆਂ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਸਾਡੇ ਪੈਟਰੋਲੀਅਮ ਸਾਧਨ ਲਗਭਗ 40 ਸਾਲ ਵਿੱਚ ਅਤੇ ਕੋਲੇ ਦੇ 200 ਸਾਲ ਤੱਕ ਉਪਲਬੱਧ ਰਹਿ ਸਕਦੇ ਹਨ।

ਪਰ ਜਦੋਂ ਅਸੀਂ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਦੀ ਖਪਤ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਤਾਂ ਇਹ ਊਰਜਾ ਦੇ ਦੂਜੇ ਸੋਮਿਆਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵਿਚਾਰ ਦਾ ਇਕੱਲਾ ਆਧਾਰ ਨਹੀਂ ਹੈ। ਕਿਉਂਕਿ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਜੀਵ ਪੁੰਜ ਤੋਂ ਬਣਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕਾਰਬਨ ਤੋਂ ਇਲਾਵਾ ਹਾਈਡਰੋਜਨ, ਨਾਈਟਰੋਜਨ ਅਤੇ ਸਲਫਰ (ਗੰਧਕ) ਵੀ ਹੁੰਦੇ ਹਨ। ਜਦੋਂ ਇਹਨਾਂ ਨੂੰ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ, ਪਾਣੀ, ਨਾਈਟਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਆਕਸਾਈਡ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ। ਹਵਾ (ਆਕਸੀਜਨ) ਦੀ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਇਹਨਾਂ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਥਾਂ ਕਾਰਬਨ ਮੋਨੋਆਕਸਾਈਡ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਹਨਾਂ ਉਤਪਾਦਾਂ ਵਿੱਚੋਂ ਨਾਈਟਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੇ ਆਕਸਾਈਡ ਅਤੇ ਕਾਰਬਨਮੋਨੋਆਕਸਾਈਡ ਦੀ ਬਹੁਤਾਤ ਜ਼ਹਿਰੀਲੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਇੱਕ ਗਰੀਨ ਹਾਊਸ ਗੈਸ ਹੈ। ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਬਾਰੇ ਵਿਚਾਰ ਕਰਨ ਦਾ ਇੱਕ ਹੋਰ ਮੰਤਵ ਇਹ ਵੀ ਹੈ ਕਿ ਇਹ ਕਾਰਬਨ ਦੇ ਵਿਸ਼ਾਲ ਭੰਡਾਰ ਹਨ, ਜੇਕਰ ਇਹਨਾਂ ਦੀ ਸਾਰੀ ਮਾਤਰਾ ਨੂੰ ਜਲਾਉਣ ਨਾਲ ਇਹਨਾਂ ਵਿਚਲਾ ਸਾਰਾ ਕਾਰਬਨ, ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਗਿਆ ਤਾਂ ਹਵਾ ਵਿੱਚ ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਦੀ ਮਾਤਰਾ ਬਹੁਤ ਵੱਧ ਜਾਵੇਗੀ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਵਿਸ਼ਵ ਵਿਆਪੀ ਤਾਪਮਾਨ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਹੈ। ਇਸ ਲਈ ਇਹਨਾਂ ਸਾਧਨਾਂ ਦਾ ਉਪਯੋਗ ਸਿਆਣਪ ਨਾਲ ਕਰਨ ਦੀ ਲੋੜ ਹੈ।

विशिक्षण गढागठ

ਕੋਇਲੇ ਦਾ ਉਪਯੋਗ ਤਾਪ ਬਿਜਲੀ ਘਰਾਂ ਵਿੱਚ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਉਤਪਾਦਾਂ ਜਿਵੇਂ ਕਿ ਡੀਜ਼ਲ ਅਤੇ ਪੈਟਰੋਲ ਦਾ ਉਪਯੋਗ ਆਵਾਜਾਈ ਦੇ ਸਾਧਨਾਂ ਮੋਟਰ ਵਾਹਨ, ਸਮੁੰਦਰੀ ਅਤੇ ਹਵਾਈ ਜਹਾਜਾਂ –ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅੱਜ ਦੇ ਯੁੱਗ ਵਿੱਚ ਬਿਜਲੀ ਯੰਤਰਾਂ ਅਤੇ ਆਵਾਜਾਈ ਦੇ ਸਾਧਨਾਂ ਦੇ ਪ੍ਰਯੋਗ ਤੋਂ ਬਿਨਾਂ ਜੀਵਨ ਦੀ ਕਲਪਨਾ ਵੀ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ। ਇਸ ਲਈ ਕੀ ਤੁਸੀਂ ਅਜਿਹੇ ਕੁੱਝ ਢੰਗ ਸੋਚ ਸਕਦੇ ਹੋ ਜਿਸ ਨਾਲ ਕੋਲੇ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਦੇ ਉਪਯੋਗ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕੇ?

