QUESTION PAPER CODE 30/1/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1.

$$
\begin{array}{ll}
\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\sqrt{3}}{1} & \frac{1}{2} \\
\Rightarrow & \theta=60^{\circ}
\end{array}
$$

2. $\frac{2}{3} \pi r^{3}=3 \pi r^{2} \Rightarrow r=\frac{9}{2}$ units

$$
\therefore \quad \mathrm{d}=9 \text { units }
$$

3. Favourable outcomes are $-1,0,1$
$\therefore \quad$ Required Probability $=\frac{3}{7}$
4. $\sqrt{(4-1)^{2}+(k-0)^{2}}=5$

$$
\Rightarrow \quad \mathrm{k}= \pm 4
$$

SECTION B

5. $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{2} x^{2}+2 x+5 x+5 \sqrt{2}=0 \\
& \Rightarrow \quad(\sqrt{2} x+5)(x+\sqrt{2})=0 \\
& \Rightarrow \quad x=\frac{-5}{\sqrt{2}},-\sqrt{2} \\
& \text { or } \quad \frac{-5 \sqrt{2}}{2},-\sqrt{2}
\end{aligned}
$$

6. A.P. formed is $208,216,224, \ldots, 496$

$$
\begin{aligned}
& a_{\mathrm{n}}=496 \\
\Rightarrow \quad & 208+(\mathrm{n}-1) \times 8=496 \\
\Rightarrow \quad & \mathrm{n}=37
\end{aligned}
$$

7.

$$
\begin{equation*}
\angle \mathrm{PAO}=\angle \mathrm{OBS}=90^{\circ} \tag{1}
\end{equation*}
$$

But these are alternate interior angles

$$
\therefore \quad P Q \| R S
$$

$$
\Rightarrow \quad \mathrm{k}=2
$$

9. Correct construction
10. $\mathrm{PA}=\mathrm{PC}+\mathrm{CA}=\mathrm{PC}+\mathrm{CQ}$

$$
\Rightarrow \quad 12=\mathrm{PC}+3 \Rightarrow \mathrm{PC}=9 \mathrm{~cm}
$$

$\therefore \quad \mathrm{PC}+\mathrm{PD}=18 \mathrm{~cm}$

$$
\mathrm{PD}=9 \mathrm{~cm}
$$

SECTION C

11. $\mathrm{a}_{\mathrm{m}}=\frac{1}{\mathrm{n}} \Rightarrow \mathrm{a}+(\mathrm{m}-1) \mathrm{d}=\frac{1}{\mathrm{n}}$

$$
\begin{equation*}
a_{n}=\frac{1}{m} \Rightarrow a+(n-1) d=\frac{1}{m} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \text { Solving (1) and (2), } \mathrm{a}=\frac{1}{\mathrm{mn}} \text { and } \mathrm{d}=\frac{1}{\mathrm{mn}} \tag{1}\\
& \mathrm{~S}_{\mathrm{mn}}=\frac{\mathrm{mn}}{2}\left[2 \times \frac{1}{\mathrm{mn}}+(\mathrm{mn}-1) \times \frac{1}{\mathrm{mn}}\right] \\
& \quad=\frac{1}{2}(\mathrm{mn}+1)
\end{align*}
$$

12. $\mathrm{S}_{\mathrm{n}}=\left(4-\frac{1}{\mathrm{n}}\right)+\left(4-\frac{2}{\mathrm{n}}\right)+\left(4-\frac{3}{\mathrm{n}}\right)+\ldots$. upto n terms

$$
\begin{aligned}
& =\underset{\mathrm{n} \text { times }}{(4+\ldots+4)-\frac{1}{\mathrm{n}}(1+2+3+\ldots+\mathrm{n})} \\
& =4 \mathrm{n}-\frac{1}{\mathrm{n}} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2} \\
& =\frac{7 \mathrm{n}-1}{2}
\end{aligned}
$$

13. $\left(1+m^{2}\right) x^{2}+2 m c x+c^{2}-a^{2}=0$

For equal roots, $B^{2}-4 A C=0$
$\Rightarrow \quad 4 m^{2} c^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right)=0$
$\Rightarrow \quad m^{2} c^{2}-c^{2}-m^{2} c^{2}+a^{2}+m^{2} a^{2}=0$
$\Rightarrow \quad \mathrm{c}^{2}=\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)$
14. $\frac{3}{4} \times$ Volume of conical vessel $=$ Volume of cylindrical vessel

Let the height of cylindrical vessel be h

$$
\begin{align*}
& \Rightarrow \quad \frac{3}{A} \times \frac{1}{3} \times \pi \times 5 \times 5 \times 24^{6}=\pi \times 10 \times 10 \times \mathrm{h} \tag{1}\\
& \Rightarrow \quad \mathrm{~h}=\frac{3}{2} \mathrm{~cm} \text { or } 1.5 \mathrm{~cm} \tag{1}
\end{align*}
$$

15.

