Exercise 7.6 Page: 327

1.

Integrate x sin x

Solution:

$$\int \text{Let I} = x \sin x dx$$

Taking x as first function and $\sin x$ as second function and integrating by parts, we obtain.

obtain,

$$I = x \int \sin x dx - \int \left\{ \left(\frac{d}{dx} x \right) \int \sin x dx \right\} dx$$

$$= x(-\cos x) - \int 1 \cdot (-\cos x) dx$$

$$=-x\cos x+\sin x+C$$

Where C is an arbitrary constant.

2:

Integrate x sin 3x

Solution:

$$\int \text{Let I} = x \sin 3x dx$$

Taking x as first function and $\sin 3x$ as second function and integrating by parts, we obtain

obtain
$$I = x \int \sin 3x dx - \int \left\{ \left(\frac{d}{dx} x \right) \int \sin 3x dx \right\}$$

$$= x \left(\frac{-\cos 3x}{3}\right) - \int 1 \cdot \left(\frac{-\cos 3x}{3}\right) dx$$

$$= \frac{-x\cos 3x}{3} + \frac{1}{3}\int \cos 3x dx$$

$$=\frac{-x\cos 3x}{3} + \frac{1}{9}\sin 3x + C$$

Where C is an arbitrary constant.

3:

Integrate $x^2 e^x$

Solution:

Let
$$I = \int x^2 e^x dx$$

Taking x^2 as first function and ex as second function and integrating by parts, we obtain

$$I = x^{2} \int e^{x} dx - \int \left\{ \left(\frac{d}{dx} x^{2} \right) \int e^{x} dx \right\} dx$$

$$= x^{2}e^{x} - \int 2xe^{x}dx$$
$$= x^{2}e^{x} - 2\int x \cdot e^{x}dx$$

Again integrating by parts, we obtain

$$= x^{2}e^{x} - 2\left[x \cdot \int e^{x}dx - \int \left\{\left(\frac{d}{dx}x\right)\int e^{x}dx\right\}dx\right]$$

$$= x^{2}e^{x} - 2\left[xe^{x} - \int e^{x}dx\right]$$

$$= x^{2}e^{x} - 2\left[xe^{x} - e^{x}\right]$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + C$$

$$= e^{x}\left(x^{2} - 2x + 2\right) + C$$

Where C is an arbitrary constant.

4.

Integrate $x \log x$

Solution:

Let
$$I = \int x \log x dx$$

Taking log x as first function and x as second function and integrating by parts, we obtain

$$I = \log x \int x dx - \int \left\{ \left(\frac{d}{dx} \log x \right) \int x dx \right\} dx$$

$$= \log x \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} dx$$

$$= \frac{x^2 \log x}{2} - \int \frac{x}{2} dx$$

$$= \frac{x^2 \log x}{2} - \frac{x^2}{4} + C$$

Where C is an arbitrary constant.

5.

Integrate $x \log 2x$

Solution:

Let
$$I = \int x \log 2x dx$$

Taking log 2x as first function and x as second function and integrating by parts, we obtain

$$I = \log 2x \int x dx - \int \left\{ \left(\frac{d}{dx} \log 2x \right) \int x dx \right\} dx$$
$$= \log 2x \cdot \frac{x^2}{2} - \int \frac{2}{2x} \cdot \frac{x^2}{2} dx$$

$$= \frac{x^2 \log 2x}{2} - \int \frac{x}{2} dx$$
$$= \frac{x^2 \log 2x}{2} - \frac{x^2}{4} + C$$

Where C is an arbitrary constant.

6.

Integrate $x^2 \log x$

Solution:

Let
$$I = \int x^2 \log x dx$$

Taking $\log x$ as first function and x^2 as second function and integrating by parts, we obtain

$$I = \log x \int x^2 dx - \int \left\{ \left(\frac{d}{dx} \log x \right) \int x^2 dx \right\} dx$$

$$= \log x \cdot \left(\frac{x^3}{3} \right) - \int \frac{1}{x} \cdot \frac{x^3}{3} dx$$

$$= \frac{x^3 \log x}{3} - \int \frac{x^2}{3} dx$$

$$= \frac{x^3 \log x}{3} - \frac{x^3}{3} + C$$

Where C is an arbitrary constant.

