NCERT Solution For Class 12 Maths Chapter 10 Vector AlgebraMiscellaneous ExercisePage: 454

1:Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

Solution:

If \vec{r} is a unit vector in the XY-plane, then $\vec{r} = \cos\theta \hat{i} + \sin\theta \hat{j}$.

Here, θ is the angle made by the unit vector with the positive direction of the x-axis.

Therefore, for $\theta = 30^{\circ}$.

$$\vec{r} = \cos 30^{\circ} \hat{i} + \sin 30^{\circ} \hat{j} = \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j}$$

Hence, the required unit vector is $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$

2:

Find the scalar components and magnitude of the vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$.

Solution:

The vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ can be obtained by,

$$\begin{aligned} \mathbf{PQ} &= \text{Position vector of } \mathbf{Q}\text{-Position vector of} \\ &= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k} \\ \left| \overrightarrow{\mathbf{PQ}} \right| &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \end{aligned}$$

Hence, the scalar components and the magnitude of the vector joining the given points are

respectively
$$\{(x_2 - x_1), (y_2 - y_1), (z_2 - z_1)\}$$
 and $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
3:

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

Solution 3:

Let O and B be the initial and final positions of the girl respectively. Then, the girl's position can be shown as:

$$\vec{OA} = -4\hat{i}$$
$$\vec{AB} = \left|\vec{AB}\right| \cos 60^\circ \hat{i} + \left|\vec{AB}\right| \sin 60^\circ \hat{j}$$
$$= 3 \times \frac{1}{2}\hat{i} + 3 \times \frac{\sqrt{3}}{2}\hat{j}$$
$$= \frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

By the triangle law of vector addition, we have:

$$\vec{OB} = \vec{OA} + \vec{AB}$$
$$= \left(-4\hat{i}\right) + \left(\frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \left(-4 + \frac{3}{2}\hat{j}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \left(\frac{-8+3}{2}\hat{j}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

Hence, the girl's displacement from her initial point of departure is

$$\frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

4:

If $\vec{a} = \vec{b} + \vec{c}$, then is it true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$?Justify your answer.

Solution:

In $\triangle ABC$, let $\overrightarrow{CB} = \vec{a}$, $\overrightarrow{CA} = \vec{b}$, and $\overrightarrow{AB} = \vec{c}$ (as shown in the following figure).

Now, by the triangle law of vector addition, we have $\vec{a} = \vec{b} + \vec{c}$.

It is clearly known that $|\vec{a}|, |\vec{b}|$ and $|\vec{c}|$ represent the sides of $\triangle ABC$.

Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.

$\therefore \left| \vec{a} \right| < \left| \vec{b} \right| + \left| \vec{c} \right|$

Hence, it is not true that $\left|\vec{a}\right| = \left|\vec{b}\right| + \left|\vec{c}\right|$

5:

Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector

Solution:

 $x(\hat{i} + \hat{j} + \hat{k}) \text{ is a unit vector if } \left| x(\hat{i} + \hat{j} + \hat{k}) \right| = 1.$ Now, $\left| x(\hat{i} + \hat{j} + \hat{k}) \right| = 1$ $\Rightarrow \sqrt{x^2 + x^2 + x^2} = 1$ $\Rightarrow \sqrt{3x^2} = 1$ $\Rightarrow \sqrt{3x} = 1$ $\Rightarrow x = \pm \frac{1}{\sqrt{3}}$

Hence, the required value of x is $\pm \frac{1}{\sqrt{3}}$.

6:

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

 $a = 2\hat{i} + 3\hat{j} - k$ and $b = \hat{i} - 2\hat{j} + \hat{k}$

Solution:

We have,

Let \vec{c} be the resultant of \vec{a} , \vec{b} and \vec{c} .

Then,

$$\vec{c} = \vec{a} + \vec{b} = (2+1)\hat{i} + (3+2)\hat{j} + (-1+1)\hat{k} = 3\hat{i} + \hat{j}$$

$$\therefore |\vec{c}| = \sqrt{3^2 + 1^2} = \sqrt{9+1} = \sqrt{10}$$

$$\therefore \hat{c} = \frac{\vec{c}}{|\hat{c}|} = \frac{(3\hat{i} + \hat{j})}{\sqrt{10}}$$

Hence, the vector of magnitude 5 units and parallel to the resultant of vectors \vec{a} and \vec{b} is

$$\pm 5.\hat{c} = \pm 5.\frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{j}\right) = \pm \frac{3\sqrt{10}\hat{i}}{2} \pm \frac{\sqrt{10}}{2}\hat{j}$$

7:

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

Solution:

We have,

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$
 $2\vec{a} - \vec{b} + 3\vec{c} = 2(\hat{i} + \hat{j} + \hat{k}) - (2\hat{i} - \hat{j} + 3\hat{k}) + 3(\hat{i} - 2\hat{j} + \hat{k})$
 $= 2\hat{i} + 2\hat{j} + 2\hat{k} - 2\hat{i} + j - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$
 $= 3\hat{i} - 3\hat{j} + 2\hat{k}$
 $|2\vec{a} - \vec{b} + 3\vec{c}| = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22}$
Hence, the unit vector along $2\vec{a} - \vec{b} + 3\vec{c}$ is
 $\frac{2\vec{a} - \vec{b} + 3\vec{c}}{|2\vec{a} - \vec{b} + 3\vec{c}|} = \frac{3\hat{i} - 3\hat{j} + 2\hat{k}}{\sqrt{22}} = \frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}$.

8:

Show that the points A (1, -2, -8), B (5, 0, -2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Solution:

The given points are A
$$(1, -2, -8)$$
, B $(5, 0, -2)$ and C $(11, 3, 7)$
 $\therefore \vec{AB} = (5-1)\hat{i} + (0+2)\hat{j} + (-2+8)\hat{k} = 4\hat{i} + 2\hat{j} + 6\hat{k}$
 $\vec{BC} = (11-5)\hat{i} + (3-0)\hat{j} + (7+2)\hat{k} = 6\hat{i} + 3\hat{j} + 9\hat{k}$
 $\vec{AC} = (11-1)\hat{i} + (3+2)\hat{j} + (7+8)\hat{k} = 10\hat{i} + 5\hat{j} + 15\hat{k}$
 $\left|\vec{AB}\right| = \sqrt{4^2 + 2^2 + 6^2} = \sqrt{16 + 4 + 36} = \sqrt{56} = 2\sqrt{14}$
 $\left|\vec{BC}\right| = \sqrt{6^2 + 3^2 + 9^2} = \sqrt{36 + 9 + 81} = \sqrt{126} = 3\sqrt{14}$
 $\left|\vec{AC}\right| = \sqrt{10^2 + 5^2 + 15^2} = \sqrt{100 + 25 + 225} = \sqrt{350} = 5\sqrt{14}$
 $\therefore \left|\vec{AC}\right| = \left|\vec{AB}\right| + \left|\vec{BC}\right|$

Thus, the given points A, B, and C are collinear. Now, let point B divide AC in the ratio λ :1. Then, we have:

$$\vec{OB} = \frac{\lambda \vec{OC} + \vec{AA}}{(\lambda + 1)}$$

$$\Rightarrow 5\hat{i} - 2\hat{k} = \frac{\lambda\left(11\hat{i} + 3\hat{j} + 7\hat{k}\right) + \left(\hat{i} - 2\hat{j} - 8\hat{k}\right)}{\lambda + 1}$$

$$\Rightarrow (\lambda + 1)\left(5\hat{i} - 2\hat{k}\right) = 11\lambda\hat{i} + 3\lambda\hat{j} + 7\lambda\hat{k} + \hat{i} - 2\hat{j} - 8\hat{k}$$

$$\Rightarrow 5(\lambda + 1)\hat{i} - 2(\lambda + 1)\hat{k} = (11\lambda + 1)\hat{i} + (3\lambda - 2)\hat{j} + (7\lambda - 8)\hat{k}$$

On equating the corresponding components, we get:

$$5(\lambda + 1) = 11\lambda + 1$$

$$\Rightarrow 5\lambda + 1 = 11\lambda + 1$$

$$\Rightarrow 6\lambda = 4$$

$$\Rightarrow \lambda = \frac{4}{6} = \frac{2}{3}$$

Hence, point B divides AC in the ratio 2:3.

9:

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} - 3\vec{b})$ externally in the ratio 1:2. Also, show that P is the midpoint of the line segment RQ.

Solution:

It is given that $\vec{OP} = 2\vec{a} + \vec{b}$, $\vec{OQ} = \vec{a} - 3\vec{b}$.

It is given that point R divides a line segment joining two points P and Q externally in the ratio 1:2. Then, on using the section formula, we get:

$$\overrightarrow{OR} = \frac{2(2\overrightarrow{a} + \overrightarrow{b}) - (\overrightarrow{a} - 3\overrightarrow{b})}{2 - 1}$$
$$= \frac{4\overrightarrow{a} + 2\overrightarrow{b} - \overrightarrow{a} + 3\overrightarrow{b}}{1}$$
$$= 3\overrightarrow{a} + 5\overrightarrow{b}$$

Therefore, the position vector of point R is $3\vec{a}+5\vec{b}$

Position vector of the mid-point of RQ = $\frac{\vec{OQ} + \vec{OR}}{2}$

$$= \frac{\left(\vec{a} - 3\vec{b}\right) + \left(3\vec{a} + 5\vec{b}\right)}{2}$$
$$= 2\vec{a} + \vec{b}$$
$$= \vec{OP}$$

Hence, P is the mid-point of the line segment RQ.

