Odisha board Class 10 Maths Sample Paper

Class: X
Subject: Mathematics

PART-I

Total: 50 Marks

GENERAL INSTRUCTIONS:

1. 50 multiple choice questions (MCQ) are given in part (A). All the questions are compulsory. Each question carries 1 mark.
2. For each question select the correct alternative from four given alternatives to answer the question and darken the circle O as by ball pen (Blue / Black) against the alphabet corresponding to that alternative in the given OMR sheet
3. Find the value of $6 x+2 y$ by solving the given simultaneous equations:
$5 x+7 y=9$
$7 x+5 y=6$
a) -2
b) 2
c) $\frac{19}{4}$
d) 4
4. From the given simultaneous equations $3 x+5 y-9=0$ and $6 x+9 y=12$ find the solution set of the given equations:
a) $\{(-7,6)\}$
b) Empty set
c) Infinite set
d) $\{(6,-7)\}$
5. Meher is 25 years older than her son. If after five years' her age will be twice that of her son, then find their present ages.
a) 45 years, 20 years
b) 35 years, 10 years
c) 50 years, 18 years
d) 25 years, 10 years
6. Find the solution set of the in equation $6 x-4 \leq 16$, if $x \in\{-3,-2,-1,0,1,2,3,4\}$.
a) $\{-3,-2,-1,1,2,3\}$
b) $\{-3,-2,-1,1\}$
c) $\{-3,-2,-1,0,1,2,3\}$
d) $\{0,1,2,3,4,5\}$
7. If $x \in R$, then the solution set of $18 \leq-6(2 x-4)<36$ is
a) $\left\{x: x \in R,-1<x \leq \frac{1}{2}\right\}$
b) $\left\{x: x \in R, 0<x<\frac{1}{2}\right\}$
c) $\left\{x: x \in R,-1<x<\frac{1}{2}\right\}$
d) $\left\{-1, \frac{1}{2}\right\}$
8. If $\frac{1}{3}$ is a root of the quadratic equation $a^{2}+3 p a-\frac{82}{9}=0$, then the value of p is
a) 9
b) 7
c) 83
d) 81
9. The quadratic equation $4 x^{2}-2 \sqrt{5} x+2=0$ has
a) Two distinct real roots
b) Two equal real roots
c) No real roots
d) More than two real roots
10. Find the value of $\frac{\alpha \beta}{\alpha+\beta}$ if the quadratic equation $5 x^{2}-2 x-4=0$ has the roots α and β.
a) -4
b) 5
c) -2
d) 2
11. Find the value(s) of k for which the quadratic equation $6 x^{2}+k x+9=0$ has real and equal roots:
a) 36
b) 6
c) $-6 \sqrt{6}$
d) $\pm 6 \sqrt{6}$
12. If given $k^{2}+4 k+8,2 k^{2}+3 k+6,3 k^{2}+4 k+4$, find the value of k if these three are in A.P.
a) 2
b) 0
c) 3
d) 5
13. Find the 20th term of the list of numbers $9,5,-3,-7,-11, \ldots \ldots$.
a) -75
b) -79
c) -67
d) -83
14. Find the sum of the A.P. $-2,-7,-12,-17, \ldots .$. upto the term -77 .
a) 623
b) -632
c) 632
d) -623
15. If the given equation $-4+(-1)+2+\cdots .+x=437$ forms an A.P. then find the value of nth term and x.
a) 19,50
b) 20,50
c) 17,20
d) 27,85
16. Find the number of total outcomes if a die is thrown thrice.
a) 36
b) 18
c) 6
d) 216
17. One letter is selected at random out of the consonants of the English alphabets. The probability of selecting ' g ' is
a) $\frac{1}{26}$
b) $\frac{1}{21}$
C) $\frac{21}{26}$
d) $\frac{1}{5}$
18. From a well-shuffled deck of 52 cards, a card is selected at random. The probability of it being a black face card is
a) $\frac{3}{39}$
b) $\frac{3}{26}$
C) $\frac{3}{52}$
d) $\frac{3}{13}$
19. Riya has a die whose six faces show the letters as given:
$D|C| F|D| G \mid H$
If she throws the die once then the probability of getting D is
a) $\frac{2}{5}$
b) $\frac{1}{6}$
c) $\frac{1}{5}$
d) $\frac{1}{3}$
20. The labours working in a factory has a mean height of 152 cm . If there were 8 labours initially then if two more labours of height 143 cm and 156 cm join the factory. What is the new mean height?
a) 151.5 cm
b) 150.5 cm
c) 156 cm
d) 152.5 cm
21. Given mean $=4-$ median and mode $=32$. From this determine the median.
a) 6
b) 9
c) 8
d) 4.8
22. Find the class corresponding to the class mark 46 , if the class mark of a continuous frequency distribution is 22, 30, 38, 46, 54, 62 .
a) $41.5-49.5$
b) $42-50$
c) 41-49
d) 41-50
23. Find the inter quartile range if in a class test, the marks scored by 11 students are $13,17,20,5,3,19,7,6,11,15,17$.
a) 11
b) 5.5
c) 13
d) 6
24. Find the equation of the median through R of the triangle STR, if $S(3,4), T(7,-2)$ and $R(-2,-1)$ are the vertices of the given triangle STR.
a) $2 x-7 y=3$
b) $2 x+7 y=3$
c) $7 x+2 y=3$
d) $2 x+7 y=9$
25. The coordinates of points P and Q are $(-4,3)$ and $(2,-1)$ respectively. Hence find the coordinates of the points of trisection of the line segment $\overline{P Q}$.
a) $(0,1)$
b) $(1,0)$
c) $\left(0, \frac{1}{3}\right)$
d) $\left(\frac{1}{3}, 0\right)$
26. If M, N and P are the points $(1,3),(4, b)$ and $(a, 1)$ respectively. Then find the values of a and b if M, N and P forms a triangle MNP with a centroid $G(4,3)$.
a) $a=5, b=7$
b) $a=7, b=5$
c) $a=8, b=4$
d) $a=4, b=8$
27. Find the area of the square with vertices $(0,-2),(3,1),(-3,1)$ and $(0,4)$.
a) 18 square units
b) 15 square units
c) $\sqrt{18}$ square units
d) 13 square units
28. By section formula determine that the points of a quadrilateral $(4,-2),(2,-6),(-4,-2)$ and $(10,-6)$ is a
a) Rhombus
b) Square
c) Trapezium
d) Parallelogram
29. In the triangle $P Q R, \overline{Q M}$ bisects $\angle Q$ and is $\perp P R$. If the sides of the triangle are such as $P Q=2 x, Q R=$ $3 y+8, P M=x$ and $R M=2 y$. then find the values of x and y respectively.
a) 16,8
b) 19,8
c) 8,17
d) 20,5
30. The areas of two triangles $\triangle P Q R$ and $\triangle L M N$ are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If these two are similar triangles and an altitude of the smaller triangle is 3.5 cm , then the altitude of the bigger triangle will be
a) 9 cm
b) 6 cm
c) 4.5 cm
d) 7 cm
31. Find the area of the quadrilateral $A B C D$, if given from a point which is at a distance of 13 cm from the centre C of a circle of radius 5 cm , the pair of tangents $A B$ and $A D$ to the circle are drawn.
a) $60 \mathrm{~cm}^{2}$
b) $30 \mathrm{~cm}^{2}$
c) $32.5 \mathrm{~cm}^{2}$
d) $65 \mathrm{~cm}^{2}$
32. Given a circle with centre O and the tangents PM and PN from an exterior point P to a circle are inclined to each other at an angle of 80°, then $\angle P O M$ is equal to
a) 100°
b) 70°
c) 60°
d) 50°
33. If radii of two concentric circles are 4 cm and 5 cm , then the length of each chord of one circle which is tangent to the other is
a) 1 cm
b) 9 cm
c) 6 cm
d) 3 cm
34. From the given figure, O is the centre of the circle and $\angle S N M=45^{\circ}$. Find $\angle S T N$

