Vol 1 Chapter 8 – Work and Energy

1. \(M = m_a + m_b = 90 \text{kg} \)
 \(u = 6 \text{ km/h} = 1.666 \text{ m/sec} \)
 \(v = 12 \text{ km/h} = 3.333 \text{ m/sec} \)
 Increase in K.E. = \(\frac{1}{2} M v^2 - \frac{1}{2} M u^2 \)
 \(= \frac{1}{2} \times 90 \times (3.333)^2 - \frac{1}{2} \times 90 \times (1.66)^2 = 494.5 - 124.6 = 374.8 = 375 \text{ J} \)

2. \(m_b = 2 \text{ kg} \)
 \(u = 10 \text{ m/sec} \)
 \(a = 3 \text{ m/sec}^2 \)
 \(t = 5 \text{ sec} \)
 \(v = u + at = 10 + 3 \times 5 = 25 \text{ m/sec} \)
 \(\therefore \text{ F.K.E.} = \frac{1}{2} m v^2 = \frac{1}{2} \times 2 \times 625 = 625 \text{ J} \)

3. \(F = 100 \text{ N} \)
 \(S = 4 \text{ m}, 6 = 0^\circ \)
 \(\omega = \dot{r} \cdot \frac{S}{6} = 100 \times 4 = 400 \text{ J} \)

4. \(m = 5 \text{ kg} \)
 \(\theta = 30^\circ \)
 \(S = 10 \text{ m} \)
 \(F = mg \)
 So, work done by the force of gravity
 \(\omega = mgh = 5 \times 9.8 \times 5 = 245 \text{ J} \)

5. \(F = 2.50 \text{ N}, S = 2.5 \text{ m}, m = 15 \text{ g} = 0.015 \text{ kg} \)
 So, \(w = F \times S \Rightarrow a = \frac{F}{m} = \frac{2.5}{0.015} = \frac{500}{3} \text{ m/sec}^2 \)
 \(= F \times \cos 0^\circ \) (acting along the same line)
 \(= 2.5 \times 2.5 = 6.25 \text{ J} \)
 Let the velocity of the body at \(b = U \). Applying work-energy principle \(\frac{1}{2} m v^2 - 0 = 6.25 \)
 \(\Rightarrow V = \sqrt{\frac{2 \times 2.5 \times 2}{0.015}} = 28.86 \text{ m/sec} \)
 So, time taken to travel from \(A \) to \(B \).
 \(\Rightarrow t = \frac{v - u}{a} = \frac{28.86 \times 3}{500} \)
 \(\therefore \text{ Average power} = \frac{W}{t} = \frac{6.25 \times 500}{(28.86 \times 3)} = 36.1 \text{ J} \)

6. Given
 \(r_1 = 2\hat{i} + 3\hat{j} \)
 \(r_2 = 3\hat{i} + 2\hat{j} \)
 So, displacement vector is given by,
 \(\vec{r} = \vec{r}_1 - \vec{r}_2 = (3\hat{i} + 2\hat{j}) - (2\hat{i} + 3\hat{j}) = \hat{i} - \hat{j} \)
Force \(F = mg \sin 37^\circ = 100 \times 0.60 = 60 \text{ N} \)

So, work done, when the force is parallel to incline.

\(w = Fs \cos \theta = 60 \times 2 \times \cos 37^\circ = 120 \text{ J} \)

In \(\triangle ABC \) \(AB = 2 \text{m} \)

\(\theta = 37^\circ \)

\(\text{so, } h = C = 1 \text{m} \)

\(\therefore \) work done when the force in horizontal direction

\(W = mgh = 100 \times 1.2 = 120 \text{ J} \)

13. \(m = 500 \text{ kg}, \quad s = 25 \text{ m}, \quad u = 72 \text{ km/h} = 20 \text{ m/s}, \quad v = 0 \)

\(-\ddot{a} = \frac{v^2 - u^2}{2s} \Rightarrow a = \frac{400}{50} = 8 \text{ m/sec}^2 \)

Frictional force \(f = ma = 500 \times 8 = 4000 \text{ N} \)

14. \(m = 500 \text{ kg}, \quad u = 0, \quad v = 72 \text{ km/h} = 20 \text{ m/s} \)

\(a = \frac{v^2 - u^2}{2s} = \frac{400}{50} = 8 \text{ m/sec}^2 \)

force needed to accelerate the car \(F = ma = 500 \times 8 = 4000 \text{ N} \)

15. Given, \(v = a \sqrt{s} \) (uniformly accelerated motion)

\(\text{displacement } s = d - 0 = d \)

putting \(x = 0, \quad v_1 = 0 \)

putting \(x = d, \quad v_2 = a \sqrt{d} \)

\(a = \frac{v_2^2 - v_1^2}{2s} = \frac{d}{2} \rightarrow a = \frac{a^2}{2} \)

work done \(W = Fs \cos \theta = \frac{ma^2}{2} \times d = \frac{ma^2}{2} \)

16. a) \(m = 2 \text{ kg}, \quad \theta = 37^\circ, \quad F = 20 \text{ N} \)

