

Exercise 6.4

Page No: 216

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal:

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{2}x^{\frac{-1}{2}} = \frac{1}{2\sqrt{x}}$$

Now, given expression can be written as,

$$\sqrt{25.3} = \sqrt{25 + 0.3}$$

Here, x = 25 and $\Delta x = 0.3$, then $\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$

$$= \sqrt{25.3} - \sqrt{25} = \sqrt{25.3} - 5$$
$$\Rightarrow \sqrt{25.3} = \Delta y + 5$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (2),

$$dy = \frac{0.3}{2\sqrt{25}}$$

Hence, approximately value of $\sqrt{25.3}$ is 5 + 0.03 = 5.03.

(ii) √49.5

Consider, $y = \sqrt{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

 $=\sqrt{49.5} = \sqrt{49+0.5}$

Here, x = 49 and $\Delta x = 0.5$, then

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$$

$$=\sqrt{49.5} - \sqrt{49} = \sqrt{49.5} - 7$$

$$\Rightarrow \sqrt{49.5} = \Delta y + 7$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

$$dy = \frac{0.5}{2\sqrt{49}}$$

From equation (2), 2

= 0.0357

So, approximately value of $\sqrt{49.5}$ is 7 + 0.0357 = 7.0357.

(iii) √0.6

Consider, $y = \sqrt{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{2}x^{\frac{-1}{2}} = \frac{1}{2\sqrt{x}}$$

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$=\sqrt{0.6} = \sqrt{0.64 - 0.04}$$

Here, x = 0.64 and $\Delta x = -0.04$, then

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$$

$$= \sqrt{0.6} - \sqrt{0.64} = \sqrt{0.6} - 0.8$$
$$\sqrt{0.6} = \Delta v + 0.8$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (2),
$$dy = \frac{-0.04}{2\sqrt{0.64}} = -0.025$$

Therefore, approximately value of $\sqrt{0.6}$ is 0.8 - 0.025 = 0.775.

(iv)
$$(0.009)^{\frac{1}{3}}$$

Consider, $y = \sqrt[3]{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$= (0.009)^{\frac{1}{3}} = (0.008 + 0.001)^{\frac{1}{3}}$$

Here, x = 0.008 and $\Delta x = 0.001$,

then
$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$$

= $(0.009)^{\frac{1}{3}} - (0.008)^{\frac{1}{3}} = (0.009)^{\frac{1}{3}} - 0.2$
 $(0.009)^{\frac{1}{3}} = \Delta y + 0.2$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation

$$dy = \frac{0.001}{3\left((0.008)^{\frac{1}{3}}\right)^2}$$
(2),

$$=\frac{0.001}{3\times0.04}=0.0083$$

Therefore, approximately value of $(0.009)^{\frac{1}{3}}$ is 0.2 + 0.0083 = 0.2083.

(v) $(0.999)^{\frac{1}{10}}$ Consider, $y = x^{\frac{1}{10}}$ (1)

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{10} x^{\frac{-9}{10}} = \frac{1}{10x^{\frac{9}{10}}}$$
$$\frac{dy}{dy} = \frac{dx}{10\left(x^{\frac{1}{10}}\right)^9}$$
....(2)
Now, from equation (1), y^+
$$= \frac{(0.999)^{\frac{1}{10}}}{(1-0.001)^{\frac{1}{10}}} = \frac{(1-0.001)^{\frac{1}{10}}}{(1-0.001)^{\frac{1}{10}}}$$
Here $x = 1$ and $\Delta x = -0.001$
Then $\Delta y = (x + \Delta x)^{\frac{1}{10}} - x^{\frac{1}{10}}$

$$= (0.999)^{\frac{1}{10}} - 1$$

$$\Rightarrow (0.999)^{\frac{1}{10}} = 1 + \Delta y$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

 $\Delta y = \sqrt{x + \Delta x}$

.....(3)

From equation (2),

$$dy = \frac{-0.001}{10\left(1^{\frac{1}{10}}\right)^9} = -0.0001$$

Therefore, approximate value of $(0.999)^{\frac{1}{10}}$ is 1 - 0.0001 = 0.9999.

(vi) $(15)^{\frac{1}{4}}$

Consider, $y = x^{\frac{1}{4}}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

....(2)

$$= (15)^{\frac{1}{4}} = (16-1)^{\frac{1}{4}}$$
.....(3)

Here x = 16 and $\Delta x = -1$

Then $\Delta y = (x + \Delta x)^{\frac{1}{4}} - x^{\frac{1}{4}}$

$$=(15)^{\frac{1}{4}}-16^{\frac{1}{4}}=(15)^{\frac{1}{4}}-2$$

$$\Rightarrow (15)^{\frac{1}{4}} = 2 + \Delta y$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

$$dy = \frac{-1}{4\left(16^{\frac{1}{4}}\right)^3} = \frac{-1}{32}$$

From equation (2),

Therefore, approximate value of $(15)^{\frac{1}{4}}$ is $2 - \frac{1}{32} = \frac{63}{32} = 1.96875$.

