SSC JE Syllabus 2019

13 Indicative Syllabus

13.1 The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Engineering (Civil/ Electrical/ Mechanical). All the questions will be set in SI units. The details of the syllabus are given below:

13.2 Paper-I:

13.2.1 General Intelligence & Reasoning: The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgment, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series, etc. The test will also include questions designed to test the candidate’s abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions.

13.2.2 General Awareness: Questions will be aimed at testing the candidate’s general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scene, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline.

13.2.3 General Engineering: Civil & Structural, Electrical and Mechanical:
13.2.3.1 **Part-A (Civil Engineering):**

13.2.3.2 **Part-B (Electrical Engineering):**

13.2.3.3 **Part-C Mechanical Engineering:**

Properties & Classification of Fluids, Fluid Statics, Measurement of Fluid Pressure, Fluid kinematics, Dynamics of Ideal fluids, Measurement of Flow rate, basic principles, Hydraulic Turbines, Centrifugal Pumps, Classification of steel.

13.3 Paper II

13.3.1 **Part-A (Civil & Structural Engineering):**

Building Materials: Physical and Chemical properties, classification, standard tests, uses and manufacture/ quarrying of materials e.g. building stones, silicate based materials, cement (Portland), asbestos products, timber and wood based products, laminates, bituminous materials, paints, varnishes.

Estimating, Costing and Valuation: estimate, glossary of technical terms, analysis of rates, methods and unit of measurement, Items of work – earthwork, Brick work (Modular & Traditional bricks), RCC work, Shuttering, Timber work, Painting, Flooring, Plastering, Boundary wall, Brick building, Water Tank, Septic tank, Bar bending schedule, Centre line method, Mid-section formula, Trapezodial formula, Simpson's rule, Cost estimate of Septic tank, flexible pavements, Tube well, isolates and combined footings, Steel Truss, Piles and pile-caps. Valuation – Value and cost, scrap value, salvage value, assessed value, sinking fund, depreciation and obsolescence, methods of valuation.
Surveying: Principles of surveying, measurement of distance, chain surveying, working of prismatic compass, compass traversing, bearings, local attraction, plane table surveying, theodolite traversing, adjustment of theodolite, Levelling. Definition of terms used in levelling, contouring, curvature and refraction corrections, temporary and permanent adjustments of dumpy level, methods of contouring, uses of contour map, tachometric survey, curve setting, earth work calculation, advanced surveying equipment.

Soil Mechanics: Origin of soil, phase diagram, Definitions-void ratio, porosity, degree of saturation, water content, specific gravity of soil grains, unit weights, density index and interrelationship of different parameters, Grain size distribution curves and their uses, Index properties of soils, Atterberg’s limits, IS0 soil classification and plasticity chart, Permeability of soil, coefficient of permeability, determination of coefficient of permeability, Unconfined and confined aquifers, effective stress, quick sand, consolidation of soils, Principles of consolidation, degree of consolidation, pre-consolidation pressure, normally consolidated soil, e-log p curve, computation of ultimate settlement, Shear strength of soils, direct shear test, Vane shear test, Triaxial test. Soil compaction, Laboratory compaction test, Maximum dry density and optimum moisture content, earth pressure theories, active and passive earth pressures, Bearing capacity of soils, plate load test, standard penetration test.

Hydraulics: Fluid properties, hydrostatics, measurements of flow, Bernoulli’s theorem and its application, flow through pipes, flow in open channels, weirs, flumes, spillways, pumps and turbines.

efficiencies Different type of canals, types of canal irrigation, loss of water in canals Canal lining
- types and advantages Shallow and deep to wells, yield from a well Weir and barrage, Failure of
weirs and permeable foundation, Slit and Scour, Kennedy’s theory of critical velocity Lacey’s
theory of uniform flow Definition of flood, causes and effects, methods of flood control, water
logging, preventive measure Land reclamation, Characteristics of affecting fertility of soils,
purposes, methods, description of land and reclamation processes Major irrigation projects in India

