CBSE Class 10 Maths Solutions

QUESTION PAPER CODE 30/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $a_{21}-a_{7}=84 \Rightarrow(a+20 d)-(a+6 d)=84$
$\Rightarrow \quad 14 \mathrm{~d}=84$
$\Rightarrow \quad \mathrm{d}=6$
2.

$$
\sin 30^{\circ}=\frac{\mathrm{a}}{\mathrm{OP}}
$$

$$
\Rightarrow \quad \mathrm{OP}=2 \mathrm{a}
$$

3.

$\tan \theta=\frac{30}{10 \sqrt{3}}=\sqrt{3}$
$\Rightarrow \theta=60^{\circ}$
4. Let the number of rotten apples in the heap be n.

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{n}}{900}=0.18 \\
& \Rightarrow \quad \mathrm{n}=162
\end{aligned}
$$

SECTION B

5. Let the roots of the given equation be α and 6α.

Thus the quadratic equation is $(x-\alpha)(x-6 \alpha)=0$
$\Rightarrow x^{2}-7 \alpha x+6 \alpha^{2}=0$

Given equation can be written as $\mathrm{x}^{2}-\frac{14}{\mathrm{p}} \mathrm{x}+\frac{8}{\mathrm{p}}=0$
Comparing the co-efficients in (i) \& (ii) $7 \alpha=\frac{14}{\mathrm{p}}$ and $6 \alpha^{2}=\frac{8}{\mathrm{p}}$

Solving to get $\mathrm{p}=3$
6. \quad Here $\mathrm{d}=\frac{-3}{4}$

Let the nth term be first negative term
$\therefore \quad 20+(\mathrm{n}-1)\left(\frac{-3}{4}\right)<0$
$\Rightarrow \quad 3 \mathrm{n}>83$
$\Rightarrow \quad \mathrm{n}>27 \frac{2}{3}$

Hence $28^{\text {th }}$ term is first negative term.
7.

Case I:

Correct Figure $\quad \frac{1}{2}$
Since $\mathrm{PA}=\mathrm{PB}$

Therefore in $\triangle \mathrm{PAB}$
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$

Case II: If the tangents at A and B are parallel then each angle between chord and tangent $=90^{\circ}$

Here $\quad \mathrm{AP}=\mathrm{AS}$

$$
\mathrm{BP}=\mathrm{BQ}
$$

$$
\mathrm{CR}=\mathrm{CQ}
$$

$$
\mathrm{DR}=\mathrm{DS}
$$

9. Let the coordinates of points P and Q be $(0, b)$ and $(a, 0)$ resp.

$$
\therefore \quad \frac{\mathrm{a}}{2}=2 \Rightarrow \mathrm{a}=4 \quad \frac{1}{2}
$$

$$
\frac{\mathrm{b}}{2}=-5 \Rightarrow \mathrm{~b}=-10
$$

$$
\therefore \quad \mathrm{P}(0,-10) \text { and } \mathrm{Q}(4,0)
$$

10. $\mathrm{PA}^{2}=\mathrm{PB}^{2}$

$$
\begin{align*}
& \Rightarrow \quad(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}=(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2} \tag{1}\\
& \Rightarrow \quad 12 \mathrm{x}=8 \mathrm{y} \\
& \Rightarrow \quad 3 \mathrm{x}=2 \mathrm{y}
\end{align*}
$$

SECTION C

11. $\mathrm{D}=4(\mathrm{ac}+\mathrm{bd})^{2}-4\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)$

$$
\begin{aligned}
& =-4\left(a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right) \\
& =-4(a d-b c)^{2}
\end{aligned}
$$

Since $a d \neq b c$
Therefore $\mathrm{D}<0$

The equation has no real roots
12. Here $\mathrm{a}=5, l=45$ and $\mathrm{S}_{\mathrm{n}}=400$

$$
\begin{aligned}
& \therefore \frac{\mathrm{n}}{2}(\mathrm{a}+l)=400 \text { or } \frac{\mathrm{n}}{2}(5+45)=400 \\
& \Rightarrow \mathrm{n}=16
\end{aligned}
$$

Also $5+15 d=45$
$\Rightarrow \quad \mathrm{d}=\frac{8}{3}$
13.

Correct Figure

$$
\begin{equation*}
\Rightarrow \quad \cot \theta=\frac{\mathrm{h}}{16} \tag{ii}
\end{equation*}
$$

Solving (i) and (ii) to get

$$
\begin{aligned}
& h^{2}=64 \\
\Rightarrow \quad & h=8 m
\end{aligned}
$$

14. Let the number of black balls in the bag be n .
$\therefore \quad$ Total number of balls are $15+\mathrm{n}$
$\operatorname{Prob}($ Black ball $)=3 \times \operatorname{Prob}($ White ball $)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{n}}{15+\mathrm{n}}=3 \times \frac{15}{15+\mathrm{n}} \\
& \Rightarrow \quad \mathrm{n}=45
\end{aligned}
$$

15.

