DATE:

ALL CENTRE

SECTION - 1

1. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be given by $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-5)$. Define $\mathrm{F}(\mathrm{x})=\int_{0}^{x} f(\mathrm{t}) \mathrm{dt}, \mathrm{x}>0$. Then which of the following options is/are correct?
(a) F has a local minimum at $\mathrm{x}=1$
(b) F has a local maximum at $\mathrm{x}=2$
(c) $\mathrm{F}(\mathrm{x}) \neq 0$ for all $\mathrm{x} \in(0,5)$
(d) F has two local maxima and one local minimum in $(0, \infty)$

Solution:

$$
f(x)=(x-1)(x-2)(x-5)
$$

Given $\mathrm{F}(\mathrm{x})=\int_{0}^{x} f(\mathrm{t}) . \mathrm{dt}$

$$
F^{\prime}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-5)
$$

At $\mathrm{x}=1$ and $\mathrm{x}=5, F^{\prime}(\mathrm{x})$ changes from - to +
$\therefore \mathrm{F}(\mathrm{x})$ has two local minima points at $\mathrm{x}=1$ and $\mathrm{x}=5$
$\mathrm{F}(\mathrm{x})$ has one local maxima point at $\mathrm{x}=2$.
2. For $\mathrm{a} \epsilon \mathrm{R},|\mathrm{a}|>1$, let $\lim _{n \rightarrow \infty}\left(\frac{1+\sqrt[3]{2}+\ldots . \sqrt[3]{n}}{n^{7 / 3}\left(\frac{1}{(\mathrm{an}+1)^{2}}+\frac{1}{(\mathrm{an}+2)^{2}}+\ldots .+\frac{1}{(\mathrm{an}+\mathrm{n})^{2}}\right)}\right)=54$. Then the possible value(s) of a is/are:
(a) 8
(b) -9
(c) -6
(d) 7

DATE:

MATHS

ALL CENTRE

Solution:

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[3]{1}+\sqrt[3]{2}+\ldots \ldots .+\sqrt[3]{n}}{n^{7 / 3}\left[\frac{1}{(a n+1)^{2}}+\frac{1}{(\mathrm{an}+2)^{2}}+\ldots . .+\frac{1}{(\mathrm{an}+\mathrm{n})^{2}}\right]}=54
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{\frac{1}{n} \sum_{r=1}^{n}\left(\frac{r}{n}\right)^{1 / 3}}{\frac{1}{n}\left[\frac{n^{2}}{(a n+1)^{2}}+\frac{n^{2}}{(\mathrm{an}+2)^{2}}+\ldots . .+\frac{n^{2}}{(\mathrm{an}+\mathrm{n})^{2}}\right]}=54
$$

$$
\Rightarrow \frac{\int_{0}^{1} x^{1 / 3} d x}{\int_{0}^{1} \frac{d x}{(a+x)^{2}}}=54
$$

$$
\Rightarrow \frac{\left[\frac{3}{4} x^{4 / 3}\right]_{0}^{1}}{\left[\frac{-1}{a+x}\right]_{0}^{1}}=\frac{3 / 4}{\frac{1}{a}-\frac{1}{a+1}}=54
$$

$$
\Rightarrow \frac{(\mathrm{a}+1)-\mathrm{a}}{\mathrm{a}(\mathrm{a}+1)}=\frac{3}{4} \times \frac{1}{54} \quad \Rightarrow \frac{1}{a(\mathrm{a}+1)}=\frac{1}{72} \quad \Rightarrow a(\mathrm{a}+1)=72, ~ \Rightarrow a=8 \text { or } a=-9
$$

3. Three lines

$$
\begin{aligned}
& L_{1}: \vec{r}=\lambda \hat{i}, \lambda \in R, \\
& L_{2}: \vec{r}=\vec{k}+\mu \hat{j}, \mu \in R \text { and } \\
& L_{3}: \vec{r}=\hat{i}+\hat{j}+v \hat{k}, v \in R
\end{aligned}
$$

are given. For which point(s) Q and L_{2} can we find a point P on L_{1} and a point R on L_{3} so that P, Q and R are collinear?
(a) $\hat{k}+\hat{j}$
(b) \hat{k}
(c) $\hat{k}+\frac{1}{2} \hat{j}$
(d) $\hat{k}-\frac{1}{2} \hat{j}$

Solution:

$\mathrm{P}(\lambda, 0,0), \mathrm{Q}(0, \mu, 1), \mathrm{R}(1,1, \mathrm{r})$
Given $\overrightarrow{P Q}=k \cdot \overrightarrow{P R} \Rightarrow \frac{\lambda}{\lambda-1}=\frac{-\mu}{-1}=\frac{-1}{-r}$
$\therefore \mu$ cannot take the values 0 and 1

