Assam Board Class 12 Maths Sample Paper-Set 1

Mathematics

Full Marks-100

Pass Marks-30
Time: 3 Hours

1. Answer the following questions :
(a) If $A=\{0, I .3\}$, what is the number of relations on A ?
(b) Find the principal value of $\sin ^{-1}\left(\operatorname{Sin} \frac{3 \pi}{5}\right)$.
(c)

Find X, If $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{rr}1 & 0 \\ -3 & 2\end{array}\right]$
(d)
(e) What is the equation of a $x y$ - plane?
(f)

What is the unit vector along the vector $\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$?
(g)

Which one of the following is true ?
(i) f is continuous at 0 and 1 .
(ii) f is continuous at 1 and 2 .
(iii) f is continuous at 0 and 2 --
(ii) f is continuous at 0,1 and 2 .

(i) Let A be a skew-symmetric matrix of odd order. Write the value of $/ A \mid$.
(j) Write the interval in which the function f [回 $\cos x$ is strictly decreasing.
2. Let the mapping $f(x)=a x+b, a>0$, maps $[-1,1]$ onto $[0,2]$; show that $\cot \left(\cot ^{-1} 7+\cot ^{-1} 8+\cot ^{-1}\right.$ 18) $=f(2)$.
Or

Let L be the set of all lines in the $x y$-plane and R be the relation in L defined by $R=\left\{\left(l_{i}, l_{j}\right) \mid l_{i}\right.$ parallel to $\left.l_{j}, \forall i, j\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=7 x+5$.
3. Let $f: R \rightarrow R$ is defined by $f(x)=3 x-2$ and $g: R \rightarrow R$ is defined by $g(x)=\frac{x+2}{3}$. Show that $f \cdot g=g \cdot f$.

BYJU'S
The Learning App
4. If $A=\left(\begin{array}{lll}0 & -1 & 2 \\ 2 & -2 & 0\end{array}\right.$, and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right)$. find a matrix C such that $C A B=I=A B C$, where $/$ is the 2×2 unit matrix.

OR / অথবা

Using elementary row operation, find the inverse of the matrix $\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$.
5. Show that the function f defined by
$f(x)=|1-x+|x||, x \in R$ is a continuous function.

OR / অথবা

Discuss the applicability of Rolle's theorem to the function $f(x)=x^{2}+1$ on $[-2,2]$.
6. If a function is differentiable at a point, prove that it is continuous at that point. 4 OR

Using Rolle's theorem, find at what points on the curve $y=\cos x-1$ in $[0,2 \pi]$ the tangent is parallel to x-axis.
7. If $y=\frac{1}{2} \cos ^{-1}\left(\frac{1-4 x^{3}}{1+4 x^{3}}\right), \quad x \geq 0$,
find $\frac{d y}{d x}$.
8. Prove that $\int_{a}^{t} f(x) d x=0$, when f is an odd function. Hence evaluate $\int_{-1}^{d} \log \frac{2-x}{2+x} d x$.
9. Evaluate $\int_{0}^{1} \frac{3-x^{2}}{\left(3+x^{2}\right)^{2}} d x$.
10. Find the equation of a curve passing through the origin, given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the co-ordinates of the point.
11. If $y=3 \cos (\log x)+4 \sin (\log x)$,

$$
\begin{equation*}
\text { show that } x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0 \tag{4}
\end{equation*}
$$

12. Find the vector equation of a plane in normal form.
13. Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls, given that
(i) the youngest is a girl,
(ii) at least one is a girl?
14. If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$, then

$$
\text { show that } I+A=(I-A)\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \text {, }
$$

where I is the identity matrix of order 2 .

OR / অथবা

If $a \neq p ; b \neq q ; \quad c \neq r$ and

$$
\left|\begin{array}{lll}
p & b & c \\
a & q & c \\
a & b & r
\end{array}\right|=0,
$$

then find the value of $\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$.
15. Find the maximum and minimum value of the following functions ; if exist. $3+3=6$
(i) $f(x)=\frac{x^{2}-x+1}{x^{2}+x+1} ; \quad x \in \mathbb{R}$.
(ii) $f(x)=\log x, \quad x>0$.

OR / অथবা

Find the maximum area of an isosceles triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its vertex at one end of the major axis.
16. Prove that the area of a right angled triangle of a given hypotenuse is maximum when the triangle is isosceles.

Find the area of the smaller portion enclosed by the curves $x^{2}+y^{2}=9$ and $y^{2}=8 x$.
17. Find the area bounded by

$$
y=x^{2} \text { and } y=|x|
$$

OR

Find the ratio in which the area bounded by the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$.
18. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$. Hence find the area of the parallelogram whose diagonals are the vectors

$$
\begin{equation*}
3 \hat{i}+\hat{j}-2 \hat{k} \text { and } \hat{i}-3 \hat{j}+4 \hat{k} \tag{6}
\end{equation*}
$$

Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.
19. A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making, while a cricket bat takes 3 hours of machine time and 1 hour of craftunan's time. In a day the factory has the availability of not more than 42 hours of machine time and 24 hours of craftman's time. If the profit on racket and on a bat is Rs. 20 and Rs. 10 respectively, find the maximum profit of the factory when it works at full capacity.

OR / অथবা

Minimize and maximize $Z=x+2 y$

$$
\text { subject to } x+2 y \geq 100 ; 2 x-y \leq 0 ; \quad 2 x+y \leq 200
$$

$$
x, y \geq 0 .
$$

20. Two numbers are selected at random from a set of first 90 natural numbers. Find the probability that the product of randomly selected numbers is divisible by 3 .

OR

In a 3×3 matrix, entries a_{y} are selected randomly from the digits $0,1,2,3,4,5,6,7,8,9$ with replacement where each element $a_{i j}$ is a three digit number. Find the probability that each element in each row is divisible by 15 .