Transportation Engineering: Highway Engineering – cross sectional elements, geometric design,
types of pavements, pavement materials – aggregates and bitumen, different tests, Design of flexible
and rigid pavements – Water Bound Macadam (WBM) and Wet Mix Macadam (WMM), Gravel
Road, Bituminous construction, Rigid pavement joint, pavement maintenance, Highway drainage,
Railway Engineering- Components of permanent way – sleepers, ballast, fixtures and fastening,
track geometry, points and crossings, track junction, stations and yards Traffic Engineering –
Different traffic survey, speed-flow-density and their interrelationships, intersections and
interchanges, traffic signals, traffic operation, traffic signs and markings, road safety

Environmental Engineering: Quality of water, source of water supply, purification of water,
distribution of water, need of sanitation, sewerage systems, circular sewer, oval sewer, sewer
appurtencens, sewage treatments Surface water drainage Solid waste management – types, effects,
gineered management system Air pollution – pollutants, causes, effects, control Noise pollution –
cause, health effects, control
Structural Engineering:

Theory of structures: Elasticity constants, types of beams – determinate and indeterminate, bending moment and shear force diagrams of simply supported, cantilever and over hanging beams Moment of area and moment of inertia for rectangular & circular sections, bending moment and shear stress for tee, channel and compound sections, chimneys, dams and retaining walls, eccentric loads, slope deflection of simply supported and cantilever beams, critical load and columns, Torsion of circular section

Concrete Technology: Properties, Advantages and uses of concrete, cement aggregates, importance of water quality, water cement ratio, workability, mix design, storage, batching, mixing, placement, compaction, finishing and curing of concrete, quality control of concrete, hot weather and cold weather concreting, repair and maintenance of concrete structures

RCC Design: RCC beams-flexural strength, shear strength, bond strength, design of singly reinforced and double reinforced beams, cantilever beams T-beams, lintels One way and two way slabs, isolated footings Reinforced brick works, columns, staircases, retaining wall, water tanks (RCC design questions may be based on both Limit State and Working Stress methods)

Steel Design: Steel design and construction of steel columns, beams roof trusses plate girders

13.3.2 Part-B (Electrical Engineering):

Basic concepts: Concepts of resistance, inductance, capacitance, and various factors affecting them Concepts of current, voltage, power, energy and their units

Circuit law: Kirchhoff's law, Simple Circuit solution using network theorems

Magnetic Circuit: Concepts of flux, mmf, reluctance. Different kinds of magnetic materials. Magnetic calculations for conductors of different configuration eg straight, circular, solenoidal, etc Electromagnetic induction, self and mutual induction
AC Fundamentals: Instantaneous, peak, RMS and average values of alternating waves, Representation of sinusoidal wave form, simple series and parallel AC Circuits consisting of RL and C, Resonance, Tank Circuit Poly Phase system – star and delta connection, 3 phase power, DC and sinusoidal response of R-Land R-C circuit

Measurement and measuring instruments: Measurement of power (1 phase and 3 phase, both active and re-active) and energy, 2 wattmeter method of 3 phase power measurement Measurement of frequency and phase angle Ammeter and voltmeter (both moving oil and moving iron type), extension of range wattmeter, Multimeters, Megger, Energy meter AC Bridges Use of CRO, Signal Generator, CT, PT and their uses Earth Fault detection

Electrical Machines: (a) DC Machine – Construction, Basic Principles of DC motors and generators, their characteristics, speed control and starting of DC Motors Method of braking motor, Losses and efficiency of DC Machines (b) 1 phase and 3 phase transformers – Construction, Principles of operation, equivalent circuit, voltage regulation, OC and SC Tests, Losses and efficiency Effect of voltage, frequency and wave form on losses Parallel operation of 1 phase /3 phase transformers Auto transformers (c) 3 phase induction motors, rotating magnetic field, principle of operation, equivalent circuit, torque-speed characteristics, starting and speed control of 3 phase induction motors Methods of braking, effect of voltage and frequency variation on torque speed characteristics

