Exercise 10.4

Page: 454

1:

Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

Solution:

We have,

$$\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k} \text{ and } \vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$

$$= \hat{i} \left(-14 + 14 \right) - \hat{j} \left(2 - 21 \right) + \hat{k} \left(-2 + 21 \right) = 19\hat{j} + 19\hat{k}$$

$$\therefore |\vec{a} \times \vec{b}| = \sqrt{(19)^2 + (19)^2} = \sqrt{2 \times (19)^2} = 19\sqrt{2}$$

2:

Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Solution:

We have,

$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k} \text{ and } \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$

$$\therefore \vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{i}(16) - \hat{j}(16) + \hat{k}(-8) = 16\hat{i} - 16\hat{j} - 8\hat{k}$$

$$|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})| = \sqrt{16^2 + (-16)^2 + (-8)^2}$$

$$= \sqrt{2^2 \times 8^2 + 2^2 \times 8^2 + 8^2}$$

$$= 8\sqrt{2^2 + 2^2 + 1}$$

$$= 8\sqrt{9} = 8 \times 3 = 24$$

Hence, the unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is given by the relation,

$$\pm \frac{\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)}{\left|\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)\right|} = \pm \frac{16\hat{i} - 16\hat{j} - 8\hat{k}}{24}$$
$$= \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{3}$$
$$= \pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$

3:

If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \vec{a}

Solution:

Let unit vector \vec{a} have (a_1, a_2, a_3) components.

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

Since \vec{a} is a unit vector, $|\vec{a}| = 1$

Also, it is given that \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} , and an acute angle θ with \hat{k} . Then, we have:

NCERT Solution For Class 12 Maths Chapter 10 Vector Algebra

$$\cos \frac{\pi}{3} = \frac{a_1}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{2} = a_1 \qquad [|\vec{a}| = 1]$$

$$\cos \frac{\pi}{4} = \frac{a_2}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = a_2 \qquad [|\vec{a}| = 1]$$
Also, $\cos \theta = \frac{a_3}{|\vec{a}|}$

Also,
$$\cos\theta = \frac{a_3}{|\vec{a}|}$$

$$\Rightarrow a_3 = \cos \theta$$

Now,

$$|\vec{a}| = 1$$

$$\Rightarrow \sqrt{a_1^2 + a_2^2 + a_3^2} = 1$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2\theta = 1$$

$$\Rightarrow \frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

$$\Rightarrow \frac{3}{4} + \cos^2 \theta = 1$$

$$\Rightarrow \cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

$$\therefore a_3 = \cos\frac{\pi}{3} = \frac{1}{2}$$

Hence,
$$\theta = \frac{\pi}{3}$$
 and the components of \vec{a} are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$

4:

Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

Solution:

NCERT Solution For Class 12 Maths Chapter 10 Vector Algebra

$$= \vec{0} + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - \vec{0}$$
$$= 2\vec{a} \times \vec{b}$$

5:

Find
$$\lambda$$
 and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$

Solution:

$$\Rightarrow \hat{i} (6\mu - 27\lambda) - \hat{j} (2\mu - 27) + \hat{k} (2\lambda - 6) = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

On comparing the corresponding components, we have:

$$6\mu - 27\lambda = 0$$

$$2\mu - 27 = 0$$

$$2\lambda - 6 = 0$$

Now,

$$2\lambda - 6 = 0 \Rightarrow \lambda = 3$$

$$2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$$

Hence,
$$\lambda = 3$$
 and $\mu = \frac{27}{2}$

6:

Given that $\vec{a}.\vec{b} = 0$ and $\vec{a} \times \vec{b} = 0$

What can you conclude about the vector \vec{a} and \vec{b} ?

Solution:

$$\vec{a}.\vec{b} = 0$$

Then,

(i) Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero)

$$\vec{a} \times \vec{b} = 0$$

(ii) Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$, or \vec{a} is parallel to \vec{b} (in case \vec{a} and \vec{b} are non-zero)

But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously.

Hence,
$$|\vec{a}| = 0 \text{ or } |\vec{b}| = 0$$
.