7.

Integrate $x \sin^{-1} x$

Solution:

Let
$$I = \int x \sin^{-1} x dx$$

Taking sin-1 x as first function and x as second function and integrating by parts, we obtain

$$I = \sin^{-1} x \int x \, dx - \int \left\{ \left(\frac{d}{dx} \sin^{-1} x \right) \int x \, dx \right\} dx$$

$$= \sin^{-1} x \left(\frac{x^2}{2} \right) - \int \frac{1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \, dx$$

$$= \frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \int \frac{-x^2}{\sqrt{1 - x^2}} \, dx$$

$$= \frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \int \left\{ \frac{1 - x^2}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \right\} dx$$

$$\begin{split} &= \frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \int \left\{ \sqrt{1 - x^2} - \frac{1}{\sqrt{1 - x^2}} \right\} dx \\ &= \frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \left\{ \int \sqrt{1 - x^2} dx - \int \frac{1}{\sqrt{1 - x^2}} dx \right\} \\ &= \frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \left\{ \frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x - \sin^{-1} x \right\} + C \\ &= \frac{x^2 \sin^{-1} x}{2} + \frac{x}{4} \sqrt{1 - x^2} + \frac{1}{4} \sin^{-1} x - \frac{1}{2} \sin^{-1} x + C \\ &= \frac{1}{4} (2x^2 - 1) \sin^2 x + \frac{x}{4} \sqrt{1 - x^2} + C \end{split}$$

Where C is an arbitrary constant.

8.

Integrate $x \tan^{-1} x$

Solution:

Let
$$I = \int x \tan^{-1} x \, dx$$

Taking tan-1 x as first function and x as second function and integrating by parts, we obtain

$$I = \tan^{-1} x \int x \, dx - \int \left\{ \left(\frac{d}{dx} \tan^{-1} x \right) \int x \, dx \right\} dx$$

$$= \tan^{-1} x \left(\frac{x^2}{2} \right) - \int \frac{1}{1+x^2} \cdot \frac{x^2}{2} \, dx$$

$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx$$

$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \left(\frac{x^2 + 1}{1+x^2} - \frac{1}{1+x^2} \right) dx$$

$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2} \right) dx$$

$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \left(x - \tan^{-1} x \right) + C$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{x}{2} + \frac{1}{2} \tan^{-1} x + C$$

Where C is an arbitrary constant.

9.

Integrate $x \cos^{-1} x$

Solution:

Let
$$I = \int x \cos^{-1} x dx$$

Taking $\cos^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$I = \cos^{-1} x \int x dx - \int \left\{ \left(\frac{d}{dx} \cos^{-1} x \right) \int x dx \right\} dx$$

$$= \cos^{-1} x \frac{x^2}{2} - \int \frac{-1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} dx$$

$$= \frac{x^2 \cos^{-1} x}{2} - \frac{1}{2} \int \frac{1 - x^2 - 1}{\sqrt{1 - x^2}} dx$$

$$= \frac{x^2 \cos^{-1} x}{2} - \frac{1}{2} \int \left\{ \sqrt{1 - x^2} + \left(\frac{-1}{\sqrt{1 - x^2}} \right) \right\} dx$$

$$= \frac{x^2 \cos^{-1} x}{2} - \frac{1}{2} \int \sqrt{1 - x^2} dx - \frac{1}{2} \int \left(\frac{-1}{\sqrt{1 - x^2}} \right) dx$$

$$= \frac{x^2 \cos^{-1} x}{2} - \frac{1}{2} \left(\frac{x}{2} \sqrt{1 - x^2} \right) - \frac{1}{4} \cos^{-1} x + C$$

Where C is an arbitrary constant.

10.

