Exercise 11.4

Page: 262

In each of the Exercises 1 to 6, find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.

1.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

Solution:

The given equation is $\frac{x^2}{16} - \frac{y^2}{9} = 1$ or $\frac{x^2}{4^2} - \frac{y^2}{3^2} = 1$.

On comparing this equation with the standard equation of hyperbola i.e., $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we

obtain a = 4 and b = 3. We known that $a^2 = b^2 + c^2$. $\therefore c^2 = 4^2 + 3^2 = 25$ $\Rightarrow c = 5$ Therefore, The coordinates of the foci are (±5, 0). The coordinates of the vertices are (±4, 0). Eccentricity, $e = \frac{c}{a} = \frac{5}{4}$

Length of latus rectum $=\frac{2b^2}{a}=\frac{2\times 9}{4}=\frac{9}{2}$

2.
$$\frac{y^2}{9} - \frac{x^2}{27} = \frac{1}{27}$$

Solution:

The given equation is $- = 1 \text{ or } \frac{y^2}{3^2} - \frac{x^2}{\left(\sqrt{27}\right)^2} = 1$

On comparing this equation with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we

obtain a = 3 and b = $\sqrt{27}$. We known that a² = b² + c². $\therefore c^2 = 3^2 + (\sqrt{27})^2 = 9 + 27 = 36$ $\Rightarrow c = 6$ The coordinates of the foci are (0, ±6). The coordinates of the vertices are (0, ±3). Eccentricity, e = $\frac{c}{2} = \frac{6}{2} = 2$

Eccentricity,
$$e = \frac{c}{a} = \frac{6}{3} = 2$$

Length of latus rectum
$$=\frac{2b^2}{a}=\frac{2\times 27}{3}=18$$

3: $9y^2 - 4x^2 = 36$

Solution:

The given equation is $9y^2 - 4x^2 = 36$. It can be written as $9y^2 - 4x^2 = 36$

Or,
$$\frac{y^2}{4} - \frac{x^2}{9} = 1$$

Or, $\frac{y^2}{2^2} - \frac{x^2}{3^2} = 1$...(1)

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2}$, we obtain

a = 2 and b = 3.
We know that
$$a^2 + b^2 = c^2$$
.
 $\therefore c^2 = 4 + 9 = 13$
 $\Rightarrow c = \sqrt{13}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{13})$
The coordinates of the vertices are $(0, \pm \sqrt{13})$
Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{13}}{2}$
Length of latus rectum $= \frac{2b^2}{2} = \frac{2 \times 9}{2} = 0$

4:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16x^2 - 9y^2 = 576$

2

a

Solution:

The given equation is $16x^2 - 9y^2 = 576$. It can be written as $16x^2 - 9y^2 = 576$ $\Rightarrow \frac{x^2}{36} - \frac{y^2}{64} = 1$ $\Rightarrow \frac{x^2}{6^2} - \frac{y^2}{8^2} = 1$...(1)

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we

obtain a = 6 and b = 8. We know that $a^2 + b^2 = c^2$. $\therefore c^2 = 36 + 64 = 100$ $\Rightarrow c = 10$ Therefore, The coordinates of the foci are (±10, 0). The coordinates of the vertices are (±6, 0). Eccentricity, $e = \frac{c}{a} = \frac{10}{6} = \frac{5}{3}$ Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 64}{6} = \frac{64}{3}$

5:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5y^2 - 9x^2 = 36$

Solution:

The given equation is $5y^2 - 9x^2 = 36$.

$$\Rightarrow \frac{y^2}{\left(\frac{36}{5}\right)} - \frac{x^2}{4} = 1$$
$$\Rightarrow \frac{y^2}{\left(\frac{6}{\sqrt{5}}\right)} - \frac{x^2}{2^2} = 1 \qquad \dots (1)$$

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we

obtain a =
$$\frac{6}{\sqrt{5}}$$
 and b = 2.
We know that a² + b² = c².
 $\therefore c^2 = \frac{36}{5} + 4 = \frac{56}{5}$
 $\Rightarrow c = \sqrt{\frac{56}{5}} = \frac{2\sqrt{14}}{\sqrt{5}}$

Therefore, the coordinates of the foci are $\left(0, \pm \frac{2\sqrt{14}}{\sqrt{5}}\right)$.