ਕੁੱਝ ਸੌਖੇ ਬਦਲਵੇਂ ਪ੍ਰਬੰਧਾਂ ਨਾਲ ਸਾਡੀ ਊਰਜਾ ਦੀ ਖਪਤ ਵਿੱਚ ਅੰਤਰ ਪੈ ਸਕਦਾ ਹੈ।ਹੇਠ ਲਿਖੇ ਪ੍ਰਬੰਧਾਂ ਦੇ ਲਾਭ, ਹਾਨੀਆਂ ਅਤੇ ਵਾਤਾਵਰਨ ਪੱਖੀ ਹੋਣ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ।

- (i) ਬੱਸ ਵਿੱਚ ਯਾਤਰਾ, ਆਪਣੇ ਵਾਹਨ ਪ੍ਰਯੋਗ ਵਿੱਚ ਲਿਆਉਂਣਾ ਜਾਂ ਪੈਦਲ/ਸਾਇਕਲ ਤੇ ਚੱਲਣਾ।
- (ii) ਆਪਣੇ ਘਰਾਂ ਵਿੱਚ ਬਲਬ, ਫਲੋਰੋਸੈਂਟ ਟਿਊਬ ਦੀ ਵਰਤੋਂਕਰਨਾ।
- (iii) ਲਿਫ਼ਟ ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਜਾਂ ਪੌੜੀਆਂ ਦਾ ਉਪਯੋਗ ਕਰਨਾ।
- (iv) ਸਰਦੀਆਂ ਵਿੱਚ ਇੱਕ ਹੋਰ ਸਵੈਟਰ ਪਹਿਨਣਾ ਜਾਂ ਹੀਟਰ ਜਾਂ ਸਿਗੜੀ ਦੀ ਵਰਤੋਂ ਕਰਨਾ।

ਕੋਲੇ ਅਤੇ ਪੈਂਟਰੋਲੀਅਮ ਦਾ ਉਪਯੋਗ ਸਾਡੀਆਂ ਮਸ਼ੀਨਾਂ ਦੀ ਕੁਸ਼ਲਤਾ ਉੱਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਆਵਾਜਾਈ ਦੇ ਸਾਧਨਾਂ ਵਿੱਚ ਮੁੱਖ ਤੌਰ ਤੇ ਅੰਤਰ ਦਹਿਨ ਇੰਜਣ ਦਾ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ। ਅੱਜਕੱਲ੍ਹ ਖੋਜਾਂ ਇਸ ਵਿਸ਼ੇ ਉੱਤੇ ਕੇਂਦਰਿਤ ਹਨ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਬਾਲਣ ਦਾ ਪੂਰਨ ਦਹਿਨ ਕਿਸ ਤਰ੍ਹਾਂ ਯਕੀਨੀ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਨਾਲ ਇਹਨਾਂ ਦੀ ਕੁਸ਼ਲਤਾ ਵੀ ਵਧੇ ਅਤੇ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ ਨੂੰ ਵੀ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕੇ।

ਕਿਰਿਆ 16.11

ਤੁਸੀਂ ਵਾਹਨਾਂ ਵਿੱਚੋਂ ਨਿਕਲਦੀਆਂ ਗੈਸਾਂ ਦੇ ਯੂਰੋ-1 ਅਤੇ ਯੂਰੋ -II ਮਾਪ ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਤਾਂ ਜ਼ਰੂਰ ਹੀ ਸੁਣਿਆ ਹੋਵੇਗਾ।ਪਤਾ ਕਰੋ ਕਿ ਇਹ ਮਾਪ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ ਘੱਟ ਕਰਨ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਸਹਾਇਕ ਹਨ?

