Exercise 9.1 Page: 382

Determine order and degree (if defined) of differential equations given in Exercise 1 to 10.

1.
$$\frac{d^4y}{dx^4} + \sin(y''') = 0$$

Solution:
$$\frac{d^4y}{dx^4} + \sin(y''') = 0$$

$$\Rightarrow y'''' + \sin(y''') = 0$$

The highest order derivative present in the differential equation is y"". Therefore, its order is four.

The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

2.
$$y' + 5y = 0$$

Solution: The given differential equation is:

$$y' + 5y = 0$$

The highest order derivative present in the differential equation is y'. Therefore, its order is one. It is a polynomial equation in y'. The highest power raised to y' is 1. Hence, its degree is one.

$$3: \left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$$

Solution:
$$\left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$$

The highest order derivative present in the given differential equation is $\frac{d^2s}{dt^2}$. Therefore, its order is two.

It is a polynomial equation in $\frac{d^2s}{dt^2}$ and $\frac{ds}{dt}$. The power raised to $\frac{d^2s}{dt^2}$ is 1.

Hence, its degree is one.

4

$$\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$$

Solution:
$$\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$$

The highest order derivative present in the given differential equation is $\frac{d^2y}{dx^2}$. Therefore, its order is 2.

The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

5

$$\left(\frac{d^2y}{dx^2}\right)^2 = \cos 3x + \sin 3x$$

Solution:
$$\left(\frac{d^2y}{dx^2}\right)^2 = \cos 3x + \sin 3x$$

$$\Rightarrow \frac{d^2y}{dx^2} - \cos 3x + \sin 3x = 0$$

The highest order derivative present in the differential equation is $\frac{d^2y}{dx^2}$. Therefore, its order is two.

It is a polynomial equation $\frac{d^2y}{dx^2}$ in and the power raised to $\frac{d^2y}{dx^2}$ is 1.

Hence, its degree is one.

6

$$(y''')^2 + y'')^3 + (y')^4 + y^5 = 0$$

Solution :
$$(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$$

The highest order derivative present in the differential equation is y". Therefore, its order is three.

The given differential equation is a polynomial equation in y", y", and y'.

The highest power raised to y" is 2. Hence, its degree is 2.

7:
$$y''' + 2y'' + y' = 0$$

Solution:
$$y''' + 2y'' + y' = 0$$

The highest order derivative present in the differential equation is y". Therefore, its order is three.

It is a polynomial equation in y", y", and y'. The highest power raised to y" is 1. Hence, its degree is 1.

8:
$$y' + y = e'$$

Solution:
$$y' + y = e'$$

$$\Rightarrow$$
 y' + y - e' = 0

The highest order derivative present in the differential equation is y'. Therefore, its order is one.

The given differential equation is a polynomial equation in y' and the highest power raised to y' is one. Hence, its degree is one.

9:
$$y'+(y')^2+2y=0$$

Solution: :
$$y' + (y')^2 + 2y = 0$$

The highest order derivative present in the differential equation is y". Therefore, its order is two.

The given differential equation is a polynomial equation in y " and y' and the highest power raised to y" is one.

Hence, its degree is one.

10:
$$y'' + 2y' + \sin y = 0$$

Solution:
$$y'' + 2y' + \sin y = 0$$

The highest order derivative present in the differential equation is y". Therefore, its order is two.

This is a polynomial equation in y" and y' and the highest power raised y" to is one.

Hence, its degree is one.

11: The degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0 \text{ is}$$

- (A)3
- (B)2
- (C) 1
- (D) Not defined

Solution
$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$$

The given differential equation is not a polynomial equation in its derivatives. Therefore, its degree is not defined.

Hence, the correct answer is D.

12: The order of the differential equation

$$2x^{2}\frac{d^{2}y}{dx^{2}} - 3\frac{dy}{dx} + y = 0$$

- (A) 2
- (B) 1

(C) 0

(D) not defined

Solution:
$$2x^2 \frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + y = 0$$

The highest order derivative present in the given differential equation is $\frac{d^2y}{dx^2}$. Therefore, its order is two.

Hence, the correct answer is A.