Integrate $\left(\sin^{-1} x\right)^2$

Solution:

Let
$$I = \int (\sin^{-1} x)^2 . 1 dx$$

Taking $(\sin^{-1} x)^2$ as first function and 1 as second function and integrating by parts, we obtain

$$I = \int (\sin^{-1} x) \cdot \int 1 dx - \int \left\{ \frac{d}{dx} (\sin^{-1} x)^{2} \cdot \int 1 \cdot dx \right\} dx$$

$$= (\sin^{-1} x)^{2} \cdot x - \int \frac{2 \sin^{-1} x}{\sqrt{1 - x^{2}}} \cdot x dx$$

$$= x (\sin^{-1} x)^{2} + \int \sin^{-1} x \cdot \left(\frac{-2x}{\sqrt{1 - x^{2}}} \right) dx$$

$$= x (\sin^{-1} x)^{2} + \left[\sin^{-1} x \int \frac{-2x}{\sqrt{1 - x^{2}}} dx - \int \left\{ \left(\frac{d}{dx} \sin^{-1} x \right) \int \frac{-2x}{\sqrt{1 - x^{2}}} dx \right\} dx \right]$$

$$= x (\sin^{-1} x)^{2} + \left[\sin^{-1} x \cdot 2\sqrt{1 - x^{2}} - \int \frac{1}{\sqrt{1 - x^{2}}} \cdot 2\sqrt{1 - x^{2}} dx \right]$$

$$= x (\sin^{-1} x)^{2} + 2\sqrt{1 - x^{2}} \sin^{-1} x - \int 2 dx$$

$$= x (\sin^{-1} x)^{2} + 2\sqrt{1 - x^{2}} \sin^{-1} x - 2x + C$$

Where C is an arbitrary constant.

11.

Integrate
$$\frac{x \cos^{-1} x}{\sqrt{1-x^2}}$$

Solution:

Let
$$I = \int \frac{x \cos^{-1} x}{\sqrt{1 - x^2}} dx$$

 $I = \frac{-1}{2} \int \frac{-2x}{\sqrt{1 - x^2}} .\cos^{-1} x dx$

Taking $\cos^{-1} x$ as first function and $\left(\frac{-2x}{\sqrt{1-x^2}}\right)$ as second function and integrating by parts, we

obtain

$$I = \frac{-1}{2} \left[\cos^{-1} x \int \frac{-2x}{\sqrt{1 - x^2}} dx - \int \left\{ \left(\frac{d}{dx} \cos^{-1} x \right) \int \frac{-2x}{\sqrt{1 - x^2}} dx \right\} dx \right]$$

$$= \frac{-1}{2} \left[\cos^{-1} x \cdot 2\sqrt{1 - x^2} - \int \frac{-1}{\sqrt{1 - x^2}} \cdot 2\sqrt{1 - x^2} dx \right]$$

$$= \frac{-1}{2} \left[2\sqrt{1 - x^2} \cos^{-1} x + \int 2dx \right]$$

$$= \frac{-1}{2} \left[2\sqrt{1 - x^2} \cos^{-1} x + 2x \right] + C$$

$$= -\left[\sqrt{1 - x^2} \cos^{-1} x + x \right] + C$$

Where C is an arbitrary constant.

12.

Integrate $x \sec^2 x$

Solution:

Let
$$I = \int x \sec^2 x dx$$

Taking x as first function and $sec^2 x$ as second function and integrating by parts, we obtain

$$I = x \int \sec^2 x dx - \int \left\{ \left\{ \frac{d}{dx} x \right\} \int \sec^2 x dx \right\} dx$$

$$= x \tan x - \int 1 \cdot \tan x dx$$

$$= x \tan x + \log|\cos x| + C$$

Where C is an arbitrary constant.

13.

Integrate $tan^{-1} x$

Solution:

Let
$$I = \int 1 \cdot \tan^{-1} x dx$$

Taking tan⁻¹ x as first function and 1 as second function and integrating by parts, we obtain

$$I = \tan^{-1} x \int 1 dx - \int \left\{ \left(\frac{d}{dx} \tan^{-1} x \right) \int 1 . dx \right\} dx$$

$$= \tan^{-1} x . x - \int \frac{1}{1 + x^2} . x dx$$

$$= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1 + x^2} dx$$

$$= x \tan^{-1} x - \frac{1}{2} \log |1 + x^2| + C$$

$$= x \tan^{-1} x - \frac{1}{2} \log (1 + x^2) + C$$

Where C is an arbitrary constant.

14.