The coordinates of the vertices are $\left(0, \pm \frac{6}{\sqrt{5}}\right)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{\left(\frac{2\sqrt{14}}{\sqrt{5}}\right)}{\left(\frac{6}{\sqrt{5}}\right)} = \frac{\sqrt{14}}{3}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 4}{\left(\frac{6}{\sqrt{5}}\right)} = \frac{4\sqrt{5}}{3}$

 $49y^2 - 16x^2 = 784$

Solution:

The given equation is $49y^2 - 16x^2 = 784$. It can be written as $49y^2 - 16x^2 = 784$

Or,
$$\frac{y^2}{16} - \frac{x^2}{49} = 1$$

Or, $\frac{y^2}{4^2} - \frac{x^2}{7^2} = 1$...(1)

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we

obtain a = 4 and b = 7.
We know that
$$a^2 + b^2 = c^2$$
.
 $\therefore c^2 = 16 + 49 = 65$
 $\Rightarrow c = \sqrt{65}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{65})$.
The coordinates of the vertices are $(0, \pm 4)$.
Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{65}}{4}$
Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 49}{4} = \frac{49}{2}$

In each of the Exercises 7 to 15, find the equations of the hyperbola satisfying the given conditions.

7: Vertices (±2, 0), foci (±3, 0)

Solution:

Vertices $(\pm 2, 0)$, foci $(\pm 3, 0)$ Here, the vertices are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Since the vertices are $(\pm 2, 0)$, a = 2. Since the foci are $(\pm 3, 0)$, c = 3. We know that $a^2 + b^2 = c^2$. $\therefore 2^2 + b^2 = 3^2$ $b^2 = 9 - 4 = 5$

Thus, the equation of the hyperbola is $\frac{x^2}{4} - \frac{y^2}{5} = 1$

8:

Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Solution:

Vertices (0, ±5), foci (0, ±8) Here, the vertices are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

Since the vertices are $(0, \pm 5)$, a = 5. Since the foci are $(0, \pm 8)$, c = 8. We know that $a^2 + b^2 = c^2$. $\therefore 5^2 + b^2 = 8^2$ $b^2 = 64 - 25 = 39$

Thus, the equation of the hyperbola is $\frac{y^2}{25} - \frac{x^2}{39} = 1$.

9:

Vertices $(0, \pm 3)$, foci $(0, \pm 5)$

Solution:

Vertices $(0, \pm 3)$, foci $(0, \pm 5)$ Here, the vertices are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

Since the vertices are $(0, \pm 3)$, a = 3. Since the foci are $(0, \pm 5)$, c = 5. We know that $a^2 + b^2 = c^2$. $::3^2 + b^2 = 52$ \Rightarrow b² = 25 - 9 = 16

Thus, the equation of the hyperbola is $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

10:

Foci $(\pm 5, 0)$, the transverse axis is of length 8.

Solution:

Foci $(\pm 5, 0)$, the transverse axis is of length 8. Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Since the foci are $(\pm 5, 0)$, c = 5. Since the length of the transverse axis is 8, $2a = 8 \Rightarrow a = 4$. We know that $a^2 + b^2 = c^2$. $\therefore 4^2 + b^2 = 52$ $\Rightarrow b^2 = 25 - 16 = 9$

Thus, the equation of the hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = 1$

11:

Foci $(0, \pm 13)$, the conjugate axis is of length 24.

Solution:

Foci $(0, \pm 13)$, the conjugate axis is of length 24. Here, the foci are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

 $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1.$

 $(\pm 3\sqrt{5},0)$

Since the foci are $(0, \pm 13)$, c = 13. Since the length of the conjugate axis is $24, 2b = 24 \Rightarrow b = 12$. We know that $a^2 + b^2 = c^2$. $\therefore a^2 + 12^2 = 13^2$ $\Rightarrow a^2 = 169 - 144 = 25$

Thus, the equation of the hyperbola is $\frac{y^2}{25} - \frac{x^2}{144} = 1$.

12:

Foci , the latus rectum is of length 8.

Solution:

Foci $(\pm 3\sqrt{5}, 0)$, the latus rectum is of length 8.

Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Since the foci are $(\pm 3\sqrt{5}, 0)$, $c = \pm 3\sqrt{5}$

Length of latus rectum = 8

 $\Rightarrow \frac{2b^2}{a} = 8$ $\Rightarrow b^2 = 4a$ We know that $a^2 + b^2 = c^2$. $\therefore a^2 + 4a = 45$ $\Rightarrow a^2 + 4a - 45 = 0$ $\Rightarrow a^2 + 9a - 5a - 45 = 0$ $\Rightarrow (a + 9) (a - 5) = 0$ $\Rightarrow a = -9, 5$ Since a is non-negative, a = 5. $\therefore b^2 = 4a = 4 \times 5 = 20$ Thus, the equation of the hyperbola is $\frac{x^2}{25} - \frac{y^2}{20} = 1$.

13:

Foci $(\pm 4, 0)$, the latus rectum is of length 12.

Solution:

Foci $(\pm 4, 0)$, the latus rectum is of length 12. Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x}{2} - \frac{y}{t^2}$

$$h \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Since the foci are $(\pm 4, 0)$, c = 4. Length of latus rectum = 12

$$\Rightarrow \frac{2b^2}{a} = 12$$

$$\Rightarrow b^2 = 6a$$

We know that $a^2 + b^2 = c^2$.

$$\therefore a^2 + 6a = 16$$

$$\Rightarrow a^2 + 6a - 16 = 0$$

$$\Rightarrow a^2 + 8a - 2a - 16 = 0$$

$$\Rightarrow (a + 8) (a - 2) = 0$$

$$\Rightarrow a = -8, 2$$

Since a is non-negative, $a = 2$.

$$\therefore b^2 = 6a = 6 \times 2 = 12$$

Thus, the equation of the hyperbola is $\frac{x^2}{4} - \frac{y^2}{12} = 1$

14:

Vertices ($\pm 7, 0$), $e = \frac{4}{3}$

Solution:

Vertices $(\pm 7, 0)$, e =

Here, the vertices are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Since the vertices are $(\pm 7, 0)$, a = 7.

It is given that e =

$$\therefore \frac{c}{a} = \frac{4}{3} \quad \left\lfloor e = \frac{c}{a} \right\rfloor$$
$$\Rightarrow \frac{c}{7} = \frac{4}{3}$$
$$\Rightarrow c = \frac{28}{3}$$

We know that $a^2 + b^2 = c^2$.

$$\therefore 7^2 + b^2 = \left(\frac{28}{3}\right)^2$$
$$\Rightarrow b^2 = \frac{784}{9} - 49$$
$$\Rightarrow b^2 = \frac{784 - 441}{9} = \frac{343}{9}$$

Thus, the equation of the hyperbola is $\frac{x^2}{49} - \frac{y^2}{343} = 1$.

15:

Foci $(0, \pm \sqrt{10})$, passing through (2, 3)

Solution:

Foci , passing through (2, 3)

Here, the foci are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

Since the foci are $, c = \sqrt{10}.$

We know that $a^2 + b^2 = c^2$. $\therefore a^2 + b^2 = 10$ $\Rightarrow b^2 = 10 - a^2 \dots (1)$ Since the hyperbola passes through point (2, 3), $\frac{9}{a^2} - \frac{4}{b^2} = 1 \dots (2)$ From equations (1) and (2), we obtain

From equations (1) and (2), we obtain

$$\frac{9}{a^2} - \frac{4}{(10-a)^2} = 1$$

$$\Rightarrow 9(10-a^2) - 4a^2 = a^2(10-a^2)$$

$$\Rightarrow 90 - 9a^2 - 4a^2 = 10a^2 - a^2$$

$$\Rightarrow a^2 - 23a^2 + 90 = 0$$

$$\Rightarrow a^4 - 18a^2 - 5a^2 + 90 = 0$$

$$\Rightarrow a^2(a^2 - 18) - 5(a^2 - 18) = 0$$

$$\Rightarrow (a^2 - 18) - (a^2 - 5) = 0$$

$$\Rightarrow a^2 = 18 \text{ or } 5$$

In hyperbola, c > a, i.e., c^2 > a^2

$$\therefore a^2 = 5$$

$$\Rightarrow b^2 = 10 - a^2 = 10 - 5 = 5$$

Thus, the equation of the hyperbola is $\frac{y^2}{5} - \frac{x^2}{5} = 1$.