Let PA: $\mathrm{AQ}=\mathrm{k}: 1$

$$
\begin{aligned}
& \therefore \quad \frac{2+3 \mathrm{k}}{\mathrm{k}+1}=\frac{24}{11} \\
& \Rightarrow \quad \mathrm{k}=\frac{2}{9}
\end{aligned}
$$

Hence the ratio is $2: 9$.

$$
\begin{equation*}
\text { Therefore } \mathrm{y}=\frac{-18+14}{11}=\frac{-4}{11} \tag{1}
\end{equation*}
$$

$$
\text { Area of semi-circle } \mathrm{PQR}=\frac{\pi}{2}\left(\frac{9}{2}\right)^{2}=\frac{81}{8} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}
$$

$$
\text { Area of region } \mathrm{A}=\pi\left(\frac{9}{4}\right)^{2}=\frac{81}{16} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}
$$

$$
\text { Area of region }(\mathrm{B}+\mathrm{C})=\pi\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}
$$

$$
\text { Area of region } \mathrm{D}=\frac{\pi}{2}\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi \mathrm{~cm}^{2}
$$

Area of shaded region $=\left(\frac{81}{8} \pi-\frac{81}{16} \pi-\frac{9}{4} \pi+\frac{9}{8} \pi\right) \mathrm{cm}^{2}$

$$
=\frac{63}{16} \pi \mathrm{~cm}^{2} \text { or } \frac{99}{8} \mathrm{~cm}^{2}
$$

17. Area of region $\mathrm{ABDC}=\pi \frac{60}{360} \times\left(42^{2}-21^{2}\right)$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{1}{6} \times 63 \times 21 \\
& =693 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region $=\pi\left(42^{2}-21^{2}\right)-$ region ABDC

$$
\begin{align*}
& =\frac{22}{7} \times 63 \times 21-693 \tag{1}\\
& =4158-693 \\
& =3465 \mathrm{~cm}^{2}
\end{align*}
$$

18. Volume of water flowing in $40 \mathrm{~min}=5.4 \times 1.8 \times 25000 \times \frac{40}{60} \mathrm{~m}^{3}$

$$
=162000 \mathrm{~m}^{3}
$$

Height of standing water $=10 \mathrm{~cm}=0.10 \mathrm{~m}$

$$
\begin{aligned}
& \therefore \quad \text { Area to be irrigated }=\frac{162000}{0.10} \\
& \quad=1620000 \mathrm{~m}^{2}
\end{aligned}
$$

19. Here $l=4 \mathrm{~cm}, 2 \pi \mathrm{r}_{1}=18 \mathrm{~cm}$ and $2 \pi \mathrm{r}_{2}=6 \mathrm{~cm}$
$\Rightarrow \quad \pi r_{1}=9, \pi r_{2}=3$
Curved surface area of frustum $=\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \times l$ or $\left(\pi \mathrm{r}_{1}+\pi \mathrm{r}_{2}\right) \times l$

$$
\begin{aligned}
& =(9+3) \times 4 \\
& =48 \mathrm{~cm}^{2}
\end{aligned}
$$

20. Volume of cuboid $=4.4 \times 2.6 \times 1 \mathrm{~m}^{3}$

Inner and outer radii of cylindrical pipe $=30 \mathrm{~cm}, 35 \mathrm{~cm}$
$\therefore \quad$ Volume of materialused $=\frac{\pi}{100^{2}}\left(35^{2}-30^{2}\right) \times \mathrm{hm}^{3}$

$$
=\frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}
$$

$$
\begin{aligned}
& \text { Now } \frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}=4.4 \times 2.6 \\
& \Rightarrow \quad \mathrm{~h}=\frac{7 \times 4.4 \times 2.6 \times 100 \times 100}{22 \times 65 \times 5} \\
& \Rightarrow \quad \mathrm{~h}=112 \mathrm{~m}
\end{aligned}
$$

$$
\frac{1}{2}+\frac{1}{2}
$$

SECTION D

21. Here $[(5 x+1)+(x+1) 3](x+4)=5(x+1)(5 x+1)$

$$
\begin{aligned}
& \Rightarrow \quad(8 x+4)(x+4)=5\left(5 x^{2}+6 x+1\right) \\
& \Rightarrow \quad 17 x^{2}-6 x-11=0 \\
& \Rightarrow \quad(17 x+11)(x-1)=0 \\
& \Rightarrow \quad x=\frac{-11}{17}, x=1
\end{aligned}
$$

22. Let one tap fill the tank in x hrs.

Therefore, other tap fills the tank in $(x+3)$ hrs.