ALL CENTRE

4. Let $F: R \rightarrow R$ be a function. We say that f has

$$
\begin{aligned}
& \text { PROPERTY } 1 \text { if } \lim _{h \rightarrow 0} \frac{f(\mathrm{~h})-\mathrm{f}(0)}{\sqrt{|\mathrm{h}|}} \text { exists and is finite and } \\
& \text { PROPERTY } 2 f \lim _{h \rightarrow 0} \frac{f(\mathrm{~h})-\mathrm{f}(0)}{h^{2}} \text { exists and is finite }
\end{aligned}
$$

Then which of the following options is/are correct?
(a) $f(x)=x|x|$ has PROPERTY 2
(b) $\mathrm{F}(\mathrm{x})=\mathrm{x}^{2 / 3}$ has PROPERTY 1
(c) $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ has PROPERTY 2
(d) $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ has PROPERTY 1

Solution:

(a) $f(x)=x|x|$

$$
\underset{h \rightarrow 0}{L t} \frac{f(\mathrm{~h})-\mathrm{f}(0)}{h^{2}}=\operatorname{Lim}_{h \rightarrow 0} \frac{h|\mathrm{~h}|-0}{h^{2}} \text { which does not exist. }
$$

(b) $\operatorname{Lim}_{h \rightarrow 0} \frac{h^{2 / 3}-0}{\sqrt{|\mathrm{~h}|}}=0$
(c) $\operatorname{Lim}_{h \rightarrow 0} \frac{\sinh -0}{h^{2}}$ does not exist
(d) $\operatorname{Lim}_{h \rightarrow 0} \frac{|\mathrm{~h}|-0}{\sqrt{|\mathrm{~h}|}}=0$
5. For non-negative integers n, let

$$
\mathrm{f}(\mathrm{n})=\frac{\sum_{k=0}^{n} \sin \left(\frac{k+1}{x+2} \pi\right) \sin \left(\frac{k+2}{n+2} \pi\right)}{\sum_{k=0}^{n} \sin ^{2}\left(\frac{k+1}{n+2} \pi\right)}
$$

Assuming $\cos ^{-1} \mathrm{x}$ takes value in $[0, \pi]$, which of the following options is/are correct?
(a) $\sin \left(7 \cos ^{-1} f(5)\right)=0$
(b) $f(4)=\frac{\sqrt{3}}{2}$
(c) $\lim _{n \rightarrow \infty} f(\mathrm{n})=\frac{1}{2}$
(d) If $\alpha=\tan \left(\cos ^{-1} f(6)\right)$, then $\alpha^{2}+2 \alpha-1=0$

Solution:

ALL CENTRE

$$
\begin{aligned}
& f(\mathrm{n})=\frac{\sum_{k=0}^{n} \sin \left(\frac{k+1}{n+2} \pi\right) \cdot \sin \left(\frac{k+2}{n+2} \pi\right)}{\sum_{k=0}^{n} 2 \sin ^{2}\left(\frac{k+1}{n+2} \pi\right)} \\
& =\frac{\sum_{k=0}^{n} \cos \frac{\pi}{n+2}-\cos \left(\frac{2 k+3}{n+2}\right) \pi}{\sum_{k=0}^{n} 2 \sin ^{2}\left(\frac{k+1}{n+2}\right) \pi} \\
& =\frac{(\mathrm{n}+1) \cos \frac{\pi}{n+2}-\frac{\cos \left(\frac{n+3}{n+2}\right) \pi \cdot \sin \left(\frac{n+1}{n+2}\right) \pi}{\sin \frac{\pi}{n-2}}}{(\mathrm{n}+1)-\frac{\cos \pi \cdot \sin \left(\frac{n+1}{n+2}\right) \pi}{\sin \left(\frac{\pi}{n+2}\right)}} \\
& =\frac{(\mathrm{n}+1) \cos \left(\frac{\pi}{n+2}\right)+\cos \left(\frac{n+3}{n+2}\right) \pi}{(\mathrm{n}+1)+1} \\
& =\cos \left(\frac{\pi}{n+2}\right)
\end{aligned}
$$

(A) $\alpha=\operatorname{Tan}\left(\cos ^{-1} f(6)\right)=\operatorname{Tan}^{-1}(\cos \pi / 8)=\operatorname{Tan} \pi / 8$

$$
\alpha^{2}+2 \alpha-1=\operatorname{Tan}^{2} \pi / 8+2 \operatorname{Tan} \pi / 8-1
$$

$$
\operatorname{Tan} 2\left(\frac{\pi}{8}\right)=\frac{2 \operatorname{Tan} \pi / 8}{1-\operatorname{Tan}^{2} \pi / 8}
$$

$$
\Rightarrow 1=\frac{2 \alpha}{1-\alpha^{2}} \Rightarrow \alpha^{2}+2 \alpha-1=0
$$

\therefore option (A) is correct.
(B) $\lim _{n \rightarrow \infty} f(\mathrm{x})=\lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{n+2}\right)=\lim _{\frac{1}{n} \rightarrow 0} \cos \left(\frac{\pi / n}{1+2 / n}\right)=1$

Option (B) correct.

