CHEMISTRY - JEE ADVANCED PAPER - 2

SECTION - 1

1. With reference to aqua regia, choose the correct option(s):
(a) Aqua regia is prepared by mixing conc. HCl and conc. HNO_{3} in 3: 1 molar ratio.
(b) Reaction of gold with aqua regia produces an anion having Au in +3 oxidation state.
(c) Reaction of gold with aqua regia produces NO_{2} in the absence of air
(d) The yellow colour of aqua regia is due to the presence of $\mathrm{NOCl} \& \mathrm{Cl}_{2}$.

Solution::

A, B, D

$$
\mathrm{Au}+\mathrm{HNO}_{3}+4 \mathrm{HCl}\left[\mathrm{AuCl}_{4}\right]^{-}+[\mathrm{NO}]+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

a) Aqua regia is $\mathrm{HCl} \& \mathrm{HNO}_{3}$ (conc.) in a $3: 1$
b) Oxidation state of Au in $\left[\mathrm{AuCl}_{4}\right]^{-}$is +3 .
c) $\mathrm{NOCl} / \mathrm{NO}$ is formed
d) NOCl is yellow in colour
2. Choose the correct option that gives aromatic compound as major product:
(a)

(b)

(c)

(d)

Solution::

A, B
(a)

(b)

(c)

This will not give $\mathrm{U}_{\text {as it is anti aromatic. }}$

(d)
3. Which of the following reaction produce propane as major product?

(b)

(c)

(d)

Solution:

(C, D)
(A)

(B)

(C)

(D)

4. Which of the following is/are correct
(a) Teflon is formed by polymerization of tetrafluoroethene.
(b) Natural rubber is the trans from of polyisoprene.
(c) Cellulose contains only α-D-glucose linkage
(d) Nylon-6 contains amide linkage.

Solution:

(A, D)
A) Fact.
B) Natural rubber is Cis form of polyisoprene
C) Cellulose contains B-1, 4 - glycosidic linkage
D) Nylon 6 contains amide linkage.
5.

(b)

(c)

(d)

Solution:
(A, B)

6. Consider the following reaction (unbalanced)
$\mathrm{Zn}+$ Hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow G+R+X$
$\mathrm{Zn}+$ conc. $\quad \mathrm{NaOH} \rightarrow T+Q$

$$
G+\mathrm{H}_{2} S+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Z} \quad(\text { precipitate })+\mathrm{X}+\mathrm{Y}
$$

Choose the correct option(s)
(a) R is a V -shaped molecule
(b) Z is dirty white in colour

CHEMISTRY - JEE ADVANCED PAPER - 2

(c) Bond order of Q is 1 in its ground state
(d) The oxidation state of Zn in T is +1 .

Solution:

A, B, C

$$
\mathrm{Zn}+\underset{(\text { conc })}{\mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \underset{G}{\mathrm{ZnSO}} \mathrm{SO}_{4}+\underset{R}{\mathrm{SO}_{2}}+\underset{X}{\mathrm{H}_{2} \mathrm{O}}
$$

$$
\mathrm{Zn}+\text { conc. } \mathrm{NaOH} \rightarrow \underset{T}{\mathrm{Na}} \mathrm{~T}_{2} \mathrm{ZnO} \mathrm{O}_{2}+\underset{Q}{\mathrm{H}_{2}}
$$

$$
\underset{G}{\mathrm{ZnSO}_{4}}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{NH}_{3(a q)} \rightarrow \underset{(Z)}{\mathrm{ZnS}} \downarrow+\underset{(Y)}{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}+\underset{(X)}{\mathrm{H}_{2} \mathrm{O}}
$$

A) SO_{2} is v shaped.
B) ZnS is dirty white in colour.
C) Bond order of H_{2} is 1 .
D) Oxidation state of Zn in $\mathrm{Na}_{2} \mathrm{ZnO}_{2}$ is +2 .
7. In the Mac. Arthur process of extraction

$$
A u \xrightarrow{N a C N+Q} R \xrightarrow[\text { with } Y]{\text { extracted }} Z
$$

(a) R is $\left[\mathrm{Au}\left(\mathrm{CN}_{4}\right)\right]^{(-)}$
(b) Z is $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
(c) Q is O_{2}
(d) Y is Zn

Solution:

B, C, D (from text book).
8. For He^{+}the electron is in orbit with energy equal to 3.4 eV . The azimuthal quantum number for that orbit is 2 and magnetic quantum number is 0 . Then which of the following is/are correct.
(a) The subshell is 4 d .
(b) The number of angular nodes in it is 2 .
(c) The numbers of radial nodes in it is 3 .
(d) The nuclear charge experienced in $n=4$ is 2e less than that in $n=1$, where e is electric charge.

Solution::

A, B

$$
E=E_{0} \frac{z^{2}}{n^{2}}
$$

$3.4=13.6 \times \frac{4}{n^{2}}$
$\mathrm{n}=4$
$1=2$
a) Subshell is 4 d
b) Number of angular nodes is 2
c) Number of radial nodes is 1 .
d) Nuclear charge would be the same.

SECTION - 2

9. Calculate the total number of cyclic ether (including stereo) having formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$

Solution:

CHEMISTRY - JEE ADVANCED PAPER - 2

Total 10
10. 1 mole of Rhombic sulphur is treated with conc. HNO_{3}. Find the mass of $\mathrm{H}_{2} \mathrm{O}$ formed.

