

Exercise 1.4

Page No: 24

1. Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

(i) On Z^+ , define * by a * b = a – b

(ii) On Z^+ , define * by a * b = ab

(iii) On R, define * by a * b = ab²

(iv) On Z^+ , define * by a * b = |a - b|

(v) On Z+, define * by a * b = a

Solution:

(i) On Z^+ , define * by a * b = a – b

On Z⁺ = {1, 2,3, 4, 5,.....}

Let a = 1 and b = 2

Therefore, $a * b = a - b = 1 - 2 = -1 \notin Z^+$

operation * is not a binary operation on Z⁺.

(ii) On Z^+ , define * by a * b = ab

On $Z^+ = \{1, 2, 3, 4, 5, \dots\}$

Let a = 2 and b = 3

Therefore, $a * b = a b = 2 * 3 = 6 \in Z^+$

operation * is a binary operation on Z⁺

(iii) On R, define * by a * b = ab²

 $\mathsf{R} = \{ \text{ - } \infty, \text{, -1, 0, 1, 2,...., } \infty \}$

Let a = 1.2 and b = 2

Therefore, $a * b = ab^2 = (1.2) \times 2^2 = 4.8 \in \mathbb{R}$

Operation * is a binary operation on R.

(iv) On Z^+ , define * by a * b = |a - b|

On $Z^+ = \{1, 2, 3, 4, 5, \dots\}$

Let a = 2 and b = 3

Therefore, $a * b = a b = 2 * 3 = 6 \in Z^+$

operation * is a binary operation on Z⁺

(v) On Z+, define * by a * b = a

On $Z^+ = \{1, 2, 3, 4, 5, \dots\}$

Let a = 2 and b = 1

Therefore, $a * b = 2 \in Z^+$

Operation * is a binary operation on Z⁺.

2. For each operation * defined below, determine whether * is binary, commutative or associative.

- (i) On Z, define a * b = a b
- (ii) On Q, define a * b = ab + 1
- (iii) On Q, define a * b = ab/2
- (iv) On Z^+ , define $a * b = 2^{ab}$
- (v) On Z^+ , define $a * b = a^b$
- (vi) On $R \{-1\}$, define a * b = a/(b+1)

Solution:

(i) On Z, define a * b = a - b

Step 1: Check for commutative

Consider * is commutative, then

a * b = b * a

Which means, a - b = b - a (not true)

Therefore, * is not commutative.

Step 2: Check for Associative.

Consider * is associative, then

 $(a * b)^* c = a^* (b^* c)$

LHS = $(a * b)^* c = (a - b) * c$

= a - b - c

```
RHS = a * (b * c) = a - (b - c)
```

= a - (b - c)

= a – b + c

This implies LHS \neq RHS

Therefore, * is not associative.

(ii) On Q, define a * b = ab + 1

Step 1: Check for commutative

Consider * is commutative, then

a * b = b * a

Which means, ab + 1 = ba + 1

or ab + 1 = ab + 1 (which is true)

a * b = b * a for all $a, b \in Q$ Therefore, * is commutative. Step 2: Check for Associative. Consider * is associative, then $(a * b)^* c = a^* (b^* c)$ LHS = (a * b) * c = (ab + 1) * c= (ab + 1)c + 1= abc + c + 1 RHS = a * (b * c) = a * (bc + 1)= a(bc + 1) + 1= abc + a + 1 This implies LHS \neq RHS Therefore, * is not associative. (iii) On Q, define a * b = ab/2Step 1: Check for commutative Consider * is commutative, then a * b = b * aWhich means, ab/2 = ba/2or ab/2 = ab/2 (which is true) a * b = b * a for all $a, b \in Q$ Therefore, * is commutative.

Step 2: Check for Associative.

Consider * is associative, then

(a * b)* c = a * (b * c)

LHS = (a * b) * c = (ab/2) * c

$$=\frac{\frac{ab}{2}\times c}{2}$$

= abc/4

RHS = a * (b * c) = a * (bc/2)

$$=\frac{a\times\frac{bc}{2}}{2}$$

= abc/4

This implies LHS = RHS

Therefore, * is associative binary operation.

(iv) On Z^+ , define a * b = 2^{ab}

Step 1: Check for commutative

Consider * is commutative, then

a * b = b * a

Which means, $2^{ab} = 2^{ba}$

or $2^{ab} = 2^{ab}$ (which is true)

a * b = b * a for all $a, b \in Z^+$

Therefore, * is commutative.

Step 2: Check for Associative.

Consider * is associative, then

 $(a * b)^* c = a * (b * c)$ LHS = $(a * b) * c = (2^{ab}) * c$ = $2^{2^{ab} c}$ RHS = $a * (b * c) = a * 2^{bc}$

$$= 2^{2^{bc}} a$$

This implies LHS \neq RHS

Therefore, * is not associative binary operation.