DATE:

MATHS

ALL CENTRE

(C) $f(4)=\cos \left(\frac{\pi}{4+2}\right)=\cos \pi / 6=\sqrt{3} / 2$

Option (C) wrong
(D) $\sin \left[7 \cos ^{-1} f(5)\right]=\sin \left[7 \cos ^{-1}(\cos \pi / 7)\right]=\sin \left[7 \times \frac{\pi}{7}\right]=0$
6. Let $P_{1}=I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], P_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], P_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \mathrm{P}_{4}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], P_{5}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$,

$$
P_{6}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } \mathrm{X}=\sum_{k=1}^{6} P_{K}\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 2 \\
3 & 2 & 1
\end{array}\right] P_{K}^{T}
$$

Where P_{K}^{T} denotes the transpose of the matrix P_{K}. Then which of the following options is/are correct?
(a) $\mathrm{X}-30 \mathrm{I}$ is an invertible matrix
(c) If $X\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\alpha\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$,then $\alpha=30$
(d) X is a symmetric matrix
(b) The sum of diagonal entries of X is 18

Solution:

From the given data it is clear that

$$
\begin{aligned}
& P_{1}=P_{1}^{T}=P_{1}^{-1} \\
& P_{2}=P_{2}^{T}=P_{2}^{-1} \\
& P_{6}=P_{6}^{T}=P_{6}^{-1}
\end{aligned}
$$

$$
\text { And Let } A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 2 \\
3 & 2 & 1
\end{array}\right]
$$

Here $\mathrm{A}^{\mathrm{T}}=\mathrm{A} \rightarrow \mathrm{A}$ is symmetric matrix

$$
X^{T}=\left(P_{1} A P_{1}^{T}+\ldots \ldots+P_{6} A P_{6}^{T}\right)^{T}
$$

ALL CENTRE

$$
\begin{aligned}
& =P_{1} A^{T} P_{1}^{T}+\ldots \ldots+P_{6} A^{T} P_{6}^{T} \\
& =\mathrm{X}
\end{aligned}
$$

$\therefore X$ is symmetric
Let $B=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
X B & =P_{1} A P_{1}^{T} G+P_{2} A P_{2}^{T} B+\ldots . .+P_{6} A P_{6}^{T} B \\
& =P_{1} A B+P_{2} A B+\ldots .+P_{6} A B
\end{aligned}
$$

$$
=\left(P_{1}+P_{2}+P_{3}+\ldots . .+P_{6}\right)\left[\begin{array}{l}
6 \\
3 \\
6
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
30 \\
30 \\
30
\end{array}\right]=30 B \quad \Rightarrow \propto=30
$$

Since $X\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=30\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow(X-30 I) \mathrm{B}=0$ has a nontrivial solution $B=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow(X-30 I)=0$
$X=P_{1} A P_{1}^{T}+\ldots . .+P_{6} A P_{6}^{T}$

ALL CENTRE

$$
\begin{aligned}
& \operatorname{Trace}(X)=\operatorname{tr}\left(P_{1} A P_{1}^{T}\right)+\ldots .+\operatorname{Tr}\left(P_{6} A P_{6}^{T}\right) \\
& =(2+0+1)+\ldots .+(2+0+1)=3+3+\ldots .(6 \text { times })=18
\end{aligned}
$$

7. Let $\mathrm{x} \in \mathrm{R}$ and let $P=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right], Q=\left[\begin{array}{lll}2 & x & x \\ 0 & 4 & 0 \\ x & x & 6\end{array}\right]$ and $R=P Q P^{-1}$

Then which of the following options is/are correct?
(a) For $\mathrm{x}=1$, there exists a unit vector $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ for which $\mathrm{R}\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(b) There exists a real number x such that $\mathrm{PQ}=\mathrm{QP}$
(c) $\operatorname{det} \mathrm{R}=\operatorname{det}\left[\begin{array}{lll}2 & x & x \\ 0 & 4 & 0 \\ x & x & 5\end{array}\right]+8$, for all $x \varepsilon R$
(d) for $\mathrm{x}=0$, if $R\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]=6\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]$, then $a+b=5$

Solution:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{PQP}^{-1} \\
& |R|=|P||Q| \cdot\left|P^{-1}\right| \\
& \Rightarrow \operatorname{det} Q=2(24)-x(0)+x(-4 x)=48-4 x^{2} \\
& P=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right] \cdot Q(X=0)=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right] \\
& \mathrm{R}=\mathrm{PQR}^{-1}
\end{aligned}
$$