Integrate $x(\log x)^2 dx$

Solution:

$$I = \int x (\log x)^2 dx$$

Taking $(\log x)^2$ as first function and 1 as second function and integrating by parts, we obtain

$$I = (\log)^2 \int x dx - \int \left[\left\{ \left(\frac{d}{dx} \log x \right)^2 \right\} \int x dx \right] dx$$
$$= \frac{x^2}{2} (\log x)^2 - \left[\int 2 \log x \cdot \frac{1}{x} \cdot \frac{x^2}{2} dx \right]$$
$$= \frac{x^2}{2} (\log x)^2 - \int x \log x dx$$

Again integrating by parts, we obtain

$$I = \frac{x^{2}}{2} (\log x)^{2} - \left[\log x \int x dx - \int \left\{ \left(\frac{d}{dx} \log x \right) \int x dx \right\} dx \right]$$

$$= \frac{x^{2}}{2} (\log x)^{2} - \left[\frac{x^{2}}{2} \log x - \int \frac{1}{x} \cdot \frac{x^{2}}{2} dx \right]$$

$$= \frac{x^{2}}{2} (\log x)^{2} - \frac{x^{2}}{2} \log x + \frac{1}{2} \int x dx$$

$$= \frac{x^2}{2} (\log x)^2 - \frac{x^2}{2} \log x + \frac{x^2}{4} + C$$

Where C is an arbitrary constant.

15.

Integrate $(x^2 + 1)\log x$

Solution:

Let
$$I = \int (x^2 + 1) \log x dx = \int x^2 \log x dx + \int \log x dx$$

Let
$$I = I_1 + I_2 ... (1)$$

Where,
$$I_1 = \int x^2 \log x dx$$
 and $I_2 = \int \log x dx$

$$I_1 = \int x^2 \log x dx$$

Taking $\log x$ as first function and x^2 as second function and integrating by parts, we obtain

$$I_1 = \log x \int x^2 dx - \int \left\{ \left(\frac{d}{dx} \log x \right) \int x^2 dx \right\} dx$$

$$=\log x.\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx$$

$$=\frac{x^3}{3}\log x - \frac{1}{3}\left(\int x^2 dx\right)$$

$$= \frac{x^3}{3} \log x - \frac{x^3}{9} + C_1 \qquad ...(2)$$

$$I_2 = \int \log x dx$$

Taking log x as first function and 1 as second function and integrating by parts, we obtain

$$I_2 = \log x \int 1.dx - \int \left\{ \left(\frac{d}{dx} \log x \right) \int 1.dx \right\}$$

$$= \log x . x - \int \frac{1}{x} . x dx$$

$$= x \log x - \int 1 dx$$

$$= x \log x - x + C_2 \qquad \dots (3)$$

Using equations (2) and (3) in (1), we obtain

$$I = \frac{x^3}{3} \log x - \frac{x^3}{9} + C_1 + x \log x - x + C_2$$

$$= \frac{x^3}{3} \log x - \frac{x^3}{9} + x \log x - x + (C_1 + C_2)$$

$$= \left(\frac{x^3}{3} + x\right) \log x - \frac{x^3}{9} - x + C$$

Where C is an arbitrary constant.

16.

Integrate $e^x(\sin x + \cos x)$

Solution:

Let
$$I = \int e^x (\sin x + \cos x) dx$$

Let
$$f(x) = \sin x$$

$$f'(x) = \cos x$$

$$I = \int e^x \left\{ f(x) + f'(x) \right\} dx$$

It is known that,
$$\int e^x \{f(x) + f'(x)\} dx = e^x f(x) + C$$

$$\therefore I = e^x \sin x + C$$

Where C is an arbitrary constant.

17.

Integrate
$$\frac{xe^x}{(1+x)^2}$$

Solution:

Let
$$I = \int \frac{xe^x}{(1+x)^2} dx = \int e^x \left\{ \frac{x}{(1+x)^2} \right\} dx$$

$$= \int e^x \left\{ \frac{1+x-1}{\left(1+x\right)^2} \right\} dx$$

$$= \int e^{x} \left\{ \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \right\} dx$$

Let
$$f(x) = \frac{1}{1+x}$$
 $f'(x) = \frac{-1}{(1+x)^2}$

$$\Rightarrow \int \frac{xe^{x}}{(1+x)^{2}} dx = \int e^{x} \{f(x) + f'(x)\} dx$$

It is known that, $\int e^x \{f(x) + f'(x)\} dx = e^x f(x) + C$

$$\therefore \int \frac{xe^x}{(1+x)^2} dx = \frac{e^x}{1+x} + C$$

Where C is an arbitrary constant.