Fractional Kilowatt Motors and Single Phase Induction Motors: Characteristics and applications

Synchronous Machines - Generation of 3-phase emf armature reaction, voltage regulation, parallel operation of two alternators, synchronizing, control of active and reactive power Starting and applications of synchronous motors
Generation, Transmission and Distribution: Different types of power stations, Load factor, diversity factor, demand factor, cost of generation, inter-connection of power stations, Power factor improvement, various types of tariffs, types of faults, short circuit current for symmetrical faults. Switchgears – rating of circuit breakers, Principles of arc extinction by oil and air, HRC Fuses, Protection against earth leakage / over current, etc. Buchholtz relay, Merz-Price system of protection of generators & transformers, protection of feeders and bus bars. Lightning arresters, various transmission and distribution system, comparison of conductor materials, efficiency of different system. Cable – Different type of cables, cable rating and derating factor.

Estimation and costing: Estimation of lighting scheme, electric installation of machines and relevant IE rules. Earthing practices and IE Rules.

Utilization of Electrical Energy: Illumination, Electric heating, Electric welding, Electroplating, Electric drives and motors.

Basic Electronics: Working of various electronic devices eg P-N Junction diodes, Transistors (NPN and PNP type), BJT and JFET. Simple circuits using these devices.

13.3.3 **Part-C (Mechanical Engineering)**:

Theory of Machines and Machine Design.

Engineering Mechanics and Strength of Materials

Equilibrium of Forces, Law of motion, Friction, Concepts of stress and strain, Elastic limit and elastic constants, Bending moments and shear force diagram, Stress in composite bars, Torsion of circular shafts, Bucking of columns – Euler’s and Rankin’s theories, Thin walled pressure vessels

Thermal Engineering

Properties of Pure Substances: p-v & P-T diagrams of pure substance like H₂O, Introduction of steam table with respect to steam generation process; definition of saturation, wet & superheated status Definition of dryness fraction of steam, degree of superheat of steam H-s chart of steam (Mollier’s Chart)

Air standard Cycles for IC engines: Otto cycle; plot on P-V, T-S Planes, Thermal Efficiency, Diesel Cycle; Plot on P-V, T-S planes; Thermal efficiency

IC Engine Performance, IC Engine Combustion, IC Engine Cooling & Lubrication
Rankine cycle of steam: Simple Rankine cycle plot on P-V, T-S, h-s planes, Rankine cycle efficiency with & without pump work
Boilers: Classification, Specification, Fittings & Accessories: Fire Tube & Water Tube Boilers

Air Compressors & their cycles; Refrigeration cycles; Principle of a Refrigeration Plant; Nozzles & Steam Turbines

Fluid Mechanics & Machinery

Properties & Classification of Fluid: ideal & real fluids, Newton’s law of viscosity, Newtonian and Non-Newtonian fluids, compressible and incompressible fluids

Fluid Statics: Pressure at a point
Measurement of Fluid Pressure: Manometers, U-tube, Inclined tube

Fluid Kinematics: Stream line, laminar & turbulent flow, external & internal flow, continuity equation

Dynamics of ideal fluids: Bernoulli’s equation, Total head; Velocity head; Pressure head; Application of Bernoulli’s equation

Measurement of Flow rate Basic Principles: Venturimeter, Pilot tube, Orifice meter

Hydraulic Turbines: Classifications, Principles

Centrifugal Pumps: Classifications, Principles, Performance

Production Engineering

Classification of Steels: mild steel & alloy steel, Heat treatment of steel, Welding – Arc Welding, Gas Welding, Resistance Welding, Special Welding Techniques i.e TIG, MIG, etc (Brazing & Soldering), Welding Defects & Testing; NDT, Foundry & Casting – methods, defects, different casting processes, Forging, Extrusion, etc, Metal cutting principles, cutting tools, Basic Principles of machining with (i) Lathe (ii) Milling (iii) Drilling (iv) Shaping (v) Grinding, Machines, tools & manufacturing processes