CBSE Class 10 Maths Solutions

30/1/1

QUESTION PAPER CODE 30/1/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $\angle APB = 80^{\circ}$

$$\therefore$$
 $\angle AOB = 100^{\circ}$

 $\frac{1}{2}$

2. DB = 3.46 m
$$\frac{1}{2}$$

$$\therefore DC = 4 \text{ m}$$

3.
$$l = 185$$
, $d = -4$

$$l_9 = 153$$

4. Possible outcomes are 4, 9, 16, 25, 36, 49, i.e. 6.

$$\therefore \quad \text{P(perfect square number)} = \frac{6}{48} \text{ or } \frac{1}{8}$$

SECTION B

5.
$$\frac{-7}{a} = \frac{2}{3} - 3$$

$$\Rightarrow a = 3$$

$$\Rightarrow a = 3$$
and
$$\frac{b}{a} = \frac{2}{3} \times (-3)$$

$$\Rightarrow b = -6$$

6. Let the point on y-axis be (0, y) and AP: PB = K : 1
$$\frac{1}{2}$$

Therefore
$$\frac{5-k}{k+1} = 0$$
 gives $k = 5$

Hence required ratio is
$$5:1$$
. $\frac{1}{2}$

30/1/1 (1)

30/1/1

$$y = \frac{-4(5) - 6}{6} = \frac{-13}{3}$$

 $\frac{1}{2}$

Hence point on y-axis is
$$\left(0, \frac{-13}{3}\right)$$
.

 $\frac{1}{2}$

7. Let
$$AD = AF = x$$

$$\therefore DB = BE = 12 - x$$

and
$$CF = CE = 10 - x$$

$$BC = BE + EC \Rightarrow 8 = 12 - x + 10 - x$$

$$\Rightarrow$$
 $x = 7$

1

$$\therefore$$
 AD = 7 cm, BE = 5 cm, CF = 3 cm

1

2

PQ = PR
$$\Rightarrow \sqrt{(2y-2)^2 + (y+5)^2} = \sqrt{(2y+3)^2 + (y-6)^2}$$

2

Solving to get
$$y = 8$$

 $\frac{1}{2}$

Hence coordinates of point P are (16, 8).

 $\frac{1}{2}$

9. Here
$$a = 18, d = -2, Sn = 0$$

 $\frac{1}{2}$

Therefore
$$\frac{n}{2}[36 + (n-1)(-2)] = 0$$

1

$$\Rightarrow$$
 n = 19

 $\frac{1}{2}$

 $\frac{1}{2}$

$$\Rightarrow$$
 $\angle PAB = \angle PBA = 60^{\circ}$

 $\frac{1}{2}$

$$\therefore$$
 \triangle PAB is an equilateral triangle.

 $\frac{1}{2}$

Hence
$$AB = PA = 5$$
 cm.

 $\frac{1}{2}$

SECTION C

Area of square =
$$196 \text{ cm}^2$$
 $\frac{1}{2}$

Area of semicircles AOB + DOC =
$$\frac{22}{7} \times 49 = 154 \text{ cm}^2$$
 $\frac{1}{2}$

Hence area of two shaded parts
$$(X + Y) = 196 - 154 = 42 \text{ cm}^2$$

1

Therefore area of four shaded parts =
$$84 \text{ cm}^2$$
.

13. Using Mid Point formula

coordinates of point B are
$$(2, 1)$$

and coordinates of point C are
$$(0, 3)$$
. $\frac{1}{2}$

Area
$$\triangle ABC = \frac{1}{2}[0+2(3+1)+0] = 4 \text{ sq u.}$$

Coordinates of point F are (1, 2)

Area of
$$\triangle DEF = \frac{1}{2} |1(1-2) + 0 + 1(0-1)| = 1 \text{ sq u.}$$

14.
$$\angle POQ = 60^{\circ}$$

Area of segment PAQM =
$$\left(\frac{100\pi}{6} - \frac{100\sqrt{3}}{4}\right) \text{cm}^2$$
.

Area of semicircle =
$$\frac{25\pi}{2}$$
 cm² $\frac{1}{2}$

Area of shaded region =
$$\frac{25\pi}{2} - \left(\frac{50\pi}{3} - 25\sqrt{3}\right)$$
.

$$= 25\left(\sqrt{3} - \frac{\pi}{6}\right) \text{cm}^2.$$

30/1/1 (3)

30/1/1

15.
$$S_7 = 49 \Rightarrow 2a + 6d = 14$$
 $\frac{1}{2}$

$$S_{17} = 289 \Rightarrow 2a + 16d = 34$$

Solving equations to get
$$a = 1$$
 and $d = 2$

Hence
$$Sn = \frac{n}{2}[2 + (n-1)2] = n^2$$
.

16.
$$2x(2x + 3) + (x - 3) + (3x + 9) = 0$$

$$\Rightarrow 2x^2 + 5x + 3 = 0$$

$$\Rightarrow (x+1)(2x+3) = 0$$

$$\Rightarrow \quad x = -1, \ x = -\frac{3}{2}$$

17. Volume of earth dug out =
$$\pi \times 2 \times 2 \times 21 = 264 \text{ m}^3$$

Volume of embankment =
$$\pi$$
 (25 – 4) × h = 66 h m³

$$\therefore 66h = 264$$

$$\Rightarrow h = 4 \text{ m}$$

18. Here
$$r + h = 37$$
 and $2\pi r(r + h) = 1628$
$$\frac{1}{2} + \frac{1}{2}$$

$$\Rightarrow 2\pi r = \frac{1628}{37}$$

$$\Rightarrow r = 7 \text{ cm}$$

and
$$h = 30$$
 cm. $\frac{1}{2}$

Hence volume of cylinder =
$$\frac{22}{7} \times 7 \times 7 \times 30 = 4620 \text{ cm}^3$$