10:

The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.

Solution:

Adjacent sides of a parallelogram are given as: $\vec{a} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} - 3\hat{k}$

Then, the diagonal of a parallelogram is given by
$$\vec{a} + \vec{b} = (2+1)\hat{i} + (-4-2)\hat{j} + (5-3)\hat{k} = 3\hat{i} - 6\hat{j} + 2\hat{k}$$

Thus, the unit vector parallel to the diagonal is

$$\frac{\vec{a}+\vec{b}}{\left|\vec{a}+\vec{b}\right|} = \frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{3^2+\left(-6\right)^2+2^2}} = \frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{9+36+4}} = \frac{3\hat{i}-6\hat{j}+2\hat{k}}{7} = \frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}.$$

 \therefore Area of parallelogram ABCD = $\left| \vec{a} + \vec{b} \right|$

$$\vec{a} + \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix}$$
$$= \hat{i} (12 + 10) - \hat{j} (-6 - 5) + \hat{k} (-4 + 4)$$
$$= 22\hat{i} + 11\hat{j}$$
$$= 11 (2\hat{i} + \hat{j})$$
$$\therefore |\vec{a} + \vec{b}| = 11\sqrt{2^2 + 1^2} = 11\sqrt{5}$$

Hence, the area of the parallelogram is $11\sqrt{5}$ square units

11:

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}.$$

Solution:

Let a vector be equally inclined to axes OX, OY, and OZ at angle α . Then, the direction cosines of the vector are $\cos \alpha$, $\cos \alpha$, and $\cos \alpha$.

Now, $\cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$ $\Rightarrow 3\cos^2 \alpha = 1$ $\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$

Hence, the direction cosines of the vector which are equally inclined to the axes are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

 $\frac{1}{\sqrt{3}}$.

12:

Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$

Solution:

Let $\vec{d} = d_1\hat{i} + d_2\hat{j} + d_3\hat{k}$ Since \vec{d} is perpendicular to both \vec{a} and \vec{b} $\vec{d}.\vec{a} = 0$ $\Rightarrow d_1 + 4d_2 + 2d_3 = 0$...(i) $\vec{d}.\vec{b} = 0$ $\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0$...(ii) Also, it is given that: $\vec{c}.\vec{d} = 15$ $\Rightarrow 2d_1 - d_2 + 4d_3 = 15$...(iii) On solving (i), (ii), and (iii), we get: $d_1 = \frac{160}{3}, d_2 = -\frac{5}{3} and d_3 = -\frac{70}{3}$ $\therefore \vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}(160\hat{i} - 5\hat{j} - 70\hat{k})$

Hence, the required vector is $\frac{1}{3} \left(160\hat{i} - 5\hat{j} - 70\hat{k} \right)$

13:

The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{\lambda}\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

Solution:

$$(2\hat{i}+4\hat{j}-5\hat{k})+(\lambda\hat{i}+2\hat{j}+3\hat{k})$$
$$=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}$$

Therefore, unit vector along $(2\hat{i}+4\hat{j}-5\hat{k})+(\lambda\hat{i}+2\hat{j}+3\hat{k})$ is given as:

$$\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+6^2+(-2)^2}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{4+4\lambda+\lambda^2+36+4}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{\lambda^2+4\lambda+44}}$$

Scalar product of $(\hat{i} + \hat{j} + \hat{k})$ with this unit vector is 1.

$$\Rightarrow \hat{i} + \hat{j} + \hat{k} \cdot \frac{(2+\lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^2+4\lambda+44}} = 1$$

$$\Rightarrow \sqrt{\lambda^2+4\lambda+44} = \lambda+6$$

$$\Rightarrow \lambda^2+4\lambda+44 = (\lambda+6)^2$$

$$\Rightarrow \lambda^2+4\lambda+44 = \lambda^2+12\lambda+36$$

$$\Rightarrow 8\lambda = 8$$

$$\Rightarrow \lambda = 1$$

Hence, the value of λ is 1.

14:

If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} .