(vii) $(26)^{\frac{1}{3}}$ Consider, $y = \sqrt[3]{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$= (26)^{\frac{1}{3}} = (27-1)^{\frac{1}{3}}$$

Here, x = 27 and $\Delta x = -1$,

then $\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = (26)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (26)^{\frac{1}{3}} - 3$

$$\left(26\right)^{\frac{1}{3}} = \Delta y + 3$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (2),

$$dy = \frac{-1}{3\left((27)^{\frac{1}{3}}\right)^2}$$

$$=\frac{-1}{27}$$

Therefore, approximately value of $(26)^{\frac{1}{3}}$ is $3 - \frac{1}{27} = \frac{80}{27} = 2.9629$.

(viii) $(255)^{\frac{1}{4}}$ Consider, $y = x^{\frac{1}{4}}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

.(2)

Here x = 256 and $\Delta x = -1$

Then
$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - x^{\frac{1}{4}}$$

= $(255)^{\frac{1}{4}} - (256)^{\frac{1}{4}} = (255)^{\frac{1}{4}} - 4$

$$(255)^{\frac{1}{4}} = 4 + \Delta y$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

$$dy = \frac{-1}{4\left(256^{\frac{1}{4}}\right)^3} = \frac{-1}{256}$$

From equation (2),

Therefore, approximate value of $(255)^{\frac{1}{4}}$ is $4 - \frac{1}{256} = \frac{1023}{256} = 3.9961.$

(ix)
$$(82)^{\frac{1}{4}}$$

Consider, $y = x^{\frac{1}{4}}$ (1)

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{4}x^{\frac{-3}{4}}$$

$$\frac{1}{4x^4}$$

$$dy = \frac{dx}{4\left(x^{\frac{1}{4}}\right)^3} \dots (2)$$

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x} = (82)^{\frac{1}{4}} = (81 + 1)^{\frac{1}{4}}$(3)

Here x = \$1 and $\Delta x = 1$

then $\Delta y = (x + \Delta x)^{\frac{1}{4}} - x^{\frac{1}{4}}$ = $(82)^{\frac{1}{4}} - (81)^{\frac{1}{4}} = (82)^{\frac{1}{4}} - 3$

$$(82)^{\frac{1}{4}} = 3 + \Delta y$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

$$dy = \frac{1}{4\left(81^{\frac{1}{4}}\right)^3} = \frac{1}{108}$$

From equation (2),

Therefore, approximate value of $(82)^{\frac{1}{4}}$ is $3 + \frac{1}{108} = \frac{325}{108} = 3.0092$.

(x)
$$\sqrt{401}$$

Consider, $y = \sqrt{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{2}x^{\frac{-1}{2}} = \frac{1}{2\sqrt{x}}$$
$$\frac{dy}{dx} = \frac{dx}{-\frac{1}{2\sqrt{x}}}$$

$$2\sqrt{x}$$
(2)

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$=\sqrt{401} = \sqrt{400+1}$$

Here, x = 400 and $\Delta x = 1$, then $\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$

$$=\sqrt{401} - \sqrt{400} = \sqrt{401} - 20$$

 $\Rightarrow \sqrt{401} = \Delta y + 20$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (2),
$$dy = \frac{1}{2\sqrt{400}} = \frac{1}{40}$$

Therefore, approximately value of $\sqrt{401}$ is $20 + \frac{1}{40} = \frac{801}{40} = 20.025$.

(xi) $\sqrt{0.0037}$ Consider, $y = \sqrt{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{2}x^{\frac{-1}{2}} = \frac{1}{2\sqrt{x}}$$

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$=\sqrt{0.0037} = \sqrt{0.0036 + 0.0001}$$

Here, x = 0.0036 and $\Delta x = 0.0001$, then

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$$

= $\sqrt{0.0037} - \sqrt{0.0036} = \sqrt{0.0037} - 0.06$
 $\sqrt{0.0037} = \Delta y + 0.06$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (2),
$$dy = \frac{0.0001}{2\sqrt{0.0036}}$$

 $\frac{0.0001}{0.12}$

Therefore, approximately value of $\sqrt{0.0037}$ is 0.06 + $\frac{0.0001}{0.12}$ = 0.060833.