ALL CENTRE

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & 4 & 6 \\
0 & 8 & 12 \\
0 & 0 & 18
\end{array}\right] \cdot \frac{1}{6}\left[\begin{array}{ccc}
6 & -3 & 0 \\
0 & 3 & -2 \\
0 & 0 & 2
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
12 & 6 & 4 \\
0 & 24 & 8 \\
0 & 0 & 36
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 2 / 3 \\
0 & 4 & 4 / 3 \\
0 & 0 & 6
\end{array}\right] \\
& (R-6 I)\left(\begin{array}{l}
1 \\
a \\
b
\end{array}\right)=\left(\begin{array}{ccc}
-4 & 1 & 2 / 3 \\
0 & -2 & 4 / 3 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
a \\
b
\end{array}\right)=\left[\begin{array}{ccc}
-4 & +a & +\frac{2 b}{3} \\
0 & -2 a & +4 b / 3 \\
0 & 0 & 0
\end{array}\right] \\
& -4+a+\frac{2 b}{3}=0 \text { and }-2 a+\frac{4 b}{3}=0 \Rightarrow a=2 \& b=3 \\
& \therefore Q=Q P \Rightarrow x+4+x=2+2 x+0 \Rightarrow \text { No value exist }
\end{aligned}
$$

8. Let $f(\mathrm{x})=\frac{\sin \pi x}{x^{2}}, x>0$

Let $\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3}<\ldots .<\mathrm{x}_{\mathrm{n}}<\ldots$ be all the points of local maximum of f
and $y_{1}<y_{2}<y_{3}<\ldots<y_{n}<\ldots$.. be all the points of local minimum of f.
Then which of the following options is/are correct?
(a) $\left|\mathrm{X}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right|>1$ for every n
(b) $\mathrm{x}_{1}<\mathrm{y}_{1}$
(c) $x_{n} \in\left(2 n, 2 n+\frac{1}{2}\right)$ for every n
(d) $x_{n+1}-x_{n}>2$ for every n

Solution:

$$
\begin{aligned}
f(\mathrm{x})=\frac{\sin \pi x}{x^{2}} & \Rightarrow f^{\prime}(\mathrm{x})=\frac{x^{2} \cdot(\cos \pi \mathrm{x}) \cdot(\pi)-\sin \pi \mathrm{x} \cdot(2 \mathrm{x})}{x^{4}} \\
& \Rightarrow f^{\prime}(\mathrm{x})=\frac{2 x \cos \pi x\left(\frac{\pi x}{2}-\tan \pi x\right)}{x^{4}}
\end{aligned}
$$

By using graph we can say that option (1) (3) (4) are correct.

ALL CENTRE

SECTION - 2

1. The value of $\sec ^{-1}\left(\frac{1}{4} \sum_{k=0}^{10} \sec \left(\frac{7 \pi}{12}+\frac{k \pi}{2}\right) \sec \left(\frac{7 \pi}{12}+\frac{(\mathrm{k}+1) \pi}{2}\right)\right)$ in the interval $\left[-\frac{\pi}{4}, \frac{3 \pi}{4}\right]$ equals

Solution:

$$
\begin{aligned}
& \sec ^{-1} \pi\left(\frac{1}{4} \sum_{k=0}^{10} \sec \left(\frac{7 \pi}{12}+\frac{k \pi}{2}\right) \sec \left(\frac{7 \pi}{12}+\frac{(\mathrm{k}+1) \pi}{2}\right)\right) \\
& =\sec ^{-1}\left(\frac{-1}{4} \sum_{k=0}^{10} \sec \left(\frac{7 \pi}{12}+\frac{k \pi}{2}\right) \operatorname{cosec}\left(\frac{7 \pi}{12}+\frac{k \pi}{2}\right)\right) \\
& =\sec ^{-1}\left(\frac{-1}{4} \sum_{k=0}^{10} \frac{2}{\sin \left(\frac{7 \pi}{6}+k \pi\right)}\right) \\
& =\sec ^{-1}\left(\frac{-1}{2} \sum_{k=0}^{10} \frac{1}{(-1)^{\mathrm{k}+1} \sin \frac{\pi}{6}}\right) \\
& =\sec ^{-1}\left(-\sum_{k=0}^{10} \frac{1}{(-1)^{k+1}}\right)=\sec ^{-1}(1)=0
\end{aligned}
$$

2. Let $|X|$ denote the number of elements in set X. Let $S=\{1,2,3,4,5,6\}$ be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A, B) such that $1 \leq|B|<|A|$, equals.

Solution:

The number of ordered pairs of (A, B) are
$6 c_{1}\left(6 c_{2}+6 c_{3}+\ldots .+6 c_{6}\right)+6 c_{2}\left(6 c_{2}\left(6 c_{3}+6 c_{4} \ldots .+6 c_{6}\right)+6 c_{3}\left(6 c_{4}+6 c_{5}+6 c_{6}\right)+6 c_{4}\left(6 c_{5}+6 c_{6}\right)+6 c_{5} .6 c_{6}\right.$
$=\left(6 c_{1} .6 c_{2}+6 c_{1} .6 c_{3}+\ldots .+6 c_{1} 6 c_{6}\right)+\left(6 c_{2} .6 c_{3}+6 c_{2} .6 c_{4}+\ldots .+6 c_{2} .6 c_{6}\right)+\left(6 c_{3} .6 c_{4}+6 c_{3} .6 c_{5}+6 c_{3} .6 c_{6}\right)$

