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The National Curriculum Framework (NCF), 2005, recommends that children’s life
at school must be linked to their life outside the school. This principle marks a departure
from the legacy of bookish learning which continues to shape our system and causes
a gap between the school, home and community. The syllabi and textbooks developed
on the basis of NCF signify an attempt to implement this basic idea. They also
attempt to discourage rote learning and the maintenance of sharp boundaries between
different subject areas. We hope these measures will take us significantly further in
the direction of a child-centred:system of education outlined‘in thenational Policy on
Education (1986).

The success of this effort depends’on the steps that school-principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We'must recognize that, given space, time and freedom, children
generate new knowledge by engaging with the information passed on to them by adults.
Treating the prescribed textbook as the sole basis of examination is one of the key
reasons why otherresources and sites-of learning are ignored. Inculcating creativity
and initiative is possible if we perceive and treat children as participants in learning, not
as receivers of a fixed body of knowledge.

This aims imply considerable change is school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this
textbook proves for making children’s life at school a happy experience, rather then a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunities for contemplation and wondering, discussion in small groups, and activities
requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the textbook development committee responsible for this book.
We wish to thank the Chairperson of the advisory group in science and mathematics,
Professor J.V. Narlikar and the Chief Advisor for this book, Professor P. Sinclair of
IGNOU, New Delhi for guiding the work of this committee. Several teachers contributed
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to the development of this textbook; we are grateful to their principals for making this
possible. We are indebted to the institutions and organizations which have generously
permitted us to draw upon their resources, material and personnel. We are especially
grateful to the members of the National Monitoring Committee, appointed by the
Department of Secondary and Higher Education, Ministry of Human Resource
Development under the Chairpersonship of Professor Mrinal Miri and Professor G:P.
Deshpande, for their valuable time and contribution. As an organisation committed to
systemic reform and continuous improvement in the quality of its products, NCERT
welcomes comments and suggestions which will enable us to undertake further revision
and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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CHaprTER 1

NUMBER SYSTEMS
B \— e

1.1 Introduction

In your earlier classes, youhave learnt about the number line and how to represent
various types of numbers on it (see Fig. 1.1).

! ! !
T T T

R, S

2 3

W= =
o -t
=
o+
—_

Fig. 1.1 : The number line

Just imagine you start from zero and go on walking along this number line in the
positive direction. As far as your eyes can see, there are numbers, numbers and
numbers!

Fig. 1.2

Now suppose you start walking along the number line, and collecting some of the
numbers. Get a bag ready to store them!
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You might begin with picking up only natural
numbers like 1, 2, 3, and so on. You know that this list
goes on for ever. (Why is this true?) So, now your
bag contains infinitely many natural numbers! Recall
that we denote this collection by the symbol N.

Now turn and walk all the way back, pick up
zero and put it into the bag. You now have the
collection of whole numbers which is denoted by
the symbol W.

Now, stretching in front of you are many, many negative integers. Put all the
negative integers into your bag. What is your new collection? Recall that it is the
collection of all integers, andiitis denoted by the symbol Z.

Z comes from the

German word

Are there some numbers still left on the line? Of course! There are numbers like

13 22005
2747 %V 5006

. If you put all such numbers also into the bag, it will now be the

17
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collection of rational numbers. The collection of rational numbers is denoted by Q.
‘Rational’ comes from the word ‘ratio’, and Q comes from the word ‘quotient’.

You may recall the definition of rational numbers:

A number ‘7’ is called a rational number, if it can be written in the form P R

where p and ¢ are integers and ¢ # 0. (Why do we insist that g # 0?)

Notice that all the numbers now in the bag can be written in the form g , where p

—25
and g are integers and ¢ # 0. For example, —25 can be written as T; here p =-25

and g = 1. Therefore, the rational numbers also include the natural numbers, whole
numbers and integers.

You also know that the rational numbers do not'have a unique representation in

the form £, where p.and g are integers and g # 0. For example ! = 2 = 10 = »
q’ 2 4 20 50

47

=91 and so on. These are equivalent rational numbers (or fractions). However,

when we say that g is a rational‘number, or when we represent g on the number

line, we assume that ¢ # 0 and that p and ¢ have no common factors other than 1
(that is, p and g are co-prime). So, on the number line, among the infinitely many

1 1
fractions equivalent to 5> We will choose 5 to represent all of them.

Now, let us solve some examples about the different types of numbers, which you
have studied in earlier classes.

Example 1t Are the following statements true or false? Give reasons for your answers.
(i) Every whole number is a natural number.

(i)~ Every integer is a rational number.

(iii) Every rational number is an integer.

- (i) False, because zero is a whole number but not a natural number.

(ii) True, because every integer m can be expressed in the form T and so it is a
rational number.



3
(iii) False, because 5 is not an integer.

- Find five rational numbers between 1 and 2.
We can approach this problem in at least two ways.

1 : Recall that to find a rational number between r and s, you can add » and

r+s
s and divide the sum by 2, that is lies between 7 and s. So, 3 is.a number

between 1 and 2. You can proceed in this:-manner to find four more rational numbers

5011 13 7
between 1 and 2. These four numbers are Za ?’ ? and Z

. The other option.is to find all the five rational numbers in one step. Since
we want five numbers, we write 1 and 2 as rational numbers with denominator 5 + 1,

ie,l=— d2—2Th h kthtZ N\JV10 d— 1l rational

ie., ~ % and 2= G en you can check tha %% 6 an p are all rationa
7 4 35 11

numbers between 1 and 2. So, the five numbers/are —> —> —> — and —

s s —» — all .
96323 6
: Notice that in Example 2, you were asked to find five rational numbers
between 1 and 2. But, you must/have realised that in fact there are infinitely many

rational numbers between 1 and 2. In general, there are infinitely many rational
numbers between any two given rational numbers.

Let us take a look.at the number line again. Have you picked up all the numbers?
Not, yet. The fact is'that there are infinitely many more numbers left on the number
line! There are gaps in between the places of the numbers you picked up, and not just
one or two but infinitely many. The amazing thing is that there are infinitely many
numbers lying between any two of these gaps too!

So we are left with the following questions: @ @
I.. What are the numbers, that are left on the number o
line, called?

2. How do we recognise them? That is, how do we
distinguish them from the rationals (rational
numbers)?

These questions will be answered in the next section.
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1. Iszero arational number? Can you write it in the form r where p and q are integers
and g #0?
2. Find six rational numbers between 3 and 4.

4

3
3. Find five rational numbers between g and g

4. State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.

(iii) Every rational number is a whole number.

We saw, in the previous section, that there may be numbers on the number line that
are not rationals. In this section; we are going to'investigate these numbers. So far, all

the numbers you have come across, are of the form g, where p and g are integers

and g # 0. So, youmay ask: are there numbers which are not of this form? There are
indeed such numbers.

The Pythagoreans in Greece, followers of the famous
mathematician and philosopher Pythagoras, were the first
to discover the numbers which/were not rationals, around
400 BC. These numbers are called irrational numbers
(irrationals), because they cannot be written in the form of
a ratio of integers. There are many myths surrounding the
discovery of irrational numbers by the Pythagorean,
Hippacus of Croton. In all the myths, Hippacus has an

unfortunate end, either for discovering that V2 isirrational

: or for disclosing the secret about V2 to people outside the Pythagoras
secret Pythagorean sect! (569 BCE - 479 BCE)

Let us formally define these numbers.

A number ‘s’ is called irrational, if it cannot be written in the form g , where p

and ¢ are integers and g # 0.
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You already know that there are infinitely many rationals. It turns out that there
are infinitely many irrational numbers too. Some examples are:

J2. 3. 15, m,0.10110111011110...

Remark : Recall that when we use the symbol / , we assume that it is the
positive square root of the number. So /4 =2, though both 2 and -2 are square
roots of 4.

Some of the irrational numbers listed above are familiar to you. For example;you
have already come across many of the square roots listed above and the number 7.

The Pythagoreans proved that /2 is‘irrational. Later inapproximately 425 BC,
Theodorus of Cyrene showed that ﬁ, Js; \/E, V7,410, \/ﬁ, \/ﬁ, 13, 14,415

and /17 are also irrationals:Proofs of irrationality of /2 , \/3+ /5 . etc., shall be

discussed in Class X. As to m, it was known to various cultures for thousands of
years, it was proved tobe irrational'by Lambert andLLegendre only in the late 1700s.
In the next section, we will discuss why 0.10110111011110... and = are irrational.

Let us return tothe questions raised at the end of
the previous section. Remember the bagof rational
numbers. If we.now put all irrational numbers into
the bag, will there be any number left on the number
line? The answer is no! It turns out that the collection
of all rational numbers and irrational numbers together
make up what we call the collection of real numbers,
which is denoted by R. Therefore, a real number is either rational or irrational. So, we
can say that every real number is represented by a unique point on the number
line. Also, every point on the number line represents a unique real number.
This is why we call the number line, the real number line.

In the 1870s two German mathematicians,
Cantor and Dedekind, showed that :
Corresponding to every real number, there is a
point on the real number line, and corresponding
to every point on the number line, there exists a
unique real number.

R. Dedekind (1831-1916) G. Cantor (1845-1918)
Fig. 1.4 Fig. 1.5




Let us see how we can locate some of the irrational numbers on the number line.

- Locate /2 on the number line.
: It is easy to see how the Greeks might have discovered

\/5 . Consider a unit square OABC, with each side 1 unit in length

(see Fig. 1.6). Then you can see by the Pythagoras theorem that \
OB = /1? + 1> = /2 . How do we represent J2 on the number line? : b

This is easy. Transfer Fig. 1.6 onto the number line making sure that the vertex O
coincides with zero (see Fig. 1.7).

We have just seen that OB'= /2 . Using a compass with centre O and radius OB,

draw an arc intersecting the number line at the-point P. Then P corresponds to /2 on
the number line.

- 4 : Locate /3" onthe number line.

: Let us return to Fig. 1.7.

Construct BD of unit length perpendicular to OB (as in Fig. 1.8). Then using the

2
Pythagoras theorem, we see that OD = ,[(\/5 ) +12 =43, Using a compass, with

centre O and radius OD, draw an arc which intersects the number line at the point Q.
Then Q corresponds to /3 .



In the same way, you can locate /5 for any positive integer n, after \/n — 1 has been

located.

1. State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

(ii) Every point on the number line is of the form /m , where m is a natural number.
(iii) Every real number is an irrational number.

2. Are the square roots of all positive integers irrational? If not, give an example of the
square root of a number thats a rational number.

3. Show how /5 can betepresented on the number line.

4. Classroom activity (Constructing the ‘square root 1 > 1

spiral’) : Takea large sheet of paper and construct | P

the ‘square root spiral’.in the following fashion. Start

with a point. O and draw a line segment‘OP ‘of unit

length. Draw a line segment P P, perpendicular to

OP, of\unit length (see Fig. 1.9)..Now draw a line

segment P;P.perpendicular to OP,. Then draw a line

segment P P, perpendicular'to OP,. Continuing in

this manner, you can get the line segment P_ P by

drawing a line segment of unitlength perpendicular to OP . In this manner, you will
have created the points P, P_....., P ,... ., and joined them to create a beautiful spiral

depicting \/5, \/§, \/Z,

€S and

In this section, we are going to study rational and irrational numbers from a different
point of view. We will look at the decimal expansions of real numbers and see if we
can use the expansions to distinguish between rationals and irrationals. We will also
explain how to visualise the representation of real numbers on the number line using
their decimal expansions. Since rationals are more familiar to us, let us start with
71
them. Let us take three examples : ERE N

Pay special attention to the remainders and see if you can find any pattern.



- Find the decimal expansions of 1?0, % and %
[3.333... 0.875 0.142857...
3110 817.0 7110
[ 9 64 7
10 60 30
| 9 56 28
10 40 20
9 40 14
10 0 60
9 56
[ 1 40
35
50
49
1
Remainders:1,1,1,1, 1... Remainders : 6,4, 0 Remainders:3,2,6,4, 5,1,
Divisor: 3 Divisor : 8 3,2,6,4,5,1,...
Divisor: 7

What have you noticed? You should have noticed at least three things:
(i) Theremainders either become 0 after a certain stage, or start repeating themselves.

(i)’ The number of entries in the repeating string of remainders is less than the divisor
] . N | . :
(in 3 one number repeats itself and the divisor is 3, in 7 there are six entries
326451 in the repeating string of remainders and 7 is the divisor).

(iii) If the remainders repeat, then we get a repeating block of digits in the quotient

1 1
(for 3’ 3 repeats in the quotient and for 7. we get the repeating block 142857 in

the quotient).



Although we have noticed this pattern using only the examples above, it is true for all

rationals of the form g (g#0). On division of p by g, two main things happen — either

the remainder becomes zero or never becomes zero and we get a repeating string of
remainders. Let us look at each case separately.