16.5 ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦੇ ਪ੍ਰਬੰਧ ਉੱਤੇ ਇੱਕ ਝਾਤ

ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦਾ ਦੀਰਘਕਾਲੀਨ ਪ੍ਬੰਧ ਇੱਕ ਮੁਸ਼ਕਿਲ ਕੰਮ ਹੈ। ਇਸ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨ ਲਈ ਸਾਨੂੰ ਖੁੱਲ੍ਹੇ ਦਿਮਾਗ ਨਾਲ ਸਾਰੇ ਪੱਖਾਂ ਦੀਆਂ ਲੌੜਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਹੋਵੇਗਾ। ਸਾਨੂੰ ਇਹ ਤਾਂ ਮੰਨਣਾ ਹੀ ਹੋਵੇਗਾ ਕਿ ਲੋਕ ਹੌਲੀ-ਹੌਲੀ ਆਪਣੇ ਹਿੱਤ ਨੂੰ ਪਹਿਲ ਦੇਣ ਦਾ ਭਰਪੂਰ ਯਤਨ ਕਰਨਗੇ। ਪਰ ਇਸ ਅਸਲੀਅਤ ਨੂੰ ਲੋਕ ਹੌਲੀ-ਹੌਲੀ ਸਵੀਕਾਰ ਕਰਨ ਲੱਗਣਗੇ ਕਿ ਕੁੱਝ ਵਿਅਕਤੀਆਂ ਦੇ ਨਿੱਜੀ ਸੁਆਰਥ ਬਹੁ ਸੰਖਿਅਕਾਂ ਦੇ ਦੁੱਖ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੇ ਹਨ ਅਤੇ ਸਾਡੇ ਵਾਤਾਵਰਨ ਦਾ ਪੂਰਨ ਵਿਨਾਸ਼ ਵੀ ਸੰਭਵ ਹੈ। ਕਾਨੂੰਨ, ਨਿਯਮ ਸਾਹਮਣੇ ਸਾਨੂੰ ਆਪਣੀਆਂ ਵਿਅਕਤੀਗਤ ਅਤੇ ਸਮੂਹਿਕ ਲੋੜਾਂ ਨੂੰ ਸੀਮਿਤ ਕਰਨਾ ਹੋਵੇਗਾ ਤਾਂ ਜੋ ਵਿਕਾਸ ਦਾ ਲਾਭ ਸਾਰਿਆਂ ਨੂੰ ਅਤੇ ਸਾਰੀਆਂ ਆਉਣ ਵਾਲੀਆਂ ਪੀੜੀਆਂ ਨੂੰ ਉਪਲਬੱਧ ਹੋ ਸਕੇ।

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

ਸਾਡੇ ਸਾਧਨਾਂ ਜਿਵੇਂ ਜੰਗਲ, ਜੰਗਲੀ ਜੀਵਨ, ਕੋਲਾ ਅਤੇ ਪੈੱਟਰੋਲੀਅਮ ਦਾ ਉਪਯੋਗ ਦੀਰਘਕਾਲੀਨ ਸਮੇਂ ਲਈ ਕਰਨ ਦੀ ਲੋੜ ਹੈ।

'ਘੱਟ ਉਪਯੋਗ, ਮੁੜ ਉਪਯੋਗ ਅਤੇ ਪੁਨਰ ਚੱਕਰ ਦੀ ਨੀਤੀ ਅਪਣਾ ਕੇ ਅਸੀਂ ਵਾਤਾਵਰਨ ਉੱਤੇ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਦਬਾਓ ਨੂੰ ਘੱਟ ਕਰ ਸਕਦੇ ਹਾਂ।