ALL CENTRE

$$
\begin{aligned}
& +6 c_{4} .6 c_{5}+6 c_{4} .6 c_{6}+6 c_{5} .6 c_{6} . \\
= & \left(12 c_{5}-6 c_{1}\right)+\left(12 c_{4}-6 c_{2}\right)+\left(12 c_{3}-6 c_{3}\right)+\left(12 c_{2}-6 c_{4}\right)+\left(12 c_{1}-6 c_{5}\right) \\
= & \left(12 c_{1}+12 c_{2}+12 c_{3}+12 c_{4}+12 c_{5}\right)-\left(6 c_{1}+6 c_{2}+\ldots+6 c_{5}\right) \\
= & 1585-62=1523 .
\end{aligned}
$$

3. Five person A, B, C, D and E are seated in a circular arrangement. If each of them is given a hat of one of the three colours red, blue and green, then the number of ways of distributing the hats such that the persons seated in adjacent seats get different coloured hats is

Solution:

Maximum number of hats used of same colour are 2.
They cannot be 3 otherwise atleast 2 hats of same colour are consecutive.
Now the hats used are consider as B B G G B
Which can be selected in 3 ways.

It can be R G G B B or R R G B B
The number of ways of distributing blue hat (single one) in 5 persons equal to 5
Now either position B and D are filled by green hats and C and E are filled by Red hats or B \& D are filled by Red hats and C \& E are filled by Green hats.
$\rightarrow 2$ ways are possible.
Hence number of ways $=3 \times 5 \times 2=30$ ways.
4. Suppose
$\operatorname{det}\left[\begin{array}{cc}\sum_{k=0}^{n} k & \sum_{k=0}^{n}{ }^{n} C_{k} k^{2} \\ \sum_{k=0}^{n}{ }^{n} C_{k} k & \sum_{k=0}^{n}{ }^{n} C_{k} 3^{k}\end{array}\right]=0$, holds for some positive integer n. Then $\sum_{k=0}^{n} \frac{{ }^{n} C_{k}}{k+1}$ equals

DATE:

MATHS

CLASS:

JEE ADVANCE PAPER 2

ALL CENTRE

Solution:

$$
\begin{aligned}
& \left|\begin{array}{cc}
\sum_{k=0}^{n} k & \sum_{k=0}^{n}{ }^{n} C_{k} \cdot k^{2} \\
\sum_{k=0}^{n} \cdot{ }^{n} C_{k} \cdot k & \sum_{k=0}^{n} \cdot{ }^{n} C_{k} \cdot 3^{k}
\end{array}\right|=0 \\
& \left|\begin{array}{ll}
\frac{n(\mathrm{n}+1)}{2} & n \cdot 2^{n-1}+n(\mathrm{n}-1) \cdot 2^{\mathrm{n}-2} \\
n \cdot 2^{n-1} & 4^{n}
\end{array}\right|=0 \\
& \Rightarrow \frac{n(\mathrm{n}+1)}{2} \cdot 4^{n}-n \cdot 2^{2 n-1}\left(n \cdot 2^{n-1}+n(\mathrm{n}-1) \cdot 2^{\mathrm{n}-2}\right)=0 \\
& \Rightarrow \frac{n(\mathrm{n}+1)}{2} \cdot 4^{n}-n^{2} \cdot 2^{2 n-2} \cdot-n^{2}(\mathrm{n}-1) \cdot 2^{2 \mathrm{n}-3} \cdot=0 \\
& \Rightarrow \frac{n(\mathrm{n}+1)}{2}-\frac{n^{2}}{4}-\frac{n^{2}(\mathrm{n}-1)}{8}=0 \Rightarrow \frac{n}{2}\left[n+1-\frac{n}{2}-\frac{n(\mathrm{n}-1)}{4}\right]=0 \\
& \Rightarrow n=0 \text { or } 4(\mathrm{n}+1)-2 \mathrm{n}-1(\mathrm{n}-1)=0 \quad \Rightarrow n=0 \text { or } n=4 \\
& \sum_{\pi=0}^{4} \frac{4 c \pi}{r+1}=\sum_{r=0}^{4} \frac{5 c r+1}{5}=\frac{2^{5}-1}{5}=\frac{31}{5}=6.20
\end{aligned}
$$

5. The value of the integral $\int_{0}^{\pi / 2} \frac{3 \sqrt{\cos \theta}}{(\sqrt{\cos \theta}+\sqrt{\sin \theta})^{5}} d \theta$ equals

Solution:

$$
\begin{aligned}
& I=\int_{0}^{\pi / 2} \frac{3 \sqrt{\cos \theta}}{(\sqrt{\sin \theta}+\sqrt{\cos \theta})^{5}} \cdot d \theta \\
& I=3 \int_{0}^{\pi / 2} \frac{\sqrt{\cos \theta}}{(\sqrt{\sin \theta}+\sqrt{\cos \theta})^{5}} \quad \rightarrow 1
\end{aligned}
$$