The remainder becomes zero

7
In the example of g Ve found that the remainder becomes zero after some steps and

7
the decimal expansion of ri 0.875. Other examples are 5= 0.5, 550 2.556.Inall

these cases, the decimal expansion terminates or ends after a finite number of steps.
We call the decimal expansion of such numbers terminating.

The remainder never becomes zero

1 1
In the examples/of g and 7 , we notice that the remainders repeat after a certain

stage forcing the decimal expansion to . go on for ever. In other words, we have a
repeating block of digits in the quotient. We say that this expansion is non-terminating

1 1
recurring. For example, 3T 0.3333.. and 7= 0.142857142857142857...

1 _
The usual way of showing that 3 repeats in the quotient of 3 is to write it as (3.
1 1
Similarly, since the block of digits 142857 repeats in the quotient of 7> we write 7 as

0.142857-» Where the bar above the digits indicates the block of digits that repeats.

Als03.57272... can be written as 3.572 . So, all these examples give us non-terminating
recurring (repeating) decimal expansions.

Thus, we see that the decimal expansion of rational numbers have only two choices:
either they are terminating or non-terminating recurring.

Now suppose, on the other hand, on your walk on the number line, you come across a
number like 3.142678 whose decimal expansion is terminating or a number like
1.272727... that is, 1.27 , whose decimal expansion is non-terminating recurring, can
you conclude that it is a rational number? The answer is yes!



We will not prove it but illustrate this fact with a few examples. The terminating cases
are easy.

6 : Show that 3.142678 is a rational number. In other words, express 3.142678

in the form g, where p and ¢ are integers and g # 0.

- We have 3.142678 = M > and hence is a rational number.
1000000

Now, let us consider the case when the decimal expansion is non-terminating recurring.

: Show that 0.33337..= 03 can be expressed in‘the form g , where p and

q are integers and g # 0:

- Since we do notknow what 03 is, let us call it ‘x’ and so
x = 0.3333...
Now here is where the trick comes in. Look at
10 x="110x(0.333...) =3.333...
Now, 3.3333...= 3 +x, since x = 0.3333...
Therefore, 10x=3+x

Solving for x, we get

9x=3,ie,x=—
x=3,i.e.,x 3

ampled : Show that 1.272727...= 1.27 can be expressed in the form g , Where p

and ¢ arevintegers and g # 0.

<

olution : Let x=1.272727... Since two digits are repeating, we multiply x by 100 to
get

100 x = 127.2727...
So, 100 x= 126+ 1.272727...= 126 +x

Therefore, 100 x —x = 126, i.e., 99x=126



12614

1.e., X E = ﬁ

14 _
You can check the reverse that H =1.27.

Show that 0.2353535... = 0.235 can be expressed in the form g,

where p and ¢ are integers and ¢ # 0.

Let x = 0.235. Over here, note-that 2 does not repeat, butithe block 35
repeats. Since two digits are repeating, we multiply x by 100 to get

100X = 23.53535...

So, 100 x= 23.3+0.23535...=23.3 +x
Therefore, 99 x= 233
ie., x= 0 » which gives x = 990

233 —
You can also check the reverse that ﬁ = (0.235.

So, every number with a non-terminating recurring decimal expansion can be expressed

in the form g (¢ #0), where p and ¢ are integers. Let us summarise our results in the

following form :

The decimal expansion of a rational number is either terminating or non-
terminating recurring. Moreover, a number whose decimal expansion is
terminating or. non-terminating recurring is rational.

So, now. we know what the decimal expansion of a rational number can be. What
about the decimal expansion of irrational numbers? Because of the property above,
we can conclude that their decimal expansions are non-terminating non-recurring.

So, the property for irrational numbers, similar to the property stated above for rational
numbers, is

The decimal expansion of an irrational number is non-terminating non-recurring.
Moreover, a number whose decimal expansion is non-terminating non-recurring
is irrational.



Recall s = 0.10110111011110... from the previous section. Notice that it is non-
terminating and non-recurring. Therefore, from the property above, it is irrational.
Moreover, notice that you can generate infinitely many irrationals similar to s.

What about the famous irrationals /2 and n? Here are their decimal expansions up
to a certain stage.

J2 =1.4142135623730950488016887242096...
n =3.14159265358979323846264338327950...

(Note that, we often take — asan approximate value for 7, but 7 # — 2

Over the years, mathematicians have developed various techniques tosproduce more
and more digits in the decimal/expansions of irrational numbers. For example, you
might have learnt to find digits in the decimal expansion of (/2 by the division method.
Interestingly, in the Sulbasutras (rules of chord), a mathematical treatise of the Vedic
period (800 BC - 500 BC), you find an approximation of /2 as follows:

1 I I 1 1
=14+ —x=-|—| —x—x—|=14142156
V2 3 (4 3) (34 4 3}
Notice that it is the same as the one given above for the first five decimal places. The
history of the hunt for digits in the'decimal expansion of 7 is very interesting.

The Greek genius Archimedes was the first to compute % 2
digits in the decimal expansion of w. He showed 3.140845 ‘g‘-&':%
<1 <3.142857. Aryabhatta (476 — 550 C.E.), the great S
Indian mathematician and astronomer, found the value W
of m correct to four decimal places (3.1416). Using high PN

speed computers and advanced algorithms, 7 has been g {% 1
computed to over 1.24 trillion decimal places! R

Archimedes (287 BCE —212 BCE)

Now, let us see how to obtain irrational numbers.
2

cample 10 : Find an irrational number between 7 and 7

1 N -
: We saw that 7= 0.142857 . So, you can easily calculate % =0285714.

2
To find an irrational number between 7 and 7 we find a number which is



non-terminating non-recurring lying between them. Of course, you can find infinitely
many such numbers.

An example of such a number is 0.150150015000150000...

1. Write the following in decimal form and say what kind of decimal expansion.each

has :
. 36 L] .
D o5 O (i) 45
.3 2 329
) 33 (V)= o) 5
1 — 2 3
2.  You know that 7= 0.142857 . Can you predict what'the decimal expansions of 77

4 5 6

70707 are, without actually doing the long division? Ifso, how?

1
[Hint : Study the remainders while finding the value of 7 carefully.]

3. Express the following in the form % , where p and ¢ are integers and ¢ # 0.

@ 06 (i) 0.47 (i) 0.001

4. Express 0.99999 .... in the form % Are you surprised by your answer? With your

teacher and classmates discuss why the answer makes sense.

5. What can the maximum number of digits be in the repeating block of digits in the

1
decimal expansion of 17 ? Perform the division to check your answer.

6. Look at several examples of rational numbers in the form £ (g 0), where p and g are

integers with no common factors other than 1 and having terminating decimal
representations (expansions). Can you guess what property g must satisfy?

7.. Write three numbers whose decimal expansions are non-terminating non-recurring.

5 9
8. Find three different irrational numbers between the rational numbers 7 and e

9. Classify the following numbers as rational or irrational :
M 23 (i) 225 (iii) 0.3796
(iv) 7.478478... (v) 1.101001000100001...



In the previous section, you have seen that any
real number has a decimal expansion. This helps
us to represent it on the number line. Let us see
how.

Suppose we want to locate 2.665 on the
number line. We know that this lies between 2
and 3.

So, let us look closely at the portion-of the
number line between 2 and 3. Suppose we divide
this into 10 equal parts and mark each point of
division as in Fig. 1.11 (i). Then the first mark to

the right of 2 will represent 2.1, the second 2.2, and so on. You might be finding some
difficulty in observing these points of division between 2.and 3 in Fig. 1.11 (i). To have
a clear view of the same, you may take a magnifying glass and look at the portion
between 2 and 3. It will look like what you see in Fig..1.11.(ii). Now, 2.665 lies between
2.6 and 2.7. So, let-us focus on the portion between 2.6 and 2.7 [See Fig. 1.12(i)]. We
imagine to divide'this againinto ten equal parts. Thefirst mark will represent 2.61, the
next 2.62, and'so.on. To see this clearly, we magnify this as shown in Fig. 1.12 (ii).

29

2.65

2.7

2.61 2.62 263 2.64 266 2.67 268 2.69

2.6
o

EERE NN N

(i1)

Again, 2.665 lies between 2.66 and 2.67. So, let us focus on this portion of the
number line [see Fig. 1.13(i)] and imagine to divide it again into ten equal parts. We
magnify it to see it better, as in Fig. 1.13 (ii). The first mark represents 2.661, the next
one represents 2.662, and so on. So, 2.665 is the 5th mark in these subdivisions.



2.7

2.61 2.62 2.63 2.64

4|||||

2.66 2.67

2.665

| 2.6612.6()22.6632.664| 2.6662.6672.6682.669

HERNNEEN
(i)

\ i

We call this process of visualisation of representation of numbers on the number line,
through a magnifying glass, as the process of successive magnification.

So, we have seen'that it is possible by sufficient successive magnifications to visualise
the position (or representation) of a realnumberwith a terminating decimal expansion
on the number line:

Let us now try and visualise the position (or representation) of a real number with a
non-terminating recurring decimal expansion on the number line. We can look at
appropriate intervals through a magnifying glass and by successive magnifications
visualise the position of the number on the number line.

- Visualize the representation of 5.37 on the number line upto 5 decimal
places that is, up te 5.37777.

:’Once again we proceed by successive magnification, and successively
decrease the lengths of the portions of the number line in which 5.37 is located. First,

we see that 5.37 is located between 5 and 6. In the next step, we locate 5.37
between 5.3 and 5.4. To get a more accurate visualization of the representation, we
divide this portion of the number line into 10 equal parts and use a magnifying glass to

visualize that 5.37 lies between 5.37 and 5.38. To visualize 5.37 more accurately, we
again divide the portion between 5.37 and 5.38 into ten equal parts and use a magnifying

glass to visualize that 5.37 lies between 5.377 and 5.378. Now to visualize 5.37 still
more accurately, we divide the portion between 5.377 an 5.378 into 10 equal parts, and
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visualize the representation of 5.37 as in Fig. 1.14 (iv). Notice that 5.37 is located

closer to 5.3778 than to 5.3777 [see Fig 1.14 (iv)].

53 7

5317532 5.33 534

RN

537,

5.371 5372 5.373 5.374

Pl AN

5.375

53777 151378

53771 5.3773 | 5.3777 5.3779

4||||| L |

5.37 (iv)

>

Fig. 1.14

Remark : We can proceed endlessly in this manner, successively viewing through a
magnifying glass and simultaneously imagining the decrease in the length of the portion
of the number line in which 5.37 is located. The size of the portion of the line we
specify depends on the degree of accuracy we would like for the visualisation of the

position of the number on the number line.



You might have realised by now that the same procedure can be used to visualise a
real number with a non-terminating non-recurring decimal expansion on the number
line.

In the light of the discussions above and visualisations, we can again say that every

real number is represented by a unique point on the number line. Further, every
point on the number line represents one and only one real number.

1. Visualise 3.765 on the number line, using successive magnification.

2. Visualise 426 on the number line, up to 4 decimal places:

uhbers

You have learnt, in earlier classes, that rational numbers satisfy the commutative,
associative and distributive laws foraddition and multiplication. Moreover, if we add,
subtract, multiply or divide (except by zero) two rational numbers, we still get a rational
number (that is, rational numbers are ‘closed’ with respect to addition, subtraction,
multiplication’ and division). It turns out that irrational numbers also satisfy the
commutative, associative and distributive laws for addition and multiplication. However,
the sum, difference; quotients and products of irrational numbers are not always

irrational. For example, (\/6) 4 (_\/g) ,(\/f) - (\/5) (\/5)(\5) and % are

rationals.

Let us look at what happens when we add and multiply a rational number with an

irrational number. Forexample, /3 is irrational. What about 2 + /3 and 24/3 2 Since

J3 has a non-terminating non-recurring decimal expansion, the same is true for

24 /3 and 203 Therefore, both 2 + /3 and 2./3 are also irrational numbers.

7
Example 12 : Check whether 7./5, ﬁ V2 + 21, 1= 2 are irrational numbers or

not.

- J5 =2.236..., 2 =1.4142..,n=3.1415...



75 7S5

Then 7\/§ =15.652..., ﬁ = W = ? =3.1304...

V2 +21=224142..,n—-2=1.1415...
All these are non-terminating non-recurring decimals. So, all these are irrational numbers.

Now, let us see what generally happens if we add, subtract, multiply, divide; take
square roots and even nth roots of these irrational numbers, where n:is any natural
number. Let us look at some examples.

: Add 22 + 53 and 2. —3.3.
: (2\/§+5\B)+(\/§—3\6) = (2\/§+\/§)+(5\/§—3\/§)
S 2+DV2+ (523 =32 +23

- Multiply 6./5 by 2./5 .

65245 =6 x2x (5 x [5.=12 %X 5=60

5 :\Divide 815 by 2./3 .

:8\/E+2\/_=M=4\/§
243

These examples may lead you to expect the following facts, which are true:
(i) The sum or difference of a rational number and an irrational number is irrational.