ਜੰਗਲ ਸਰੋਤਾਂ ਦਾ ਪ੍ਬੰਧਨ ਸਾਰੇ ਪੱਖਾਂ ਦੇ ਹਿੱਤਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।
ਜਲ ਸਾਧਨਾਂ ਦੇ ਭੰਡਾਰਨ ਹਿੱਤ ਬੰਨ੍ਹ ਬਣਾਉਣ ਨਾਲ ਸਮਾਜਿਕ, ਆਰਥਿਕ ਅਤੇ ਵਾਤਾਵਰਨ ਸੰਬੰਧੀ ਸਮੱਸਿਆਵਾਂ
ਆਉਂਦੀਆਂ ਹਨ। ਵੱਡੇ ਬੰਨ੍ਹਾਂ ਦਾ ਬਦਲ ਉਪਲਬੱਧ ਹੈ। ਸਥਾਨ ਅਤੇ ਖੇਤਰ ਅਨੁਸਾਰ ਇਹਨਾਂ ਦਾ ਵਿਕਾਸ ਕੀਤਾ
ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸਥਾਨਿਕ ਲੋਕਾਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਖੇਤਰ ਦੇ ਸਾਧਨਾਂ ਦਾ ਨਿਯੰਤਰਨ ਸੌਂਪਿਆ ਜਾ ਸਕੇ।
ਪਥਰਾਟ ਬਾਲਣ ਜਿਵੇਂ ਕਿ ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਆਖਰ ਖਤਮ ਹੋ ਜਾਣਗੇ। ਇਹਨਾਂ ਦੀ ਮਾਤਰਾ ਸੀਮਿਤ ਹੈ ਅਤੇ
ਇਹਨਾਂ ਦੇ ਜਲਣ ਨਾਲ ਵਾਤਾਵਰਨ ਪ੍ਰਦੂਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਸਾਨੂੰ ਇਹਨਾਂ ਸਾਧਨ ਦੀ ਸਮਝਦਾਰੀ ਨਾਲ ਸਮਝਦਾਰੀ
ਨਾਲ ਵਰਤੋਂ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ।

ਅਭਿਆਸ

- ਆਪਣੇ ਘਰ ਨੂੰ ਵਾਤਾਵਰਨ ਪੱਖੀ ਬਣਾਉਣ ਲਈ ਤੁਸੀਂ ਕਿਹੜੇ-ਕਿਹੜੇ ਪਰਿਵਰਤਨ ਸੁਝਾ ਸਕਦੇ ਹੈ?
- ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਸਕੂਲ ਵਿੱਚ ਕੁਝ ਪਰਿਵਰਤਨ ਸੁਝਾ ਸਕਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਨਾਲ ਇਸ ਨੂੰ ਵਾਤਾਵਰਨ ਪੱਖੀ ਬਣਾਇਆ ਜਾ ਸਕੇ?
- 3. ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਪੜ੍ਹਿਆ ਕਿ ਜਦੋਂ ਜੰਗਲ ਅਤੇ ਜੰਗਲੀ ਜੰਤੂਆਂ ਦੀ ਗੱਲ ਕਰਦੇ ਹਾਂ ਤਾਂ ਚਾਰ ਮੁੱਖ ਦਾਵੇਦਾਰ ਸਾਹਮਣੇ ਆਉਂਦੇ ਹਨ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਸ ਨੂੰ ਜੰਗਲ ਉਤਪਾਦਾਂ ਦੇ ਪ੍ਬੰਧ ਹਿੱਤ ਨਿਰਣਾ ਲੈਣ ਦੇ ਅਧਿਕਾਰ ਦਿੱਤੇ ਜਾ ਸਕਦੇ ਹਨ? ਤੁਸੀਂ ਅਜਿਹਾ ਕਿਉਂ ਸੋਚਦੇ ਹੋ?