From the free body diagram

\(F = (2g \sin \theta) + ma \Rightarrow a = (20 - 20 \sin 37^\circ)/s = 4 \text{ m/sec}^2 \)

\(S = ut + \frac{1}{2} at^2 \) \((u = 0, \; t = 1 \text{s}, \; a = 1.66) \)

\(= 2 \text{ m} \)

So, work done \(W = Fs = 20 \times 2 = 40 \text{ J} \)

b) If \(W = 40 \text{ J} \)

\(S = \frac{W}{F} = \frac{40}{20} \)

\(h = 2 \sin 37^\circ = 1.2 \text{ m} \)

So, work done \(W = -mgh = -20 \times 1.2 = -24 \text{ J} \)

17. \(m = 2 \text{ kg}, \quad \theta = 37^\circ, \quad F = 20 \text{ N}, \quad a = 10 \text{ m/sec}^2 \)

a) \(t = 1 \text{ sec} \)

So, \(s = ut + \frac{1}{2} at^2 = 5 \text{ m} \)
Work done by the applied force \(w = FS \cos \theta = 20 \times 5 = 100 \text{ J} \)

b) BC (h) = 5 \sin 37° = 3 \text{ m}

So, work done by the weight \(W = mgh = 2 \times 10 \times 3 = 60 \text{ J} \)

c) So, frictional force \(f = mg \sin \theta \)

work done by the frictional forces \(w = fs \cos \theta = (mg \sin \theta) s = 20 \times 0.60 \times 5 = 60 \text{ J} \)

18. Given, \(m = 250 \text{ g} = 0.250 \text{ kg} \),
\[u = 40 \text{ cm/sec} = 0.4 \text{ m/sec} \]
\[\mu = 0.1, \quad v = 0 \]

Here, \(\mu R = ma \) [where, \(a = \) deceleration]
\[a = \frac{\mu R}{m} = \frac{\mu mg}{m} = \mu g = 0.1 \times 9.8 = 0.98 \text{ m/sec}^2 \]

\[s = \frac{v^2 - u^2}{2a} = 0.082 \text{ m} = 8.2 \text{ cm} \]

Again, work done against friction is given by
\[w = \mu RS \cos \theta \]
\[= 0.1 \times 2.5 \times 0.082 \times 1 (\theta = 0°) = 0.02 \text{ J} \]

\[\Rightarrow W = -0.02 \text{ J} \]

19. \(h = 50 \text{ m}, \quad m = 1.8 \times 10^5 \text{ kg/hr}, \quad P = 100 \text{ watt}, \)

P.E. = \(mgh = 1.8 \times 10^5 \times 9.8 \times 50 = 882 \times 10^5 \text{ J/hr} \)

Because, half the potential energy is converted into electricity.

Electrical energy \(\frac{1}{2} \) P.E. = \(441 \times 10^5 \text{ J/hr} \)

So, power in watt (J/sec) is given by
\[\frac{441 \times 10^5}{3600 \times 100} = 122.5 \approx 122 \]

20. \(m = 5 \text{ kg}, \quad h = 2 \text{ m} \)

P.E. at a height ‘2m’ = \(mgh = 5 \times (9.8) \times 2 = 117.6 \text{ J} \)

P.E. at floor = 0

Loss in P.E. = \(117.6 - 0 = 117.6 \text{ J} \approx 118 \text{ J} \)

21. \(h = 40 \text{ m}, \quad u = 50 \text{ m/sec} \)

Let the speed be ‘\(v \)’ when it strikes the ground.

Applying law of conservation of energy
\[mgh + \frac{1}{2} m u^2 = \frac{1}{2} m v^2 \]
\[\Rightarrow 30 \times 40 \times (1/2) \times 2500 = \frac{1}{4} v^2 \Rightarrow v^2 = 3300 \Rightarrow v = 57.4 \text{ m/sec} \approx 58 \text{ m/sec} \]

22. \(t = 1 \text{ min} 57.56 \text{ sec} = 11.56 \text{ sec}, \quad p = 400 \text{ W}, \quad s = 200 \text{ m} \)

\[p = \frac{w}{t}, \quad \text{Work } w = pt = 460 \times 117.56 \text{ J} \]

Again, \(W = FS = \frac{460 \times 117.56}{200} = 270.3 \text{ N} \approx 270 \text{ N} \)

23. \(S = 100 \text{ m}, \quad t = 10.54 \text{ sec}, \quad m = 50 \text{ kg} \)