P
B
$\angle Q B P=45^{\circ}$
a) 85°
b) 45°
c) 55°
d) 90°
35. In the given figure, R and Q are points on the circumference of the circle with SP as the diameter and $\angle S P Q=$ 70° and $\angle Q S R=30^{\circ}$, then $\angle S Q R=$?

a) 40°
b) 50°
c) 20°
d) 80°
36. In the figure given, PT is a tangent to the circle at $\mathrm{A} . \angle R P Q=60^{\circ}$ and $\angle T P Q=55^{\circ}$, then $\angle P Q R=$?

a) 10°

P
b) 50°
c) 65°
d) 45°
35. Find the value of SP if given in the figure where, SPQ is a secant and ST is tangent to the given circle.

Q
a) 8 cm
b) 9 cm
c) 10 cm
d) 6.5 cm
36. When any point lies inside the circle the how many tangents can be drawn to the circle passing through the point which lies inside the circle.
a) No tangent can be drawn
b) Only one tangent
c) Infinite
d) Two tangent

The Learning App
37. From the given figure, $\angle P R Q=\angle R S P$. If $\mathrm{PR}=8 \mathrm{~cm}$ and $\mathrm{PS}=3 \mathrm{~cm}, \mathrm{SQ}=$?

a) $19 \frac{1}{3} \mathrm{~cm}$
b) $15 \frac{1}{3} \mathrm{~cm}$
c) $14 \frac{1}{3} \mathrm{~cm}$
d) $18 \frac{1}{3} \mathrm{~cm}$
38. $\triangle S T U$ is a right angled triangle at S and $S V$ is perpendicular to $T U$. If $T U=13 \mathrm{~cm}$ and $S U=5 \mathrm{~cm}$, find the ratio of the areas of Δ STU and $\Delta S U V$.

a) $\frac{169}{25}$
b) $\frac{144}{25}$
C) $\frac{25}{169}$
d) $\frac{25}{144}$
39. Find the total surface area of the cylinder if given that the radius of the cylinder is $\frac{r}{4}$ and the height is h.
a) $\frac{1}{2} \pi r(r+2 h)$
b) $\frac{1}{2} r(r+2 h)$
c) $r(r+2 h)$
d) $\pi r(r+2 h)$
40. A bowl made of glass is of the shape of the hemisphere, 0.25 cm thick. The inner radius of the bowl is 5 cm . Find the total outer surface area of the bowl.
a) $295.875 \mathrm{~cm}^{2}$
b) $295.857 \mathrm{~cm}^{2}$
c) $259.875 \mathrm{~cm}^{2}$
d) $250.875 \mathrm{~cm}^{2}$
41. A quadrant of a circle is made by a copper wire, if the perimeter of the quadrant of a circle is 12.5 cm . How much is its area?
a) 8 cm
b) $9.625 \mathrm{~cm}^{2}$
c) $8 \mathrm{~cm}^{2}$
d) 9.625 cm
42. If cone whose height is 12 cm and the diameter of the base of a cone 10 cm then its curved surface area will be
a) $85 \pi \mathrm{~cm}^{2}$
b) $75 \pi \mathrm{~cm}^{2}$
c) $65 \pi \mathrm{~cm}^{2}$
d) $55 \pi \mathrm{~cm}^{2}$
43. Find the area of the equilateral triangle if the perimeter of the equilateral triangle is $6 \sqrt{3} \mathrm{~cm}$.
a) $9 \mathrm{~cm}^{2}$
b) $3 \sqrt{3} \mathrm{~cm}^{2}$
c) $6 \sqrt{3} \mathrm{~cm}^{2}$
d) $9 \sqrt{3} \mathrm{~cm}^{2}$
44. If the surface area of the sphere is $256 \pi \mathrm{~cm}^{2}$, then the diameter of the sphere is
a) 4 cm
b) 8 cm
c) 6 cm
d) 16 cm
45. If two cylinder and their height are in the ratio $5: 3$ and the radii are in the ratio $2: 3$. How much is the ratio of their volumes?
a) $20: 27$
b) $20: 23$
c) $17: 27$
d) $20: 37$
46. Given $\tan \theta=\frac{1}{\sqrt{5}}$, find $\frac{\operatorname{cosec}^{2} \theta-\sec ^{-1} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{-1} \theta}$
a) $\frac{2}{5}$
b) $\frac{2}{3}$
c) $\frac{3}{2}$
d) $\frac{5}{3}$
47. By using trigonometrical identities and not using the tables, evaluate:
$\csc ^{2} 57^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \csc 46^{\circ}-\sqrt{2} \cos 45^{\circ}-\tan ^{2} 60^{\circ}$
a) -2
b) 2
c) 4
d) 3
48. Find the value of: $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{-1} 17^{\circ} \cos ^{-1} 73}$
a) 1
b) 0
c) 3
d) 5
49. Evaluate: $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
a) 0
b) 5
c) 1
d) 9
50. A cat is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°.
a) 10 m
b) 20 m
c) 15 m
d) 12 m

PART -II

Total Marks - 50

GENERAL INSTRUCTIONS:

1. There are Five Questions in this part of the question paper.
2. All the questions are compulsory and all are having internal options.

