

Roll No

Total No. of Printed Pages: 12]

X 2038

ਸਲਾਨਾ ਪਰੀਖਿਆ ਪ੍ਰਨਾਲੀ

MATHEMATICS

(Common for Humanities, Sc & Agri Groups)

Time: 03 Hours

Maximum Marks: 90

[Total No. of Questions: 23

143/A

(English Version)

Note: (i) You must write the subject-code/paper-code 028/A in the box provided on the title page of your answer-book.

(ii)Make sure that the answer-book contains 30 pages (including title page) and are properly serialed as soon as you receive it.

- (iii) Question/s attempted after leaving blank page/s in the answer-book would not be evaluated.
- (iv) All questions are compulsory.
- (V) Use of calculator is not allowed but Log Tables can be used.
- (vi) 0.1 will consist of 10 parts and each part will carry 1 mark.
- (Vii) 2.2 to Q. 9 each will be of 2 marks.
- (viii) Q. 10 to Q. 19 each will be of 4 marks.
- (ix) 9. 20 to Q. 23 each will be of 6 marks.
- (X) Graph paper is attached with the question paper.
- (xi) Question number 12, 15, 17, 20, 21, 22 and 23 contain internal choice.

1.

PUNJAB BOARD CLASS 12 MATHS (A) PREVIOUS YEAR PAPER- 2018

(i) If is a binary operation such that
$$a^* b = a^2 + b^2$$
 then $3^* 5$ is
(a) 34 (b) 9 (c) 8 (d) 25
(ii) If $\cos^{-1} x = y$ then
(c) $\frac{-\pi}{2} <= y <= \frac{\pi}{2}$ (b) $-\pi <= y <= \pi$ (c) $0 <= y <= \frac{\pi}{2}$ (d) $0 <= y <= \pi$
(iii) If A is a matrix of order $3x3$ and $|A| = 10$ then $|adj \cdot A|$ is
(a) 0 (b) 10 (c) 100 d) 1000
(iv) If $y = \sin(\sin^{-1} x + \cos^{-1} x), x \in [-1, 1]$ then $\frac{dy}{dx}$ is
(a) $\frac{\pi}{2}$ (b) $\frac{-\pi}{2}$ (c) 0 (d) 1
(v) If $f(x) = \{\frac{\sin x}{x}, \frac{\pi i = 0}{x = 0}\}, x=0$ is continuous at $x=0$ then
(a) 2 (b) 0 (c) -1 (d) 1
(vi) $\int e^{xx} (\log x \frac{1}{x}) dx$ is equal to
(a) $e^{xx} + c$ (b) $e^{xx} \log x + c$ (c) $\frac{e^{x}}{x} + c$ (d) $\log x + c$
(vii) Integrating factor of differential equation $\frac{dy}{dx} + y = 3$ is
(a) x (b) e (c) e^{xx} (d) $\log x$

(viii) The inequality $|a. b| \le |a| |b| 5$ is called

1

	(a) Cauchy-Schwartz inequality (b) Triangle inequality	
	(c) Rolle's Theorem (d) Lagrange's Mean Value theorem	
(ix) Distance between plane $3x + 4y - 20 = 0$ and point $(0, 0, -7)$ is 1	
	(a) 4 units (b) 3 units (c) 2 units (d) 1 unit	
(x)) If P(E) denotes probability of occurrence of event E then 1	
	(a) P (E) € [-1, 1] (b) P (E) € (1, 2) (c) P (E) € (0, 1) (d) P (E) € [0, 1]	
2.	If matrix A = [aij]3x2, and aij = (3i-2j) ² or matrix A find them	2
3.	Check whether Lagrange's mean value theorem is applicable on $f(x) = \sin x + \cos x$ Interval $[0, \frac{\pi}{2}]$	2
4.	Evaluate $\int_{0}^{\frac{2}{x}} \sin^3 x / \sin^3 x + \cos^3 x \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx$	2
5.	Evaluate $\int \frac{7dx}{x(x^7-1)}$	2
6 .	Find particular solution of differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ given that x=0 \exists y= 1	2
7.	Form differential equation representing the family of lines making equal intercepts on the	2
8.	Find the angle between the plane 2x+3 y-5z= 10 and the line passing from the points (2, 3,-1) Or (1, 2, 1)	2
9.	If P (A) = 7/13, P (B) = 9/13 and P (AUB) = 12/13 then find (A B)	2 -
10	Prove that function f : R \rightarrow R, f(x) = $\frac{3-2x}{7}$ in one-one and onto. Also find f ⁻¹	4
11.	Prove that: $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{4}{5} = \frac{1}{2}\sin^{-1}\frac{3696}{4225}$ ਹੈ!	4
12.	Express 2 5 -1 3 1 5 7 6 9 as sum of symmetric and skew-symmetric matrices	
	$ \begin{array}{c} \text{Or} \\ x x^2 1+x^3 \end{array} $	
If x, y	y, z are different and y y^2 $1+y^3 = 0$ then prove that $xyz=-1$	
	$z z^{z} 1+z^{s}$	
13. If	$y=(x)^{tanx}+(tanx)^{x}$ then find $\frac{dy}{dx}$	4
	https://byjus.com	

14. Using differentials find approximate value of $0.37^{1/2}$			
5. Evaluate $\int \frac{x^2+1}{x^{4+1}} dx$			
	Or		
16. 17.	Evaluate $\int \frac{dx}{x^2+1}$ Find the area of region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ Find the particular solution of differential equation $[x \sin^2 (y/x)-y] dx + xdy = 0; y(1) = \frac{\pi}{4}$ $\overline{n^i}$	4 4	
	Find the particular solution of differential equation " given that tanx $\frac{dx}{dx}$ +y = 2x tan x + x ² , x != 0 given that y=0 whenx = $\frac{\pi}{2}$		
18.	ਜੇਕਰ à = 2í-3j+4k ਅਤੇ 6 = 5i +j-k represents sider parallelogram then find both diagonals and a unit vector perpendicular to both dingonals.	4	
19.	Two cards are drawn (without replacement from a well shulle distribution table and mean of number of kings.		-
20.	Solve the following system of lincar equations by matrix mehord:	6	
	x - 2y +3z = -5, 3 x +y +c= 8, 2x -y +2z = 1		
	Or		
	Using elementary transformations find inverse of $\begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 3 \\ 1 & -3 & 0 \end{bmatrix}$		
21.	A window is in the form of rectangle surmounted by a semi-circular opening. The perimeter of window is 30 m. Find the dimensions of window so that it can admit maximum light through the whole opening.	6	

Or

Prove that volume of largest cone, which can be inscribed in a sphere, is 8/27 part of sphere.

22. Find the distance between the point (2, 3, -1) and foot of perpendicular drawn from (3, 1) to the plane is X-y +3 z= 10.

23. Find the equation of plane passing from the point A (2.-1, 1), B (4.3, 2) and C (6, 5,-? Also prove that point (5. - 1, lies on the plane given by points A, B and C.

6

6

24. Maximize and Minimize: Z=15x + 30y Subject to the constraints: x+y <=8, 2x+y >= 28, x- 2y>=0, x, y>= 0

Or

Maximise and minimize Z = 4x + 3y - 7 Subject to the constraints : $x+y \le 10$, $x + y \ge 3$, $x \le 8$, $y \le 9$, x, $y \ge 0$