CBSE CLASS 12 MATHS SAMPLE PAPER SOLUTIONS

CLASS-XII (2016-17) MATHEMATICS (041)

Marking Scheme

1.	$\left(\tan -\right) = \left(-\right) = -$	1
2.	$ 3AB = 3^3 A B = 27$ 162	1
3.	Distance of the point (p, q, r) from the x-axis	1
	= Distance of the point (p, q, r) from the point $(p,0,0)$	1
	$=\sqrt{q}$	
4.	$gof(x) = g\{f(x)\} = g(3x^2 - 5) = \frac{1}{(5)^2} = \frac{1}{(5)^2}$	1
5.	Equivalence relations could be the following:	
	{ (1,1), (2,2), (3,3), (1,2), (2,1)} and (1)	
	{ (1,1), (2,2), (3,3), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2)} (1)	2
	So, only two equivalence relations.(Ans.)	
6.	$AA' = \begin{bmatrix} l & & \\ \end{bmatrix} \begin{bmatrix} m & & \\ \end{bmatrix} = \begin{bmatrix} 0 & & 0 \\ \end{bmatrix} = I_3 \qquad \longrightarrow (1)$	
		2
	because	
	= 1, for each i = 1, 2, 3 \longrightarrow $1/2$	
	= 0 (i \neq j) for each i, j = 1, 2, 3 \longrightarrow 1/2	
7.	On differentiating e^{y} (x + 1) = 1 w.r.t. x, we get	
	$e^{y} + (x+1) e^{y} \frac{dy}{dx} = 0 \qquad (1)$	2
	\implies $e^{y} + \frac{dy}{dx} = 0$	
	$\Rightarrow - \qquad \longrightarrow \qquad (1)$	
8.	Here, $\left\{\frac{dy}{2} + (1+x)\right\}^3 = -$ (1)	
	Thus, order is 2 and degree is 3. So, the sum is 5 ——————————————————————————————————	2
9.	Here, — — — — —	
	Cartesian equation of the line is — — — — (1)	2
	Vector equation of the line is	
	$= (-2 \hat{i} + 4 \hat{j} - 5 \hat{k}) + \lambda (3 \hat{i} + 5 \hat{j} + 6 \hat{k}) \longrightarrow (1)$	

	Slope of the given tangent line is 1.	
	Thus, $3x^2 - 11 = 1$ (1)	
	that gives $x = \pm 2$	
	When x = 2, y = 2 –	
	When $x = -2$, $y = -2$	
	Out of the two points $(2, -9)$ and $(-2, -13)$ \longrightarrow (2)	
	only the point ($2, -9$) lies on the curve	
	Thus, the required point is (2, –9) \longrightarrow $^{1}/_{2}$	
16.	Here, $f(x) = a = 0$, $b = 2$ and $nh = b - a = 2$ (1)	
	$\int_0^2 (x - 1) dx = h[f(a) + f(a - h) - f(a - h) + \dots - f(a - n - 1h)] \longrightarrow (1)$	
	= h[+(n 1) 3]	
	$= h[(n 1)^2 \}]$	4
	$= \left[\left\{ \frac{(n-1)n(2-1)}{2} \right\} \right]$	
	$= \left[\left\{ \frac{(n-h)nh(2-h)}{2} \right\} \right] \longrightarrow (1)$	
	=	
	= 6 + — ,i.e., — — — — — — — — — — — (1)	
17.	The rough sketch of the bounded region is shown on the right. ————————————————————————————————————	
	Required area =	
	= (si x)]	
	$= \sin - + \cos \sin - \cos$	4
	$= \frac{1}{\sqrt{2}} - 1, i.e, (\sqrt{2} - 1) $ (1)	
	Y	
	x	
	O	
18.	y = ax +(1)	
	— = a — — — — — — — — — — — — — — — — —	
	Substituting this value of 'a' in (1), we get	4
	222222222	

Thus, y = ax + -is a solution of the following differential equation y = x - +ig. \longrightarrow 1