- ਇੱਕ ਵਿਅਕਤੀ ਵਿਸ਼ੇਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਤੁਸੀਂ ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਪ੍ਰਬੰਧ ਵਿੱਚ ਕੀ ਯੋਗਦਾਨ ਦੇ ਸਕਦੇ ਹੈ :
 - (ੳ) ਜੰਗਲ ਅਤੇ ਜੰਗਲੀ ਜੀਵ (ਅ) ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ (ੲ) ਸਰੋਤ
- ਇੱਕ ਵਿਅਕਤੀ ਵਿਸ਼ੇਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਤੁਸੀਂ ਭਿੰਨ ਕੁਦਰਤੀ ਉਤਪਾਦਾਂ ਦੀ ਖਪਤ ਘੱਟ ਕਰਨ ਲਈ ਕੀ ਕਰ ਸਕਦੇ ਹੋ?
- 6. ਹੇਠ ਲਿਖਿਆਂ ਨਾਲ ਸੰਬੰਧਿਤ ਅਜਿਹੇ ਪੰਜ ਕਾਰਜ ਲਿਖੋ ਜੋ ਤੁਸੀਂ ਪਿਛਲੇ ਇੱਕ ਹਫ਼ਤੇ ਵਿੱਚ ਕੀਤੇ ਹਨ -
 - (a) ਆਪਣੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦੀ ਸੁਰੱਖਿਆ
 - (b) ਆਪਣੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਉੱਤੇ ਦਬਾਓ ਵਧਾਇਆ ਹੈ।
- 7. ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਦੱਸੀਆਂ ਗਈਆਂ ਸਮੱਸਿਆਵਾਂ ਦੇ ਆਧਾਰ ਤੇ ਤੁਸੀਂ ਆਪਣੀ ਜੀਵਨ ਸ਼ੈਲੀ ਵਿੱਚ ਕੀ ਪਰਿਵਰਤਨ ਲਿਆਉਣਾ ਚਾਹੋਗੇ ਜਿਸ ਨਾਲ ਸਾਡੇ ਸਾਧਨਾਂ ਨੂੰ ਸਮੇਂ-ਸਮੇਂ ਤਕ ਵਰਤੋਂ ਲਈ ਉਤਸ਼ਾਹ ਮਿਲ ਸਕੇ?

ਪ੍ਰਸ਼ਨ ਉੱਤਰ

- ਅਧਿਆਇ 1
 - 1. (i)
- 2. (d)
- 3. (a)

- ਅਧਿਆਇ 2
 - 1. (d)
- 2. (b)
- 3. (d)
- 4. (c)

- ਅਧਿਆਇ 3
 - 1. (d)
- 2. (c)
- 3. (a)
- 4. (c)

- ਅਧਿਆਇ 4
 - 1. (b)
- 2. (c)
- 3. (b)

- ਅਧਿਆਇ 5
 - 1. (c)
- 2. (b)
- ਅਧਿਆਇ 6
- 1. (c)
- 2. (a)
- 3. (d)
- 4. (b)

- ਅਧਿਆਇ 7
 - 1. (d)
- 2. (b)
- 3. (d)

- ਅਧਿਆਇ 8
 - 1. (b)
- 2. (c)
- 3. (d)

- ਅਧਿਆਇ 9
 - 1. (c)
- 2. (d)
- 3. (a)

