उत्तर (ANSWER)

1.(b) 2. (b) 3.(d) 4. (b) 5.(d) 6.(c) 7. (b) 8.(d) 9.(c) 10. (c) 11. एक 12. वास्तविक और असमान 13.

$${\bf r}$$
 . 14. तोरण 15. 0 (शून्य) 16. वृद्धि 17. समान्तर 18 ${\bf S}_n=\frac{n}{2}$. $\{{\bf 2}~{\bf a}+({\bf n}-{\bf 1})~{\bf x}~{\bf d}\}$ 19. समरूप

20. अपरिमेय

द्विघात बहुपद
$$\Rightarrow x^2$$
 -(+)x+

$$\Rightarrow$$
 x^2 - (-7) x_1 10

$$\Rightarrow$$
 x² + 7 x + 10

22. मूलों का योगफल
$$=\frac{1}{4}$$

मूलों का गुणनफल =
$$\frac{1}{4}$$

द्विघात समीकरण $\Rightarrow x^2$ - (मूलों का योगफल) x +मूलों का गुणनफल = 0

$$\Rightarrow$$
 x²-($\frac{1}{4}$)x+1/4=0

$$\Rightarrow \frac{4\chi^2 - x + 1}{4} = 0$$

$$\Rightarrow$$
 4 x ² - x +1 = 0

$$3x + y = 1$$
 $a_2 x + b_2 y + C_2 = 0$

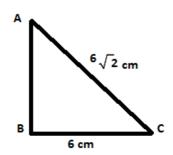
 $a_1 x + b_1 y + c_1 = 0$

समीकरण के हल अद्वितीय होगा जब

$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$

$$\Rightarrow \frac{P}{3} = \frac{2}{1}$$

$$\Rightarrow P = 6$$


24.
$$2x^2 - 6x + 3 = 0$$

$$a = 2$$
, $b = -6$, $c = 3$

$$D = b^2-4ac = (-6)^2 - 4x2x3 = 36-24 = 12$$

D>0 मूल वास्तविक और असमान होंगे।

25. त्रिभुज ABC में

$$AB^2 = (6 \text{ cm}^2) = 36 \text{ cm}^2$$

$$BC^2 = (6 \text{ cm}^2) = 36 \text{ cm}^2$$

$$AC^2 = (6 \sqrt{2cm})^2 = 72cm^2$$

$$\therefore$$
 AB²⁺ BC² = 36 cm² + 36 cm² = 72cm² = AC²

$$AC^2 = AB^2 + BC^2$$

अतः ABC एक समकोण है।∠B=90°

26. दो दिए बिन्दु P (2, -2) और Q (-2, 2) P,Q को मिलानेवाली रेखाखण्ड का मध्य बिन्दु

$$= \left(\frac{2 + (-2)}{2}, \frac{-2 + 2}{2}\right) = \left(\frac{0}{2}, \frac{0}{2}\right) = (0, 0)$$

27. दिया है Δ ABC \sim Δ DEF

$$\therefore \frac{ar(\Delta ABC)}{ar(\Delta DEF)} = \frac{BC^2}{EF^2}$$

$$=\frac{64cm^2}{121cm^2}=\frac{BC^2}{\left(15.4cm^2\right)}$$

$$\therefore BC^{2} = \frac{64cm^{2}X(15.4)^{2}cm^{2}}{121cm^{2}}$$

$$\therefore BC = \sqrt{\frac{64cm^2 X (15.4)^2 cm^2}{121cm^2}}$$

$$=\frac{8X15.4}{11}cm = 8X1.4cm$$

28. त्रिभुज के शीर्ष (3,-5), (-7, 4) और (10, -2) केन्द्रक (x, y)

$$x = \frac{x_1 + x_2 + x_3}{3} \qquad y = \frac{y_1 + y_2 + y_3}{3}$$

$$y = \frac{y_1 + y_2 + y_3}{3}$$

$$=\frac{3+(-7)+10}{3}$$

$$=\frac{3+(-7)+10}{3} = \frac{-5+4+(-2)}{3}$$

$$=\frac{6}{3}=2$$

$$=\frac{6}{3}=2$$
 $=\frac{-3}{3}=-1$

29.
$$\cos A = \frac{3}{4}$$

Sin A =
$$\sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{3}{4}\right)^2} = \sqrt{1 - \left(\frac{9}{16}\right)} = \sqrt{\frac{16 - 9}{16}}$$

$$\sin A = \frac{\sqrt{7}}{4}$$

$$\cot A = \frac{\cos A}{\sin A} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}}$$