(ii) The product or quotient of a non-zero rational number with an irrational number is
irrational.

(iii) Ifwe add, subtract, multiply or divide two irrationals, the result may be rational or
irrational.

We now turn our attention to the operation of taking square roots of real numbers.
Recall that, if a is a natural number, then /g = » means »>= g and b > 0. The same
definition can be extended for positive real numbers.

Let @ > 0 be a real number. Then ./ = b means b*> = a and b > 0.

In Section 1.2, we saw how to represent /5 for any positive integer 7 on the number



line. We now show how to find /x for any given positive real number x geometrically.

For example, let us find it for x =3.5, i.e., we find /3.5 geometrically.

Figglald

Mark the distance 3.5 units from afixed point A‘on a given line to obtain a point B such
that AB = 3.5 units (see Fig. 115). From B, mark a distance of 1junit and mark the
new point as C. Find the mid-point of AC and mark that point ag O. Draw a semicircle
with centre O and radius‘OC. Draw a line perpendicular to AC passing through B and

intersecting the semicircle at D. Then, BD = /3.5

More generally, to-find Jx , for any positive real
number x, we mark B so that AB = x units; and, as in
Fig. 1.16, mark.C so that BC = 1 unit. Then, as we

have done for the case x = 3.5, we find BD = Jx

(see Fig. 1.16). We can prove this result using the

Pythagoras Theorem.

Notice that, in Fig. 1.16, A OBD"is a right-angled triangle. Also, the radius of the circle
x+1

is > units.
x+1
Therefore, OC = OD = OA = > units.
. X+ lj X - 1‘
Now, OB = 5 >

So, by the Pythagoras Theorem, we have

x+1Y x—1Y  4x
BD? = 0OD? - OB? = - =—=X,

2 2 4

This shows that BD = [y .



This construction gives us a visual, and geometric way of showing that /x exists for

all real numbers x > 0. If you want to know the position of \/x on the number line,

then let us treat the line BC as the number line, with B as zero, C as 1, and so on.
Draw an arc with centre B and radius BD, which intersects the number line in'E

(see Fig. 1.17). Then, E represents Jx .

We would like to now extend the idea of square roots to cube roots, fourth roots,
and in general nth roots, where 7 is a positive integer. Recall your understanding of
square roots and_cuberoots from earlier classes.

What is §/§ ? Well, we know it has to be some positive number whose cube is 8, and
you must have guessed 3/ = 2. Letus try /243 . Do you know some number b such
that 5° = 243? The answer is 3. Therefore, 3/243 = 3.

From these examples, can you define %/, for a real number a > 0 and a positive
integer n?
Let a > 0 be a real number and » be a positive integer. Then %/4 = b, if " = a and

b >0. Note that the symbol * ./ * used in /2, 3/8, %/a , etc. is called the radical sign.

We now list some identities relating to square roots, which are useful in various
ways. You are already familiar with some of these from your earlier classes. The
remaining ones follow from the distributive law of multiplication over addition of real
numbers, and from the identity (x + y) (x — y) = x> — )7, for any real numbers x and y.

Let a and b be positive real numbers. Then

() ab =ab (if) \/%Z%



Gy (Va+vB) (Va ~vB)=a=b (v (a+VB) (a-B)=a -
) (Va +VB) (Ve + V) =ac + Jad + be + bd
(vi) (\/5+x/3)2=a+2\/£+b

Let us look at some particular cases of these identities.

- Simplify the following expréssions:
0 (5+37)(2+5) @ (5+45){s ~5)
(i) (V3 + 7 vy (V1= 7 ) (Vi1 +7)
(i) (5+VT)(2+5) =10+ 55 + 247 +4/35
(ii) (5+ﬁ)(s-ﬁ)zsz—(ﬁ)zzzs—szzo
(i) (ﬁ+ﬁ)2:(ﬁ)z+2ﬁﬁ+(ﬁ)2:3+2\/i+7=10+2\/i
(iv) (\/ﬁ—ﬁ)(Jﬁ+ﬁ)=(\/ﬁ)2—(ﬁ)2:11—7=4

< : Note that ‘simplify’.in the example above has been used to mean that the
expression should be written as the sum of a rational and an irrational number.

1
We end this section by considering the following problem. Look at E Can you tell

where it shows up onthe number line? You know that it is irrational. May be it is easier
to handle if the denominator is a rational number. Let us see, if we can ‘rationalise’ the
denominator, that is, to make the denominator into a rational number. To do so, we
need the identities involving square roots. Let us see how.

1
P - Rationalise the denominator of E

1
- We want to write E as an equivalent expression in which the denominator

is a rational number. We know that /2 ../2 is rational. We also know that multiplying



V2 V2

E by ﬁ will give us an equivalent expression, since ﬁ = 1. So, we put these two

facts together to get

5
lel

1
In this form, it is easy to locate ﬁ on the number line. It is half way between 0-and
2!

1
- Rationalise the. denominator of 2 \/g

1
. We use the Identity (iv) given earlier. Multiply and divide 2+ 3 by

1 2—\/5_2—\/522_\/5

X
2-\Broget 3B T 5T 4k

5
- Rationalise the denominator of \/5 _ Jg ’

: Here we use the Identity (iii) given earlier.

5 5 S S(VB+V5) s
00 Bas T BB Bz 3-5 :(7j(6+ﬁ)

1
Example 20 : Rationalise the d inator of :
nple ationalise the denominator of ——— NG

v 1 (71232 _7-3V2 _7-32
7432 7+3V2 (7-3V2) 49-18 31
So, when the denominator of an expression contains a term with a square root (or

anumber under a radical sign), the process of converting it to an equivalent expression
whose denominator is a rational number is called rationalising the denominator.



Classity the following numbers as rational or irrational:

207
0 2-5 @ (3+V23) V23 Gy T

1
(iv) E v)2m

Simplify each of the following expressions:

W (3+3)(2+2) i (3+3) (3-+3)
Gi) (V5 + \/5)2 @ (V5 —2) (+5 +42)

Recall, 7 is defined as the ratio of the circumference(say. c) of a circle to its diameter

(say d). Thatis; = 2 This seems to contradict the fact that 7 is irrational. How will
you resolve-this contradiction?

Represent /9.3 on the number line.

Rationalise'the denominators of the following:

1 1
(@ Ne (i) J7 -6

1 1
@ 5 ® 72

onent

Do you remember how to simplify the following?

G 17217 = (i) (5% =
23"
(iii) prui (iv) 7.9 =
Did you get these answers? They are as follows:
@ 177.17°=17 (i) (527 = 5™
(iii) 22331: =23’ (iv) 7% . 93 = 63°



To get these answers, you would have used the following laws of exponents,
which you have learnt in your earlier classes. (Here a, n and m are natural numbers.
Remember, a is called the base and m and n are the exponents.)

i a.a=a " @ii) (a™y" = a™

m

(iii) Z —d" " m>n (iv) a"b" = (ab)"

What is (a)°? Yes, it is 1! So you have learnt that (a)° = 1. So, using (iii), we can

get o a™. We can now extend the laws to negative exponents too.

So, for example :

@ 177177 =17" = # () 5*)7 =5
-10
e -17 . _ _ /
(i) 5 =23 @) (7)) 563"
Suppose we want to do'the following computations:
2 N 1\*
@ 2°.23 (ii) (35]
1
75 o
(i) — (iv) 135 -17°
73

How would we go about it? It turns out that we can extend the laws of exponents
that we have studied-earlier, even when the base is a positive real number and the
exponents are rational numbers. (Later you will study that it can further to be extended
when the exponents are'real numbers.) But before we state these laws, and3t0 even
make sense of these laws, we need to first understand what, for example 42 is. So,
we have some work to do!

In Section 1.4, we defined #/4 for a real number a > 0 as follows:

Let a > 0 be a real number and 7 a positive integer. Then 2/g = b, if »” = a and
b>.0.

1 1
In the language of exponents, we define 2/; = a”. So, in particular, 3/2 = 23.

3
There are now two ways to look at 42.
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P - (43)5 = (64)3 =8

Therefore, we have the following definition:

o~
™~
|

Let a > 0 be a real number. Let m and n be integers such that m.and » have no
common factors other than 1, and # > 0. Then,

ar — ( o/ )’" g
We now have the following extended laws of exponents:

Let a > 0 be a real number and p and ¢ be rational numbers. Then, we have

(i) a.a"=a" (i) (&¥)1' = a4
.o ﬁ — p—q . v 3
(i) —=a (iv) atb” = (aby
a
You can now use these laws to answer the questions asked earlier.
21 ny?
1 : Simplify (i) 23 .23 (ii) (35J
1
75 L
(iii) (— (iv) 135 -17°
73
RN ET Nt
(l) 23,23:23 3 :23:21:2 (11) (35] =35
1
Tl s 2 [ ! 1
(i) =77 =71 =75 (iv) 13°-17° =13 x17)° =221°
73
L 1 1
1. Find: (i) 642 (i) 32° (ii)) 125°
3 2 3 -1
2. Find: () 92 (i) 32° (i) 16* (iv) 125°
21 LY 11% 1o
3. Simplify: () 2325 (ii) (3—] (i) — (v) 72. 82



In this chapter, you have studied the following points:

1. Anumber ris called a rational number, if it can be written in the form 5 , where p and g are

integers and g # 0.

2. Anumber s is called a irrational number, if it cannot be written in the form g , where p and

q are integers and g # 0.

3. The decimal expansion of a rational number s either terminating or non-terminating recurring.
Moreover, a number whose decimal expansion is terminating or non-terminating recurring
is rational.

4. The decimal expansion of an irrational mumber is non-terminating non-recurring. Moreover,
anumber whose decimal expansion is non-terminating non-recurring is irrational.

All the rational and irrational numbers make up the collection of real numbers.

There is a unique real number corresponding to every point on the number line. Also,
corresponding to each real. number, there is a unique point on the number line.

r
7. Ifrisrational and s is irrational, then » + s and »— s are irrational numbers, and »s and S are

irrational numbers; 7 # 0.

8. For positive real numbers @ and b, the following identities hold:
O ab = Javb i o=
i) (Va+Bb)(Ya=b)=a-b (v (a+b)(a-b)=a'-b
W) (\/E+\/3)2 —a+ 2Jab + b

Ja b

Ja-b

> where aand b are

1
9. Torationalise the denominator of > we multiply this by
Ja+b

integers.
10. Let a > 0 be a real number and p and ¢ be rational numbers. Then
i) &.at=w"1 (i) (@)1=

(iif) Z_q =a’ (iv) @b’ = (aby
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The word ‘geometry’ comes form the Greek words_‘geo’, meaning the ‘earth’,
and ‘metrein’, meaning ‘to measure’. Geometry appears to have originated from
the need for measuring land. This branch of mathematics was studied in various
forms in every ancient civilisation, be it in Egypt, Babylonia, China, India, Greece,
the Incas, etc./The people-of these civilisations faced several practical problems
which required'the deyelopment of geometry.in various ways.

For example, whenever the river Nile
overflowed, it wiped out the boundaries between
the adjoining fields of different land owners. After
such flooding, these boundaries had to be
redrawn. For this purpose, the Egyptians
developed a number of geometric techniques and
rules for calculating simple areas and also for
doing simple constructions. The knowledge of
geometry was also used by them for computing
volumes of granaries, and for constructing canals
and pyramids. They also knew the correct formula
to find the volume of a truncated pyramid (see
Fig. 2.1).You know that a pyramid is a solid figure,
the base of which is a triangle, or square, or some
other polygon, and its side faces are triangles | ATruncated Pyramid
converging to a point at the top.



In the Indian subcontinent, the excavations at Harappa and Mohenjo-Daro, etc.
show that the Indus Valley Civilisation (about 3000 BCE) made extensive use of
geometry. It was a highly organised society. The cities were highly developed and
very well planned. For example, the roads were parallel to each other and there was
an underground drainage system. The houses had many rooms of different types. This
shows that the town dwellers were skilled in mensuration and practical arithmetic.
The bricks used for constructions were kiln fired and the ratio length : breadth : thickness,
of the bricks was found tobe 4 : 2 : 1.

In ancient India, the Sulbasutras (800 BCE to 500 BCE) were the manuals of
geometrical constructions. The geometry)of the Vedic period originated with the
construction of altars (or vedis) and fireplaces for performing Vedic rites. The location
of the sacred fires had to be in accordance to the clearly laid down instructions about
their shapes and areas, if they were to be effective instruments. Square and circular
altars were used for household rituals, while altars whose shapes were combinations
of rectangles, triangles and trapeziums were required for public worship. The sriyantra
(given in the Atharvaveda) consists of nine interwoven isosceles triangles. These
triangles are arranged in such a way that they produce 43 subsidiary triangles. Though
accurate geometric methods were used for the constructions of altars, the principles
behind them werenot discussed.