(v) On Z⁺, define $a * b = a^b$

Step 1: Check for commutative

Consider * is commutative, then

a * b = b * a

Which means, $a^b = b^a$

Which is not true

a * b = b * a for all $a, b \in Z^+$

Therefore, * is not commutative.

Step 2: Check for Associative.

Consider * is associative, then

$$(a * b)^* c = a^* (b^* c)$$

$$RHS = a * (b * c) = a * (b^{c})$$

 $=a^{b^c}$

This implies LHS \neq RHS

Therefore, * is not associative.

(vi) On R - {- 1}, define a * b = a/(b+1)

Step 1: Check for commutative

Consider * is commutative, then

a * b = b * a

Which means, a/(b+1) = b/(a+1)

Which is not true

Therefore, * is commutative.

Step 2: Check for Associative.

Consider * is associative, then

(a * b)* c = a * (b * c)

LHS = (a * b) * c = (a/(b+1)) * c

$$=\frac{\frac{a}{b+1}}{c}$$

= a/(c(b+1))

RHS = a * (b * c) = a * (b/(c + 1))

$$=\frac{\frac{a}{b}}{c+1}$$

= a(c+1)/b

This implies LHS \neq RHS

Therefore, * is not associative binary operation.

3. Consider the binary operation \land on the set {1, 2, 3, 4, 5} defined by a \land b = min {a, b}. Write the operation table of the operation \land .

Solution:

The binary operation \land on the set, say A = {1, 2, 3, 4, 5} defined by a \land b = min {a, b}. the operation table of the operation \land as follow:

^	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

4. Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table (Table 1.2).

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)

Table 1.2 *

Solution:

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

From table: (2 * 3) = 1 and (3 * 4) = 1

(2 * 3) * 4 = 1 * 4 = 1 and

2 * (3 * 4) = 2 * 1 = 1

(ii) Is * commutative?

Consider 2 * 3, we have 2 * 3 = 1 and 3 * 2 = 1

Therefore, * is commutative.

(iii) Compute (2 * 3) * (4 * 5).

From table: (2 * 3) = 1 and (4 * 5) = 1

So (2 * 3) * (4 * 5) = 1 * 1 = 1

5. Let *' be the binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a *' b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Solution: Let $A = \{1, 2, 3, 4, 5\}$ and a *' b H.C.F. of a and b. Plot a table values, we have

	*'	1	2	3	4	5
	1	1	1	1	1	1
	2	1	2	1	2	1
	3	1	1	ß	1	1
	4	1	2	1	4	1
	5	1	1	1	1	5

Operation *' same as the operation *.

6. Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N

(v) Which elements of N are invertible for the operation *?

Solution:

(i) 5 * 7 = LCM of 5 and 7 = 35

20 * 16 = LCM of 20 and 16 = 80

(ii) Is * commutative?

a * b = L.C.M. of a and b

b * a = L.C.M. of b and a

a * b = b * a

Therefore * is commutative.

(iii) Is * associative? For a,b, c \in N

(a * b) * c = (L.C.M. of a and b) * c = L.C.M. of a, b and c

a * (b * c) = a * (L.C.M. of b and c) = L.C.M. of a, b and c

(a * b) * c = a * (b * c)

Therefore, operation * associative.

(iv) Find the identity of * in N Identity of * in N = 1

because a * 1 = L.C.M. of a and 1 = a

(v) Which elements of N are invertible for the operation *?

Only the element 1 in N is invertible for the operation * because 1 * 1/1 = 1

7. Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.

Solution:

The operation * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b

Suppose, a = 2 and b = 3

2 * 3 = L.C.M. of 2 and 3 = 6

But 6 does not belongs to the set A. Therefore, given operation * is not a binary operation.

8. Let * be the binary operation on N defined by a * b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?

Solution:

The operation * be the binary operation on N defined by a * b = H.C.F. of a and b

a * b = H.C.F. of a and b = H.C.F. of b and a = b * a

Therefore, operation * is commutative.

Again, (a *b)*c = (HCF of a and b) * c = HCF of (HCF of a and b) and c = a * (b *c)

(a *b)*c = a * (b *c)

Therefore, the operation is associative.

Now, $1 * a = a * 1 \neq a$

Therefore, there does not exist any identity element.

9. Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a - b
(ii) a * b = a² + b²
(iii) a * b = a + ab
(iv) a * b = (a - b)²
(v) a * b = ab/4
(vi) a * b = ab²

Find which of the binary operations are commutative and which are associative.