DATE:

ALL CENTRE

$I=3 \int_{0}^{\pi / 2} \frac{\sqrt{\sin \theta}}{(\sqrt{\cos \theta}+\sqrt{\sin \theta})^{5}} \quad \rightarrow 2 \quad\left[\because \int_{0}^{a} f(\mathrm{x}) \mathrm{dx}=\int_{0}^{a} f(\mathrm{a}-\mathrm{x}) \cdot \mathrm{dx}\right]$
$2 I=3 \int_{0}^{\pi / 2} \frac{\sqrt{\cos \theta} \sqrt{\sin \theta}}{(\sqrt{\cos \theta}+\sqrt{\sin \theta})^{5}} \cdot d \theta=3 \int_{0}^{\pi / 2} \frac{d \theta}{(\sqrt{\cos \theta}+\sqrt{\sin } \theta)^{4}}$
$\frac{2 I}{3}=\int_{0}^{\pi / 2} \frac{\sec 2 \theta \cdot d \theta}{(\sqrt{\tan } \theta+1)^{4}}$
Let $\operatorname{Tan} \theta=t^{2} \quad \Rightarrow \quad \sec 2 \theta \cdot d \theta=2 t d t$
$\frac{2 I}{3}=\int_{0}^{\infty} \frac{2 t d t}{(\mathrm{t}+1)^{4}}$
$\frac{I}{3}=\int_{0}^{\infty}\left[\frac{1}{(\mathrm{t}+1)^{3}}-\frac{1}{(\mathrm{t}+1)^{4}}\right] d t$
$I=\left[\frac{-3}{2(\mathrm{t}+1)^{2}}+\frac{1}{(\mathrm{t}+1)^{3}}\right]_{0}^{\alpha}$
$=\frac{3}{2}-1=\frac{1}{2}$
6. Let $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ be two vectors. Consider a vector $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\alpha, \beta \varepsilon \square$. If the projection of \vec{c} on the vector $(\vec{a}+\vec{b})$ is $3 \sqrt{2}$, then the minimum value of $(\vec{c}-(\vec{a} \times \vec{b})) \cdot \vec{c}$ equals

Solution:

$$
\vec{a}=2 i+j-k
$$

$$
\vec{b}=i+2 j+k
$$

MATHS

ALL CENTRE

$$
\begin{aligned}
\vec{c}=\alpha \vec{a}+\beta \vec{b} & =\alpha(2 \mathrm{i}+\mathrm{j}-\mathrm{k})+\beta(\mathrm{i}+2 \mathrm{j}+\mathrm{k}) \\
& =(2 \alpha+\beta) \mathrm{i}+(\alpha+2 \beta) \mathrm{j}+(\beta-\alpha) \mathrm{k}
\end{aligned}
$$

Given $\frac{\vec{c} \cdot(a+b)}{|\vec{a}+\vec{b}|}=3 \sqrt{2}$

$$
\Rightarrow 9(\alpha+\beta)=18 \Rightarrow \alpha+\beta=2
$$

$$
(\overrightarrow{\mathrm{c}}-\mathrm{a} \times \mathrm{b}) \mathrm{c}=(\alpha \vec{a}+\beta \vec{b}+\vec{a} \times \vec{b}) \cdot(\alpha \vec{a}+\vec{b} \beta)
$$

$$
=6 \alpha^{2}+6 \alpha \beta+6 \beta^{2}=6\left[\alpha^{2}+\alpha(2-\alpha)+(2-\alpha)^{2}\right]
$$

$$
=6\left(\alpha^{2}-2 \alpha+4\right)
$$

Minimum value $=18$

SECTION - 3

1. Answer the following by appropriately matching the lists based on the information given in the paragraph Let $\mathrm{f}(\mathrm{x})=\sin (\pi \cos \mathrm{x})$ and $\mathrm{g}(\mathrm{x})=\cos (2 \pi \sin \mathrm{x})$ be two functions defined for $\mathrm{x}>0$. Define the following sets whose element are written in the increasing order:

$$
\begin{aligned}
& X=\{x: f(\mathrm{x})=0\}, \quad Y=\left\{x: f^{\prime}(\mathrm{x})=0\right\} \\
& Z=\{x: g(\mathrm{x})=0\}, \quad W=\left\{x: g^{\prime}(\mathrm{x})=0\right\}
\end{aligned}
$$

List -I contains the sets $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W . List -II contains some information regarding these sets.