3. Draw figures where-ever required.

4. The numbers at right hand side represent the marks of the question.
5. (a) Solve the system of linear equations:
$\frac{a}{2}+\frac{2 b}{3}=-1$
$a-\frac{b}{3}=3$

OR

Solve the equation $2 x^{2}-3 x+1=0$ by the method of completing the squares.
(b) If the sum of the first 16 terms of an A.P. is 432 . If its first term is 12 , then find the 25 th term.

OR

Two dice are thrown simultaneously. Find the probability that the sum of the number appearing on the top of two dice is less than or equal to 8 .
2. (a) Mother is 15 years older than her daughter. If after five years' her age will be twice that of her son, then find their present ages.

OR

Find the value of m so that the equation $(m+2) x^{2}-(m+3) x+1=0$ has real and equal roots
(b) Calculate the sum of the given A.P. $5+\frac{15}{2}+10+\cdots+80$.

OR

Find the mode and the median from the data given below:

\boldsymbol{x}	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$
\boldsymbol{f}	6	8	4	5	7	3

(c) Show that the points A, B and C are collinear. If they have vertices $(4,2),(7,5)$ and $(9,7)$ respectively.

OR

Find the mean of the following

CLASS INTERVALS	$\mathbf{8 0 - 9 0}$	$\mathbf{9 0 - 1 0 0}$	$\mathbf{1 0 0} \mathbf{- 1 1 0}$	$\mathbf{1 1 0} \mathbf{- 1 2 0}$	$\mathbf{1 2 0} \mathbf{- 1 3 0}$
FREQUENCY	8	12	15	10	5

3. (a) The straight line which is not a diameter, is perpendicular to the chord, which will be drawn from the center of a circle to bisect a chord. Prove it

In the figure given above, PQR and RTU are two triangles where $P Q$ is parallel to RU and PT : PR = 5:8. Prove that $\Delta P S T \sim \Delta R T U$
(b) Construct the circumscribed circle of a given triangle with sides $P Q=4.5 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}$ and $\mathrm{RP}=3.5 \mathrm{~cm}$

OR

Construct a circle which is inscribe in the given triangle with sides as $\mathrm{QR}=6.4 \mathrm{~cm}, \mathrm{PR}=5.8 \mathrm{~cm}$ and $\angle Q=60^{\circ}$.
4. (a) Prove that the tangent at any point on a circle and radius of the circle through the point where tangent touch the circle are perpendicular to each other.

OR

In the figure given below, $P Q \| Y Z$ and $X P: P Y=5: 4$. Hence find $P Q: Y Z$.

(b) A kite is flying at a height of 60 m from the ground, attached to a string inclined at 45° to the horizontal. Find the length of the string.

OR

Prove that
$\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$.
5. (a) There are two concentric circles. If the area of the circular ring enclosed between two concentric

OR

A cone of height 12 cm has base diameter 10 cm . Find the total surface area of the cone and the volume of the cone.
(b) The total surface area of a right circular cone of slant height 27 cm is $90 \pi \mathrm{~cm}^{2}$. calculate its radius.

OR

The surface area of a sphere is $616 \mathrm{~cm}^{2}$. It recasted into smaller spheres of the diameter $\frac{7}{8} \mathrm{~cm}$. Calculate the number of spheres that is made.

Answers \& Explanations

1. The given equations are
$5 x+7 y=9 \rightarrow(1)$ and $7 x+5 y=6 \rightarrow(2)$
Multiplying equation (1) by 7 and (2) by 5 , we get
$35 x+49 y=63$
$35 x+25 y=30$
Subtracting equation (2) from (1), we get
$24 y=33$
$y=\frac{11}{8}$
Putting the value of y in (2), we get
$5 x+\frac{77}{8}=9$
$x=-\frac{1}{8}$
Hence
$6 x+2 y=\frac{-6}{8}+\frac{22}{8}=2$

The Learning App
Option b.
2. The equations are
$3 x+5 y-9=0 \rightarrow(1)$ and $6 x+9 y=12 \rightarrow(2)$
Multiplying (1) by 2 , we get
$6 x+5 y=18$
\rightarrow (3)
Subtracting equation (2) from (3), we get
$y=6$
Putting the value of y in equation (1) we get
$3 x+30=9$
$x=-7$
Option a.
3. Let the son's age be x

Meher's age $=x+25$
After 5 years their age will be
Son's $=x+5$
Meher's $=x+25+5=x+30$
According to the given
$x+30=2(x+5)$
$x=20$ years
son's age $=20$ years
Meher's age $=x+25=45$ years
Option a.
4. Given inequation $6 x-4 \leq 16$, if $x \in\{-3,-2,-1,0,1,2,3,4\}$

For $x=-3$
$6 x-4=-22 \leq 16$
For $x=-2$
$6 x-4=-16 \leq 16$
For $x=-1$
$6 x-4=-10 \leq 16$
For $x=0$
$6 x-4=-4 \leq 16$
For $x=1$
$6 x-4=2 \leq 16$
For $x=3$
$6 x-4=14 \leq 16$
For $x=4$
$6 x-4=20>16$
Therefore the solution set is $\{-3,-2,-1,0,1,2,3\}$.
Option c.
5. From the given $18 \leq-6(2 x-4)<36$
$-6(2 x-4)<36$
$x>-1$
and
$18 \leq-6(2 x-4)$
$x \leq \frac{1}{2}$
Option a.
6. Given
$a^{2}+3 p a-\frac{82}{9}=0$ where $\frac{1}{3}$ is a root of the equation's
$\Rightarrow 9 a^{2}+27 p a-82=0$
$\Rightarrow 9 \times \frac{1}{9}+27 p \times \frac{1}{3}-82=0$
$\Rightarrow p=9$
Option a.
7. $4 x^{2}-2 \sqrt{5} x+2=0$