30. $2 \cot^2 45^0 + \cos^2 30^0 - \sin^2 60^0$

$$= 2 \times (1)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2$$

$$=2\times1-\frac{3}{4}+\frac{3}{4}=2$$

31. AP: 3, 8, 13,-----

$$a=3$$
, $d=8-3=5$, $a_n=78$, $n=?$

:
$$a_n = a + (n - 1) d$$

$$\Rightarrow$$
 78 = 3 + (n-1) x 5

$$\Rightarrow$$
 78 - 3 = (n -1) x 5

$$\Rightarrow$$
 75 = (n -1) x 5

$$(n-1) = \frac{75}{5} = 15$$

$$n - 1 = 15$$

$$\therefore$$
 n = 15 + 1 = 16

32. माना कि 15 $-\sqrt{3} = \frac{p}{q}$ एक परिमेय संख्या है परंतु $\sqrt{3}$ अपरिमेय संख्या है।

अतः यहाँ विरोधाभास है।

परिमेय और अपरिमेय संख्या का अंतर अपरिमेय होता है ।

 \therefore 15 - $\sqrt{3}$ एक अपरिमेय संख्या है।

33. $8 = 2 \times 2 \times 2 \times 1$

$$9 = 3 \times 3 \times 1$$

$$25 = 5 \times 5 \times 1$$

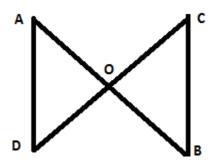
34. पहली संख्या x दूसरी सं0 = ल0 स0x म0 स0

पहली संख्या = ल0 स0 x म0 स0

दूसरी सं0

$$=\frac{20\times5}{5}=20$$

$$35. \quad 3x^2 - 5x + p = 0$$


$$a = 3$$
, $b = -5$, $c = P$

$$D = b^2 - 4ac = (-5)^2 - 4 \times 3 \times P = 25 - 12 P$$

चूँकि दिया है मूल समान है। 🔥 D=0

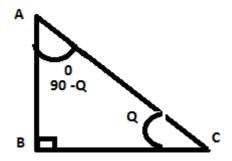
∴ 25 - 12 P = 0 या 12 P = 25 ∴ P =
$$\frac{25}{12}$$

36. दिया है oa.oB = oc.oD

 Δ AOD Δ COB में \angle AOD = \angle COB (सम्मुख कोण होने से)

तथा
$$\frac{OA}{OC} = \frac{OD}{OB}$$
 (दिया है)

••
$$\Delta$$
 AOD ~ Δ COB


37. त्रिभुज के शीर्षों के नियामक (3, 4), (-4, 3) एवं (8, 6) है।

त्रिभुज का क्षेत्रफल =
$$\left| \frac{1}{2} \left[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right] \right|$$

$$= \left| \frac{1}{2} \left[3(3-6) + (-4)(6-4) + 8(4-3) \right] \right|$$

$$= \left| \frac{1}{2} [3(-3) - 4 \times 2 + 8 \times 1)] \right|$$
$$= \left| \frac{1}{2} [-9 - 8 + 8 \times 1)] \right| = \left| \frac{1}{2} \times 9 \right|$$

38. माना कि ABC एक समकोण Δ है।

$$\angle B = 90^{\circ} \angle C = Q(\overline{H1} - \overline{H1})$$

••
$$\angle A = 90^{\circ} - Q$$

$$Sin Q = \frac{AB}{AC}$$

$$Cos Q = \frac{BC}{AC} \dots (i)$$

Sin
$$(90^{\circ}-Q) = \frac{BC}{AC}$$
(ii)

- (i) और (ii) Sin (90° Q) = Cos Q
- 39. जब पासे को एक बार फेंका जाता है तो 4 या 4 से छोटी संख्या = 1, 2, 3, 4 होगी। पासे पर प्राप्त कुल सं0 = 6
- •• 4 या 4 से छोटी प्राप्त होने की प्रायिकता = $\frac{4}{6} = \frac{2}{3}$

40. L. H. S. =
$$(\sec q - \tan q)^2 = \left(\frac{1}{\cos q} - \frac{\sin q}{\cos q}\right)^2$$

$$= \left(\frac{1 - \sin q}{\cos q}\right)^{2} = \frac{\left(1 - \sin q\right)^{2}}{\cos^{2} q} = \frac{\left(1 - \sin q\right)^{2}}{1 - \sin^{2} q}$$

$$= \frac{(1-\sin q)\times(1-\sin q)}{(1+\sin q)\times(1-\sin q)} = \frac{1-\sin q}{1+\cos q} = R.H.S.$$

41. माध्य = सख्याओं का कुल योग

कुल संख्या

$$\Rightarrow$$
 25 = 40 +1.5+1.8+2.2+2.9+x+3.2+y+29

9

$$\Rightarrow$$
 25 x 9 = 185 + x + y

$$\Rightarrow$$
 225-185 = x + y

$$\Rightarrow$$
 40 = x + y

42.