These examples show that geometry was being developed and applied everywhere
in the world. But this'was happening in'an unsystematic manner. What is interesting
about these developments of geometry in the ancient world is that they were passed
on from one generation to the next, either orally or through palm leaf messages, or by
other ways. Also, we find that in some civilisations like Babylonia, geometry remained
a very practical oriented discipline, as was the case in India and Rome. The geometry
developed by Egyptians mainly consisted of the statements of results. There were no
general rules of the procedure. In fact, Babylonians and Egyptians used geometry
mostly for practical purposes and did very little to develop it as a systematic science.
But in civilisations like Greece, the emphasis was on the reasoning behind why certain
constructions work.! The Greeks were interested in establishing the truth of the
statements they discovered using deductive reasoning (see Appendix 1).

A Greek mathematician, Thales is credited with giving the
first known proof. This proof was of the statement that a circle
is bisected (i.e., cut into two equal parts) by its diameter. One of
Thales’ most famous pupils was Pythagoras (572 BCE), whom
you have heard about. Pythagoras and his group discovered many
geometric properties and developed the theory of geometry to a
great extent. This process continued till 300 BCE. At that time
Euclid, a teacher of mathematics at Alexandria in Egypt, collected
all the known work and arranged it in his famous treatise,

Thales
(640 BCE —546 BCE)



called ‘Elements’. He divided the ‘Elements’ into thirteen
chapters, each called a book. These books influenced
the whole world’s understanding of geometry for
generations to come.

In this chapter, we shall discuss Euclid’s approach
to geometry and shall try to link it with the present day
geometry.

Euclid (325 BCE —-265 BCE)

A 4‘{. )
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The Greek mathematicians of Euclid’s time thought of geometry as an.abstract model
ofthe world in which they lived. Thenotions of point, line, plane (or surface) and so on
were derived from what was seen around them. From studies of the space and solids
in the space around them, an abstract geometrical notion of asolid object was developed.
A solid has shape, size, position, and can be moved from one place to another. Its
boundaries are called surfaces. They separate one/part of the space from another,
and are said to have no thickness. The boundaries of the surfaces are curves or
straight lines. These.lines end in points.

Consider the three 'steps from solids.to points (solids-surfaces-lines-points). In
each step we lose.one extension, also called’a dimension. So, a solid has three
dimensions, a surface has two, a line has one and a point has none. Euclid summarised
these statements as definitions. He began his exposition by listing 23 definitions in
Book 1 of the ‘Elements’. A few of them are given below :

1. A point is that which has no part.
A line is breadthless length.

The ends.of'a line are points.

A surface is that which has length and breadth only.

2
3
4. A straightline is a line which lies evenly with the points on itself.
5
6. [ The edges of a surface are lines.

7

A-plane surface is a surface which lies evenly with the straight lines on itself.

If you carefully study these definitions, you find that some of the terms like part,
breadth, length, evenly, etc. need to be further explained clearly. For example, consider
his definition of a point. In this definition, ‘a part’ needs to be defined. Suppose if you
define ‘a part’ to be that which occupies ‘area’, again ‘an area’ needs to be defined.
So, to define one thing, you need to define many other things, and you may get a long
chain of definitions without an end. For such reasons, mathematicians agree to leave



some geometric terms undefined. However, we do have a intuitive feeling for the
geometric concept of a point than what the “definition’ above gives us. So, we represent
a point as a dot, even though a dot has some dimension.

A similar problem arises in Definition 2 above, since it refers to breadth and length,
neither of which has been defined. Because of this, a few terms are kept undefined
while developing any course of study. So, in geometry, we take a point, a line and a
plane (in Euclid‘s words a plane surface) as undefined terms. The only thing is
that we can represent them intuitively, or explain them with the help of ‘physical
models’.

Starting with his definitions, Euclid assumed certain properties, which were not to
be proved. These assumptions are actually “obvious universaltruths’. He'divided them
into two types: axioms and postulates. He used the term ‘postulate’ for the assumptions
that were specific to geometry..Common notions (often called axioms), on the other
hand, were assumptions used throughout mathematics and not specifically linked to
geometry. For details about axioms and postulates, refer to/Appendix 1. Some of
Euclid’s axioms, not.in his order, are given below :

(1) Things which are equal to the same thing are equal to one another.
(2) If equalsare added to equals, the wholes are equal.

(3) If equals are’subtracted from equals, the remainders are equal.

(4) Things which coincide with one another are equal to one another.

(5) The whole is greater than the part.

(6) Things which are double of the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.

These ‘common notions’ refer to magnitudes of some kind. The first common
notion could be applied to plane figures. For example, if an area of a triangle equals the
area of a rectangle and the area of the rectangle equals that of a square, then the area
of the triangle also equals the area of the square.

Magnitudes of the same kind can be compared and added, but magnitudes of
different kinds cannot be compared. For example, a line cannot be added to a rectangle,
nor ¢an an angle be compared to a pentagon.

The 4th axiom given above seems to say that if two things are identical (that is,
they are the same), then they are equal. In other words, everything equals itself. It is
the justification of the principle of superposition. Axiom (5) gives us the definition of
‘greater than’. For example, if a quantity B is a part of another quantity A, then A can
be written as the sum of B and some third quantity C. Symbolically, A > B means that
there is some C such that A =B + C.



Now let us discuss Euclid’s five postulates. They are :
. A straight line may be drawn from any one point to any other point.

Note that this postulate tells us that at least one straight line passes through two
distinct points, but it does not say that there cannot be more than one such line. However,
in his work, Euclid has frequently assumed, without mentioning, that there is a unique
line joining two distinct points. We state this result in the form of an axiom as follows:

. Given two distinct points, there is a unique line that passes through
them.

How many lines passing through P also pass through Q (see Fig. 2.4)? Only one,
that is, the line PQ. How many lines passing through Q also pass through.P? Only one,
that is, the line PQ. Thus, the statement above is self-evident, and so_is taken as an
axiom.

- A terminated line can be produced indefinitely.

Note that what we call a line segment now-a-days is what Euclid called a terminated
line. So, according to-the present day terms, the second postulate says that a line
segment can be extended on either side to form a line (see Fig. 2.5).

Postulate 3 : A4 circle can be drawn with any centre and any radius.
stulate 4 @ All right angles are equal to one another.

: If a straight line falling on two straight lines makes the interior
angles on the same side of it taken together less than two right angles, then the
two straight lines, if produced indefinitely, meet on that side on which the sum of
angles is less than two right angles.



For example, the line PQ in Fig. 2.6 falls on lines

AB and CD such that the sum of the interior angles 1 A P B

and 2 is less than 180° on the left side of PQ. : !

Therefore, the lines AB and CD will eventually I 7\

intersect on the left side of PQ. Q D

A brief'look at the five postulates brings to your notice that Postulate 5 is farmore
complex than any other postulate. On the other hand, Postulates 1 through 4, are so
simple and obvious that these are taken as ‘self-evident truths’. However, it is not
possible to prove them. So, these statements are accepted without any proof
(see Appendix 1). Because of its.complexity, the fifth postulate will be given more
attention in the next section.

Now-a-days, ‘postulates’ and ‘axioms’ are terms that are used interchangeably
and in the same sense. ‘Postulate’ is actually a verb.-When we say “let us postulate”,
we mean, “let us make some statement based on'the observed phenomenon in the
Universe”. Its truth/validity is checked afterwards. If it is true, then it is accepted as a
‘Postulate’.

A system of axioms is called consistent (see Appendix 1), if it is impossible to
deduce from these-axioms a statement that contradicts any axiom or previously proved
statement. So, when any system of axioms is given, it needs to be ensured that the
system is consistent.

After Euclid stated his postulates and axioms, he used them to prove other results.
Then using these results, he proved some more results by applying deductive reasoning.
The statements that” were proved are called propositions or theorems. Euclid
deduced 465 propositions in a logical chain using his axioms, postulates, definitions and
theorems proved earlier in the chain. In the next few chapters on geometry, you will
be using these axioms to prove some theorems.

Now, let us see in the following examples how Euclid used his axioms and postulates
for proving some of the results:

Example 1 : If A, B and C are three points on a line, and B lies between A and C
(see Fig. 2.7), then prove that AB + BC = AC.



: In the figure given above, AC coincides with AB + BC.

Also, Euclid’s Axiom (4) says that things which coincide with one another are equal to
one another. So, it can be deduced that

AB +BC= AC

Note that in this solution, it has been assumed that there is a unique line passing
through two points.

, : Prove that an equilateral triangle can be constructed on.any given line
segment.

: In the statement above, a line segment of any length is given, say AB
[see Fig. 5.8(1)].

Here, you need to do some construction. Using Euclid’s Postulate 3, you can draw a
circle with point A as the centre and AB as the radius [see Fig. 2.8(ii)]. Similarly, draw
another circle with point B as the centre and BA as the radius. The two circles meet at
a point, say C. Now, draw the line segments AC and BC to form A ABC
[see Fig. 2.8 (iii)].

So, you have to prove that this triangle is equilateral, i.e., AB = AC = BC.
Now, AB = AC, since they are the radii of the same circle )
Similarly, AB'= BC (Radii of the same circle) )

Fromthesetwo facts, and Euclid’s axiom that things which are equal to the same thing
are equal to one another, you can conclude that AB = BC = AC.

So;A ABC is an equilateral triangle.

Note that here Euclid has assumed, without mentioning anywhere, that the two circles
drawn with centres A and B will meet each other at a point.

Now we prove a theorem, which is frequently used in different results:



1 : Two distinct lines cannot have more than one point in common.

: Here we are given two lines / and m. We need to prove that they have only one

point in common.

For the time being, let us suppose that the two lines intersect in two distinct points,
say P and Q. So, you have two lines passing through two distinct points P and Q. But
this assumption clashes with the axiom that only one line can pass through two distinct
points. So, the assumption that we started with, that two lines can pass through two
distinct points is wrong.

From this, what can we conclude? We are forced to conclude that two distinct
lines cannot have more than one point in common.

1.

EXFERCISE
Which of the following statements are true and which are false? Give reasons for your
answers.
(i) Only oneline can pass through a single point.
(ii) There are an infinite number of lines which pass through two distinct points.
(iii) A terminated line can be produced indefinitely on both the sides.
(iv) Iftwocircles are equal, then their radiiare equal.
(v) InFig.2.9,ifAB=PQand PQ=XY, then AB = XY.

Give a definition for each of the following terms. Are there other terms that need to be
defined first? What are they, and how might you define them?

(i) parallel lines (i) perpendicular lines (i) line segment
(iv) radius of a circle (v) square
Consider two ‘postulates’ given below:

(i) Given any two distinct points A and B, there exists a third point C which is in
between A and B.

(ii) There exist at least three points that are not on the same line.

Do these postulates contain any undefined terms? Are these postulates consistent?
Do they follow from Euclid’s postulates? Explain.



4. If a point C lies between two points A and B such that AC = BC, then prove that
1
AC= 5 AB. Explain by drawing the figure.
5. In Question 4, point C is called a mid-point of line segment AB. Prove that every line

segment has one and only one mid-point.
6. InFig.2.10,ifAC =BD, then prove that AB = CD.

o.2.10

7.  Why is Axiom 5, in the list of Euclid’s axioms, considered a ‘universal truth’? (Note that
the question is not about the fifth postulate.)

ofis of Euelid’s Fi tudate

Euclid’s fifth postulate is very significant in the history of mathematics. Recall it again
from Section 2.2 We see that by implication;mo intersection of lines will take place
when the sum of'the measures of the interior angles on the same side of the falling line
is exactly 180°. There are several equivalent versions of this postulate. One of them is
‘Playfair’s Axiom”(given by a Scottish mathematician John Playfair in 1729), as stated
below:

‘For every line | and for-every point P not lying on [, there exists a unique line
m passing through P and parallel to 1.

From Fig. 2.11, you.can see that of all the lines passing through the point P, only line
m is parallel to line /.

This result can also be stated in the following form:

Two distinct intersecting lines cannot be parallel to the same line.



Euclid did not require his fifth postulate to prove his first
28 theorems. Many mathematicians, including him, were
convinced that the fifth postulate is actually a theorem that
can be proved using just the first four postulates and other
axioms. However, all attempts to prove the fifth postulate as a
theorem have failed. But these efforts have led to a great l
achievement — the creation of several other geometries. These
geometries are quite different from Euclidean geometry. They
are called non-Euclidean geometries. Their creation is ~
considered a landmark in the history of thought because till
then everyone had believed that Euclid’s was the only geometry
and the world itself was Euclidean. Now the geometry of the universe we live in has been
shown to be a non-Euclidean geometry. In fact, it is called spherical geometry. In spherical
geometry, lines are not straight. They are parts of great circles (i:e., circles obtained by
the intersection of a sphere’and planes passing through the centre of the sphere).