List I

(I) X
(P) $\supseteq\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, 4 \pi, 7 \pi\right\}$
(II) Y
(III) Z
(IV) W
(Q) an arithmetic progression
(R) Not an arithmetic progression
(S) $\supseteq\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}\right\}$
(T) $\supseteq\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}$

ALL CENTRE

$$
\text { (U) } \supseteq\left\{\frac{\pi}{6}, \frac{3 \pi}{4}\right\}
$$

Which of the following is the only correct combination?
(a) (II), (R), (S)
(b) (I), (P), (R)
(c) (II), (Q), (T)
(d) $(\mathrm{I}),(\mathrm{Q}),(\mathrm{U})$
2. Answer the following by appropriately matching the lists based on the information given in the paragraph Let $f(x)=\sin (\pi \cos x)$ and $g(x)=\cos (2 \pi \sin x)$ be two functions defined for $x>0$. Define the following sets whose element are written in the increasing order:

$$
\begin{aligned}
& X=\{x: f(\mathrm{x})=0\}, \quad Y=\left\{x: f^{\prime}(\mathrm{x})=0\right\} \\
& Z=\{x: g(\mathrm{x})=0\}, \quad W=\left\{x: g^{\prime}(\mathrm{x})=0\right\}
\end{aligned}
$$

List -I contains the sets $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W . List - II contains some information regarding these sets.

List I

List - II
(I) X
(P) $\supseteq\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, 4 \pi, 7 \pi\right\}$
(II) Y
(Q) an arithmetic progression
(III) Z
(R) Not an arithmetic progression
(IV) W
$(\mathrm{S}) \supseteq\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}\right\}$
$(\mathrm{T}) \supseteq\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}$
$(\mathrm{U}) \supseteq\left\{\frac{\pi}{6}, \frac{3 \pi}{4}\right\}$
Which of the following is the only correct combination?
(a) (IV), (Q), (T)
(b) (IV), (P), (R), (S)
(c) (III), (R), (U)
(d) (III), (P), (Q), (U)

Solution:

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
f(\mathrm{x})=0
\end{array} \\
\quad \Rightarrow \sin (\pi \cos x)=0 \\
x=\{\mathrm{n} \pi,(2 \mathrm{n} \pi) \pi / 2\} \\
x=\left\{\frac{n \pi}{2}, \mathrm{n} \in \mathrm{I}\right\}
\end{array}
\end{aligned}
$$

DATE:

MATHS

CLASS:

JEE ADVANCE PAPER 2

ALL CENTRE

$$
\begin{aligned}
& f^{\prime}(\mathrm{x})=0 \Rightarrow \cos (\pi \cos \mathrm{x})(-\pi \sin \mathrm{x})=0 \\
& \Rightarrow \pi \cos x=(2 \mathrm{n}+1) \pi / 2 \text { or } x=n \pi \\
& \Rightarrow \cos x=n+\frac{1}{2} \text { or } x=n \pi \\
& \Rightarrow \cos x= \pm \frac{1}{2} \text { or } x=n \pi \\
& g(\mathrm{x})=0 \Rightarrow \cos (2 \pi \sin \mathrm{x})=0 \\
& \Rightarrow 2 \pi \sin x=(2 \mathrm{n}+1) \pi / 2 \\
& \Rightarrow \sin x=\frac{2 n+1}{4}= \pm \frac{1}{4}, \pm \frac{3}{4} \\
& z=\left\{n \pi \pm \sin ^{-1} \frac{1}{4}, n \pi \pm \sin ^{-1} \frac{3}{4}, n \in I\right\}
\end{aligned}
$$

$$
g^{\prime}(x)=0 \Rightarrow-\sin (2 \pi \sin x)(2 \pi \cos x)=0
$$

$$
\Rightarrow 2 \pi \sin x=n \pi \text { or } x=(2 n+1) \frac{\pi}{2}
$$

$$
\Rightarrow \sin x=\frac{n}{2}=0, \pm \frac{1}{2}, \pm 1 \text { or } x=(2 n+1) \frac{\pi}{2}
$$

$$
\Rightarrow W=\left\{n \pi,(2 \mathrm{n}+1) \frac{\pi}{2}, n \pi \pm \frac{\pi}{6}, n \in I\right\}
$$

(1) Option - 3
(2) Option - 2
3. Answer the following by appropriately matching the lists based on the information given in the paragraph

ALL CENTRE

Let the circles $C_{1}: x^{2}+y^{2}=9$ and $C_{2}:(x-3)^{2}+(y-4)^{2}=16$, intersect at the points X and Y. Suppose that another circle $\mathrm{C}_{3}:(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$ satisfies the following conditions:
(i) centre of C_{3} is collinear with the centres of C_{1} and C_{2}
(ii) C_{1} and C_{2} both lie inside C_{3}, and
(iii) C_{3} touches C_{1} at M and C_{2} at N

Let the line through X and Y intersect C_{3} at Z and W , and let a common tangent of C_{1} and C_{3} be a tangent to the parabola $x_{2}=8 \alpha y$.
There are some expression given in the List - I whose values are given in List - II below:

List - I
(I) $2 \mathrm{~h}+\mathrm{k}$

List - II

(II) $\frac{\text { Length of } Z W}{\text { Length of } X Y}$
(P) 6
(Q) $\sqrt{6}$
(III) $\frac{\text { Area of triangle } M Z N}{\text { Area of triangle } Z M W}$
(R) $\frac{5}{4}$
(IV) α
(S) $\frac{21}{5}$
(T) $2 \sqrt{6}$
(U) $\frac{10}{3}$