18

Integrate
$$e^x \left(\frac{1+\sin x}{1+\cos x} \right)$$

Solution:

$$e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right)$$

$$= e^{x} \left(\frac{\sin^{2} \frac{x}{2} + \cos^{2} \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2}}{2\cos^{2} \frac{x}{2}} \right)$$

$$= \frac{e^{x} \left(\sin \frac{x}{2} + \cos \frac{x}{2} \right)^{2}}{2\cos^{2} \frac{x}{2}}$$

$$= \frac{1}{2} e^{x} \left(\frac{\sin \frac{x}{2} + \cos \frac{x}{2}}{\cos \frac{x}{2}} \right)^{2}$$

$$= \frac{1}{2} e^{x} \left[\tan \frac{x}{2} + 1 \right]^{2}$$

$$= \frac{1}{2} e^{x} \left[1 + \tan \frac{x}{2} \right]^{2}$$

$$= \frac{1}{2} e^{x} \left[1 + \tan^{2} \frac{x}{2} + 2\tan \frac{x}{2} \right]$$

$$= \frac{1}{2} e^{x} \left[1 + \sin x \right] dx$$

$$= \frac{1}{2} e^{x} \left[1 + \sin x \right] dx$$

$$= e^{x} \left[\frac{1}{2} \sec^{2} \frac{x}{2} + \tan \frac{x}{2} \right] \qquad \dots (1)$$
Let $\tan \frac{x}{2} = f(x) \qquad \text{so} \qquad f'(x) = \frac{1}{2} \sec^{2} \frac{x}{2}$
It is known that, $\int e^{x} \left\{ f(x) + f'(x) \right\} dx = e^{x} f(x) + C$
From equation (1), we obtain

$$\int \frac{e^x \left(1 + \sin x\right)}{\left(1 + \cos x\right)} dx = e^x \tan \frac{x}{2} + C$$

Where C is an arbitrary constant.

19:

Integrate
$$e^x \left(\frac{1}{x} - \frac{1}{x^2} \right)$$

Solution:

Let
$$I = \int e^x \left[\frac{1}{x} - \frac{1}{x^2} \right] dx$$

Also, let
$$\frac{1}{x} = f(x)$$
 $f'(x) = \frac{-1}{x^2}$

It is known that, $\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + C$

$$\therefore I = \frac{e^x}{x} + C$$

Where C is an arbitrary constant.

20:

Integrate
$$\frac{(x-3)e^x}{(x-1)^3}$$

Solution:

$$\int e^{x} \left\{ \frac{x-3}{(x-1)^{3}} \right\} dx = \int e^{x} \left\{ \frac{x-1-2}{(x-1)^{3}} \right\} dx$$

$$= \int e^{x} \left\{ \frac{1}{(x-1)^{2}} - \frac{2}{(x-1)^{3}} \right\} dx$$

Let
$$f(x) = \frac{1}{(x-1)^2}$$
 $f'(x) = \frac{-2}{(x-1)^3}$

$$f'(x) = \frac{-2}{(x-1)^3}$$

It is known that, $\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + C$

$$\therefore \int e^x \left\{ \frac{(x-3)}{(x-1)^2} \right\} dx = \frac{e^x}{(x-1)^2} + C$$

Where C is an arbitrary constant.

21:

Integrate $e^{2x} \sin x$

Solution:

Let
$$I = \int e^{2x} \sin x dx$$
 ...(1)

Integrating by parts, we obtain

$$I = \sin x \int e^{2x} dx - \int \left\{ \left(\frac{d}{dx} \sin x \right) \int e^{2x} dx \right\} dx$$

$$\Rightarrow I = \sin x \cdot \frac{e^{2x}}{2} - \int \cos x \cdot \frac{e^{2x}}{2} dx$$

$$\Rightarrow I = \frac{e^{2x} \sin x}{2} - \frac{1}{2} \int e^{2x} \cos x dx$$

Again integrating by parts, we obtain
$$I = \frac{e^{2x} \sin x}{2} - \frac{1}{2} \left[\cos x \int e^{2x} dx - \int \left\{ \left(\frac{d}{dx} \cos x \right) \int e^{2x} dx \right\} dx \right]$$