Let the vectors
$$\vec{a}$$
, \vec{b} , \vec{c} given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$
Then show that $= \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

Solution:

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \ \vec{b} = \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}, \ \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$

$$(\vec{b} + \vec{c}) = (b_1 + c_1)\hat{i} + (b_2 + c_2)\hat{j} + (b_3 + c_3)\hat{k}$$
Now, $\vec{a} \times (\vec{b} + \vec{c})\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$

$$= \hat{i} \left[a_2 (b_3 + c_3) - a_3 (b_2 + c_2) \right] - \hat{j} \left[a_1 (b_3 + c_3) - a_3 (b_1 + c_1) \right]$$

$$+ \hat{k} \left[a_1 (b_2 + c_2) - a_2 (b_1 + c_1) \right]$$

$$\begin{split} = \hat{i} \left[a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2 \right] + \hat{j} \left[-a_1 b_3 - a_1 c_3 + a_3 b_1 + a_3 c_1 \right] \\ + \hat{k} \left[a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1 \right] \quad \dots (1) \end{split}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 & b_2 & b_3 \\ = \hat{i} \left[a_2 b_3 - a_3 b_2 \right] + \hat{j} \left[b_1 a_3 - a_1 b_3 \right] + \hat{k} \left[a_1 b_2 - a_2 b_1 \right] \quad \dots (2)$$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$=\hat{i}\left[a_{2}c_{3}-a_{3}c_{2}\right]+\hat{j}\left[a_{3}c_{1}-a_{1}c_{3}\right]+\hat{k}\left[a_{1}c_{2}-a_{2}c_{1}\right] \qquad ...(3)$$

On adding (2) and (3), we get:

$$(\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \hat{i} [a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2] + \hat{j} [b_1a_3 + a_3c_1 - a_1b_3 - a_1c_3] + \hat{k} [a_1b_2 + a_1c_2 - a_2b_1 - a_2c_1] \qquad \dots (4)$$

Now, from (1) and (4), we have:

$$= \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Hence, the given result is proved.

8:

If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$.

Is the converse true? Justify your answer with an example.

Solution:

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$.

Let
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$$
.

Then.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k}$$

It can now be observed that:

$$\left| \vec{a} \right| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

$$\vec{a} \neq \vec{0}$$

$$\left| \vec{b} \right| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

$$\vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

9:

Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).

Solution:

The vertices of triangle ABC are given as A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).

The adjacent sides $\vec{A}\vec{B}$ and $\vec{B}\vec{C}$ of $\triangle ABC$ are given as:

$$\overrightarrow{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

Area of
$$\triangle ABC = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{BC} |$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i}(-6) - \hat{j}(3) + \hat{k}(2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\therefore |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

Hence, the area of $\triangle ABC$ is $\frac{\sqrt{61}}{2}$ square units.

10

Find the area of the parallelogram whose adjacent sides are determined by the vector

$$\vec{a} = \hat{i} - \hat{j} + 3k$$
 and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Solution:

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Adjacent sides are given as:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i} (-1 + 21) - \hat{j} (1 - 6) + \hat{k} (-7 + 2) = 20 \hat{i} + 5 \hat{j} - 5 \hat{k}$$

$$\vec{b} = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}$ square units

11:

Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Solution:

It is given that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$

We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \ \hat{n}$, where is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b} .

Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}| = 1$

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = 1$$

$$\Rightarrow ||\vec{a}|||\vec{b}||\sin\theta\hat{n}|| = 1$$

$$\Rightarrow |\vec{a}|||\vec{b}||\sin\theta|| = 1$$

$$\Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin\theta = 1$$

$$\Rightarrow \sin\theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$.

The correct answer is B.

12:

Area of a rectangle having vertices A, B, C, and D with position vectors

NCERT Solution For Class 12 Maths Chapter 10 Vector Algebra

$$-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \ \text{and} \ -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \ \text{respectively is}$$

(A)
$$\frac{1}{2}$$

Solution:

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\vec{OA} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \vec{OB} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$$

$$\vec{OC} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \quad \vec{OD} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as:

$$\overrightarrow{AB} = (1+1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = 2\hat{i}$$

$$\overrightarrow{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$

Now, it is known that the area of a parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Hence, the area of the given rectangle is $|\overrightarrow{AB} \times \overrightarrow{BC}| = 2$ square units.

The correct answer is C.