Which of the following is the only INCORRECT combination?
(a) (IV), (S)
(b) (IV), (U)
(c) (III), (R)
(d) (I), (P)

Solution:

(ii) Equation of line zw

$$
\mathrm{C}_{1}=\mathrm{C}_{2}
$$

$$
\Rightarrow 3 x+4 y=9
$$

\Rightarrow Dis \tan ce ofzw from $(0,0)$

$$
\left|\frac{-9}{\sqrt{3^{2}+4^{2}}}\right|=\frac{9}{5}
$$

DATE:

ALL CENTRE

Length of $x y=2 \sqrt{9-\left(\frac{9}{5}\right)^{2}}=\frac{24}{5}$
Distance of zw from c

$$
\frac{\left|\frac{3 \times 9}{5}+4 \times \frac{12}{5}-9\right|}{\sqrt{3^{2}+4^{2}}}=\frac{6}{5}
$$

Length of $\mathrm{zw}=2 \sqrt{6^{2}-\frac{6^{2}}{5^{2}}}=\frac{24 \sqrt{6}}{5}$
$\frac{\text { length of } z w}{\text { length of } x y}=\sqrt{6}$
(iii) Area of $\Delta m z N=\frac{1}{2} \cdot N m \cdot\left(\frac{1}{2} z w\right)=\frac{72 \sqrt{6}}{5}$

Area of $\Delta z m w=\frac{1}{2} \cdot z w \cdot(o m+o p)=\frac{1}{2} \cdot \frac{24 \sqrt{6}}{5} \cdot\left(3+\frac{9}{5}\right)=\frac{288 \sqrt{6}}{25}$
$\therefore \frac{\text { Area of } \Delta m z N}{\text { Area of } \Delta z m w}=\frac{5}{4}$
(iv) Slope of tangent to C_{1} at $m=\frac{-1}{4 / 3}=-\frac{3}{4}$

Equation of Tangent $y=m x-2 \sqrt{1+m^{2}}$

$$
\begin{aligned}
& y=\frac{-3 x}{4}-3 \sqrt{1+\frac{9}{16}} \\
& y=\frac{-3 x}{4} \frac{-15}{4}
\end{aligned}
$$

ALL CENTRE

$$
\Rightarrow x=\frac{-4 y}{3}-5 \quad \rightarrow 1
$$

Tangent to $x^{2}=4(2 d) y$ is $x=m^{\prime} y+\frac{2 d}{m^{1}} \quad \rightarrow 2$

Compare 1 and 2

$$
m^{\prime}=\frac{-4}{3} \text { and } \frac{2 \propto}{m^{1}}=-5 \quad \Rightarrow \propto=\frac{10}{3}
$$

4. Answer the following by appropriately matching the lists based on the information given in the paragraph Let the circles $C_{1}: x^{2}+y^{2}=9$ and $C_{2}:(x-3)^{2}+(y-4)^{2}=16$, intersect at the points X and Y. Suppose that another circle $C_{3}:(x-h)^{2}+(y-k)^{2}=r^{2}$ satisfies the following conditions:
(i) centre of C_{3} is collinear with the centres of C_{1} and C_{2}
(ii) C_{1} and C_{2} both lie inside C_{3}, and
(iii) C_{3} touches C_{1} at M and C_{2} at N

Let the line through X and Y intersect C_{3} at Z and W , and let a common tangent of C_{1} and C_{3} be a tangent to the parabola $x_{2}=8 \alpha y$.
There are some expression given in the List - I whose values are given in List - II below:

List - I

List - II

(I) $2 \mathrm{~h}+\mathrm{k}$
(P) 6
(II) $\frac{\text { Length of } Z W}{\text { Length of } X Y}$
(Q) $\sqrt{6}$
(III) $\frac{\text { Area of triangle } M Z N}{\text { Area of triangle } Z M W}$
(R) $\frac{5}{4}$
(IV) α
(S) $\frac{21}{5}$
(T) $2 \sqrt{6}$
(U) $\frac{10}{3}$

Which of the following is the only INCORRECT combination?
(a) (II), (T)
(b) (I), (S)
(c) (I), (U)
(d) (II), (Q)

Solution:

DATE:

ALL CENTRE

$$
\begin{aligned}
& 2 r=M N=3+\sqrt{3^{2}+4^{2}}+4=12 \\
& \Rightarrow r=6
\end{aligned}
$$

Centre c of circle c_{3} lies on $y=\frac{4}{3} x$
Let $c\left(h, \frac{4}{3} h\right)$
$O C=M C-O M=\frac{12}{2}-3=3$
$\sqrt{h^{2}+\frac{16}{9} h^{2}}=3 \Rightarrow h=\frac{9}{5}$
$k=\frac{4}{3} h=\frac{12}{5} \Rightarrow 2 h+k=6$