Area of shaded region $=$ Area of quadrant $\mathrm{OACB}-$ Area of $\triangle \mathrm{ODB}$

$$
\begin{align*}
& =\left(\frac{22}{7} \times \frac{3.5 \times 3.5}{4}-\frac{1}{2} \times 3.5 \times 2\right) \mathrm{cm}^{2} \tag{1}\\
& =\frac{49}{8} \text { or } 6.125 \mathrm{~cm}^{2}
\end{align*}
$$

16.

Let $\angle \mathrm{OPQ}=\theta$
$\Rightarrow \quad \angle \mathrm{TPQ}=90^{\circ}-\theta=\angle \mathrm{TQP}$

$$
\angle \mathrm{TPQ}+\angle \mathrm{TQP}+\angle \mathrm{PTQ}=180^{\circ}
$$

$$
\Rightarrow \quad 90^{\circ}-\theta+90^{\circ}-\theta+\angle \mathrm{PTQ}=180^{\circ}
$$

$$
\Rightarrow \quad \angle \mathrm{PTQ}=2 \theta
$$

$$
=2 \angle \mathrm{OPQ}
$$

17. $\mathrm{A}(-2,0), \mathrm{B}(2,0), \mathrm{C}(0,2)$
$\mathrm{AB}=4$ units, $\mathrm{BC}=2 \sqrt{2}$ units, $\mathrm{AC}=2 \sqrt{2}$ units
18.

$$
\begin{aligned}
& \operatorname{ar}(\Delta \mathrm{ABC})=5 \text { sq.units } \\
\Rightarrow & \frac{1}{2}\left[2(-2-\mathrm{y})+3(\mathrm{y}-1)+\frac{7}{2}(1+2)\right]=5 \\
\Rightarrow \quad & \mathrm{y}+\frac{7}{2}=10 \\
\Rightarrow \quad & \mathrm{y}=\frac{13}{2}
\end{aligned}
$$

19. Total number of outcomes $=36$
(i) Favourable outcomes are

$$
\begin{aligned}
& (1,1,)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3) \\
& (2,4)(3,1)(3,2)(3,3)(4,1)(4,2)(5,1) \text { i.e., } 15 \\
\therefore \quad & P(\text { sum less than } 7)=\frac{15}{36} \text { or } \frac{5}{12}
\end{aligned}
$$

(ii) Favourable outcomes are

$$
\begin{aligned}
& (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3) \\
& (2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(4,1) \\
& (4,2)(4,3)(5,1)(5,2)(5,3)(6,1)(6,2) \text { i.e., } 25 \\
& P \text { (product less than } 16)=\frac{25}{36}
\end{aligned}
$$

(iii) Favourable outcomes are

$$
\therefore \quad \mathrm{P}(\text { doublet of odd number })=\frac{3}{36} \text { or } \frac{1}{12}
$$

20.

Let the speed of boat be $\mathrm{x} \mathrm{m} / \mathrm{min}$

$$
\begin{array}{ll}
\therefore \quad & C D=2 x \\
& \frac{150}{y}=\tan 60^{\circ} \Rightarrow y=\frac{150}{\sqrt{3}}=50 \sqrt{3} \\
& \frac{150}{y+2 x}=\tan 45^{\circ} \Rightarrow 150=50 \sqrt{3}+2 x \\
\Rightarrow \quad & x=25(3-\sqrt{3}) \\
\therefore \quad & \text { Speed }=25(3-\sqrt{3}) \mathrm{m} / \mathrm{min} \\
& =1500(3-\sqrt{3}) \mathrm{m} / \mathrm{hr}
\end{array}
$$

SECTION D

21. Correct construction of given triangle
22. Correct figure, given, to prove and construction
23. $\frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}} \Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\Rightarrow \quad \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$

Solving we get $\mathrm{d}=2 \mathrm{a}$

$$
\begin{aligned}
& \frac{a_{m}}{a_{n}}=\frac{a+(m-1) d}{a+(n-1) d}=\frac{a+(m-1) \times 2 a}{a+(n-1) \times 2 a} \\
& =\frac{2 m-1}{2 n-1}
\end{aligned}
$$

24. Let the speed of stream be $x \mathrm{~km} / \mathrm{hr}$.
$\therefore \quad$ Speed of boat upstream $=(15-x) \mathrm{km} / \mathrm{hr}$.