Solution:

$$
\mathrm{S}_{8}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Balancing

$$
\mathrm{S}_{8}+48 \mathrm{HNO}_{3} \rightarrow 8 \mathrm{H}_{2} \mathrm{SO}_{4}+48 \mathrm{NO}_{2}+16 \mathrm{H}_{2} \mathrm{O}
$$

\therefore Mass of $\mathrm{H}_{2} \mathrm{O}=288$
11. Mole fraction of urea in 900 gram water is 0.05 . Density of Solution is $1.2 \mathrm{~g} / \mathrm{cm}^{3}$. Find molarity of Solution.

Solution:

No of moles of $\mathrm{H}_{2} \mathrm{O} \quad=\frac{900}{18}=50$

$$
\begin{aligned}
& \therefore \frac{n_{1}}{n_{1}+50}=0.05 \\
& \Rightarrow n_{1}=2.63
\end{aligned}
$$

Weight of urea $=2.63 \times 60=157.8 \mathrm{~g}$
Total weight $=157.8+900=1057.8 \mathrm{~g}$
\therefore Volume $=\frac{1057.8}{1.2}=881.5 \mathrm{~cm}^{3}$
\therefore Molarity $=\frac{2.63}{0.8}=2.99$
12. Number of hydroxyl group in compound ' Y ' is:

Solution:

(6)

${ }^{\text {dil }} \mathrm{KMnO}_{4}$
$\downarrow 273$ K

Total 6 - OH groups.
13. In following reaction the value of K is $5 \times 10^{-4} \mathrm{~S}^{-1}$.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \xrightarrow{\Delta} 2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}
$$

Initial pressure was 1 atm , while the final pressure was 1.45 atm at time $\mathrm{y} \times 10^{3} \mathrm{sec}$ calculate ' y '.

Solution::

From unit of K reaction is first order.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \xrightarrow{\Delta} 2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}
$$

$\mathrm{t}=0 \quad 1$
$0 \quad 0$
$\mathrm{t}=\mathrm{t} \quad 1-\mathrm{P}$
P P/2
$\begin{array}{llll}\mathrm{t}=\infty & 0 & 1 & 0.5\end{array}$
$\mathrm{P}_{0}=1 \mathrm{~atm}, \quad \mathrm{P}_{\mathrm{t}}=1.45 \mathrm{~atm}, \quad \mathrm{P}_{\infty}=1.5 \mathrm{~atm}$

$$
\begin{aligned}
& t=\frac{1}{2 K} \ln \left(\frac{P_{\infty}-P_{0}}{P_{\infty}-P_{1}}\right) \\
& \quad=2.3 \times 10^{3} \\
& \Rightarrow y=2.3
\end{aligned}
$$

14. Number of $\mathrm{N}-\mathrm{Mn}-\mathrm{Cl}$ bonds $\left[\mathrm{N}-\mathrm{Mn}\right.$ bonds is cis to $\mathrm{Mn}-\mathrm{Cl}$ bond] in cis $\left[\mathrm{Mn}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$ are $\ldots \ldots$.

Solution:

\rightarrow This is the Cis form of $\left[\mathrm{Mn}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
$\therefore \mathrm{No}$ of $\mathrm{N}-\mathrm{Mn}-\mathrm{Cl}$ bonds $=6$

SECTION - 3

Match the column

	List 1		List 2
\mathbf{P}	Radius	I	$\mathbf{l} \propto \mathbf{n}^{-1}$
\mathbf{Q}	Angular momentum	II	II $\propto \mathbf{n}^{-2}$
R	Kinetic energy	III	$\mathrm{III} \propto \mathbf{n}^{-0}$
\mathbf{S}	Potential energy	IV	IV $\propto \mathrm{n}^{\mathbf{1}}$
			$\mathrm{V} \propto \mathbf{n}^{\mathbf{2}}$

15. Which of the following is correct
(a) P I
(b) P II
(c) P V
(d) P III

Solution:

$$
r_{n}=0.529\left(\frac{n^{2}}{Z}\right) A^{\circ} \Rightarrow r_{n} \propto n^{2}
$$

CHEMISTRY - JEE ADVANCED PAPER - 2

(C)
16. Which of following is correct.
(a) S IV
(b) R I
(c) R II
(d) S III

Solution:
$K . E \propto \frac{Z^{2}}{n^{2}}$
(C)

Answer the question no. 17 \& 18 on the basis of information given in Column - I \& Column - II. Match the reactant in column - I with the possible intermediates and products of Column - II.

Column-I

 $\xrightarrow[\text { (ii) } \mathrm{CancH}_{2} \mathrm{SO}_{4}]{\longrightarrow}$
Column-II

(II)

(IV)

17. Which of the following is correct?
(a) P - II, III; S - II, III (b) P - II, IV; S - II, III (c) P - III, VI; S - II, III (d) P - I, III; S - IV, V

Solution::
(a)

(IV)

18. Which of the following is correct?
(a) Q - I, IV, VI; R - II, III, V
(b) Q - I, III, VI; R - II, IV, V
(c) Q - I, II, VI; R - II, III, VI
(d) Q - I, IV, V; R - III, I, V

Solution::
(a)

(II)

(IV)