वर्ग अन्तराल (c.i.)	बारंबारता (F)	संचयी बारंबारता (Cf.)
40-45	2	2
45-50	3	5
50-55	8	13
55-60	6	19
60-65	6	25
65-70	3	28
70-75	2	30
	N= 30	

 $\frac{N}{2} = \frac{30}{2} = 15$, यह संचयी बारंबारता 19 के अन्तर्गत आता है जिसका वर्ग—अन्तराल 55—60 है।

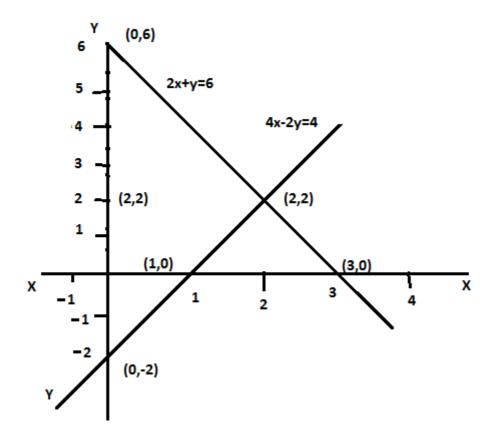
अतः माध्यिका वर्ग 55–60 है।

माध्यक
$$= l + \frac{\frac{N}{2} - c.f}{f} \times i$$

 $= 55 + \frac{15 - 13}{6} \times 5 = 55 + \frac{2}{6} \times 5$
 $= 55 + \frac{1}{3} \times 5 = 55 + 1.66 = 56.66$

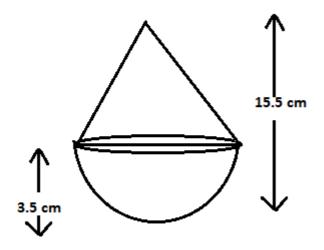
43.
$$2x + y = 6$$

$$\Rightarrow$$
 y = 6 - 2 x


$$4x - 2y = 4$$

$$\Rightarrow$$
 2y = 4x - 4

$$\Rightarrow$$
 y = $2x-2$


х	0	3	2
У	6	0	2

х	0	1	2
У	-2	0	2

ग्राफ से हम देखते हैं कि दोंनो सरल रेखाएँ एक दूसरे को बिन्दु (2, 2)पर काटती हैं। अतः x=2, y=2

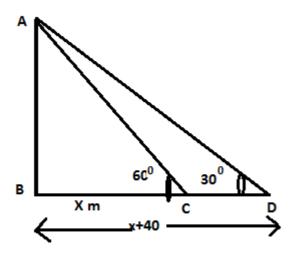
44. खिलौना का संपूर्ण ऊँचाई =15.2 cm

त्रिज्या = 3.5 cm

शंकु की ऊँचाई = 15.5cm-3.5 cm

= 12 cm

शंकु की तिरछी उँचाई
$$=\sqrt{h^2+r^2}=\sqrt{12^2+\left(3.5\right)^2}cm$$
 $=\sqrt{144+12.25}cm=\sqrt{156.25}cm=12.5cm$


खिलौने का संपूर्ण पृष्ठ क्षे० = अर्द्धगोले का वक्र पृष्ठ क्षे०. + शंकु का वक्रपृष्ठ क्षे०

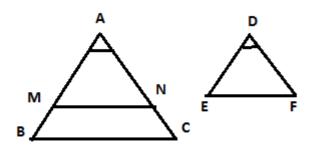
$$= 2 r^2 + rl = r(2r + l)$$

=
$$\frac{22}{7}$$
 x 3.5 (2 x 3.5 + 12.5) = 22 x 0.5 (7 + 12.5)cm²

=
$$11 \times 19.5 \text{ cm}^2 = 214.5 \text{ cm}^2$$

45. मान लिया कि AB मीनार है जिसकी ऊँचाई hm है।

BC मीनार की छाया है। BC = x माना


$$BD = (x+40) \text{ m}$$

 Δ ABC ਸੇਂ

$$\tan 60^0 = \frac{AB}{BC} = \frac{p}{b}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow h = x \sqrt{3} \Rightarrow x = \frac{h}{\sqrt{3}}$$