The motion can be assumed to be uniform because the time taken for acceleration is minimum.
a) Speed \(v = \frac{s}{t} = 9.487 \text{ e/s} \)
So, K.E. = \(\frac{1}{2} mv^2 = 2250 \text{ J} \)
b) Weight = \(mg = 490 \text{ J} \)
given \(R = \frac{mg}{10} = 49 \text{ J} \)
so, work done against resistance \(W_r = -Rs = -49 \times 10 = -4900 \text{ J} \)
c) To maintain her uniform speed, she has to exert 4900 J of energy to overcome friction
\[
P = \frac{W}{t} = 4900 / 10.54 = 465 \text{ W}
\]
24. \(h = 10 \text{ m} \)
flow rate = \((m/t) = 30 \text{ kg/min} = 0.5 \text{ kg/sec} \)
power \(P = \frac{mgh}{t} = (0.5) \times 9.8 \times 10 = 49 \text{ W} \)
So, horse power \((\text{h.p.}) \)
\[
P/746 = 49/746 = 6.6 \times 10^{-3} \text{ hp}
\]
25. \(m = 200 \text{ g} = 0.2 \text{ kg}, \quad h = 150 \text{ cm} = 1.5 \text{ m}, \quad v = 3 \text{ m/sec}, \quad t = 1 \text{ sec} \)
Total work done = \(\frac{1}{2} mv^2 + mgh = (1/2) \times (0.2) \times 9 + (0.2) \times (9.8) \times (1.5) = 3.84 \text{ J} \)
h.p. used = \[
\frac{3.84}{746} = 5.14 \times 10^{-3} \text{ hp}
\]
26. \(m = 200 \text{ kg}, \quad s = 12 \text{ m}, \quad t = 1 \text{ min} = 60 \text{ sec} \)
So, work \(W = F \cos \theta = mg \cos \theta [9 = 0^\circ, \text{ for minimum work}] \)
\[
= 2000 \times 10 \times 12 = 240000 \text{ J}
\]
So, power \(P = \frac{W}{t} = \frac{240000}{60} = 4000 \text{ watt} \)
h.p. = \[
\frac{4000}{746} = 5.3 \text{ hp}
\]
27. The specification given by the company are
\[
U = 0, \quad m = 95 \text{ kg}, \quad P_m = 3.5 \text{ hp}
\]
\(v_n = 60 \text{ km/h} = 50/3 \text{ m/sec}, \quad t_n = 5 \text{ sec} \)
So, the maximum acceleration that can be produced is given by,
\[
a = \frac{(50/3) - 0}{5} = \frac{10}{3} \text{ m/sec}^2
\]
So, the driving force is given by
\[F = ma = 95 \times \frac{10}{3} = \frac{950}{3} \text{ N}
\]
So, the velocity that can be attained by maximum h.p. white supplying \(\frac{950}{3} \) will be
\[
v = \frac{P}{F} = \frac{3.5 \times 746 \times 5}{950} = 8.2 \text{ m/sec.}
\]
Because, the scooter can reach a maximum of 8.5 m/sec while producing a force of 950/3 N, the specifications given are somewhat over claimed.

28. Given \(m = 30 \text{ kg}, \quad v = 40 \text{ cm/sec} = 0.4 \text{ m/sec}, \quad s = 2 \text{ m} \)
From the free body diagram, the force given by the chain is,
\[
F = (ma - mg) = m(a-g) [\text{where } a = \text{acceleration of the block}]
\]
\[
a = \frac{(v^2 - u^2)}{2s} = \frac{0.16}{0.4} = 0.4 \text{ m/sec}^2
\]
So, work done \(W = F_s \cos \theta = m(a - g) \cos \theta \)
\(\Rightarrow W = 10(0.04 - 9.8) \times 2 \Rightarrow W = -585.5 \Rightarrow W = -586 \text{ J.} \)
So, \(W = -586 \text{ J} \)

29. Given, \(T = 19 \text{ N} \)

From the free body diagrams,
\(T - 2mg + 2ma = 0 \) \(\Rightarrow \) (i)
\(T - mg - ma = 0 \) \(\Rightarrow \) (ii)

From, Equation (i) & (ii) \(T = 4ma \Rightarrow a = \frac{T}{4m} \Rightarrow A = \frac{16}{4m} \text{ m/s}^2 \).

Now, \(S = ut + \frac{1}{2} at^2 \)
\(\Rightarrow S = 1 \times \frac{4}{2} \times 1 \Rightarrow S = \frac{2}{m} \text{ m} \) [because \(u=0 \)]

Net mass = \(2m - m = m \)

Decrease in P.E. = \(mgh \Rightarrow P.E. = m \times g \times \frac{2}{m} \Rightarrow P.E. = 9.8 \times 2 \Rightarrow P.E. = 19.6 \text{ J} \)

30. Given, \(m_1 = 3 \text{ kg, } m_2 = 2 \text{ kg, } t \) during 4th second

From the free body diagram
\(T - 3g + 3a = 0 \) \(\Rightarrow \) (i)
\(T - 2g - 2a = 0 \) \(\Rightarrow \) (ii)

Equation (i) & (ii), we get \(3g - 3a = 2g + 2a \Rightarrow a = \frac{g}{5} \text{ m/} \text{sec}^2 \)

Distance travelled in 4th sec is given by
\(S_{4th} = \frac{a}{2}(2n-1) = \frac{g}{5} \times (2 	imes 4 - 1) = \frac{7g}{10} = \frac{7 \times 9.8}{10} \text{ m} \)

Net mass \(m' = m_1 - m_2 = 3 - 2 = 1 \text{ kg} \)

So, decrease in P.E. = \(mgh = 1 \times 9.8 \times \frac{7}{10} \times 9.8 = 67.2 \text{ J} \)