Comparing it with $a x^{2}+b x+c=0$
$\Rightarrow a=4, b=-2 \sqrt{5}, c=2$
\therefore Discriminant $=b^{2}-4 a c$
$=(-2 \sqrt{5})^{2}-4 \times 4 \times 2$
$=20-32$
$=-12<0$
Therefore, the equation has no real roots.
Option c.
8. $5 x^{2}-2 x-4=0$
$\Rightarrow x^{2}-\frac{2}{5} x-\frac{4}{5}=0$
comparing it with $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$, we get
$\frac{b}{a}=-\frac{2}{5} \Rightarrow-\frac{b}{a}=\frac{2}{5}$
$\frac{c}{a}=-\frac{4}{5}$
We know that
$\alpha+\beta=-\frac{b}{a}=\frac{2}{5}$
$\alpha \beta=\frac{c}{a}=-\frac{4}{5}$
The value of,
$\frac{\alpha \beta}{\alpha+\beta}=\frac{-\frac{4}{5}}{\frac{2}{5}}=-2$
Option c.
9. $6 x^{2}+k x+9=0$

Comparing it with $a x^{2}+b x+c=0$
$\Rightarrow a=6, b=k, c=9$
\therefore Discriminant $=b^{2}-4 a c$
$=k^{2}-4 \times 6 \times 9$
For the equation to have equal and real roots
$k^{2}-216=0$
$\therefore k= \pm 6 \sqrt{6}$
Optiond.
10. Given $k^{2}+4 k+8,2 k^{2}+3 k+6,3 k^{2}+4 k+4$ are in A.P.
$\left(2 k^{2}+3 k+6\right)-\left(k^{2}+4 k+8\right)=\left(3 k^{2}+4 k+4\right)-\left(2 k^{2}+3 k+6\right)$
$\Rightarrow k^{2}-k-2=k^{2}+k-2$
$\Rightarrow-k=k \Rightarrow 2 k=0 \Rightarrow k=0$
Option b.
11. Given the list of numbers $9,5,-3,-7,-11, \ldots \ldots$ are in A.P.

Therefore the $20^{\text {th }}$ term of the A.P. will be
$a_{n}=a+(n-1) d \quad$ where $a=9, n=20, d=-4$
$a_{20}=9+(20-1)(-4)=-67$
Option c.
12. The sum of the A.P. $-2,-7,-12,-17, \ldots .$. . upto the term -77
$a=-2, d=-5, l=-77$
Let the nth term be -77
$a_{n}=a+(n-1) d$
$-77=-2+(n-1)(-5)$
$\Rightarrow n=16$
$\therefore S_{n}=\frac{n}{2}(a+l)$
$=\frac{16}{2}(-2-77)$
$=-632$

Option b.
13. The given equation $-4+(-1)+2+\cdots .+x=437$ forms an A.P

Where $a=-4, d=3, S_{n}=437$
According to the given
$S_{n}=\frac{n}{2}(2 a+(n-1) d)=437$
$\Rightarrow \frac{n}{2}(2(-4)+(n-1) 3)=437$
$\Rightarrow 3 n^{2}-11 n-874=0$
$\Rightarrow n=19,-\frac{46}{3}$
But n cannot be negative
$\Rightarrow n=19$
Hence nth term x is 19
$a_{n}=a+(n-1) d$
$a_{19}=-4+(19-1) 3$

$$
=50
$$

Option a.
14. If a die is thrown thrice the total outcomes would be $=6 \times 6 \times 6$

$$
=216
$$

Option d.
15. The total sample space for selecting a letter out of the consonants of the English alphabets $=21$

Event = selecting ' g '
Total favorable outcomes $=1$
$P\left(\right.$ selecting ' g ') $=\frac{\text { total favourable outcomes }}{\text { sample space }}=\frac{1}{21}$
Option b.
16. The total sample space for selecting a card from a well-shuffled pack of 52 cards $=52$

Event = selecting a black face card
Total favorable outcomes $=6$
$P($ selecting a black face card $)=\frac{\text { total favourable outcomes }}{\text { sample space }}=\frac{6}{52}=\frac{3}{26}$
Option b.
17. The total sample space of throwing the once and getting a random letter $=6$

Event = getting D
Total favorable outcomes $=2$

The Learning App
$P($ getting $D)=\frac{\text { total favourable outcomes }}{\text { sample space }}=\frac{2}{6}=\frac{1}{3}$
Option d.
18. Mean height of 8 labors $=\frac{\text { sum of heights of } 8 \text { labours }}{8}$
$\Rightarrow 152 \mathrm{~cm}=\frac{\text { sum of heights of } 8 \text { labours }}{8}$
\Rightarrow sum of heights of 8 labours $=1216 \mathrm{~cm}$
New sum of heights when 2 more join the group.
\Rightarrow sum of heights of 8 labours $=1216 \mathrm{~cm}+143 \mathrm{~cm}+156 \mathrm{~cm}$ $=1515 \mathrm{~cm}$
Hence
New mean height $=\frac{\text { sum of heights of } 10 \text { labours }}{10}$

$$
=\frac{1515}{10}=151.5 \mathrm{~cm}
$$

Option a.
19. Mode $=3$ Median -2 Mean

Mean $=4$ - Median
Mode $=32$
$\Rightarrow 32=3$ Median $-2(4-$ Median $)$
Median = 8
Option c.
20. Class mark $=\frac{\text { lower class }+ \text { upper class }}{2}=\frac{42+50}{2}=46$

Therefore, the class is $42-50$
Option b.
21. Given variates in ascending order
$3,5,6,7,11,13,15,17,17,19,20$.
Lower quartile $\left(Q_{1}\right)=\frac{n+1}{4}$ th observation $=3$ rd observation $=6$
Upper quartile $\left(Q_{3}\right)=\frac{3(n+1)}{4}$ th observation $=9$ th observation $=17$
Inter quartile range $=\left(Q_{3}\right)-\left(Q_{1}\right)=17-6=11$
Option a.
22. The vertices of the $\Delta S T R$ are given as $S(3,4), T(7,-2)$ and $\mathrm{R}(-2,-1)$