Work done by both the taps in one hour is

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x+3}=\frac{13}{40} \\
\Rightarrow & (2 x+3) 40=13\left(x^{2}+3 x\right) \\
\Rightarrow & 13 x^{2}-41 x-120=0 \\
\Rightarrow & (13 x+24)(x-5)=0 \\
\Rightarrow & x=5
\end{aligned}
$$

(rejecting the negative value)

Hence one tap takes 5 hrs and another 8 hrs separately to fill the tank.
23. Let the first terms be a and a^{\prime} and d and d^{\prime} be their respective common differences.

$$
\begin{aligned}
& \frac{S_{n}}{S_{n}^{\prime}}=\frac{\frac{n}{2}(2 a+(n-1) d)}{\frac{n}{2}\left(2 a^{\prime}+(n-1) d^{\prime}\right)}=\frac{7 n+1}{4 n+27} \\
\Rightarrow & \frac{a+\left(\frac{n-1}{2}\right) d}{a^{\prime}+\left(\frac{n-1}{2}\right) d^{\prime}}=\frac{7 n+1}{4 n+27}
\end{aligned}
$$

To get ratio of $9^{\text {th }}$ terms, replacing $\frac{\mathrm{n}-1}{2}=8$
$\Rightarrow \quad \mathrm{n}=17$

Hence $\frac{\mathrm{t}_{9}}{\mathrm{t}_{9}^{\prime}}=\frac{\mathrm{a}+8 \mathrm{~d}}{\mathrm{a}^{\prime}+8 \mathrm{~d}^{\prime}}=\frac{120}{95}$ or $\frac{24}{19}$
24. Correct given, to prove, construction and figure

Correct Proof
25. In right angled $\triangle \mathrm{POA}$ and $\triangle \mathrm{OCA}$

$$
\Delta \mathrm{OPA} \cong \triangle \mathrm{OCA}
$$

$$
\therefore \quad \angle \mathrm{POA}=\angle \mathrm{AOC}
$$

Also $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\therefore \quad \angle \mathrm{QOB}=\angle \mathrm{BOC} \quad$...(ii)
Therefore $\angle \mathrm{AOB}=\angle \mathrm{AOC}+\angle \mathrm{COB}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{POC}+\frac{1}{2} \angle \mathrm{COQ} \\
& =\frac{1}{2}(\angle \mathrm{POC}+\angle \mathrm{COQ}) \\
& =\frac{1}{2} \times 180^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

26. Correct construction of $\triangle \mathrm{ABC}$ and corresponding similar triangle
27.

Correct Figure

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{300}{y} \\
\Rightarrow & 1=\frac{300}{y} \text { or } y=300 \\
& \tan 60^{\circ}=\frac{300}{x} \\
\Rightarrow \quad & \sqrt{3}=\frac{300}{x} \text { or } x=\frac{300}{\sqrt{3}}=100 \sqrt{3}
\end{aligned}
$$

$$
\text { Width of river }=300+100 \sqrt{3}=300+173.2
$$

$$
=473.2 \mathrm{~m}
$$

28. Points A, B and C are collinear

Therefore $\frac{1}{2}[(\mathrm{k}+1)(2 \mathrm{k}+3-5 \mathrm{k})+3 \mathrm{k}(5 \mathrm{k}-2 \mathrm{k})+(5 \mathrm{k}-1)(2 \mathrm{k}-2 \mathrm{k}-3)]=0$

$$
=(\mathrm{k}+1)(3-3 \mathrm{k})+9 \mathrm{k}^{2}-3(5 \mathrm{k}-1)=0
$$

$$
=2 \mathrm{k}^{2}-5 \mathrm{k}+2=0
$$

$$
=(\mathrm{k}-2)(2 \mathrm{k}-1)=0
$$

$$
\Rightarrow \quad \mathrm{k}=2, \frac{1}{2}
$$

29. Total number of outcomes $=36$
(i) $P($ even sum $)=\frac{18}{36}=\frac{1}{2}$
(ii) $\mathrm{P}($ even product $)=\frac{27}{36}=\frac{3}{4}$
30. Area of shaded region $=(21 \times 14)-\frac{1}{2} \times \pi \times 7 \times 7$

$$
\begin{aligned}
& =294-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \\
& =294-77 \\
& =217 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Perimeter of shaded region }=21+14+21+\frac{22}{7} \times 7
$$

$$
=56+22
$$

$$
=78 \mathrm{~cm}
$$

31. Volume of rain water on the roof $=$ Volume of cylindrical tank
i.e., $\quad 22 \times 20 \times \mathrm{h}=\frac{22}{7} \times 1 \times 1 \times 3.5$
$\Rightarrow \quad \mathrm{h}=\frac{1}{40} \mathrm{~m}$
$=2.5 \mathrm{~cm}$

Water conservation must be encouraged or views relevant to it.