In Fig. 2.12, the lines AN and BN (which are parts:of great circles of a sphere) are
perpendicular to the‘'same line AB. But they are meeting each other, though the sum of
the angles on the same side'of line AB is not lessthan two right angles (in fact, it is 90°
+90° = 180°).Also, note that the sum of the angles of the triangle NAB is greater than
180°, as LA+ 2 B = 180°. Thus, Euclidean geometry is valid only for the figures in the
plane. On the curved surfaces, it fails.

Now, let us consider an example.

Exa : Consider the following statement : There exists a pair of straight lines
that are everywhere equidistant from one another. Is this statement a direct consequence
of Euclid’s fifth postulate? Explain.

: Take any line// and a point P not on /. Then, by Playfair’s axiom, which is
equivalent to the fifth postulate, we know that there is a unique line m through P which
is parallel to /.

Now, the distance of a point from a line is the length of the perpendicular from
the point to the line. This distance will be the same for any point on m from / and any
point.on / from m. So, these two lines are everywhere equidistant from one another.

. The geometry that you will be studying in the next few chapters is
Euclidean Geometry. However, the axioms and theorems used by us may be different
from those of Euclid’s.



1. How would you rewrite Euclid’s fifth postulate so that it would be easier to understand?

2. Does Euclid’s fifth postulate imply the existence of parallel lines? Explain.

In this chapter, you have studied the following points:

1.

Though Euclid defined a point, a line, and a plane, the definitions are not accepted by
mathematicians. Therefore, these terms are now taken as undefined.

Axioms or postulates are the assumptions which are obvious universal truths. They are not
proved.

Theorems are statements which are proved, using definitions, axioms, previously proved
statements and deductive reasoning:

Some of Euclid’s axioms were :

(1) Things which are equal to the same thing are equal to one another.
(2) Ifequals are added to equals, the wholes are equal.

(3) Ifequalsare subtracted from equals, the temainders are equal.

(4) Things which coincide with one another/are equal to one another.

(5) The whole is greater than the part.

(6) Things which are double of'the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.
Euclid’s postulates were :

Postulate 1 : A straight line may be drawn from any one point to any other point.
Postulate 2 : A terminated line can be produced indefinitely.

Postulate 3 :"A circle’can be drawn with any centre and any radius.
Postulate 4 : Allright angles are equal to one another.

Postulate 5: Ifa straight line falling on two straight lines makes the interior angles on the
same side of it taken together less than two right angles, then the two straight lines, if
produced indefinitely, meet on that side on which the sum of angles is less than two right
angles.

Two equivalent versions of Euclid’s fifth postulate are:

(i) ‘For every line / and for every point P not lying on /, there exists a unique line m
passing through P and parallel to /.

(ii) Two distinct intersecting lines cannot be parallel to the same line.

All the attempts to prove Euclid’s fifth postulate using the first 4 postulates failed. But they
led to the discovery of several other geometries, called non-Euclidean geometries.



CHAPTER 3|

- wms 1

In Chapter 2, you have studied that a minimum of two points are required to draw a
line. You have also studied some axioms and, with the help of these axioms, you
proved some other statements. In this chapter, you will study the properties of the
angles formed when two lines intersect each other, and also the properties of the
angles formed when a line intersects two or more parallel lines at distinct points.
Further you will use these properties to prove some statements using deductive reasoning
(see Appendix 1). Yowhave already verified these statements through some activities
in the earlier classes.

In your daily life, you see different types of angles formed between the edges of
plane surfaces. For making a/similarkind of model using the plane surfaces, you need
to have a thorough knowledge of angles. For instance, suppose you want to make a
model of a hut to keep-in the school exhibition using bamboo sticks. Imagine how you
would make it? You would keep some of the sticks parallel to each other, and some
sticks would be kept slanted. Whenever an architect has to draw a plan for a multistoried
building, she has to draw intersecting lines and parallel lines at different angles. Without
the knowledge of the properties of these lines and angles, do you think she can draw
thellayout of the building?

In science, you study the properties of light by drawing the ray diagrams.
For example, to study the refraction property of light when it enters from one medium
to\the other medium, you use the properties of intersecting lines and parallel lines.
When two or more forces act on a body, you draw the diagram in which forces are
represented by directed line segments to study the net effect of the forces on the
body. At that time, you need to know the relation between the angles when the rays
(or line segments) are parallel to or intersect each other. To find the height of a tower
or to find the distance of a ship from the light house, one needs to know the angle



formed between the horizontal and the line of sight. Plenty of other examples can be
given where lines and angles are used. In the subsequent chapters of geometry, you
will be using these properties of lines and angles to deduce more and more useful
properties.

Let us first revise the terms and definitions related to lines and angles learnt in
earlier classes.

Recall that a part (or portion) of a line with two end points is called a line-segment
and a part of a line with one end point is called a ray. Note that the line segment AB is

denoted by AB, and its length is derioted by AB. The ray AB is denoted by AR, and

a line is denoted by AR . However, we will not use these symbols, and will denote
the line segment AB, ray AB, length AB and line AB by the same symbol, AB. The
meaning will be clear from the context. Sometimes small letters /, m, n, etc. will be
used to denote lines.

If three or more points‘lie on the same line, they are called collinear points;
otherwise they/are called non-collinear points.

Recall that an angle is formed when two rays originate from the same end point.
The rays making-an-angle are called the arms of the angle and the end point is called
the vertex of the angle. You haye studied different types of angles, such as acute
angle, right angle, obtuse angle, straight angle and reflex angle in earlier classes
(see Fig. 3.1).

(i) acute angle : 0° <x <90° (ii) right angle : y =90° (iii) obtuse angle : 90° <z <180°

(iv) straight angle : s = 180° (v) reflex angle : 180° <7#<360°
Fig. 3.1 : Types of Angles



An acute angle measures between 0° and 90°, whereas a right angle is exactly
equal to 90°. An angle greater than 90° but less than 180° is called an obtuse angle.
Also, recall that a straight angle is equal to 180°. An angle which is greater than 180°
but less than 360° is called a reflex angle. Further, two angles whose sum is 90° are
called complementary angles, and two angles whose sum is 180° are called

supplementary angles.

You have also studied about adjacent angles
in the earlier classes (see Fig. 3.2). Two angles
are adjacent, if they have a common vertex, a
common arm and their non-common arms are
on different sides of the common arm. In
Fig. 3.2, £ ABD and £ DBC are adjacent
angles. Ray BD is their common arm and point
B is their common vertex. Ray BA and ray BC
are non common arms. Moreover, when two
angles are adjacent, then their sum is always
equal to the angle formed by the two non-
common arms. Se,"we can write

Z ABC = £ ,ABD + £ DBC.

Note that £ ABC and £ ABD"are not
adjacent angles. Why? Because. their non-
common arms BD and BC lie on'the same side
of the common arm BA.

If the non-common arms BA and BC in
Fig. 3.2, form a line then it will look like Fig. 3.3.
In this case, £ ABD and £ DBC are called
linear pair of angles.

You may also recall the vertically opposite
angles formed when two lines, say AB and CD,
intersect each other, say at the point O
(see'Fig. 3.4). There are two pairs of vertically
opposite angles.

One pair is ZAOD and ZBOC. Can you
find the other pair?

Fig. 3.2 : Adjacent angles

Fig. 3.3 : Linear pair of angles

Fig. 3.4 : Vertically opposite
angles



Draw two different lines PQ and RS on a paper. You will see that you can draw them
in two different ways as shown in Fig. 3.5 (i) and Fig. 3.5 (ii).

c°

(i) Intersecting lines (ii) Non-intersecting (parallel) lines
Fig. 3.5 : Different ways of drawing two lines

Recall the notion of adine, that it extends indefinitely in both directions. Lines PQ
and RS in Fig. 3.5 (i) are intersecting lines and in Fig. 3.5 (ii) are parallel lines. Note
that the lengths of the'.common perpendiculars at different points on these parallel
lines is the same: This equal length is called the distance between two parallel lines.

noles

In Section 3.2, you have learnt the definitions of
some of the pairs of angles such as
complementary angles, supplementary angles,
adjacent angles, linear pair of angles, etc. Can
you think of some relations between these
angles? Now, let us find out the relation between
the angles formed when'a ray stands on a line.
Draw a figure in which a ray stands on a line as
shown in Fig. 3.6. Name the line as AB and the
ray as OC. What are the angles formed at the  Fig. 3.6 : Linear pair of angles
point O? They are £ AOC, £ BOC and £ AOB.

Can we write £ AOC + £ BOC = £ AOB? )
Yes! (Why? Refer to adjacent angles in Section 6.2)
What is the measure of £ AOB? It is 180°. (Why?) 2)

From (1) and (2), can you say that £ AOC + £ BOC = 180°? Yes! (Why?)

From the above discussion, we can state the following Axiom:



A : If a ray stands on a line, then the sum of two adjacent angles so
formed is 180°.

Recall that when the sum of two adjacent angles is 180°, then they are called a
linear pair of angles.

In Axiom 3.1, it is given that ‘a ray stands on a line’. From this ‘given’, we have
concluded that ‘the sum of two adjacent angles so formed is 180°°. Can we write
Axiom 3.1 the other way? That is, take the ‘conclusion’ of Axiom 3.1 as ‘given’ and
the ‘given’ as the ‘conclusion’. So it becomes:

(A) If the sum of two adjacent angles’is.180°, then a ray stands on.a line (that is,
the non-common arms form a line).

Now you see that the Axiom-6.1 and statement (A) are in a sense the reverse of
each others. We call each as.converse of the other. We donot know whether the
statement (A) is true or not.Letus check. Draw adjacent angles of different measures
as shown in Fig. 3.7. Keep the ruler along one of the non-common arms in each case.
Does the other non-common arm also lie along the ruler?

Fig. 3.7 : Adjacent angles with different measures



You will find that only in Fig. 3.7 (iii), both the non-common arms lie along the
ruler, that is, points A, O and B lie on the same line and ray OC stands on it. Also see
that £ AOC + £ COB =125°+ 55°=180°. From this, you may conclude that statement
(A) is true. So, you can state in the form of an axiom as follows:

If the sum of two adjacent angles is 180°, then the non-common arms
of the angles form a line.

For obvious reasons, the two axioms above together is called the Linear Pair
Axiom.

Let us now examine the case when two lines intersect each other.

Recall, from earlier classes, that whentwo lines intersect, thewvertically opposite
angles are equal. Let us prove thistesult now. See Appendix 1 for the ingredients of a
proof, and keep those in mind while studying the proof given:below.

If two lines intersect each other, then the vertically opposite
angles are equal.

In the statement above, it is given
that ‘two lines intersect each other’. So, let
AB and CD be'two lines intersecting at O as
shown in Fig. 3.8. They lead to two pairs of
vertically opposite-angles, namely,

(i) £ AOC and £ BOD (ii) £/AOD and
2 BOC. Fig. 3.8 : Vertically opposite angles

We need to prove that © AOC = £ BOD
and £ AOD = £ BOC.

Now, ray OA stands on line CD.
Therefore, © AOC + £ AOD = 180° (Linear pair axiom) (1)
Can we write £ AOD + £ BOD = 180°? Yes! (Why?) 2)
From (1) and (2), we can write

£ AOC+ £ AOD= £ AOD + £ BOD
This implies that £ AOC= 2 BOD (Refer Section 2.2, Axiom 3)
Similarly, it can be proved that ZAOD = ZBOC

Now, let us do some examples based on Linear Pair Axiom and Theorem 3.1.



: In Fig. 3.9, lines PQ and RS
1ntersect each other at point O. If
ZPOR: ZROQ=5":7, find all the angles.

Z POR +£ ROQ = 180°
(Linear pair of angles)

But ZPOR:ZROQ=5:7

(Given)
5
Therefore, Z POR = ) x 180° = 75°
- 7
Similarly, Z ROQ = I 180°=105°
Now, £ POS = ZROQ =105° (Vertically opposite angles)
and £ S0OQ+= ZPOR =75° (Vertically opposite angles)

Exa : In Fig. 3.10, ray OS stands on a.line POQ. Ray OR and ray OT are
angle blsectors of Z-POS and £ SOQ, respectively. If £ POS = x, find £ ROT.

: Ray OS stands on the line POQ).

Therefore, Z POS + 2 SOQ =180°
But, ZPOS =x
Therefore, x+ £S0Q = 180°

So, < SOQ = 180° —x

Now, ray OR bisects« POS, therefore,

1
4ROS=E x £ POS

X x=

N | =

1
2

1
Similarly, £S0T= = x £50Q

1
= 5 % (180° - )

90° — =
2



Now, Z ROT=~ROS+ 2 SOT
=X i900-2
2 2

= 90°

- In Fig. 3.11, OP, OQ, OR and OS are
four rays. Prove that £ POQ + £ QOR + £ SOR +
Z POS =360°.

: In Fig. 3.11, you need to produce any of )
the rays OP, OQ, OR or OS backwards to a point.
Let us produce ray OQ backwards_.te a point T so
that TOQ is a line (see Fig. 3.12): Rig.