Coordinates of $\mathrm{M}=\left(\frac{3+7}{2}, \frac{4-2}{2}\right)=(5,1)$
Slope of RM $=\frac{1-(-1)}{5-(-2)}=\frac{2}{7}$ $\left[m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]$
The equation of the line RM median through R is
$y-(-1)=\frac{2}{7}(x-(-2))$
$\Rightarrow 7 y+7=2 x+4$
$\Rightarrow 2 x-7 y-3=0$
Option a.
23. Let MN be the points of the trisection of the line segment PQ
$P M=M N=N Q \Rightarrow 2 P M=M Q$
$\Rightarrow \frac{P M}{M Q}=\frac{1}{2} \Rightarrow M$ divides $P Q$ in the ratio $1: 2$.
\therefore Coordinates of $M=\left(\frac{1 \times 2+2 \times(-4)}{1+2}, \frac{1 \times(-1)+2 \times 3}{1+2}\right)=\left(-2, \frac{5}{3}\right)$
As $M N=N Q \mathrm{Q}$ will be the midpoint of MQ .
\therefore Coordinates of $Q=\left(\frac{-2+2}{2}, \frac{\frac{5}{3}+(-1)}{2}\right)=\left(0, \frac{1}{3}\right)$
Option c.
24. The centroid of the $\Delta M N P$ IS G $(4,3)$

Given
$\frac{1+4+a}{3}=4 \quad$ and $\quad \frac{3+b+1}{3}=3$
$\Rightarrow a=7 \quad$ and $\quad b=5$
Option b.
25. Let the vertices of the square be
$P(0,-2), Q(3,1), R(0,4), S(-3,1)$

Since all four sides of a square are equal
$P Q=Q R=R S=P S$
$\therefore P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(3-0)^{2}+(1-(-2))^{2}}$
$=\sqrt{18}$
Area of the square $=(\text { side })^{2}=(\sqrt{18})^{2}=18$ square units
Option a.
26. Let the vertices be $P(4,-2), Q(-4,-2), R(2,-6)$ and $S(10,-6)$

If a quadrilateral's diagonal bisects each other it is a parallelogram.
Hence, we need to find that the mid-points of PR and QS are equal as they will bisect at the common point.
Mid-point of PS $=\left(\frac{10+(-4)}{2}, \frac{-6-2}{2}\right)=(3,-4)$
Mid-point of $\mathrm{QS}=\left(\frac{2+4}{2}, \frac{-6-2}{2}\right)=(3,-4)$
Hence the mid-point of the diagonals is equal thus means that they bisect each other. Therefore, PQRS is a parallelogram.
Option d.
27.

In $\triangle P Q M$ and $\triangle Q R M$
As QM bisects $\angle Q, \quad \angle P Q M=\angle R Q M$
Given QM is $\perp \mathrm{PR} \quad \angle P M Q=\angle R M Q=90^{\circ}$
$\mathrm{QM}=\mathrm{QM} \quad$ (common)
$\therefore \triangle P Q M \cong \triangle R Q M$
$P M=M R=x=2 y \quad \rightarrow 1)$
And $\mathrm{PQ}=\mathrm{RQ} \Rightarrow 2 x=3 y+8 \rightarrow 2)$
Putting the value of x in equation (2)
$4 y=3 y+8$
$\Rightarrow y=8$
$\therefore x=16$
Option a.
28. Let the altitude of the bigger triangle be x .

Given $\triangle P Q R$ and $\triangle L M N$ are similar triangles. By theorem
$\frac{x^{2}}{3.5^{2}}=\frac{81}{49}$
$\Rightarrow x^{2}=\frac{81}{49} \times 3.5^{2} \Rightarrow x=\frac{9}{7} \times 3.5=4.5$

Option c.

29.

Given radius of the circle is $\mathrm{CD}=\mathrm{CB}=5 \mathrm{~cm}$
$C A=13 \mathrm{~cm}$
By Pythagoras theorem
$A D^{2}=A C^{2}+C D^{2}$
$A D^{2}=13^{2}+5^{2}$
$A D=12 \mathrm{~cm}$
Similarly, $A B=12 \mathrm{~cm}$
Therefore, the area of the quadrilateral is $=12 \times 5=60 \mathrm{~cm}^{2}$
Option a.
30. Given the tangents PM and PN are inclined to each other at an angle of 80° which means that $\angle M P N=80^{\circ}$

We know that the tangents are equally inclined to the line joining the point and the centre of the circle.
Therefore $\angle M P O=\angle N P O=40^{\circ}$
In the $\triangle M P O$
The tangent at any point of a circle and the radius through the point are perpendicular. $\angle O M P=90^{\circ}$
$\therefore \angle O M P+\angle O P M+\angle P O M=180^{\circ} \quad$ [Sum of angles in a triangle is 180°]
$\angle P O M=180^{\circ}-90^{\circ}-40^{\circ}=50^{\circ}$
Optiond.
31. The radii of two concentric circles are given 4 cm and 5 cm respectively

Then the length of each chord one circle which is tangent to the other is 6 cm .
Option c.
32. As O is the center of the circle, MN is the diameter

Being an angle in a semicircle
$\angle M S N=90^{\circ}$
In $\triangle M S N$,
$\therefore \angle S M N+\angle S N M+\angle M S N=180^{\circ} \quad$ [Sum of angles in a triangle is 180°]
$\angle S M N=180^{\circ}-90^{\circ}-45^{\circ}=55^{\circ}$
$\angle S M N=\angle S T N=45^{\circ} \quad$ (Angles in the same segment of a circle are equal)
Option b.
33. Being an angle in a semicircle
$\angle S Q P=90^{\circ}$
$\angle P S Q=180^{\circ}-90^{\circ}+70^{\circ}=20^{\circ} \quad$ [Sum of angles in a triangle is 180°]
$\angle S R Q=180^{\circ}-70^{\circ}=110^{\circ}$
$\angle S Q R=180^{\circ}-110^{\circ}-30^{\circ}=40^{\circ}$
Option a.
34. As PQ is a chord from the point of contact P and PT is the tangent to a circle at T,
$\angle P R Q=\angle T P Q \quad$ (angles in alternate segments are equal)
Given
$\angle T P Q=55^{\circ}$
$\angle P Q R=\angle T P Q=55^{\circ}$
In $\triangle P Q R$,
$\angle P Q R+55^{\circ}+60^{\circ}=180^{\circ} \quad$ [Sum of angles in a triangle is 180°]
$\angle P Q R=65^{\circ}$
Option c.
35. We know that if a chord and a tangent intersect externally, then the product of the lengths of segments is equal to the square of the length of tangent.
$S P . S Q=S T^{2} \Rightarrow x(x+7)=12^{2}$
Either $x=9$ or $x=-16$ but x cannot be negative
$\therefore S P=9 \mathrm{~cm}$
Option b.
36. When any point lies inside the circle the no tangents can be drawn to the circle passing through the point which lies inside the circle.