- ਅਧਿਆਇ 10
 - 1. (d) 4. (a)
- 2. (d) 5. (d)
- 3. (b) 6. (b)
- 7. ਦੂਰੀ 15 cm ਤੋਂ ਘੱਟ, ਆਭਾਸ਼ੀ, ਵੱਡਾ
- 9. **ਹ**ਾਂ
- 10. ਲੈੱਨਜ਼ ਤੋਂ 16.7 cm ਦੂਜੀ ਵੱਲ, 3.3 cm, ਬਿੰਬ ਤੋਂ ਛੋਟਾ, ਵਾਸਤਵਿਕ ਉਲਟਾ
- 11. 30 cm
- $12. \ \ 6.0 \ {
 m cm}$, ਦਰਪਣ ਪਿੱਛੇ, ਆਭਾਸੀ, ਸਿੱਧਾ
- 13. m = 1 ਵੱਡਦਰਸਤਾ ਹੈ ਕਿ ਸਮਤਲ ਦਰਪਣ ਵਿੱਚ ਪ੍ਰਤਿਬਿੰਬ, ਬਿੰਬ ਦੇ ਸਾਇਜ਼ ਦੇ ਬਰਾਬਰ ਹੈ। m ਦਾ ਧਨਾਤਮਕ ਚਿੰਨ੍ਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪ੍ਰਤਿਬਿੰਬ ਆਭਾਸੀ ਅਤੇ ਸਿੱਧਾ ਹੈ।
- 14. 8.6 cm.ਦਰਪਣ ਦੇ ਪਿੱਛੇ, ਆਭਾਸੀ, ਸਿੱਧਾ, 2.2 cm, ਬਿੰਬ ਤੋਂ ਛੋਟਾ
- 15. ਬਿੰਬ ਦੇ ਵੱਲ, 54 cm; 14 cm, ਵੱਡਾ, ਉਲਟਾ

```
16. − 0.50 m: ਕਨਕੇਵ ਦਜਪਣ
 17. + 0.67 m; ਅਭਿਸਾਰੀ ਲੈੱਨਜ਼
ਅਧਿਆਇ 11
  1. (b)
                            3. (c)
                   2. (d)
                                                    4. (c)
  5. (a) -0.18 m; (b) +0.67 m
  6. ਅਵਤਲ ਲੈੱਨਜ਼ -1.25 D
  7. ਉੱਤਲ ਲੈੱਨਜ਼ +3.0 D
ਅਧਿਆਇ 12
1. (d) 2. (b) 3.

5. ਸਮਾਨੰਤਰ 6. 122.7 m; ¼ ਗੁਣਾ

7. 3.33 Ω 8. 4.8 kΩ 9.

10. 4 ਪ੍ਰਤਿਰੋਧਕ 12. 110 ਬੱਲਬ
                           3. (d)
                                                    4. (c)
                                 9. 0.67 A
 13. 9.2 A, 4.6 A, 18.3 A
 14. (i) 8 W;
              (ii) 8 W
 15. 0.73 A
16. 250 W टੀ. ਵੀ. ਸੈੱਟ । ਘੰਟੇ ਵਿੱਚ
17. 120 W
18. (b) ਮਿਸ਼ਰਤ ਧਾਤ ਦੀ ਉੱਚ ਪ੍ਰਤਿਰੋਧਕਤਾ
     (d) ਉਲਟ ਅਨੁਪਾਤੀ
भविभाष्ट 13
                 2. (c) 3. (a)
 1. (d)
                                                   4. (d) 5. (c)
 6. (a) ਗਲਤ (b) ਸਹੀ (c) ਸਹੀ (d) ਗਲਤ
10. ਲੰਬਾਤਕ ਹੇਠਾਂ ਨੂੰ

 (i) ਸੂਈ ਇੱਕ ਦਿਸ਼ਾ ਵਿੱਚ ਪਲ ਲਈ ਇੱਕ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰੇਗੀ।

    (ii) ਸੂਈ (i) ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਪਲ ਲਈ ਗਤੀ ਕਰੇਗੀ
   (iii) ਸੂਈ ਗਤੀ ਨਹੀਂ ਕਰੇਗੀ।
14. ਹਾਂ

    (a) ਸੱਜ ਹੱਥ ਅੰਗੂਠਾ ਨਿਯਮ (b) ਫਲੇਮਿੰਗ ਖੱਬਾ ਹੱਥ ਨਿਯਮ (c) ਫਲੇਮਿੰਗ ਸੱਜਾ ਹੱਥ ਨਿਯਮ

ਅਧਿਆਇ 14
 1. (b)
                   2. (c)
                                  3. (c)
ਅਧਿਆਇ 15
 1. (a), (c), (d) 2. (b)
                                 3. (d)
```

