

Exercise 4.4

Page No: 126

Write Minors and Cofactors of the elements of following determinants:

1.

(i)
$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$

Solution:

Find Minors of elements:

Say, Mij is minor of element aij

 M_{11} = Minor of element a_{11} = 3

 M_{12} = Minor of element a_{12} = 0

 M_{21} = Minor of element a_{21} = -4

 M_{22} = Minor of element a_{22} = 2

Find cofactor of aii

Let cofactor of aij is Aij, which is (-1)i+j Mij

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (0) = 0$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (-4) = 4$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (2) = 2$$

Solution:

Find Minors of elements:

Say, Mij is minor of element aij

 M_{11} = Minor of element a_{11} = d

 M_{12} = Minor of element a_{12} = b

 M_{21} = Minor of element a_{21} = c

 M_{22} = Minor of element a_{22} = a

Find cofactor of aij

Let cofactor of aij is Aij, which is (-1)i+j Mij

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (d) = d$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (b) = -b$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (c) = -c$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (a) = a$$

2.

Solution:

Find Minors and cofactors of elements:

Say, M_{ij} is minor of element a_{ij} and A_{ij} is cofactor of a_{ij}

$$M_{11} = Minor of element a_{11} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$
 and $A_{11} = 1$ $A_{12} = Minor of element a_{12} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0 - 0 = 0$ and $A_{12} = 0$

$$M_{13} = Minor of element a_{13} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0 - 0 = 0$$
 and $A_{13} = 0$

$$\mathsf{M}_{21} = \mathsf{Minor\ of\ element\ } \mathsf{a}_{21} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0 - 0 = 0$$
 and $\mathsf{A}_{21} = 0$

$$M_{22} = Minor of element a_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$
 and $A_{22} = 1$

$$M_{23} = Minor of element a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0 - 0 = 0$$
 and $A_{23} = 0$

$$M_{31} = Minor of element a_{21} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0 - 0 = 0$$
 and $A_{31} = 0$

$$M_{32}$$
 = Minor of element $a_{32} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0 - 0 = 0$ and $A_{32} = 0$

$$M_{33} = Minor of element a_{33} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$
 and $A_{33} = 1$

Find Minors and cofactors of elements:

Say, Mij is minor of element aij and Aij is cofactor of aij

$$M_{11} = \text{Minor of element } a_{11} = \begin{vmatrix} 5 & -1 \\ 1 & 2 \end{vmatrix} = 10 - (-1) = 11$$
 and $A_{11} = 11$
$$M_{12} = \text{Minor of element } a_{12} = \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix} = 6 - 0 = 6$$
 and $A_{12} = -6$

$$M_{13} = Minor of element a_{13} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$
 and $A_{13} = 3$

$$M_{21} = Minor of element a_{21} = \begin{vmatrix} 0 & 4 \\ 1 & 2 \end{vmatrix} = 0 - 4 = -4$$
 and $A_{21} = 4$

$$M_{22} = Minor of element a_{22} = \begin{vmatrix} 1 & 4 \\ 0 & 2 \end{vmatrix} = 2 - 0 = 2$$
 and $A_{22} = 2$

$$M_{23}$$
 = Minor of element $a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$ and $A_{23} = -1$

$$M_{31}$$
 = Minor of element $a_{31} = \begin{vmatrix} 0 & 4 \\ 5 & -1 \end{vmatrix} = 0 - 20 = -20$ and $A_{31} = -20$

$$M_{32}$$
 = Minor of element $a_{32} = \begin{vmatrix} 1 & 4 \\ 3 & -1 \end{vmatrix} = -1 - 12 = -13$ and $A_{32} = 13$

$$M_{33} = Minor of element a_{33} = \begin{vmatrix} 1 & 0 \\ 3 & 5 \end{vmatrix} = 5 - 0 = 5$$
 and $A_{33} = 5$

3. Using Cofactors of elements of second row, evaluate Δ .

$$\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

Solution:

Find Cofactors of elements of second row:

$$A_{21} = \text{Cofactor of element } a_{21} = \begin{vmatrix} (-1)^{2+1} \begin{vmatrix} 3 & 8 \\ 2 & 3 \end{vmatrix} - (-1)^{3} (9-16) = 7$$

$$A_{22} = \text{Cofactor of element } a_{22} = \begin{vmatrix} (-1)^{2+2} \begin{vmatrix} 5 & 8 \\ 1 & 3 \end{vmatrix} = (-1)^{4} (15-8) = 7$$

$$A_{23} = \text{Cofactor of element } a_{23} = \begin{vmatrix} (-1)^{2+3} \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} = (-1)^{5} (10-3) = -7$$

Now,
$$\Delta = a_{21} A_{21} + a_{22} A_{22} + a_{23} A_{23} = 14 + 0 - 7 = 7$$

4. Using Cofactors of elements of third column, evaluate Δ .

$$\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$$

Solution:

Find Cofactors of elements of third column:

Now,
$$\Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$$

$$= yz(z-y) + zx(x-z) + xy(y-x)$$

$$= (yz^2 - y^2z) + (xy^2 - xz^2) + (xz^2 - x^2y)$$

$$= (y-z)[-yz + x(y+z) - x^2]$$

$$= (y-z)[-y(z-x) + x(z-x)]$$

$$= (x-y)(y-x)(z-x)$$

$$\mathbf{\Lambda} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} & a_{24} \end{vmatrix}$$

5. If $|a_{31} a_{32} a_{33}|$ and $|a_{ij}|$ and $|a_{ij}|$ and $|a_{ij}|$ then value of $|a_{ij}|$ is given by:

(A)
$$a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$$

(B)
$$a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$$

(C)
$$a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$$

(D)
$$a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$$

Solution: Option (D) is correct.