Speed of boat downstream $=(15+x) \mathrm{km} / \mathrm{hr}$.

$$
x=5(\text { Rejecting }-5)
$$

$\therefore \quad$ Speed of stream $=5 \mathrm{~km} / \mathrm{hr}$
25. Area of traingle with vertices $\left(a, a^{2}\right),\left(b, b^{2}\right)$ and $(0,0)$ is

$$
\begin{aligned}
& \frac{1}{2}\left|a\left(b^{2}\right)+b\left(-a^{2}\right)+0\right| \\
& =\frac{1}{2} a b(b-a) \neq 0 \text { as } a \neq b \neq 0
\end{aligned}
$$

$\therefore \quad$ Given points are not collinear
26.

$$
\begin{align*}
& \frac{5}{10}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \\
\Rightarrow \quad & \mathrm{r}_{2}=2 \mathrm{r}_{1} \tag{1}
\end{align*}
$$

Ratio of volumes of two parts

$$
=\frac{\text { Volume of smaller cone }}{\text { Volume of frustum }}
$$

$$
=\frac{\frac{1}{3} \pi \times \mathrm{r}_{1}^{2} \times 5}{\frac{1}{3} \times \pi \times 5\left[\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right]}=\frac{\mathrm{r}_{1}^{2}}{\mathrm{r}_{1}^{2}+4 \mathrm{r}_{1}^{2}+2 \mathrm{r}_{1}^{2}}
$$

$$
=\frac{1}{7}
$$

27. For Peter,

Total number of outcomes $=36$
Favourable outcome is $(5,5)$
$\therefore \quad \mathrm{P}($ Peter getting the number 25$)=\frac{1}{36}$
For Rina, Total number of outcomes $=6$
Favourable outcome is 5.
$\therefore \quad \mathrm{P}($ Rina getting the number 25$)=\frac{1}{6}$
$\therefore \quad$ Rina has the better chance
28. Area of minor segment

$$
\begin{aligned}
& =\frac{22}{7} \times 10 \times 10 \times \frac{60^{1}}{360^{6}}-\frac{\sqrt{3}}{4} \times 10 \times 10 \\
& =10 \times 10\left[\frac{22}{7} \times \frac{1}{6}-\frac{\sqrt{3}}{4}\right] \\
& =\frac{100}{84}(44-21 \sqrt{3}) \mathrm{cm}^{2} \text { or } \frac{25}{21}(44-21 \sqrt{3}) \mathrm{cm}^{2}
\end{aligned}
$$

Area of major segment

$$
\begin{aligned}
& =\left[\frac{22}{7} \times 10 \times 10-\frac{100}{84}(44-21 \sqrt{3})\right] \mathrm{cm}^{2} \\
& =\frac{100}{84}(220+21 \sqrt{3}) \mathrm{cm}^{2} \text { or } \frac{25}{21}(220+21 \sqrt{3}) \mathrm{cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h}{x}=\tan 30^{\circ} \Rightarrow x=h \sqrt{3} \\
& \frac{60+60+h}{x}=\tan 60^{\circ} \\
& \Rightarrow \quad \frac{120+\mathrm{h}}{\mathrm{x}}=\sqrt{3} \\
& \Rightarrow \quad 120+\mathrm{h}=\mathrm{h} \sqrt{3} \times \sqrt{3} \\
& \Rightarrow \quad \mathrm{~h}=60 \\
& \therefore \quad \text { height of cloud from surface of water }=(60+60) \mathrm{m}=120 \mathrm{~m} \\
& \frac{1}{2}
\end{aligned}
$$

30. Area of shaded region

$$
\begin{aligned}
& =\text { Area of square }+ \text { Area of } 2 \text { major sectors. } \\
& =\left[28 \times 28+2 \times \frac{22}{7} \times 14 \times 14 \times \frac{270^{\circ}}{360^{\circ}}\right] \mathrm{cm}^{2} \\
& =28 \times 28\left(1+\frac{33}{28}\right)=1708 \mathrm{~cm}^{2}
\end{aligned}
$$

31. Volume of water in cylindrical tank.
$=$ Volume of water in park.
$\Rightarrow \quad \frac{22}{7} \times 1 \times 1 \times 5=25 \times 20 \times \mathrm{h}$, where h is the height of standing water.
$\Rightarrow \quad \mathrm{h}=\frac{11}{350} \mathrm{~m}$ or $\frac{22}{7} \mathrm{~cm}$
Conservation of water or any other relevant value.