Option a.
37. In $\triangle P Q R$ and $\triangle P S R$

Same angle $\angle Q P R=\angle S P R$

Given $\angle P R Q=\angle R S P$
\therefore By A. A. rule of similarity $\triangle P Q R \sim \triangle P S R$
$\Rightarrow \frac{P R}{P S}=\frac{P Q}{P R} \Rightarrow \frac{8}{3}=\frac{P Q}{8}$
$\Rightarrow P Q=\frac{64}{3} \mathrm{~cm}$
$\therefore S Q=P Q-P S=\frac{64}{3} \mathrm{~cm}-3 \mathrm{~cm}=\frac{55}{3} \mathrm{~cm}=18 \frac{1}{3} \mathrm{~cm}$
Option d.
38. In $\triangle S T U$ and $\Delta V S U$,

As each angle is $90 \angle T S U=\angle S V U$
Being same angle $\angle S U T=\angle S U V$
\therefore By A. A. rule of similarity $\Delta S T U \sim \Delta V S U$
As the side TU of $\Delta S T U$ is the corresponding side SU of $\Delta V S U$
$\therefore \frac{\text { area of } \triangle S T U}{\text { area of } \triangle V S U}=\frac{T U^{2}}{S U^{2}}=\frac{13^{2}}{5^{2}}=169: 25$

Option a.

39. The total surface area of the cylinder $=2 \pi r(r+h)$

$$
\begin{aligned}
& =2 \pi \frac{r}{2}\left(\frac{r}{2}+h\right) \\
& =\frac{1}{2} \pi r(r+2 h)
\end{aligned}
$$

Option a.
40. Radius of outer hemispherical bowl $=$ inner radius + thickness $=5+0.25$

$$
=\frac{21}{4} \mathrm{~cm}
$$

Total outer surface area $=3 \pi r^{2}=\left(3 \times \frac{22}{7} \times\left(\frac{21}{4}\right)^{2}\right) \mathrm{cm}^{2}=259.875 \mathrm{~cm}^{2}$
Option c.
41. Let r be the radius of the copper wire circle

Perimeter of a quadrant of the circle $=\frac{1}{4} \times 2 \pi r+2 r$
Given
$\frac{1}{4} \times 2 \pi r+2 r=12.5$
$r=3.5 \mathrm{~cm}$
Therefore, area of the quadrant $=\frac{1}{4} \times \pi r^{2}=\left(\frac{1}{4} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2}\right) \mathrm{cm}^{2}$

$$
=9.625 \mathrm{~cm}^{2}
$$

Option b.
42. Slant height of the given cone will be $l=\sqrt{r^{2}+h^{2}}=\sqrt{5^{2}+12^{2}}=13$

Curved surface area of the given cone $=\pi r l=\pi \times 5 \times 13=65 \pi \mathrm{~cm}^{2}$
Option c.
43. Given perimeter of an equilateral triangle $=6 \sqrt{3} \mathrm{~cm}$.

Let the side be a
Perimeter $=3 a \Rightarrow 6 \sqrt{3} \mathrm{~cm}=3 \mathrm{a} \Rightarrow a=2 \sqrt{3} \mathrm{~cm}$
Area of the equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4}(2 \sqrt{3})^{2}=3 \sqrt{3} \mathrm{~cm}^{2}$
Option b.
44. Given the surface area of the sphere $=256 \pi \mathrm{~cm}^{2}$
$4 \pi r^{2}=256 \pi \mathrm{~cm}^{2} \Rightarrow r=8 \mathrm{~cm}$
Therefore, the diameter of the sphere $=2 r=2 \times 8=16 \mathrm{~cm}$ Option d.
45. Let the radii be $2 r$ and $3 r$ respectively of the given two cylinders

Let the height be 5 h and 3 h respectively
Volume $=\pi r^{2} h$
Ratio of the volume of the given cylinders $=\frac{\pi(2 r)^{2} 5 h}{\pi(3 r)^{2} 3 h}=\frac{20}{27}$
Option a.
46. $\tan \theta=\frac{1}{\sqrt{5}} \Rightarrow \cot \theta=\sqrt{5}$
$\sec ^{2} \theta=1+\tan ^{2} \theta=1+\left(\frac{1}{\sqrt{5}}\right)^{2}=\frac{6}{5}$
$\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta=1+(\sqrt{5})^{2}=6$
$\therefore \frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{6-\frac{6}{5}}{6+\frac{6}{5}}=\frac{2}{3}$
Option b.
47. $\csc 57^{\circ}=\csc \left(90^{\circ}-33^{\circ}\right)=\sec 33^{\circ}$
$\csc 46^{\circ}=\csc \left(90^{\circ}-44^{\circ}\right)=\sec 44^{\circ}$
$\csc ^{2} 57^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \csc 46^{\circ}-\sqrt{2} \cos 45^{\circ}-\tan ^{2} 60^{\circ}$
$=\sec ^{2} 33^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \sec 44^{\circ}-\sqrt{2} \times \frac{1}{\sqrt{2}}-(\sqrt{3})^{2}$
$=1+1-1-3=-2$
Option a.
48. $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73}=\frac{\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\sin ^{2} 17^{\circ}} \quad\left[\sin 63^{\circ}=\sin \left(90^{\circ}-27^{\circ}\right)=\cos 27^{\circ}\right]$

$$
\begin{aligned}
& {\left[\cos 73^{\circ}=\cos \left(90^{\circ}-17^{\circ}\right)=\sin 17^{\circ}\right]} \\
& \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
\end{aligned}
$$

$=1$
Option a.
49. $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ} \quad\left[\cos 65^{\circ}=\cos \left(90^{\circ}-25^{\circ}\right)=\sin 25^{\circ}\right]=$ $\sin 25^{\circ} \sin 25^{\circ}+\cos 25^{\circ} \cos 25^{\circ} \quad\left[\sin 65^{\circ}=\sin \left(90^{\circ}-25^{\circ}\right)=\cos 25^{\circ}\right]$
$=\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}=1$
$\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
Option c.
50.

Let PO be the vertical pole and PN be the rope which is tightly stretched and tied from the top of the pole to the ground which the cat climbs.
$N P=20 \mathrm{~m}$
Let h be the height of the vertical pole OP.
Given the angle of elevation $\angle P N O=30^{\circ}$
From right angled $\triangle P N O$,
$\sin 30^{\circ}=\frac{P O}{P N} \Rightarrow \frac{1}{2}=\frac{h}{20}$
$\Rightarrow h=10 \mathrm{~m}$
The length of the vertical pole which the cat climbs through the rope is $=10 \mathrm{~m}$
Option a.