Now, ray OP stands on line TOQ.
Therefore, ZTOP+Z2POQ=180° (1)
(Linear pair axiom)
Similarly, ray OS stands on line TOQ.
Therefore, ZTOS+ 2 S0Q=180°7 (2)
But 2/ S0Q = ~2SOR + /2 QOR
So, (2) becomes
2 TOS + Z SOR + / QOR= 180° 3)

Now, adding (1) and (3), you get

2 TOP + £ POQ + £ TOS + £ SOR + £ QOR = 360° @)
But ZTOP+ £ TOS = £ POS

Therefore, (4) becomes
ZPOQ + £ QOR + £ SOR + £ POS = 360°

1. In Fig. 3.13, lines AB and CD intersect at O. If
£ AOC + £ BOE =70° and £ BOD = 40°, find
2« BOE andreflex £ COE.
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2.

In Fig. 3.14, lines XY and MN intersect at O. If
ZPOY=90%°anda:b=2:3,find c.

In Fig. 3.15, £ PQR = £ PRQ, then prove that
ZPQS=/PRT.

In Fig.3.16, ifx + y=w + z, then prove that AOB
is a line:

In Fig. 3.17,POQ is aline. Ray OR is perpendicular
to line PQ. OS is another ray lying between rays
OP and OR. Prove that

1
£ROS = = (£QOS~£POS).

It is given that £ XYZ = 64° and XY is produced
to point P. Draw a figure from the given
information. Ifray YQ bisects £ ZYP, find £ XYQ
and reflex £ QYP.




Recall that a line which intersects two or more lines
at distinct points is called a transversal
(see Fig. 3.18). Line / intersects lines m and » at
points P and Q respectively. Therefore, line / is a
transversal for lines m and n. Observe that four angles
are formed at each of the points P and Q.

Let us name these anglesas £ 1, £2, ..., £8 as ’ ‘*7 A
shown in Fig. 3.18. \
Z 1, £2, £ 7 and £ 8 are called exterior A

angles, while £ 3, £ 4, £ 5 and“Z 6 are called
interior angles.

Recall that in the earlier’classes, you have named some pairs of angles formed
when a transversal intersects two lines. These are as follows:

(a) Corresponding angles :

(i) Z1land £5 (i) £2and £ 6

(iii) L 4/and £'8 (iv) Z3and £ 7
(b) Alternate-interior angles :

(iy£Z4and £6 (i) £3and £ 5
(c) Alternate exterior angles:

(iYZ1and £7 (ii)) £2and £ 8
(d) Interior angles on the same side of the transversal:

(i) L4 and £5 (i) £3and £ 6

Interior angles on the same side of the transversal
are also referred to as consecutive interior angles
or allied-angles or co-interior angles. Further, many
atimes, we simply use the words alternate angles for
alternate interior angles.

Now, let us find out the relation between the
angles in these pairs when line m is parallel to line 7.
You know that the ruled lines of your notebook are
parallel to each other. So, with ruler and pencil, draw
two parallel lines along any two of these lines and a
transversal to intersect them as shown in Fig. 3.19.



Now, measure any pair of corresponding angles and find out the relation between
them. You may find that: £ 1=/5,/2=/6,/4=/8and £ 3= /7. From this,
you may conclude the following axiom.

: If a transversal intersects two parallel lines, then each pair .of
corresponding angles is equal.

Axiom 3.3 is also referred to as the corresponding angles axiom. Now, let'us
discuss the converse of this axiom which is as follows:

If a transversal intersects two lines such that a pair of corresponding angles is
equal, then the two lines are parallel.

Does this statement hold true? It can.be verified as follows: Draw-a line AD and
mark points B and C on it. At B and C, construct £ ABQ and £ BCS equal to each
other as shown in Fig. 3.20 (i).

Produce QB and SC on the other side of AD to form two lines PQ and RS
[see Fig. 3.20 (ii)]. You may observe that the two lines do not intersect each other. You
may also draw common perpendiculars to the two lines PQ and RS at different points
and measure their lengths. You will find it the same everywhere. So, you may conclude
that the lines are parallel. Therefore, the converse of corresponding angles axiom is
also true. So, we have the following axiom:

3 :'If a transversal intersects two lines such that a pair of corresponding
angles lis equal, then the two lines are parallel to each other.

Can we use corresponding angles axiom to find
out the relation between the alternate interior angles
when a transversal intersects two parallel lines? In
Fig. 3.21, transveral PS intersects parallel lines AB
and CD at points Q and R respectively.

Is £ BOQR = £ QRC and £ AQR = £ QRD?
You know that £ PQA = 2 QRC (D)
(Corresponding angles axiom)



Is Z PQA = / BQR? Yes! (Why ?) 2)
So, from (1) and (2), you may conclude that

Z BQR = £ QRC.
Similarly, Z AQR = 2 QRD.

This result can be stated as a theorem given below:

If a transversal intersects two parallel lines, then each pair of
alternate interior angles is equal.

Now, using the converse of the corresponding angles axiom, can we show the two
lines parallel if a pair of alternate interiorangles is equal? In Fig. 3.22;the transversal
PS intersects lines AB and CD at points Q and R respectively such that
2/ BQR =~/ QRC.

Is AB || CD?
Z BQR = Z PQA (Why?) (1) —
But, ZBQR = ZQRC (Given) (2)
So, from (1) and"(2), you may conclude that
Z PQA = £ QRC
But they are corresponding angles.
So, AB||CD (Converse of corresponding angles axiom)

This result can be stated-as a-theorem given below:

If a transversal intersects two lines such that a pair of alternate
interior angles is equal, then the two lines are parallel.

In a similar way, you can obtain the following two theorems related to interior angles
on the same side of the transversal.

: If a transversal intersects two parallel lines, then each pair of
interior angles on the same side of the transversal is supplementary.

Theol : If a transversal intersects two lines such that a pair of interior
angles on the same side of the transversal is supplementary, then the two lines
are’parallel.

You may recall that you have verified all the above axioms and theorems in earlier
classes through activities. You may repeat those activities here also.
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3.6 Lines Parallel to the Same Line

If two lines are parallel to the same line, will they be parallel to each other? Let us
check it. See Fig. 3.23 in which line m || line / and line # || line /.

Let us draw a line 7 transversal for the lines, /, m and n. It is given that
line m || line / and line » || line /. {

Therefore, Z/ 1=/2 and £ 1=.3

\
(Corresponding angles axiom)  /
So, Z2=2/3(Why?) \\\2

n

But / 2 and £ 3 are corresponding angles and they '

are equal. s

Therefore, you can say that n&
Line m ||Line n
(Converse of corresponding angles axiom) Fig. 3.23

This result can be stated in the form of the following theorem:

Theorem 3.6/ Lines\which are parallel(to the-same line are parallel to each
other.

Note : The property above can be extended to more than two lines also.

Now, let us solve some examples related to parallel lines.

Example 4 : In Fig. 3.24,ifPQ||RS, L MXQ=135°and £ MYR =40°, find £ XMY.

. X  Q

135°

[l 400 [l
R Y S

Fig. 3.24 Fig. 3.25

Solution : Here, we need to draw a line AB parallel to line PQ, through point M as
shown in Fig. 3.25. Now, AB || PQ and PQ || RS.



Therefore, AB || RS (Why?)

(AB || PQ, Interior angles on the same side of the transversal XM)

Now, Z QXM+ £ XMB = 180°
But Z QXM= 135°

So, 135°+ « XMB = 180°
Therefore, Z XMB = 45°
Now, ZBMY = £ MYR
Therefore, Z BMY = 40°

Adding (1) and (2), you get
Z XMB + / BMY = 45° + 40°
That is, £ XMY = 85°

()
(AB || RS, Alternate angles)

)

- If a transversal intersects two lines such that the bisectors of a pair of
corresponding angles-are parallel, then prove thatthe two lines are parallel.

- In Fig. 3.26, a transversal AD intersects two lines PQ and RS at points B
and C respectively. Ray BE is the bisector of £ ABQ and ray CG is the bisector of

Z BCS; and BE || CG.
We are to prove that PQ || RS.
It is given that ray BE is the bisector of £ ABQ.
1
Therefore, < ABE = 5 < ABQ )]
Similarly, ray CG is the bisector of £ BCS.
1
Therefore, » ~ BCG = 5 Z BCS 2
But BE || CG and AD is the transversal.
Therefore, 2 ABE = Z BCG
(Corresponding angles axiom) 3)
Substituting (1) and (2) in (3), you get
! Z ABQ= 1 Z BCS
2 Q=3
That is, Z ABQ= £ BCS
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But, they are the corresponding angles formed by transversal AD with PQ and RS;
and are equal.

Therefore, PQ || RS
(Converse of corresponding angles axiom)

Example 6 : In Fig. 3.27, AB || CD and CD || EF. Also EA L AB. If £ BEF = 55°, find
the values of x, y and z.

Solution :  y+55°=180° C
: . A e
(Interior angles on the same side of the 2.
transversal ED) K D>
Therefore, y =180°—55°=125° Y
Again xX=y B
X
(AB || CD, Corresponding angles‘axiom) 4F
Therefore x=125°
Now, since AB || CD and.CD || EF, therefore, AB || EF: Fig. 3.27
So, Z EAB+ £ FEA = 180° (Interior angles on the same
side of the transversal EA)
Therefore, 90° + z + 55° = 180°
Which gives z=35°

EXERCISE 3.2

1. In Fig. 3.28, find the values of x and y and then
show that AB || CD.




MATHEMATICS

InFig.3.29,ifAB||CD,CD ||[EFandy:z=3:7,
find x.

In Fig. 3.30, if AB || CD, EF L CD and
ZGED=126°, find £ AGE, 2 GEF and £ FGE.

In Fig. 3.31, if PQ|.ST, 2 PQR = 110%and
ZRST=130° find £ QRS.

[Hint : Draw)a line parallel to ST'through
point R:]

In Fig. 3.32, if AB'| CD, £ APQ = 50° and
ZPRD=127°, find x and y.

In Fig. 3.33, PQ and RS are two mirrors placed
parallel to each other. An incident ray AB strikes
the mirror PQ at B, the reflected ray moves along
the path BC and strikes the mirror RS at C and
again reflects back along CD. Prove that
AB | CD.

E N\ F
Fig. 3.29
/ F B
. | :
C E D

= +
@
wn

Fig. 3.33



In the earlier classes, you have studied through activities that the sum of all the angles
of a triangle is 180°. We can prove this statement using the axioms and theorems
related to parallel lines.

. The sum of the angles of a triangle is 180°.

- Let us see what is given in the statement
above, that is, the hypothesis and what we need to ~
prove. We are given a triangle PQR and £ 1, £ 2 \
and £ 3 are the angles of A PQR (see Fig. 3.34).

We need to prove that £ 1+ £ 2+ £ 3 =180°. Let ¥
us draw a line XPY parallel toQR through the
opposite vertex P, as shown inFig. 3:35; so that we /)4 2
can use the properties related to parallel lines.

Now, XPY is a line.
Therefore, L4+ L1+ 2£5=180° @0)
But XPY || QR and PQ, PR are transversals:

So, L4=22 and £5=/3
(Pairs of alternate angles)

Substituting £ 4 and £ 5 in (1), we get
L2+ A+ £3=180°
That is, Z1+2£2+ 23=180°

Recall that you have studied about the formation of an exterior angle of a triangle in
the earlier classes (s¢e Fig. 3.36). Side QR is produced to point S, £ PRS is called an
exterior angle of APQR.

Is 3+ 24=180°?(Why?) (1)
Also, see-that
L1+ 22+ 23=180°(Why?) 2)
From (1) and (2), you can see that
L4=1+22.

This result can be stated in the form of
a theorem as given below:
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Theorem 3.8 : If a side of a triangle is produced, then the exterior angle so
formed is equal to the sum of the two interior opposite angles.

It is obvious from the above theorem that an exterior angle of a triangle is greater
than either of its interior apposite angles.

Now, let us take some examples based on the above
theorems.

Example 7 : In Fig. 3.37,if QT L PR, £ TQR =40°
and £ SPR =30°, find x and y.
Solution : In A TQR, 90° + 40° + x = 180°

(Angle sum property of a triangle)
Therefore, x = 50°

Now, y=ZSPR+x (Theorem 3.8)
Therefore, y=30°+50°
= 80° -
Example 8 : In/Fig. 3.38, the sides AB and AC of A

AABC are produced to/points E and D respectively.
If bisectors BO and CO of £ CBE and £ BCD
respectively meet at point O, then prove that

1
Z BOC =90°- - ZBAC.

2
Solution : Ray BO is the bisector of £ CBE. E D
Therefore, £ CBO = % 2 CBE
1

= 5 (180°-y)

=90°- 2 (1) o
Similarly, ray CO is the bisector of £ BCD. Fig. 3.38
Therefore, Z BCO = % Z BCD

1
=3 (180°—2)

= 90° - @
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In

A BOC, £ BOC + £ BCO + £ CBO = 180° 3)

Substituting (1) and (2) in (3), you get

ZBOC +90°— 2 +90°— 7 = 180°
S /BOC= =+ 2
© 22
1
or, Z BOC = 5 y+2) (4)
But, x+y+z=180° (Angle sum property of'a triangle)
Therefore, y+z="180°—x
Therefore, (4) becomes
1
< BOC = 5 (180° —x)
— 900 z
T2
1
= 90— 5 Z BAC
EXERCISE 3.3

1. InFig.3.39, sides QP and RQ of A PQR are produced to points S and T respectively.
If £ SPR=135° and £ PQT'= 110°, find £ PRQ.