Solution: (i) a * b = a - b $a * b = a - b = - (b - a) = -b * c \neq b * a$ (Not commutative) (a * b) * c = (a - b) * c = (a - (b - c) = a - b + c \neq a * (b * c) (Not associative)

(ii) $a * b = a^2 + b^2$

$$a * b = a^2 + b^2 = b^2 + a^2 = b * a$$
 (operation is commutative)

Check for associative:

$$(a * b) * c = (a^2 + b^2) * c^2 = (a^2 + b^2) + c^2$$

$$a * (b * c) = a * (b^2 + c^2) = a^2 * (b^2 + c^2)^2$$

 $(a * b) * c \neq a * (b * c)$ (Not associative)

(iii) a * b = a + ab

a * b = a + ab = a(1 + b)

The operation * is not commutative

Check for associative:

$$(a * b) * c = (a + ab) * c = (a + ab) + (a + ab)c$$

$$a^{*}(b^{*}c) = a^{*}(b + bc) = a + a(b + bc)$$

(a * b) * c ≠ a * (b *c)

The operation * is not associative

$$(iv) a * b = (a - b)^2$$

$$a * b = (a - b)^2$$

$$b * a = (b - a)^2$$

The operation * is commutative.

Check for associative:

 $(a * b) * c = (a - b)^2 * c = ((a - b)^2 - c)^2$ $a * (b * c) = a * (b - c)^2 = (a - (b - c)^2)^2$ $(a * b) * c \neq a * (b * c)$ The operation * is not associative (v) a * b = ab/4

b * a = ba/2 = ab/2

a * b = b * a

The operation * is commutative.

Check for associative:

(a * b) * c = ab/4 * c = abc/16

a * (b *c) = a * (bc/4) = abc/16

(a * b) * c = a * (b *c)

The operation * is associative.

(vi) a * b = ab² b * a = ba²

a∗b≠b∗a

The operation * is not commutative.

Check for associative:

 $(a * b) * c = (ab^2) * c = ab^2 c^2$

a * (b *c) = a * (b c²) = ab² c⁴

The operation * is not associative.

10. Find which of the operations given above has identity.

Solution: Let I be the identity.

- (i) a * l = a − l ≠ a
- (ii) a * I = $a^2 I^2 \neq a$
- (iii) a * l = a + a l ≠ a
- (iv) a * I = $(a I)^2 \neq a$
- (v) a * l = al/4 ≠ a

Which is only possible at I = 4 i.e. a * I = aI/4 = a(4)/4 = a

(vi) a * I = a $I^2 \neq a$

Above identities does not have identity element except (V) at b = 4.

11. Let $A = N \times N$ and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d) Show that * is commutative and associative. Find the identity element for * on A, if any.

Solution: $A = N \times N$ and * is a binary operation defined on A. (a, b) * (c, d) = (a + c, b + d)

(c, d) * (a, b) = (c + a, d + b) = (a + c, b + d)

The operation * is commutative

Again, ((a, b) * (c, d)) * (e, f) = (a + c, b + d) * (e, f)= (a + c + e, b + d + f)

(a, b) * ((c, d)) * (e, f)) = (a, b) * (c+e, e+f) = (a+c+e, b+d+f)

=> ((a, b) * (c, d)) * (e, f) = (a, b) * ((c, d)) * (e, f))

The operation * is associative.

Let (e, f) be the identity function, then

(a, b) * (e, f) = (a + e, b + f)

For identity function, a = a + e = b = 0 and b = b + f = b = 0

As zero is not a part of set of natural numbers. So identity function does not exist.

As 0 ∉ N, therefore, identity-element does not exist.

12. State whether the following statements are true or false. Justify. (i) For an arbitrary binary operation * on a set N, a * $a = a \forall a \in N$. (ii) If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a

Solution:

(i) Given: * being a binary operation on N, is defined as a * a = a \forall a \in N

Here operation * is not defined, therefore, the given statement is not true.

(ii) Operation * being a binary operation on N.

c * b = b * c

(c * b) * a = (b * c) * a = a * (b * c)

Thus, a * (b * c) = (c * b) * a, therefore the given statement is true.

13. Consider a binary operation * on N defined as a * b = a³ + b³. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?

Solution:

A binary operation * on N defined as a * b = a³ + b³,

Also, $a * b = a^3 + b^3 = b^3 + a^3 = b * a$ The operation * is commutative.

Again, $(a * b)*c = (a^3 + b^3)*c = (a^3 + b^3)^3 + c^3$

$$a^{*}(b^{*}c) = a^{*}(b^{3} + c^{3}) = a^{3} + (b^{3} + c^{3})^{3}$$

 \Rightarrow (a * b)*c \neq a * (b * c)

The operation * is not associative.

Therefore, option (B) is correct.