PART - II

1. (a)
$\frac{a}{2}+\frac{2 b}{3}=-1 \quad \rightarrow(1) \quad$ and $\quad a-\frac{b}{3}=3$
Multiplying equation (2) on both the sides by 2 , we get
$2 a-\frac{2 b}{3}=6 \quad \rightarrow(3)$
On adding equations (1) and (3), we get
$\frac{a}{2}+2 a=5 \Rightarrow \frac{5}{2} a=5 \Rightarrow a=2$.
Substituting this value of a in equation (2), we get
$2-\frac{b}{3}=3 \Rightarrow-\frac{b}{3}=1 \Rightarrow b=-3$
$\therefore a=2$ and $b=-3$

OR

The given quadratic equation is $2 x^{2}-3 x+1=0$
$\Rightarrow x^{2}-\frac{3}{2} x+\frac{1}{2}=0$
[Dividing throughout by 2]
$\Rightarrow x^{2}-\frac{3}{2} x=-\frac{1}{2}$
Adding $\left(\frac{1}{2} \times \frac{3}{2}\right)^{2}=\frac{9}{16}$ to both sides,
$\Rightarrow x^{2}-\frac{3}{2} x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}$
$\Rightarrow\left(x-\frac{3}{2}\right)^{2}=\frac{1}{16}$
$\therefore\left(x-\frac{3}{2}\right)= \pm \frac{1}{4}$
$\therefore x=1$ or $\frac{1}{2}$

1. (b)

Here, $S_{16}=432, n=16$ and $a=12$
Using, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow 432=\frac{16}{2}[2 \times 12+(16-1) \times d]$
$\Rightarrow 432=192+120 d$
$\Rightarrow d=2$
\therefore the 25 th term $=a+(25-1) d=12+24 \times 2=60$
OR

The total number of outcomes, when 2 dice are thrown simultaneously $=36$
Let E be the event "sum of two number appearing on top of the 2 dice is less than or equal to 8 ".
The outcomes in favour to the event $\bar{E}=(5,4),(4,5),(5,5),(6,4),(4,6),(6,5),(5,6)$ AND $(6,6)$.
The number of outcomes for $\bar{E}=8$
$\therefore P(\bar{E})=\frac{\text { outcomes in favour of the event }}{\text { total number of outcomes }}$
$\therefore P(\bar{E})=\frac{8}{36}=\frac{2}{9}$
$\therefore P(E)=1-P(\bar{E})$
$\therefore P(E)=1-\frac{2}{9}=\frac{7}{9}$
2. (a)

Let the daughter's age be x
Mother's age $=x+15$
After 5 years their age will be
Daughter's $=x+5$
Mother's $=x+15+5=x+20$
According to the given
$x+20=2(x+5)$
$x=10$ years
Daughter's age $=10$ years

The Learning App
Mother's age $=x+15=25$ years

OR

According to the equation $(m+2) x^{2}-(m+3) x+1=0$
On comparing with the $a x^{2}+b x+c=0$, we get
$\Rightarrow a=m+2, b=m+3$ and $c=1$
\therefore Disciminant $=b^{2}-4 a c=0$
[As they have real and equal roots]
$(m+3)^{2}-4(m+2) \times 1=0$
$\Rightarrow m^{2}+6 m+9-4 m-8=0$
$\Rightarrow m^{2}+2 m+1=0$
$\Rightarrow(m+1)(m+1)=0$
$\Rightarrow m=1$
2. (b)

The given A.P. with $a=5$ and $d=\frac{15}{2}-5=\frac{5}{2}$.
Let the nth term be 80 .
$\therefore a_{n}=a+(n-1) d$
$\Rightarrow 5+(n-1) \times \frac{5}{2}=80$
$\Rightarrow n=31$
\therefore Sum $=S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow \frac{31}{2}\left[2 \times 5+(31-1) \times \frac{5}{2}\right]$
$=\frac{31}{2}[10+75]=\frac{2635}{2}$.

From the frequency distribution table,

\boldsymbol{x}	\boldsymbol{f}	
$\mathbf{1 0}$	6	$\boldsymbol{x f}$
$\mathbf{1 5}$	8	60
$\mathbf{2 0}$	4	120
$\mathbf{2 5}$	5	80
$\mathbf{3 0}$	7	125
$\mathbf{3 5}$	3	210
Total	33	105

Mode = Observation with the highest number of frequencies
In the table, 15 is the mode with 8 as highest number of frequencies.
Mean $=\frac{\Sigma \mathrm{fx}}{\Sigma f}=\frac{700}{33}=21.21$.
2. (c)

The given points are $\mathrm{A}(4,2), \mathrm{B}(7,5)$ and $\mathrm{C}(9,7)$
$A B=\sqrt{(7-4)^{2}+(5-2)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$A C=\sqrt{(9-4)^{2}+(7-2)^{2}}=\sqrt{25+25}=\sqrt{50}=5 \sqrt{2}$
$B C=\sqrt{(9-7)^{2}+(7-5)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\therefore A B+B C=3 \sqrt{2}+2 \sqrt{2}=5 \sqrt{2}=A C$
Hence the given points are collinear.

OR

CLASSES	CLASS MARK	FREQUENCY	$\boldsymbol{c} \boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$
$\mathbf{8 0 - 9 0}$	85	8	680
$\mathbf{9 0 - 1 0 0}$	95	12	1140
$\mathbf{1 0 0 - 1 1 0}$	105	15	1575
$\mathbf{1 1 0 - \mathbf { 1 2 0 }}$	115	10	1150
$\mathbf{1 2 0 - 1 3 0}$	125	5	625
Total		50	5170

Mean $=\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\Sigma f_{i}}=\frac{5170}{50}=103.5$

The Learning App
3. (a)

Q
$P Q$ is a chord of a circle with center O and that OC bisects PQ at C .
By drawing a circle and joining OP and OQ.
In \triangle OPC and $\triangle O Q C$
As $O P$ and $O Q$ are the radii of the same circle
$O P=O Q$
C being the mid - point of $P Q$
$P C=C Q$
$O C=O C$ (common)
$\therefore \triangle O P C \cong \triangle O Q C$ (by S.S.S. axiom of congruency)
$\angle P C O=\angle O C Q \quad$ ('c.p.c.t.')
$\angle P C O+\angle O C Q=180^{\circ} \quad(\because P C Q$ is a straight line $)$
$\therefore \angle P C O=90^{\circ} \quad(\because \angle P C O=\angle O C Q)$
Hence proved that $\mathrm{OC} \perp \mathrm{PQ}$
OR

In the given diagram
In $\triangle P S T$ and $\triangle R U T$

Being vertically opposite angles
$\angle P T S=\angle R U T$
$\angle S P T=\angle U R T \quad(\because P Q \| R U$, alternate angles $)$
\therefore By A.A. axiom of similarity
$\triangle P S T \sim \Delta R U T$
Hence proved.
3. (b)

Construction of circumscribed circle with the given triangle.