2. InFig.3.40, £ X=62°, £ XYZ=54°.1f YO and ZO are the bisectors of £ XYZ and
£ XZY respectively of AXYZ, find £ OZY and £ YOZ.

3. InFig.3.41,ifAB||DE, £ BAC=35°and £ CDE =53°, find £ DCE.

S
p{)135°
1102
T Q R
Fig. 3.39 Fig. 3.40 Fig. 3.41

4. InFig.3.42,iflines PQ and RS intersect at point T, such that £ PRT =40°, £/ RPT=95°
and £ TSQ=75°, find £ SQT.



5. InFig.3.43,ifPQ L PS,PQ| SR, £ SQR =28° and £ QRT = 65°, then find the values
ofxand y.

)

6. InFig.3.44, the side QR of APQR is produced to
a point S. If the bisectors of £ PQR and

Z PRS meet at point T, then prove that A

1
ZQTR=— ZQPR.

ry

In this chapter, you have studied the following points:

1.

If aray stands on a line, then the sum of the two adjacent angles so formed is 180° and vice-
versa. This property is called as the Linear pair axiom.

If two lines intersect each other, then the vertically opposite angles are equal.

If a transversal intersects two parallel lines, then

(i) each pair of corresponding angles is equal,

(i) each pair of alternate interior angles is equal,

(iii) each pair of'interior angles on the same side of the transversal is supplementary.
If a transversal intersects two lines such that, either

(i) 'any one pair of corresponding angles is equal, or

(i), any one pair of alternate interior angles is equal, or

(i) ‘any one pair of interior angles on the same side of the transversal is supplementary,
then the lines are parallel.

Lines which are parallel to a given line are parallel to each other.
The sum of the three angles of a triangle is 180°.

If aside of a triangle is produced, the exterior angle so formed is equal to the sum of the two
interior opposite angles.



CHAPTER -4,

L - L V4 ]

You have studied algebraic expressions, their addition, subtraction, multiplication and
division in earlier classes. You also have studied how to factorise some algebraic
expressions. You maytecall the algebraic identities.:

(T ) = x? + 2y +y?

(=) =¥ - 2xyt y?
and =y FY) (-y)
and their use in factorisation. In this chapter, we shall start our study with a particular
type of algebraic expression, called polynomial, and the terminology related to it. We
shall also study the Remainder. Theorem and Factor Theorem and their use in the

factorisation of polynomials. In addition to the above, we shall study some more algebraic
identities and their use.in factorisation and in evaluating some given expressions.

ISin'Qn
Let us begin by recalling that a variable is denoted by a symbol that can take any real

1
value. We use the letters x, y, z, etc. to denote variables. Notice that 2x, 3x, — x, —Ex

are algebraic expressions. All these expressions are of the form (a constant) x x. Now
suppose we want to write an expression which is (a constant) x (a variable) and we do
not know what the constant is. In such cases, we write the constant as a, b, ¢, etc. So
the expression will be ax, say.

However, there is a difference between a letter denoting a constant and a letter
denoting a variable. The values of the constants remain the same throughout a particular
situation, that is, the values of the constants do not change in a given problem, but the
value of a variable can keep changing.



Now, consider a square of side 3 units (see Fig. 4.1).
What is its perimeter? You know that the perimeter of a square
is the sum of the lengths of its four sides. Here, each side is
3 units. So, its perimeter is 4 x 3, i.e., 12 units. What will be the
perimeter if each side of the square is 10 units? The perimeter
is 4 x 10, i.e., 40 units. In case the length of each side is x
units (see Fig. 4.2), the perimeter is given by 4x units. So, as
the length of the side varies, the perimeter varies.

Can you find the area of the square PQRS? It is
x X x = x? square units. x? is an algebraic expression. You are AN W
also familiar with other algebraic expressions like
2x, x* + 2x, x> — x* + 4x + 7. Note that, all the algebraic
expressions we have considered so/far have only whole
numbers as the exponents of the variable. Expressions of this |
form are called polynomials in one variable. In the examples
above, the variable is x. For instance, x> — x*> + 4x + 7 isja
polynomial in x. Similarly, 3y + 5y is a polynomial in the
variable y and 2 +4-is a polynomial in the variable 7.

In the polynomial x* + 2x, the expressions x* and 2x are called the terms of the
polynomial. Similarly, the polynomial 337+ 5y 7 has three terms, namely, 37, 5y and
7. Can you write the terms of the polynomial —x* + 4x*> + 7x — 2 ? This polynomial has
4 terms, namely, —x*, 4x%, 7x and/-2.

Each term of a polynomial has'a coefficient. So, in —x* + 4x* + 7x — 2, the
coefficient of x*is —1, the coefficient of x? is 4, the coefficient of x is 7 and -2 is the
coefficient of x° (Remember, x>= 1). Do you know the coefficient of x in x> —x + 7?
Itis—1.

2 is also a polynomial. In fact, 2, -5, 7, etc. are examples of constant polynomials.
The constant-polynomial 0 is called the zero polynomial. This plays a very important
role in the collection of all polynomials, as you will see in the higher classes.

1
Now, consider algebraic expressions such as x + —> Jx +3and 3/; + ). Do you
x
1
know that you can write x + " = x + x7'? Here, the exponent of the second term, i.e.,

xis -1, which is not a whole number. So, this algebraic expression is not a polynomial.

1 1
Again, \/x + 3 can be written as x> + 3 . Here the exponent of x is 5 which is

not a whole number. So, is \/x +3 a polynomial? No, it is not. What about
i/; + 3?2 It is also not a polynomial (Why?).



If the variable in a polynomial is x, we may denote the polynomial by p(x), or g(x),
or r(x), etc. So, for example, we may write :

px)=2x>+5x -3
g@x) = x° -1
M=y +y+l
s(u) =2 —u—u?+ 61’
A polynomial can have any (finite) number of terms. For instances x'° + x'¥ + ...
+ x?+x + 1 is a polynomial with 151 terms.

Consider the polynomials 2x, 2, 5x%,—5x?, y and #*. Do you see that each of these
polynomials has only one term? Polynomials having only one term ate called monomials
(‘mono’ means ‘one’).

Now observe each of the following polynomials:

PO=x+1 g =R-x. )=y L ) = w0
How many terms.are there in €ach of these? Each of these polynomials has only
two terms. Polynomials having only two terms are called binomials (‘bi’ means ‘two”).

Similarly; polynomials having only three terms are called trinomials
(‘tri” means ‘three’). Some examples of trinomials are

Py =x+ 2, 4x) =2 +x -,

u)= u+u*-2, ty)=y"+y+5.

Now, look at the polynomial p(x) = 3x” — 4x° + x + 9. What is the term with the
highest power of x ? It is 3x’. The exponent of x in this term is 7. Similarly, in the
polynomial g(y) = 5)°.— 4y*> —6, the term with the highest power of y is 5)° and the
exponent of y in this term is 6. We call the highest power of the variable in a polynomial
as the degree of the polynomial. So, the degree of the polynomial 3x7 — 4x° + x + 9

is 7 and the degree of the polynomial 5y° — 4)? — 6 is 6. The degree of a non-zero
constant polynomial is zero.

ample 1: Find the degree of each of the polynomials given below:
() ¥ —x*+3 (i) 2 —y*—y* + 2»¢ (iii) 2
0) (i) The highest power of the variable is 5. So, the degree of the polynomial
is 5.

(ii) The highest power of the variable is 8. So, the degree of the polynomial is 8.

(iii) The only term here is 2 which can be written as 2x°. So the exponent of x is 0.
Therefore, the degree of the polynomial is 0.



Now observe the polynomials p(x) = 4x + 5, g(y) = 2y, v(¢) = t + J2 and
s(u) =3 —u. Do you see anything common among all of them? The degree of each of
these polynomials is one. A polynomial of degree one is called a linear polynomial.
Some more linear polynomials in one variable are 2x— 1, J2 y+ 1,2 —u. Now, try and
find a linear polynomial in x with 3 terms? You would not be able to find it because a
linear polynomial in x can have at most two terms. So, any linear polynomial in x will
be of the form ax + b, where a and b are constants and a # 0 (why?). Similarly,
ay + b is a linear polynomial in y.

Now consider the polynomials :
2x* + 5, 5x> + 3x tm, x?>and x> + %x
Do you agree that they are all of degree two? A polynomial of degree two is called
a quadratic polynomial. Some examples of a quadratic-polynomial are 5 — y?,
4y + 5y? and 6 —y —)?. Can you write a quadratic polynomial in one variable with four
different terms? You willfind that a quadratic polynomial in one variable will have at
most 3 terms. If you list'a few more quadratic polynomials, you will find that any
quadratic polynomial in'xis.of the form ax? +:bx + ¢, where a # 0 and a, b, ¢ are
constants. Similarly, quadratic polynomial in ywill be of the form a)* + by + ¢, provided
a# 0 and a, b, ¢ are constants.

We call a polynomial of degree three a cubic polynomial. Some examples of a
cubic polynomial in x are 4x?, 2x° £ 1, 5x*+ x?, 6x° —x, 6 —x3, 2x° + 4x> + 6x + 7. How
many terms do you think a cubic/polynomial in one variable can have? It can have at
most 4 terms. These may be/writtenin the form ax® + bx?> + cx + d, where a # 0 and
a, b, ¢ and d are constants.

Now, that you have seen what a polynomial of degree 1, degree 2, or degree 3
looks like, can you write down a polynomial in one variable of degree n for any natural
number #? A polynomial in one variable x of degree » is an expression of the form

ax"+a x'+...tax+a
n n-1 1 0
where ¢, @,, a,, . . ., a, are constants and a, # 0.
In particular, if ;= a, =a,= a,=...=a = 0 (all the constants are zero), we get

thezero polynomial, which is denoted by 0. What is the degree of the zero polynomial?
The degree of the zero polynomial is not defined.

So far we have dealt with polynomials in one variable only. We can also have
polynomials in more than one variable. For example, x? + y* + xyz (where variables
are x, y and z) is a polynomial in three variables. Similarly p? + ¢'° + r (where the
variables are p, g and r), i° + v? (where the variables are u and v) are polynomials in
three and two variables, respectively. You will be studying such polynomials in detail
later.



1.  Which of the following expressions are polynomials in one variable and which are
not? State reasons for your answer.

() 4x*—3x+7 (i) y*+ 2 @i}y 37 + 42 (iv) y+ %
W) Xy
2. Write the coefficients of x? in each of the following:
() 2+x+x (i) 2 —x* +x° (i) gxz +x (iv) \2x-1
Give one example each of a binomiallofdegree 35, and of amonomialof degree 100.

Write the degree of each of the following polynomials:

() 5% +4x+7x (i) 4-»2
(i) 5¢— 7 @(iv) 3
5. Classify the following as linear, quadratic and.cubic polynomials:
@H x*+x @ii)yx —x3 (i) y+1*+4 @iv) 1+x
(v) 3t (vi) r? (vii) 7x°

Consider the polynomial  p(x) = 5x* — 2x? + 3x — 2.
If we replace x by 1 everywhere in-p(x), we get
p)=5x1y=2xAy+3x(1)-2
=5-2+3-=2
=4
So, we say that the value of p(x) at x =1 is 4.
Similarly; p(0)=5(0)° —2(0)> + 3(0) -2
=-2
Canwyou find p(-1)?
ample 2 : Find the value of each of the following polynomials at the indicated value
of variables:
i) px)=5x*-3x+Tatx=1.
(i) g0 =3y —4y+ 1 aty=2.
(i) p()=4'+5F -F+6att=a.



(i) p(x) =5x*—3x+ 7
The value of the polynomial p(x) at x =1 is given by
p(l)=5(1y-3(1)+7
=5-3+7=9
(ii) ¢ =3y -4y + Ji1
The value of the polynomial g(y) at y = 2 is given by

q(2)=3Q2) —4@2)+ 11 =24 -8+ 11 =16+ 11
(iii) p(Hy=4t+5F -1~ +6
The value of the polynomial p(¢) at #=a is given by

pla) = 4a* + 56— a*+ 6

Now, consider the polynomial p(x) =x 1.
What is p(1)? Note thatz p(1)=1-1=0.
As p(1) =0, we say that 1 is a zero of the polynomial p(x).
Similarly, you can:check that 2 is a zero of g(x), where g(x) = x — 2.
In general, we say that a zero of a polynomial p(x) is a number ¢ such that p(c) = 0.