Solution:

Since \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, we have

$$\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 0$$
. It is given that: $|\vec{a}| = |\vec{b}| = |\vec{c}|$

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a}, \vec{b} and \vec{c} at angles θ_1, θ_2 , and θ_3 respectively. Then, we have:

$$\cos \theta_{1} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|}$$

$$= \frac{\left|\vec{a}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \qquad \begin{bmatrix} \vec{b} \cdot \vec{a} = \vec{c} \cdot \cdot \vec{a} = 0 \end{bmatrix}$$

$$= \frac{\left|\vec{a}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

$$\cos \theta_{2} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} = \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|}$$

$$= \frac{\left|\vec{b}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} \qquad \left[\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} = 0\right]$$

$$= \frac{\left|\vec{b}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

$$\cos \theta_{3} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} = \frac{\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|}$$

$$= \frac{\left|\vec{c}\right|^{2}}{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{c}\right|} \qquad \left[\vec{a}.\vec{c}=\vec{b}.\vec{c}=0\right]$$
$$= \frac{\left|\vec{c}\right|}{\left|\vec{a}+\vec{b}+\vec{c}\right|}$$
Now as $\left|\vec{a}\right| = \left|\vec{b}\right| = \left|\vec{c}\right|, \cos\theta_{1} = \cos\theta_{2} = \cos\theta_{3}$
$$\therefore \theta_{1} = \theta_{2} = \theta_{3}$$

Hence, the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

15:

Prove that, $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$ if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$

Solution:

$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$$

$$\Leftrightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 \qquad \text{[Distributivity of scalar products over addition]}$$

$$\Leftrightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \qquad [\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \text{ (Scalar product is commutative)}]$$

$$\Leftrightarrow 2\vec{a} \cdot \vec{b} = 0$$

$$\Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

$$\therefore \vec{a} \text{ and } \vec{b} \text{ are prerendicular.} \qquad [\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0} \text{ (Given)}]$$

16:

If θ is the angle between two vectors \vec{a} and \vec{b} , then only when

(A) $0 < \theta < \frac{\pi}{2}$	(B) $0 \le \theta \le \frac{\pi}{2}$
(C) $0 < \theta < \pi$	(D) $0 \le \theta \le \pi$

Solution:

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors so that $|\vec{a}|$ and $|\vec{b}|$ be positive

It is known that $\vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ $\therefore \vec{a}.\vec{b} \ge 0$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta \ge 0$$

$$\Rightarrow \cos \theta \ge 0 \qquad \left[|\vec{a}| \text{ and } |\vec{b}| \text{ are positive} \right]$$

$$\Rightarrow 0 \le \theta \le \frac{\pi}{2}$$

Hence, $\vec{a}.\vec{b} \ge 0$ when $0 \le \theta \le \frac{\pi}{2}$

The correct answer is B.

17:

Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if (A) $\theta = \frac{\pi}{4}$ (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$

Solution:

Let \vec{a} and \vec{b} be two unit vectors and θ be the angle between them. Then, $|\vec{a}| = |\vec{b}| = 1$ Now, $\vec{a} + \vec{b}$ is a unit vector if $|\vec{a} + \vec{b}| = 1$.

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b} \right)^2 = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b} \right) \cdot \left(\vec{a} + \vec{b} \right) = 1$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 1$$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 1$$

$$\Rightarrow 1^2 + 2|\vec{a}| |\vec{b}| \cos \theta + 1^2 = 1$$

$$\Rightarrow 1 + 2 \cdot 1 \cdot 1 \cos \theta + 1 = 1$$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Hence, $\vec{a} + \vec{b}$ is a unit vector if $\theta = \frac{2\pi}{3}$ The correct answer is D.

18: The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is (A) 0 (B) -1 (C) 1 (D) 3

Solution:

 $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ $= \hat{i} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) + \hat{k} \cdot \hat{k}$ $= 1 - \hat{j} \cdot \hat{j} + 1$ = 1 - 1 + 1 = 1The correct answer is C.

19:

If θ is the angle between any two vectors \vec{a} and \vec{b} then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to

(A) 0 (B)
$$\frac{\pi}{4}$$
 (C) $\frac{\pi}{2}$ (D) π

Solution:

Let θ be the angle between two vectors \vec{a} and \vec{b} . Then without loss of generality \vec{a} and \vec{b} are non-zero.

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors, so That $|\vec{a}|$ and $|\vec{b}|$ are positive.

$$\begin{vmatrix} \vec{a}.\vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta$$

$$\Rightarrow \cos \theta = \sin \theta \qquad [|\vec{a}| \text{ and } |\vec{b}| \text{ are positive}]$$

$$\Rightarrow \tan \theta = 1$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\left| \vec{a}.\vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$ when θ is equal to $\frac{\pi}{4}$

The correct answer is B.