

Exercise 1.5

Page: 20

1. Let $U = \{1, 2, 3; 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6\}$. Find

- (i) A'
- (ii) B'
- (iii) $(A \cup C)'$
- (iv) $(A \cup B)'$
- (v) (A')'
- (vi) (B-C)'

Solution:

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} A = \{1, 2, 3, 4\} B = \{2, 4, 6, 8\}$

$$C = \{3, 4, 5, 6\}$$

- (i) $A' = \{5, 6, 7, 8, 9\}$
- (ii) $B' = \{1, 3, 5, 7, 9\}$
- (iii) $A \cup C = \{1, 2, 3, 4, 5, 6\}$ $\therefore (A \cup C)' = \{7, 8, 9\}$
- (iv) $A \cup B = \{1, 2, 3, 4, 6, 8\}$ $(A \cup B)' = \{5, 7, 9\}$
- (v) $(A')' = A = \{1, 2, 3, 4\}$
- (vi) $B-C = \{2,8\}$ $\therefore (B-C)' = \{1,3,4,5,6,7,9\}$

2. If $U = \{a, b, c, d, e, f, g, h\}$, find the complements of the following sets:

(i)
$$A = \{a, b, c\}$$

(ii)
$$B = \{d, e, f, g\}$$

(iii)
$$C = \{a, c, e, g\}$$

(iv)
$$D = \{f, g, h, a\}$$

Solution:

 $U = \{a, b, c, d, e, f, g, h\}$

(i)
$$A = \{a, b, c\}$$

 $A' = \{d, e, f, g, h\}$

(ii)
$$B = \{d, e, f, g\}$$

$$\therefore \mathbf{B}' = \{a, b, c, h\}$$

(iii)
$$C = \{a, c, e, g\}$$

$$\therefore C' = \{b, d, f, h\}$$

(iv)
$$D = \{f, g, h, a\}$$

$$\therefore D' = \{b, c, d, e\}$$

3. Taking the set of natural numbers as the universal set, write down the complements of the following sets:

- (i) $\{x: x \text{ is an even natural number}\}$
- (ii) {x: x is an odd natural number}
- (iii) {x: x is a positive multiple of 3}
- (iv) {x: x is a prime number}

(v) $\{x: x \text{ is a natural number divisible by 3 and 5}\}$

(vi) {x: x is a perfect square}

(vii) $\{x: x \text{ is perfect cube}\}$

(viii) $\{x: x + 5 = 8\}$

(ix) $\{x: 2x+5=9\}$

(x) $\{x: x \ge 7\}$

(xi) $\{x: x \in \mathbb{N} \text{ and } 2x + 1 > 10\}$

Solution:

U = N: Set of natural numbers

- (i) $\{x: x \text{ is an even natural number}\}' = \{x: x \text{ is an odd natural number}\}$
- (ii) $\{x: x \text{ is an odd natural number}\}' = \{x: x \text{ is an even natural number}\}$
- (iii) $\{x: x \text{ is a positive multiple of 3}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a multiple of 3}\}$
- (iv) $\{x: x \text{ is a prime number}\}' = \{x: x \text{ is a positive composite number and } x = 1\}$
- (v) $\{x: x \text{ is a natural number divisible by 3 and 5}\}' = \{x: x \text{ is a natural number that is not divisible by 3 or 5}\}$
- (vi) $\{x: x \text{ is a perfect square}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a perfect square}\}$
- (vii) $\{x: x \text{ is a perfect cube}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a perfect cube}\}$
- (viii) $\{x: x + 5 = 8\}' = \{x: x \in \mathbb{N} \text{ and } x \neq 3\}$
- (ix) $\{x: 2x + 5 = 9\}' = \{x: x \in \mathbb{N} \text{ and } x \neq 2\}$
- (x) $\{x: x \ge 7\}' = \{x: x \in \mathbb{N} \text{ and } x < 7\}$
- (xi) $\{x: x \in \mathbb{N} \text{ and } 2x + 1 > 10\}' = \{x: x \in \mathbb{N} \text{ and } x \le 9/2\}$

4. If
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
,

$$A = \{2, 4, 6, 8\}$$
 and $B = \{2, 3, 5, 7\}$.

Verify that

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

Solution:

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
$$A = \{2, 4, 6, 8\}, B = \{2, 3, 5, 7\}$$

(i)

$$(A \cup B)' = \{2, 3, 4, 5, 6, 7, 8\}' = \{1, 9\}$$

$$A' \cap B' = \{1, 3, 5, 7, 9\} \cap (1, 4, 6, 8, 9) = \{1, 9\}$$

$$\therefore (A \cup B)' = A' \cap B'$$

(ii)

$$(A \cap B)' = \{2\}' = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

$$A' \cup B' = \{1, 3, 5, 7, 9\} \cup \{1, 4, 6, 8, 9\} = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

$$\therefore (A \cap B)' = A' \cup B'$$

5. Draw appropriate Venn diagram for each of the following:

- (i) $(A \cup B)'$
- (ii) $A' \cap B'$
- (iii) (A∩B)′
- (iv) $A' \cup B'$

Solution:

6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at least one angle different from 60° , what is \overline{A}' ?

Solution:

A' is the set of all equilateral triangles.

7. Fill in the blanks to make each of the following a true statement:

- (i) $A \cup A' = ...$
- (ii) $\Phi' \cap A = ...$
- (iii) $A \cap A' = ...$
- (iv) $U' \cap A = ...$

Solution:

- (i) $A \cup A' = U$
- (ii) $\Phi' \cap A = U \cap A = A$ $\therefore \Phi' \cap A = A$
- (iii) $A \cap A' = \Phi$
- (iv) $U' \cap A = \Phi \cap A = \Phi$ $\therefore U' \cap A = \Phi$