(xi) $(26.57)^{\frac{1}{3}}$ Consider, $y = \sqrt[3]{x}$ (1)

On differentiating equation (1) w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{3}x^{\frac{-2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$$
$$dy = \frac{dx}{3x^{\frac{2}{3}}} = \frac{dx}{3(x^{\frac{1}{3}})^2}$$
....(2)

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$(26.57)^{\frac{1}{3}} = (27 - 0.43)^{\frac{1}{3}}$$

Here, x = 27 and $\Delta x = -0.43$,

then
$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$$

$$= \frac{(26.57)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (26.57)^{\frac{1}{3}} - 3}{(26.57)^{\frac{1}{3}} = \Delta y + 3}$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

$$dy = \frac{-0.43}{3\left((27)^{\frac{1}{3}}\right)^2}$$

From equation (2),

 $=\frac{-0.43}{27}=0.0159$

Therefore, approximately value of $(26.57)^{\frac{1}{3}}$ is 3 – 0.0159 = 2.9841.

(xii) $(81.5)^{\frac{1}{4}}$ Consider, $y = x^{\frac{1}{4}}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$=^{(81.5)^{\frac{1}{4}}}=^{(81+0.5)^{\frac{1}{4}}}$$
.....(3)

Here x = 81 and $\Delta x = 0.5$

Then
$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - x^{\frac{1}{4}}$$

= $(81.5)^{\frac{1}{4}} - (81)^{\frac{1}{4}} = (81.5)^{\frac{1}{4}} - 3$
 $(81.5)^{\frac{1}{4}} - 3 + \Delta y$

Since, Δx and Δy is approximately equal to dx and dy respectively.

$$dy = \frac{0.5}{4\left(81^{\frac{1}{4}}\right)^3} = \frac{0.5}{108}$$

From equation (2),

= 0.00462

Therefore, approximate value of $(82)^{\frac{1}{4}}$ is 3 + 0.00462= 3.00462.

$$(xiv)^{(3.968)^{\frac{3}{2}}}$$

Consider, $y = x^{\frac{3}{2}} = x^{1+\frac{1}{2}} = x\sqrt{x}$ (1)
$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}}$$

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

$$= (3.968)^{\frac{3}{2}} = (4 - 0.032)^{\frac{3}{2}}$$

Here, x = 4 and $\Delta x = 0.032$, then $\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$

$$= \frac{(3.968)^{\frac{3}{2}} - (4)^{\frac{3}{2}} = (3.968)^{\frac{3}{2}} - 8}{(3.968)^{\frac{3}{2}} = \Delta y + 8}$$

Since, Δx and Δy is approximately equal to dx and dy respectively. From equation (2),

$$dy = \frac{3}{2}\sqrt{4} \left(-0.032\right) = -0.096$$

Therefore, approximately value of $(3.968)^{\frac{3}{2}}$ is 8 - 0.096 = 7.904.

(xv) $(32.15)^{\frac{1}{5}}$ Consider, $y = x^{\frac{1}{5}}$ (1)

On differentiating equation (1) w.r.t. x, we get

Now, from equation (1), $y + \Delta y = \sqrt{x + \Delta x}$

Here x = 32 and $\Delta x = 0.15$

Then
$$\Delta y = (x + \Delta x)^{\frac{1}{5}} - x^{\frac{1}{5}}$$

$$= (32.15)^{\frac{1}{5}} - (32)^{\frac{1}{5}} = (32.15)^{\frac{1}{5}} - 2$$

$$(32.15)^{\frac{1}{5}} = 2 + \Delta y$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (2),

$$dy = \frac{0.15}{5\left(32^{\frac{1}{5}}\right)^4} = \frac{0.15}{80} = 0.001875$$

Therefore, approximate value of $(32.15)^{\frac{1}{5}}$ is 2 + 0.001875 = 2.001875.

2. Find the approximate value of f(2.01) where $f(x) = 4x^2 + 5x + 2$.

Solution: Consider,
$$f(x) = y = x^3 + 5x + 2$$
(1)

On differentiating equation (1) w.r.t. x, we get

$$f'(x) = \frac{dy}{dx} = 8x + 5$$

$$dy = (8x+5) dx$$

$$= \frac{(8x+5)\Delta x}{\ldots} \ldots (2)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in equation (1),

$$y + \Delta y = f(x + \Delta x)$$

Here, x=2 and $\Delta x = 0.01$

From equation (3), $f(2.01) = y + \Delta y$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (1) and (2), we get

$$f(2.01) = (4x^2 + 5x + 2) + (8x + 5)\Delta x$$

Therefore,

 $f(2.01) = 4(4) + 5(2) + 2 + (8 \times 2 + 5)(0.01) = 28.21$

Therefore, approximate value of f(2.01) is 28.21.