- ਸੁਰੱਖਿਅਤ ਲੰਮੀ ਉਮਰ ਦੀ ਜੇ ਚਾਹ ਸੜਕ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਹੀ ਹੈ ਬਚਾਅ।
- ਗੱਡੀ ਦੀ ਜ਼ਿਆਦਾ ਗਤੀ, ਰੋਕ ਨਾ ਦੇਵੇ ਜੀਵਨ ਦੀ ਗਤੀ।
- ਜਦੋਂ ਵੀ ਸਕੂਟਰ ਚਲਾਓਗੇ, ਹੈਲਮੈੱਟ ਹਰ ਹਾਲ ਵਿੱਚ ਪਾਓਗੇ।
- ਬੇਟੀ ਬਚਾਓ, ਜੀਵਨ ਸਜਾਓ,
 ਬੇਟੀ ਪੜ੍ਹਾਓ, ਖੁਸ਼ਹਾਲੀ ਲਿਆਓ।
- ਸ਼ਰਾਬ, ਤੰਬਾਕੂ ਅਤੇ ਅਫੀਮ, ਮਾਨਵਤਾ ਨੂੰ ਕਰਨ ਯਤੀਮ।
- ਜ਼ਿੰਦਗੀ ਨੂੰ ਜੇ ਜਸ਼ਨ ਬਣਾਉਣਾ, ਯੋਗ ਨੂੰ ਜ਼ਰੂਰ ਅਪਨਾਉਣਾ।
- ਆਓ ਰਲ਼ ਕੇ ਸਹੁੰ ਇਹ ਖਾਈਏ,
 ਵਾਤਾਵਰਣ ਨੂੰ ਸਵੱਛ ਬਣਾਈਏ।
- ਨਿਯਮ, ਟ੍ਰੈਫ਼ਿਕ ਨੂੰ ਕਾਬੂ ਰੱਖਣ ਲਈ ਸਹਾਈ ਹੁੰਦੇ ਹਨ।ਜਦੋਂ ਅਸੀਂ ਟ੍ਰੈਫ਼ਿਕ ਨਿਯਮ ਤੋੜਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਆਪਣੀ ਤੇ ਦੂਜਿਆਂ ਦੀ ਜਾਨ ਖ਼ਤਰੇ ਵਿੱਚ ਪਾਉਂਦੇ ਹਾਂ।