Steps for construction:

1. Construct the triangle PQR with the sides as $4.5 \mathrm{~cm}, 4 \mathrm{~cm}$ and 3.5 cm respectively.
2. Draw the perpendicular bisector of line RQ and PQ. The point at with the bisectors meet is O .
3. Taking O as the center of the circle and $O P$ as its radius, draw the circle.

The circle drawn through the points P, Q and R and is the required circumcircle of triangle PQR.

OR

Construction of inscribed circle of a given triangle.

Q

Steps of construction

1. Draw the triangle PQR with the sides and angle provided.
2. Draw the angle bisector of $\angle Q$ and $\angle R$. The bisectors meet at the point O .
3. Draw ON perpendicular to the side QR from point O.
4. O is the center of the circle with radius ON . the circle touches all the sides of the triangle PQR.
5. (a)

T'TA is a tangent to the circle with center O , through the point of cont T A is the radius.
By drawing OA if it is not perpendicular to $\mathrm{T}^{\prime} \mathrm{AT}, \mathrm{ON} \perp T^{\prime} A T$, to meet the circle at B (since ever point of a tangent other than the point of contact lies outside the circle, $\mathrm{ON}>$ radius)

Being radii of the same circle
$O A=O B$
By drawing, $O N \perp T^{\prime} A T \Rightarrow \angle O N A=90^{\circ}$

The Learning App
$\angle O A N<90^{\circ}$ (as in a right -angle triangle other two angles are acute)
$\therefore \angle O N A>\angle O A N$
$O A>O N$ (Side opposite greater angle is greater.)
$O B>O N \quad(\because O A=O B)$
But $\mathrm{OB}<\mathrm{ON}$ (a part is less than the whole)
\therefore Our supposition was wrong.

Hence proved that $O A \perp T^{\prime} A T$

OR

Given $\frac{X P}{P Y}=5: 4 \Rightarrow \frac{X P}{X P+P Y}=\frac{5}{5+4} \Rightarrow \frac{X P}{X Y}=\frac{5}{9}$
In $\triangle X P Q$ and $\triangle X Y Z$,
$\angle X P Q=\angle X Y Z \quad(P Q \| Y Z$, corresponding angles are equal)
And $\angle X=\angle X$
$\Rightarrow \triangle X P Q \sim \triangle X Y Z$
$\Rightarrow \frac{P Q}{Y Z}=\frac{X P}{X Y}=\frac{5}{9}$
$\Rightarrow P Q: Y Z=5: 9$
4. (b)

Let P be the kite and $N P=60 m$

The string is held at the point O

Then $\angle N O P=45^{\circ}$

And OP is the length of the string.

From right angled $\triangle O N P$,
$\sin 45^{\circ}=\frac{N P}{O P} \Rightarrow \frac{1}{\sqrt{2}}=\frac{60}{O P}$
$\Rightarrow O P=60 \sqrt{2} m$
The length of the string $=60 \sqrt{2} \mathrm{~m}$

OR

L.H.S. $=\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}$
$=\frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{\sin A}{1-\frac{\cos A}{\sin A}}=\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}$
$=\frac{\cos ^{2} A}{\cos A-\sin A}-\frac{\sin ^{2} A}{\cos A-\sin A}=\frac{\cos ^{2} A-\sin ^{2} A}{\cos A-\sin A}$
$=\frac{(\cos A+\sin A)(\cos A-\sin A)}{\cos A-\sin A}=\cos A+\sin A$

Hence proved.
5. (a)

Let the radii of the outer and the inner circles be x and y respectively.
According to the given,
$x-y=7$
and $\pi\left(x^{2}-y^{2}\right)=286$
$\pi(x-y)(x+y)=286$
$\frac{22}{7} \times 7(x+y)=286$
$x+y=13$

Adding (1) and (2), we get
$x=10$

Subtracting (1) from (2) we get
$y=3$
Therefore, the radii of the two circles are 10 cm and 3 cm .

OR

The slant height of the cone $=l=\sqrt{r^{2}+h^{2}}=\sqrt{5^{2}+12^{2}}=\sqrt{169}=13 \mathrm{~cm}$
Total surface area of the cone $=\pi r(l+r)$

$$
=\frac{22}{7} \times 5 \times(13+5)=282.857 \mathrm{~cm}^{2}
$$

Volume of the cone $=\frac{1}{3} \pi r^{2}=\frac{1}{3} \times \frac{22}{7} \times 5^{2} \times 12=314.286 \mathrm{~cm}^{2}$
5. (b)

Let r be the radius, h be the height and $\mathrm{l}=10 \mathrm{~cm}$ be the slant height of the cone.
Total surface area $=\pi r(l+r)=\pi r(27+r)$
Given
$\pi r(27+r)=90 \pi$
$27 r+r^{2}=90$
$(r-3)(r+30)=0$
Either $r=3 \mathrm{~cm} \quad$ or $\quad r=-30$ (but r cannot be negative)
Therefore, radius of the cone is 3 cm .

OR

Let the radius be rcm of the sphere.
Given
$4 \pi r^{2}=616$
$\therefore r=7 \mathrm{~cm}$
\therefore Volume of the initial sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi 7^{3} \mathrm{~cm}^{3}$
\therefore Volume of small sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \frac{7^{3}}{8} \mathrm{~cm}^{3}$

The Learning App
\therefore The number of small spheres $=\frac{\frac{4}{3} \pi 7^{3} \mathrm{~cm}^{3}}{\frac{4}{3} \pi \frac{7^{3}}{8} \mathrm{~cm}^{3}}$
$=512$.

BYJU'S
The Learning App