3. Find the approximate value of f(5.001) where $f(x) = x^3 - 7x^2 + 15$.

Solution: Consider, $f(x) = y = x^3 - 7x^2 + 15$ (1) On differentiating equation (1) w.r.t. x, we get

$$f'(x) = \frac{dy}{dx} = 3x^2 - 14x$$

or
$$dy = (3x^2 - 14x) dx = (3x^2 - 14x)\Delta x$$
(2)

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in equation (1),

 $y + \Delta y = f(x + \Delta x)$

Here, x=5 and $\Delta x = 0.001$

From equation (3), $f(5.001) = y + \Delta y$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (1) and (2),

$$f(5.001) = (x^3 - 7x^2 + 15) + (3x^2 - 14x)\Delta x$$

$$f(5.001) = 125 - 175 + 15 + (75 - 70)(0.001)$$

-35+0.005 - -34.995

Therefore, approximate value of f(5.001) is -34.995.

4. Find the approximate change in the volume of a cube of side x meters caused by increasing the side by 1%.

Solution: Side of a cube is x meters then cube volume (V) is x^3 .

or $V = x^3$ (1)

On differentiating equation (1) w.r.t. x, we get

According to the

statement, increase in side = $1\% = \frac{3}{100}$

So,
$$\Delta x = \frac{x}{100}$$
(3)

Approximate change in volume, V, of cube = $\Delta V \sim dV$

cubic meters

5. Find the approximate change in the surface area of a cube of side x meters caused by decreasing the side by 1%.

Solution:

Side of a cube is x meters then Surface area of a cube is $(S) = 6x^2$

$$S = 6x^2$$

On differentiating above equation w.r.t. x, we get

$$\frac{dS}{dx} = 12x$$

At per question, if decrease in side 1% is

= -1% of x

= -0.01 x

 $\Delta x = -0.01x$

Since approximate change in surface area = $\Delta S \sim dS = \frac{dS}{dx} dx$

We have,

$$=\frac{dS}{dx}\Delta x$$
 ~ $12x(-0.01x) \sim -0.12x^2$ square meters (decreasing)

6. If the radius of a sphere is measured as 7 m with an error of 0.02 m, then find the approximate error in calculating its volume.

Solution: Consider, r be the radius of the sphere and Δr be the error. then, as per question, r = 7 m and Δr = 0.02 m

We know that, Volume of sphere (V) = $\frac{4}{3}\pi r^3$

 $\frac{dV}{dr} = \frac{4}{3}\pi . 3r^2$

Approximate error in calculating the volume = Approximate value of ΔV

$$dV = \frac{dV}{dr}(dr)$$
$$= \left(\frac{4}{3}\pi . 3r^{2}\right) dr$$
$$= 4\pi (7)^{2} (0.02)$$
$$= \frac{3.92 \times \frac{22}{7}}{7}$$

= 12.32 m³

Therefore, the approximate error in calculating volume is 12.32 m³.

7. If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating its surface area.

Solution: Consider, r be the radius of the sphere. And, Surface area of the sphere (S) = $4\pi r^2$ (formula for SA)

$$\frac{dS}{dr} = 8\pi r$$

$$dS = 8\pi r dr$$

$$dS = 8\pi r \Delta r$$

 $dS = 8\pi(9)(0.3)$

= 2.16π square meters

8. If $f(x) = 3x^2 + 15x + 5$, then the approximate value of f(3.02) is:

(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66

Solution:

Option (D) is correct.

Explanation:

Consider, $f(x) = y = 3x^2 + 15x + 5$ (1)

On differentiating equation (1) w.r.t. x, we get

$$f'(x) = \frac{dy}{dx} = 6x + 15$$

or $dy = (6x+15) dx = (6x+15) \Delta x$ (2)

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in equation (1),

$$y + \Delta y = f(x + \Delta x)$$

$$= f(3.02) = f(3+0.02)$$
(3)

Here, x=3 and $\Delta x=0.02$

So,

From equation (3),
$$f(3.02) = y + \Delta y$$

Since, Δx and Δy is approximately equal to dx and dy respectively.

From equation (1) and (2),

 $f(3.02) = (3x^2 + 15x + 5) + (6x + 15)\Delta x$

 $f(3.02) = 3(9) + 15(3) + 5 + (6 \times 3 + 15)(0.02)$

_ 77 + 0.66 **_** 77.66

9. The approximate change in the volume of a cube of side x meters caused by increasing the side by 3% is:

(A) 0.06 x³ m³ (B) 0.6 x³ m³ (C) 0.09 x³ m³ (D) 0.9 x³ m³ Solution: option (C) is correct. Explanation: We know that, Volume (V) = x³(1) $\frac{dV}{dx} = 3x^2$ (2) As there is increase in side = 3% = $\frac{3x}{100}$ We have, $\Delta x = \frac{3x}{100}$ (3) Since approximate change in volume V of cube = $\Delta V \sim dV = \frac{dV}{dx} dx$ $= \frac{dV}{dx} \Delta x$

$$\sim 3x^2 \left(\frac{3x}{100}\right) \sim \frac{9}{100}x^3 \sim 0.09x^3$$
 cubic meters