ਭਾਰਤ ਦਾ ਸੰਵਿਧਾਨ

¹ਭਾਗ-4 ੳ

ਨਾਗਰਿਕਾਂ ਦੇ ਮੁਢਲੇ ਕਰਤੱਵ

ਅਨੁਛੇਦ 51 ਉ

ਮੁਢਲੇ ਕਰਤੱਵ : ਭਾਰਤ ਦੇ ਹਰ ਇੱਕ ਨਾਗਰਿਕ ਦਾ ਇਹ ਕਰਤੱਵ ਹੋਵੇਗਾ ਕਿ ਉਹ-

- (ੳ) ਸੰਵਿਧਾਨ ਦਾ ਪਾਲਣ ਕਰੇ ਅਤੇ ਇਸ ਦੇ ਆਦਰਸ਼ਾਂ, ਸੰਸਥਾਵਾਂ, ਰਾਸ਼ਟਰੀ ਝੰਡੇ, ਰਾਸ਼ਟਰੀ ਗੀਤ ਦਾ ਆਦਰ ਕਰੇ;
- (ਅ) ਰਾਸ਼ਟਰੀ ਅੰਦੋਲਨ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰਨ ਵਾਲ਼ੇ, ਸੁਤੰਤਰਤਾ ਪ੍ਰਾਪਤੀ ਦੇ ਉੱਚੇ ਆਦਰਸ਼ਾਂ ਨੂੰ ਮਨ ਵਿੱਚ ਸੰਜੋਏ ਅਤੇ ਉਹਨਾਂ ਦਾ ਪਾਲਣ ਕਰੇ;
- ਦੇਸ ਦੀ ਪ੍ਰਭੂਸੱਤਾ, ਅਖੰਡਤਾ ਅਤੇ ਏਕਤਾ ਦੀ ਰਾਖੀ ਅਤੇ ਸੰਭਾਲ਼ ਕਰੇ;
- (ਸ) ਦੇਸ ਦੀ ਰੱਖਿਆ ਕਰੇ ਅਤੇ ਲੋੜ ਪੈਣ 'ਤੇ ਕੌਮੀ ਸੇਵਾ ਕਰੇ;
- (ਹ) ਭਾਰਤ ਵਾਸੀਆਂ ਵਿੱਚ ਅਜਿਹੀ ਇਕਸੁਰਤਾ ਅਤੇ ਸਮਾਨ ਭਾਈਚਾਰੇ ਦੀ ਭਾਵਨਾ ਦਾ ਨਿਰਮਾਣ ਕਰੇ, ਜਿਹੜੀ ਧਰਮ, ਭਾਸ਼ਾ, ਪ੍ਰਦੇਸ਼ ਜਾਂ ਵਰਗ ਆਧਾਰਿਤ ਸਾਰੇ ਭੇਦ-ਭਾਵਾਂ ਤੋਂ ਪਰੇ ਹੋਵੇ, ਅਜਿਹੀਆਂ ਪ੍ਰਥਾਵਾਂ ਦਾ ਤਿਆਗ ਕਰੇ, ਜਿਨ੍ਹਾਂ ਨਾਲ਼ ਇਸਤਰੀਆਂ ਦਾ ਨਿਰਾਦਰ ਹੁੰਦਾ ਹੋਵੇ;
- (ਕ) ਆਪਣੇ ਮਿਸ਼ਰਿਤ ਸੱਭਿਆਚਾਰਿਕ ਵਿਰਸੇ ਦੀ ਕਦਰ ਕਰੇ ਤੇ ਉਸ ਨੂੰ ਕਾਇਮ ਰੱਖੇ;
- (ਬ) ਪ੍ਰਕਿਰਤਿਕ ਵਾਤਾਵਰਨ ਜਿਸ ਵਿੱਚ ਵਣ, ਝੀਲ, ਨਦੀ, ਜੰਗਲ਼ੀ ਜੀਵ ਸ਼ਾਮਿਲ ਹਨ, ਦੀ ਰੱਖਿਆ ਕਰੇ ਅਤੇ ਉਸ ਦਾ ਸੁਧਾਰ ਕਰੇ ਅਤੇ ਜੀਵ-ਜੰਤੂਆਂ ਲਈ ਦਇਆ ਭਾਵ ਰੱਖੇ;
- (ਗ) ਵਿਗਿਆਨਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ, ਮਾਨਵਵਾਦ, ਜਾਂਚ-ਪੜਤਾਲ ਅਤੇ ਸੁਧਾਰ ਦੀ ਮਨੋਬਿਰਤੀ ਦਾ ਵਿਕਾਸ ਕਰੇ;
- (ਘ) ਜਨਤਕ ਸੰਪਤੀ ਦੀ ਰੱਖਿਆ ਕਰੇ ਅਤੇ ਹਿੰਸਾ ਤੋਂ ਦੂਰ ਰਹੇ ਅਤੇ
- (E) ਵਿਅਕਤੀਗਤ ਅਤੇ ਸਮੂਹਿਕ ਗਤੀਵਿਧੀਆਂ ਦੇ ਸਾਰੇ ਖੇਤਰਾਂ ਵਿੱਚ ਉੱਤਮਤਾ ਅਤੇ ਉੱਨਤੀ ਦੇ ਰਸਤੇ 'ਤੇ ਚੱਲਣ ਦਾ ਪੁਰਜ਼ੋਰ ਯਤਨ ਕਰੇ, ਜਿਸ ਨਾਲ਼ ਰਾਸ਼ਟਰ ਨਿਰੰਤਰ ਚੱੜ੍ਹਤ ਨਾਲ਼ ਤਰੱਕੀ ਦੀਆਂ ਉਚਾਈਆਂ ਨੂੰ ਛੂਹ ਸਕੇ।
- ²(ਚ) ਹਰੇਕ ਮਾਂ–ਬਾਪ/ਸਰਪ੍ਰਸਤ ਦਾ ਕਰਤੱਵ ਹੈ ਕਿ ਉਹ 6 ਤੋਂ 14 ਸਾਲ ਤੱਕ ਦੇ ਬੱਚਿਆਂ ਨੂੰ ਸਕੂਲ ਭੇਜਣ ਅਤੇ ਉਹਨਾਂ ਦੀ ਪੜ੍ਹਾਈ ਲਈ ਅਨੁਕੂਲ ਪਰਿਸਥਿਤੀਆਂ ਪੈਦਾ ਕਰਨ।
 - 1 ਸੰਵਿਧਾਨ (ਬਤਾਲ਼ੀਵੀ ਸੋਧ) ਦੇ ਅਧਿਨਿਯਮ, 1976 ਦੀ ਧਾਰਾ Ⅱ ਅਨੁਸਾਰ (3-1-1977 ਤੋਂ) ਸ਼ਾਮਿਲ ਕੀਤਾ ਗਿਆ।
 - 2 ਸਿਵਿਧਾਨ (ਛਿਆਸੀਵੀਂ ਸੋਧ) ਦੇ ਅਧਿਨਿਯਮ 2002 ਦੀ ਧਾਰਾ 4 ਅਨੁਸਾਰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਗਿਆ।