OR

Given differential equation can be written as

$$-- \frac{\operatorname{os}\left(-\right)}{--} = - + \left[-\frac{\operatorname{os}\left(-\right)}{--}\right] \dots (1)$$

Then $F(\lambda x, \lambda y) = - + \left[\frac{\operatorname{os} \left(- \right)}{(\lambda x)^2} \right]$

 $= - + \left[\frac{\operatorname{os}\left(\frac{1}{x}\right)}{2} \right] \neq F(x,y)$

Hence, the given D.E. is not a homogeneous equation. (1)

Putting y = vx and --=v+x — in (1), we get

 \Rightarrow — = -dx

$$\Rightarrow sec^{2}\left(-\right)dv = -\frac{1}{3}dx \qquad (1)$$

Integrating both sides, we get

$$2 \tan -= -\frac{1}{2} + C \qquad \longrightarrow \qquad 1 -$$

19. Since the vector \vec{p} , \vec{q} and \vec{r} are coplanar

$$\vec{p}, \vec{q} \vec{r} = 0$$

$$[\vec{p} \quad \vec{q} \quad \vec{r}] \qquad \longrightarrow \qquad (1)$$

i.e.,
$$\begin{vmatrix} 1 & 1 \end{vmatrix} = 0$$
 \longrightarrow

$$\stackrel{>}{\rightarrow}$$
 (1)

4

	\Rightarrow a(b-1)(c-1)-1(1-a)(c-1)-1(1-a)(b-1)=0	
	i.e., $a(1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b) = 0$ \longrightarrow (1)	
	Dividing both the sides by $(1-a)(1-b)(1-c)$, we get	
	i.e., $-(1 -) -$	
	i.e., \longrightarrow \longrightarrow (1)	
20.	We know that the equation of the plane having intercepts a, b and c on the three	
	coordinate axes is $ -$ (1)	
	Here, the coordinates of A, B and C are (a,0,0), (0,b,0) and (0,0,c) respectively.	4
	The centroid of \triangle ABC is $(-,-,-)$. \longrightarrow (1)	
	Equating $(-,-,-)$ to (α,β,γ) , we get $a=3\alpha,b=3\beta$ and $c=3\gamma$ \longrightarrow (1)	
	Thus, the equation of the plane is — — —	
	or (1)	
21.	Let the distance covered with speed of 25 km/h = x km	
	and the distance covered with speed of 40 km/h = y km $(\frac{1}{2})$	
	Total distance covered = z km	
	The L.P.P. of the above problem, therefore, is \longrightarrow (1)	4
	Maximize $z = x + y$	
	subject to constraints	
	$4x + 5y \qquad \qquad \longrightarrow \qquad \qquad (1)$	
	x ≥ (1)	
	Any one value	
22.	Here,	
	X 0 1 2	
	P(X) k 2k 3k	4
	(i) Since P(0) + P(1) + P(2)= 1, we have	
	I .	

	k + 2k + 3k = 1		
	i.e., 6 k = 1, or k = -	(1)	
	(ii) P(X <2)= P(0) + P(1)= k + 2k = 3k = -;	(1)	
	(iii) $P(X = 2) = P(0) + P(1) + P(2) = k + 2k + 3k = 6k = 1$	(1)	
	(iv) $P(X = 2) = P(2) = 3k = -$	(1)	
23.	Let the events be described as follows:		
	E_1 : a coin having head on both sides is selected.		
	E_2 : a fair coin is selected.		
	A : head comes up in tossing a selected coin		
	$P(E_1) = \frac{1}{2n+1}$; $P(E_2) =$; $P(A/E_1) = 1$; $P(A/E_2) =$	→ (2)	
	It is given that P(A) = —		4
	$P(E_1) P(A/E_1) + P(E_2) P(A/E_2) =$		
	⇒ —×1+— -=— →	(1)	
	⇒ — [n + —] = —		
	$\Rightarrow \qquad 42(3n+1) = 62(\qquad 1)$		
	\Rightarrow \longrightarrow	(1)	
24.	$I = \int \frac{1}{1-x} dx = \int \frac{1}{1-x} dx $ (1)		
	$=\pi\int$ ——— $dx-\int$ ——— dx		
	$\Rightarrow 2I = \int dx $ (1)		
	$-\int \frac{1}{\cos(-x)} dx$		
			6
	$\Rightarrow -\int \frac{1}{()} dx$		
	$-\int \qquad (- -) dx \tag{1}$		
	$\Rightarrow I = -[-2\tan\left[\left(-\right)\right] \tag{2}$		
	$\Rightarrow I = -[2 (-2)] = \tag{1}$		
	OR		