(4) 30/1/1

1

19.

$$\tan 45^\circ = \frac{h - 50}{h - 50} \Rightarrow x = h - 50$$

$$\tan 45^\circ = \frac{h - 50}{x} \Rightarrow x = h - 50$$
 $\frac{1}{2}$

 $\frac{1}{2}$

1

1

1

 $\frac{1}{2} \times 4 = 2$

$$\tan 60^\circ = \frac{h}{x} \Rightarrow x = \frac{h}{\sqrt{3}}$$

Hence
$$h - 50 = \frac{h}{\sqrt{3}}$$

$$\Rightarrow$$
 h = 75 + 25 $\sqrt{3}$ = 118.25 m.

P(a prime number on each die) =
$$\frac{9}{36}$$
 or $\frac{1}{4}$

P(a total of 9 or 11) =
$$\frac{6}{36}$$
 or $\frac{1}{6}$ $\frac{1}{2}$

SECTION D

21. Let the usual speed of plane be x km/h.

$$\therefore \frac{1500}{x} - \frac{1500}{x + 250} = \frac{1}{2}$$

$$\Rightarrow$$
 $x^2 + 250x - 750000 = 0$

$$(x + 1000) (x - 750) = 0 \Rightarrow x = 750$$

Speed of plane =
$$750 \text{ km/h}$$
.

30/1/1 **(5)**

24. PT =
$$\sqrt{169 - 25}$$
 = 12cm and TE = 8 cm $\frac{1}{2} + \frac{1}{2}$

Let
$$PA = AE = x$$

$$TA^2 = TE^2 + EA^2$$

$$\Rightarrow (12 - x)^2 = 64 + x^2$$

$$\Rightarrow$$
 x = 3.3 cm.

Thus AB = 6.6 cm.

25.
$$a(x-b)(x-c) + b(x-a)(x-c) = 2c(x-a)(x-b)$$
 $1\frac{1}{2}$

$$x^{2}(a + b - 2c) + x (-ab - ac - ab - bc + 2ac + 2bc) = 0$$

$$x^{2}(a + b - 2c) + x(-2ab + ac + bc) = 0$$
 $1\frac{1}{2}$

$$x = \frac{ac + bc - 2ab}{a + b - 2c}$$

26.

Correct Figure

$$\tan 45^\circ = \frac{80}{y} \implies y = 80$$

1

1

 $\frac{1}{2}$

1

$$\tan 30^{\circ} = \frac{80}{x + y} \implies x + y = 80\sqrt{3}$$
 $\frac{1}{2}$

$$\therefore$$
 x = 80($\sqrt{3}$ -1) = 58.4 m.

Hence speed of bird =
$$\frac{58.4}{2}$$
 = 29.2 m/s.

27. Let total time be n minutes

Total distance convered by thief =
$$(100 \text{ n})$$
 metres

Total distance covered by policeman =
$$100 + 110 + 120 + ... + (n - 1)$$
 terms

$$100n = \frac{n-1}{2} [200 + (n-2)10]$$

$$n^2 - 3n - 18 = 0$$

(6) 30/1/1

$$(n-6)(n+3) = 0$$

 $\frac{1}{2}$

$$\Rightarrow$$
 n = 6

 $\frac{1}{2}$

Policeman took 5 minutes to catch the thief.

1

28. Area of the triangle $=\frac{1}{2}|t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)|$

2

2

$$= \frac{1}{2}[2t + 2t + 4 - 4t - 12]$$

1

= 4 sq. units

1

which is independent of t.

1

29. (i) Favourable outcomes are 1, 3, 5, 7 i.e. 4 outcomes.

1

$$\therefore P(\text{an odd number}) = \frac{4}{8} \text{ or } \frac{1}{2}$$

__

(ii) Favourable outcomes are 4, 5, 6, 7, 8 i.e. 5 outcomes

1

P(a number greater than 3) =
$$\frac{5}{8}$$

 $\frac{1}{2}$

1

(iii) Favarouble outcomes are 1, 2, 3...8

P(a number less than 9) =
$$\frac{8}{8}$$
 = 1

30.

$$\cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$$

 $\frac{1}{2}$

Reflex $\angle AOB = 240^{\circ}$

 $\frac{1}{2}$

$$\therefore \widehat{ADB} = \frac{2 \times 3.14 \times 5 \times 240}{360} = 20.93 \text{ cm}$$

1

Hence length of elastic in contact = 20.93 cm

Now, AP = $5\sqrt{3}$ cm

Area $(\Delta OAP + \Delta OBP) = 25\sqrt{3} = 43.25 \text{ cm}^2$

 $\frac{1}{2}$

Area of sector OACB = $\frac{25 \times 3.14 \times 120}{360}$ = 26.16 cm²

1

Shaded Area = $43.25 - 26.16 = 17.09 \text{ cm}^2$

79 CIII

30/1/1

(7)

31. Here R = 20, r = 12, V = 12308.8

Therefore
$$12308.8 = \frac{1}{3} \times 3.14(400 + 240 + 144)h$$

$$\Rightarrow$$
 h = 15 cm $\frac{1}{2}$

$$l = \sqrt{(20 - 12)^2 + 15^2} = 17 \text{ cm}$$

Total area of metal sheet used
$$= CSA + base$$
 area

$$= \pi[(20 + 12) \times 17 + 12 \times 12]$$

$$= 2160.32 \text{ cm}^2$$

(8) 30/1/1