$$\Rightarrow I = \frac{e^{2x} \sin x}{2} - \frac{1}{2} \left[\cos x \cdot \frac{e^{2x}}{2} - \int (-\sin x) \cdot \frac{e^{2x}}{2} dx \right]$$

$$\Rightarrow I = \frac{e^{2x} \sin x}{2} - \frac{1}{2} \left[\frac{e^{2x} \cos x}{2} + \frac{1}{2} \int e^{2x} \sin x dx \right]$$

$$\Rightarrow I = \frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4} - \frac{1}{4} I \qquad [From (1)]$$

$$\Rightarrow I + \frac{1}{4}I = \frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4}$$

$$\Rightarrow \frac{5}{4}I = \frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4}$$

$$\Rightarrow I = \frac{4}{5} \left[\frac{e^{2x} \sin x}{2} - \frac{e^{2x} \cos x}{4} \right] + C$$

$$\Rightarrow I = \frac{e^{2x}}{5} [2 \sin x - \cos x] + C$$

Where C is an arbitrary constant.

22:

Integrate
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

Solution:

Let
$$x = \tan \theta$$
 $dx = \sec^2 \theta d\theta$

$$\therefore \sin^{-1} \left(\frac{2x}{1+x^2} \right) = \sin^{-1} \left(\frac{2\tan \theta}{1+\tan^2 \theta} \right) = \sin^{-1} (\sin 2\theta) = 2\theta$$

$$\int \sin^{-1} \left(\frac{2x}{1+x^2} \right) dx = \int 2\theta \cdot \sec^2 \theta d\theta = 2\int \theta \cdot \sec^2 \theta d\theta$$

Integrating by parts, we obtain

$$2\left[\theta.\int \sec^2\theta d\theta - \int \left\{ \left(\frac{d}{d\theta}\theta\right) \int \sec^2\theta d\theta \right\} d\theta \right]$$
$$= 2\left[\theta.\tan\theta - \int \tan\theta d\theta \right]$$
$$= 2\left[\theta\tan\theta + \log|\cos\theta|\right] + C$$

$$= 2 \left[x \tan^{-1} x + \log \left| \frac{1}{\sqrt{1 + x^2}} \right| \right] + C$$
$$= 2x \tan^{-1} x + 2 \left[-\frac{1}{2} \log \left(1 + x^2 \right) \right] + C$$

$$= 2x \tan^{-1} x - \log(1 + x^2) + C$$

Where C is an arbitrary constant.

Chose the correct answer in Exercises 23 and 24.

23.

$$\int x^2 e^{x^3} dx$$
 equals

(A)
$$\frac{1}{3}e^{x^3} + C$$
 (B) $\frac{1}{3}e^{x^2} + C$

(B)
$$\frac{1}{3}e^{x^2} + C$$

(C)
$$\frac{1}{2}e^{x^3} + C$$
 (D) $\frac{1}{3}e^{x^2} + C$

(D)
$$\frac{1}{3}e^{x^2} + C$$

Solution:

Let
$$I = \int x^2 e^{x^3} dx$$

Also, let
$$x^3 = t$$
 so $3x^2 dx = dt$

$$\Rightarrow I = \frac{1}{3} \int e^t dt$$

$$=\frac{1}{3}(e^t)+C$$

$$=\frac{1}{3}e^{x^3}+C$$

Hence, the correct Answer is A.

24.

$$\int e^x \sec x (1 + \tan x) dx \text{ equals}$$

(A)
$$e^x \cos x + C$$

(A)
$$e^x \cos x + C$$
 (B) $e^x \sec x + C$

(C)
$$e^x \sin x + C$$
 (D) $e^x \tan x + C$

(D)
$$e^x \tan x + C$$

Solution:

$$\int e^x \sec x (1 + \tan x) dx$$

Let
$$I = \int e^x \sec x (1 + \tan x) dx = \int e^x (\sec x + \sec x \tan x) dx$$

Also, let
$$\sec x = f(x)$$
 $\sec x \tan x = f'(x)$

$$\sec x \tan x = f'(x)$$

It is known that,
$$\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + C$$

$$\therefore I = e^x \sec x + C$$

Hence, the correct Answer is B.