Let
$$I = \int \frac{1}{3} dx = \int \frac{1}{3} dx$$
 (%)

On substituting tan $x = t$ and dt , we get (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (%)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt = \int \frac{1}{3} dt$ (1)

 $I = \int \frac{1}{3} dt$ (

```
6
                        and (ab+1)€Q
            \Rightarrow a*b=ab+1 is defined on Q
          ∴ * is a binary operation on Q
                                                                                                                                                           (1)
          Commutative: a*b = ab+1
                                  b*a = ba+1
                                                         (: ba = ab in Q)
                                        =ab+1
                                  \Rightarrow a*b =b*a
                                So * is commutative on Q
                                                                                                                                                           (1)
              Associative: (a*b)*c=(ab+1)*c=(ab+1)c+1
                                        = abc+c+1
                              a*(b*c)=a*(bc+1)
                                          = a(bc+1)+1
                                          = abc+a+1
                          \therefore (a*b)*c \neq a*(b*c)
                        So * is not associative on Q
         Identity Element : Let e \in \mathbb{Q} be the identity element, then for every a e \in \mathbb{Q}
                a*e=a and e*a=a
               ae+1=a and ea+1=a
          \Rightarrow e= \frac{a-1}{a} and e= \frac{a-1}{a}
                                                                                                                                                           (1)
          e is not unique as it depend on `a', hence identity element does not exist for *
                                                                                                                                                           (1)
          Inverse: since there is no identity element hence, there is no inverse.
                                                                                                                                                           (1)
         The relation A' = A^{-1} gives A'A = A^{-1}A = I
26.
                                                                                                                                                (1)
            Thus, \begin{bmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{bmatrix} \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
                                                                                                                                                \left(1\frac{1}{2}\right)
                                    \Rightarrow \begin{bmatrix} 0+x^2+x^2 & 0+xy-xy & 0-xz+xz \\ 0+xy-xy & 4y^2+y^2+y^2 & 2yz-yz-yz \\ 0-zx+zx & 2yz-yz-yz & z^2+z^2+z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
                                                                                                                                                                             6
                              \Rightarrow \begin{bmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
                                                                                                                                             (2)
                               \Rightarrow 2x^2 = 1; 6y^2 = 1 and 3z^2 = 1
                                \Rightarrow x = \pm \frac{1}{\sqrt{2}}; y = \pm \frac{1}{\sqrt{6}}; z = \pm \frac{1}{\sqrt{3}}
                                                                                                                                                  \left(1\frac{1}{2}\right)
                                                                              OR
```