46. मान लिया कि त्रिभुज ABC एवं त्रिभुज DEF

इस प्रकार है कि

$$\angle$$
 A = \angle D $\nabla \vec{q}$ $\frac{AB}{DE} = \frac{AC}{DF}$

तो सिद्ध करना है कि Δ ABC \sim Δ DEF

बनावट:- 🛆 ABC में AB से AM = DE तथा AN = DE काटा एवं M तथा N को मिलाया।

प्रमाण :- Δ AMN एवं Δ DEF में । चित्र

AN =DF

- $\cdot \cdot \Delta$ AMN ~ Δ DEF (SAS \overrightarrow{H})
- ••• ∠ AMN = ∠ E , ∠ ANE = ∠ F(i)

दिया है
$$\frac{AB}{DE} = \frac{AC}{DF}$$

$$\Rightarrow \frac{AB}{AM} = \frac{AC}{AN}$$
 (\because DE = AM, DF= AN)

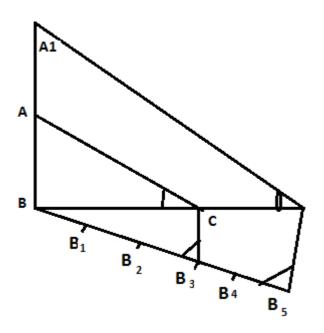
- ⇒ MN||BC
- $\Rightarrow \angle M = \angle B \overline{\forall q} \angle N = \angle C$

परंतु (i) से
$$\angle M = \angle E \nabla \vec{q} \angle N = \angle F$$

.. ∠B = ∠E तथा ∠C = ∠F

अब Δ ABC एवं Δ DEF में

$$\angle B = \angle E$$
 , $\angle C = \angle F$ (ऊपर से)


 \cdot Δ ABC एवं Δ DEF समानकोणिक हुए।

... Δ AMN $\sim \Delta$ DEF (AAA \overrightarrow{H})

सत्यापित

47. चूँकि त्रिभुज की दो भुजाएँ 3cm एवं 4cm दी हुई है। अतः यह समकोण △ है। एक समकोण बनाया जाता है।

चरण ----

- (i) BC = 4 cm खींचा ।
- (ii) बिन्दु в पर 90° का कोण बनाया। AB =3cm काटा। A से C को मिलाया। ABC एक समकोण Δ बना।
- (iii) BC से शीर्ष A के दूसरी ओर एक न्यूनकोण बनाती हुई एक किरण BX खींचा।

(iv)
$$5(\frac{5}{3})$$
 में 5 और 3 में से बड़ी) बिन्दु

 B_1 , B_2 , B_3 , B_4 , $\nabla \vec{q}$ B_5 , BX

पर इस प्रकार अंकित किया कि

 $B B_1$, = $B_1 B_2$, = $B_2 B_3$ = $B_3 B_4$ =

B₄ B₅ हो |

(v) B_3 (तीसरा बिन्दु $\frac{5}{3}$ में 5 और 3 में छोटी)

को C से मिलाया एवं B_5 से होकर जानेवाली B_3C

के समान्तर एक रेखाए बढ़ाया गया रेखाखण्ड

вс को с' पर प्रतिच्छेद करती हुई खींचा।

(vi) C'से होकर जानेवाली CA के समान्तर एक रेखा बढ़ाने पर रेखाखण्ड BA को A' पर प्रतिच्छेद करती हुई खींचा।

A' से C' को मिलाया। ∆ A'BC' प्राप्त हुआ।

. Δ ABC ~ Δ A'BC'

MATHEMATICS - (गणित)

समय : 3 घंटा 15 मिनट पूर्णंक : 100

Time: 3 Hrs. 15 Minutes Full Marks: 100

प्रश्नों की कुल संख्या : 47

Total No. of Questions: 47

परीक्षा के लिये निर्देश :

Instructions to the Candidete:

- 1. परीक्षार्थी यथासंभव अपने शब्दों में ही उत्तर दें।
 - Candidates are required to give their answers in their own words as far Practicable.
- 2. दाहिनी ओर हाशिये पर दिये हुए अंक पूर्णंक निर्दिष्ट करते हैं।
 - Figures in the right hand margin indicate full marks.
- 3. सभी प्रश्न अनिर्वाय हैं।
 - All Questions are Compulsory.
- 4. इस प्रश्नपत्र को पढ़ने के लिए 15 मिनट का अतिरिक्त समय दिया गया हैं।
 - 15 Minutes of extra time have been allotted for Candidates to read the Questions.