You must have-observed that the zero of the polynomial x — 1 is obtained by
equating it to 0, i.e., x — 1 = 0, which gives x = 1. We say p(x) = 0 is a polynomial
equation and 1 is the rootof the polynomial equation p(x) = 0. So we say 1 is the zero
of the polynomial x — 1, ora'root of the polynomial equation x— 1 = 0.

Now, consider the constant polynomial 5. Can you tell what its zero is? It has no
zero because replacing x by any number in 5x° still gives us 5. In fact, a non-zero
constant polynomial has no zero. What about the zeroes of the zero polynomial? By
convention, every real number is a zero of the zero polynomial.

nle 3 : Check whether —2 and 2 are zeroes of the polynomial x + 2.
lution : Let p(x) =x + 2.
Thenp(2)=2+2=4, p(-2)=-2+2=0
Therefore, —2 is a zero of the polynomial x + 2, but 2 is not.

> 4 : Find a zero of the polynomial p(x) = 2x + 1.

: Finding a zero of p(x), is the same as solving the equation
px) =0



1
Now, 2x+1=0givesusx=—§

1
So, — 5 is a zero of the polynomial 2x + 1.

Now, if p(x) = ax + b, a # 0, is a linear polynomial, how can we find a zero of
p(x)? Example 4 may have given you some idea. Finding a zero of the polynomial p(x),
amounts to solving the polynomial equation p(x) =0.

Now, p(x) = 0 means ax+b=0,a-0
So, ax =~h
ie., B= — - %
b .
So,x=— P the only zero of p(x), i.e., a linear polynomial has one and only one zero.

Now we can say that 1 is the zero of x — 1, and -2 is the zero of x + 2.

- Verify whether 2 and 0 are zeroes of the polynomial x? — 2x.

: Let px) =x? =2x
Then p2)=22-4=4-4=0
and p(0)=0-0=0

Hence, 2 and 0 are both zeroes of the polynomial x* — 2x.
Let us now list our observations:
(1) A zero of a polynomial need not be 0.
(i) 0 may be a zeroof a polynomial.
(iii) Every linear polynomial has one and only one zero.

(iv) A polynomial can have more than one zero.

1., Find the value of the polynomial 5x — 4x> + 3 at

@ x=0 (i) x=-1 (i) x=2
2. Find p(0), p(1) and p(2) for each of the following polynomials:
0 pO)=y-y+l (i) p()=2+1+20 -7

(iii) p(x)=x° (iv) p)=x=Dx+1)



3. Verify whether the following are zeroes of the polynomial, indicated against them.

1
() pe)=3v+1, x=—3 (i) p) =55, x= 7
(i) px)=x*-1, x=1,-1 i) pe)=(x+1D(x-2), x=—1,2
) px)=x% x=0 i) px)=Ix+m, x= —?
(P =31 x=— = (i) )26+ 1 3 2
vil) p(x)=3x*—-1, x NN vii) pe)=2x+1, x=-
4. Find the zero of the polynomial in each of the following cases:
(@) px)=x+5 (i) p(x)=x-5 (ii)) p(x)=2x+5
@iv) p(x)=3x-2 W)-p(x)=3x (Vi) p(x)=ax,a=0

(vii) p(x) = ex + d, ¢ # 04'¢c, d are real numbers.

»ordl
Let us consider two numbers:1:5 and 6. You know that when we divide 15 by 6, we get
the quotient 2 and'remainder 3. Do you remember how this fact is expressed? We
write 15 as
15=(6x2)+3
We observe that the remainder:3 is less than the divisor 6. Similarly, if we divide
12 by 6, we get
12=(6x2)+0
What is the remainder here? Here the remainder is 0, and we say that 6 is a
factor of 12 or 12 is'a multiple of 6.

Now, the question.is: can we divide one polynomial by another? To start with, let
us try and do this when the divisor is a monomial. So, let us divide the polynomial
2x°+ x? + x by the monomial x.

3 2

XX
We have ¥ +x*tx)+x=—+—+—
X X x

=2x>+x+1

In fact, you may have noticed that x is common to each term of 2x* + x* + x. So
we can write 2x* + x> + x as x(2x*> + x + 1).

We say that x and 2x2 + x + 1 are factors of 2x* + x>+ x, and 2x° + x>+ x is a
multiple of x as well as a multiple of 2x* +x + 1.



Consider another pair of polynomials 3x* + x + 1 and x.

Here, G +x+1D+x=0C+x)+(x+x)+ (1 +x).

We see that we cannot divide 1 by x to get a polynomial term. So in this case we
stop here, and note that 1 is the remainder. Therefore, we have

3 +x+1={xxCx+ 1} +1

In this case, 3x + 1 is the quotient and 1 is the remainder. Do you think thatx is a
factor of 3x?> + x + 1? Since the remainder is not zero, it is not a factor.

Now let us consider an example to see how we can divide a polynomial by any
non-zero polynomial.

- 6 : Divide p(x) by g(x), where p(x) = x + 3x> — 1‘and g(x) = | + x.
© We carry out the process of division by means of the following steps:

: We write the dividend x + 3x2—/1 and the divisor 1 + x in the standard form,
i.e., after arranging the terms in the descending order of theirdegrees. So, the

dividend is 3x%> + x —l“and divisor/is x + 1.

- We divide the first term of the dividend
by the first term’ of the divisor, i.e., we divide ; 3x? )
3x? by x, and get 3x. This gives us the first term” 37~ 3x = first term of quotient
of the quotient.

- We multiply the divisor by the first term 3x
of the quotient, and subtract this product from ¥+ IJ 3t x]
the dividend, i.e., we multiply x + 1 by 3x and

subtract the product 3x2+ 3x from the dividend 3x% + 3x
3x2 + x — 1. This gives us the remainder as —
2x—1. —2x—1

- We treat the remainder —2x — 1
as the new dividend. The divisor remains
the 'same. We repeat Step 2 to get the 2y ]
next term of the quotient, i.e., we dividle —~ =_2 New Quotient
the first term — 2x of the (new) dividend ¥ ) =3x-2
by the first term x of the divisor and obtain ~ second term of quotient
— 2. Thus, — 2 is the second term in the
quotient.



We multiply the divisor by the second (x+1)=2) |2x-1
term of the quotient and subtract the product
from the dividend. That is, we multiply x + 1
by — 2 and subtract the product — 2x — 2
from the dividend — 2x — 1. This gives us 1
as the remainder.

This process continues till the remainder is 0 or the degree of the new dividend is less
than the degree of the divisor. At this stage, this new dividend becomes the remainder
and the sum of the quotients gives us the whole quotient.

Thus, the quotient in full is 3x —2-and the remainder is 1.

Let us look at what we have done/in the process above as a whole:

3x—-2

x+1J 3 +x—1

3x? + 3x

- 2x—-1

—2x%—2
+ 4

1

Notice that 3x2+x— 1 =(x+ 1) Bx—-2)+ 1
i.e., Dividend = (Divisor X Quotient) + Remainder
In general, if p(x) and g(x) are two polynomials such that degree of p(x) > degree of
2(x) and g(x) = 0,'then we can find polynomials g(x) and »(x) such that:

p(x) = g(x)q(x) + r(x),
where (x) =0 or degree of r(x) < degree of g(x). Here we say that p(x) divided by
2(x), gives g(x) as quotient and #(x) as remainder.

In the example above, the divisor was a linear polynomial. In such a situation, let us
see if there is any link between the remainder and certain values of the dividend.

In\_p(x) =3x2+ x — 1, if we replace x by —1, we have
pED =31+ (=D -1=1

So, the remainder obtained on dividing p(x) = 3x> + x — 1 by x + 1 is the same as the
value of the polynomial p(x) at the zero of the polynomial x + 1, i.e.,—1.



Let us consider some more examples.

- Divide the polynomial 3x* — 4x* —3x -1 by x — 1.
: By long division, we have:

3 —-x>—x-4

L

4 743
3x Jr3x
S —3x-1
.3 2
s
—x2~<3x-1
- x>+ x
—4x —4
—+4xt4
-5

Here, the remainder-is ~ 5. Now, the zero of x=1 is 1. So, putting x =1 in p(x), we see
that

p(1)=3(1)'—4(1) +3(1) -1
=3-4.321

— 5, which is the remainder.

- Find the remainder obtained on dividing p(x) =x*+ 1 by x + 1.
: By longdivision,
xX¥-x+1

x+1 x+1

X+ X

—x? +1

2
X=X
+

+1

x+1

_xrl



So, we find that the remainder is 0.
Here p(x) =x*+ 1, and the root of x + 1 =0 is x=-1. We see that
P = (1) +1
=-1+1
=0,
which is equal to the remainder obtained by actual division.

Is it not a simple way to find the remainder obtained on dividing a polynomial by a
linear polynomial? We shall now generalise this fact in the form of the following
theorem. We shall also show you why the theorem is true, by giving you a proof of the
theorem.

( . Let p(x) be -anypolynomial of degree greater than or
equal to one and let a beany real number. If p(x).is divided by the linear
polynomial x — a, then the remainder’is p(a).

- Let p(x) be any polynomial with degree greater than or equal to 1. Suppose
that when p(x) is divided by x — &, the quotient is ¢(x) and the remainder is 7(x), i.e.,

p(x) = (x~a) q(x) + r(x)
Since the degree of x— a is 1 and the degree of r(x)-is less than the degree of x — 4,
the degree of #(x).= 07 This means that 7(x) is a constant, say .

So, for every value of x, r(x) = r,
Therefore, px)=(x-a)gx)+r

In particular, if x = a, this equation gives us
pla)=(a—a)gq(a)+r
=7
which proves the theorem.

Let us use this result in another example.

Example 9 : Find the remainder when x* + x> — 2x* + x + 1 is divided by x — 1.
Selution+Here, p(x) = x*+x*-2x>+x+ 1, and the zero of x — 1 is 1.
So, p(h= 1)y +Ay-217+1+1

=2
So, by the Remainder Theorem, 2 is the remainder when x* + x* — 2x* + x + 1 is
divided by x— 1.

- Check whether the polynomial ¢(¢) = 4 + 4 — ¢t — 1 is a multiple of
2t + 1.



: As you know, ¢g(¢) will be a multiple of 27 + 1 only, if 2¢ + 1 divides g(?)

1
leaving remainder zero. Now, taking 27+ 1 = 0, we have ¢ = 5

1 1 1Y 1 1 1
Also, —— =4 | +4—=| —| = |-1=—2Fl+=—1=0
¥ q[zj (2)+(2J (2} SRR

So the remainder obtained on dividing ¢(¢) by 2¢+ 1 is 0.

So, 2¢ + 1 is a factor of the given polynomial ¢(¢), that is ¢(¢) is a multiple of
2t+ 1.

EXERCISE).

1. Find the remainder when 3 +3x%+3x + 1 is divided'by

i x+1 (i) x—% (i) x @iv) x+7 (V) 5+ 2x

Find the remainder when x° — ax? + 6x — a is divided by x — a.
Check whether 7 +3xis a factor of 3x° + 7x.

Let us now look at the situation of Example 10 above more closely. It tells us that since

1
the remainder, q(—gj =0, (2t +1) is a factor of q(?), i.e., gq(t) = 2t + 1) g(?)

for some polynomial g(¢). This is a particular case of the following theorem.

: If p(x) is a polynomial of degree » > 1 and a is any real number,

then (i) x—a s a factorof p(x), if p(a) =0, and (ii) p(a) = 0, if x — a is a factor of p(x).

By the Remainder Theorem, p(x)=(x — @) q(x) + p(a).
(i) [If p(a)= 0, then p(x) = (x — a) g(x), which shows that x — a is a factor of p(x).
(i) Since x — a is a factor of p(x), p(x) = (x — a) g(x) for same polynomial g(x).
In this case, p(a) = (a — a) g(a) = 0.

- Examine whether x + 2 is a factor of x* + 3x?> + 5x + 6 and of 2x + 4.
- The zero of x + 2 is —2. Let p(x) =x* + 3x2 + 5x + 6 and s(x) = 2x + 4

Then, p(=2) = (22) +3(=2) + 5(=2) + 6



=-8+12-10+6

=0
So, by the Factor Theorem, x + 2 is a factor of x* + 3x? + 5x + 6.
Again, s(-2)=2(-2)+4=0

So, x + 2 is a factor of 2x + 4. In fact, you can check this without applying the Factor
Theorem, since 2x + 4 = 2(x + 2).

: Find the value of £, if x — 1 is a factor of 4x> + 3x% — 4x + k.

- Asx — 1 is a factor of p(x) =4x°* + 3x*—4x + k, p(1) =0
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