	Here, $ A = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{vmatrix} = 1(0+0) + 1(9+2) + 2(0-0) = 11$	(1)	
	$\Rightarrow A I = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \dots (1)$	(½)	6
	$adj A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$	(2)	
	Now, A(adj A) = $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$	(1)	
	and $(adj A)A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$	(1)	
	Thus, it is verified that A(adj A) = (adj A)A = $ A I$	(½)	
27.	Putting $x = \cos 2\theta$ in $\left\{ 2 \tan^{-1} \sqrt{\frac{1-x}{1+x}} \right\}$, we get	(1)	
	$2\tan^{-1}\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}$		
	i.e., $2 \tan^{-1} \sqrt{\frac{2sin^2\theta}{2cos^2\theta}} = 2 \tan^{-1} (\tan \theta) = 2\theta = \cos^{-1} x$	(2)	6
	Hence, $y = e^{\sin^2 x} \cos^{-1} x$		
	$\Rightarrow \log y = \sin^2 x + \log (\cos^{-1} x)$		
	$\Rightarrow \frac{1}{y} \times \frac{dy}{dx} = 2 \sin x \cos x + \frac{1}{\cos^{-1} x} \times \frac{-1}{\sqrt{1 - x^2}} = \sin 2x - \frac{1}{\cos^{-1} x \sqrt{1 - x^2}}$	(2)	
	$\Rightarrow \frac{dy}{dx} = e^{\sin^2 x} \cos^{-1} x \left[\sin 2x - \frac{1}{\cos^{-1} x \sqrt{1 - x^2}} \right]$	(1)	
28.	Let (t^2, t) be any point on the curve $y^2 = x$. Its distance (S) from the		
	line $x - y + 1 = 0$ is given by $\frac{1}{2}$		
	$S = \left \frac{t - t^2 - 1}{\sqrt{1 + 1}} \right $ 1/2		
	$=\frac{t^2-t+1}{\sqrt{2}} \{ : t^2-t+1 = \left(t-\frac{1}{2}\right)^2 + \frac{3}{4} > 0 \} $ (1)		
	$\Rightarrow \frac{dS}{dt} = \frac{1}{\sqrt{2}} (2t - 1) \tag{1}$		6
	and $\frac{d^2S}{dt^2} = \sqrt{2} > 0 \tag{1}$		
	Now, $\frac{dS}{dt} = 0 \implies \frac{1}{\sqrt{2}} (2t-1) = 0$, i.e., $t = \frac{1}{2}$ (1)		
	Thus, S is minimum at $t = \frac{1}{2}$		

So, the required shortest distance is $\frac{(-)^2 - (-)^+}{\sqrt{2}} = \frac{\sqrt{2}}{4\sqrt{2}}$, or $\frac{\sqrt{2}}{\sqrt{2}}$ (1)

Fig. 1

- **29.** 1) the line which are neither intersecting nor parallel.
 - 2) The given equations are

$$= 8 \hat{i} - 9 \hat{j} + 10 \hat{k} + \mu (3 \hat{i} - 16 \hat{j} + 7 \hat{k}) \dots (1)$$

(1)

= 15
$$\hat{i}$$
 + 29 \hat{j} +5 \hat{k} + μ (3 \hat{i} + 8 \hat{j} - 5 \hat{k})(2)

Here,
$$\overrightarrow{a_1} = 8 \hat{\imath} - 9 \hat{\jmath} + 10 \hat{k}$$
; $\overrightarrow{a_2} = 15 \hat{\imath} + 29 \hat{\jmath} + 5 \hat{k}$

$$\overrightarrow{b_1} = 3 \hat{i} - 16 \hat{j} + 7 \hat{k} \qquad \overrightarrow{b_2} = 3 \hat{i} + 8 \hat{j} - 5 \hat{k}$$

Now,
$$\overrightarrow{a_2} - \overrightarrow{a_1} = (15 - 8) \hat{i} + (29 + 9) \hat{j} + (5 - 10) \hat{k}$$
 \hat{i} \hat{j} \hat{k} (½)

and

$$\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & & \end{vmatrix} = \hat{i} \qquad \hat{j} \qquad \hat{k}$$
 (1)

$$\Rightarrow (\overrightarrow{b_1} \times \overrightarrow{b_2}).(\overrightarrow{a_2} - \overrightarrow{a_1}) = (\hat{i} \hat{j} \hat{k}).(\hat{i} \hat{j} \hat{k})$$
 (1)

Shortest distance =
$$\frac{\left| (\overline{b_1} \quad \overline{b_2}) \cdot (\overline{a_2} \quad \overline{a_1}) \right|}{\left| \overline{b_1} \quad \overline{b_2} \right|}$$
 (1)

$$= \left| \frac{1}{\sqrt{24^2 + 36^2 + 72^2}} \right| = \frac{1}{\sqrt{24^2 + 36^2 + 72^2}} = \frac{1}{\sqrt{24^2 + 36^2 + 72^2}$$