CBSE Class 10 Maths Solutions

QUESTION PAPER CODE 30/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $x=3$ is one root of the equation

$$
\begin{aligned}
& \therefore \quad 9-6 k-6=0 \\
& \Rightarrow \quad k=\frac{1}{2}
\end{aligned}
$$

2. The required numbers are 2 and 4 .

HCF of 2 and 4 is 2.
3. $\mathrm{OP}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$
4. $a+6(-4)=4$

$$
\Rightarrow \quad a=28
$$

5. $\because \quad \cos 67^{\circ}=\sin 23^{\circ}$

$$
\therefore \quad \cos ^{2} 67^{\circ}-\sin ^{2} 23=0
$$

6. $\frac{\text { ar } \triangle \mathrm{ABC}}{\text { ar } \triangle \mathrm{PQR}}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}$

$$
=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}
$$

SECTION B

7. Let us assume $5+3 \sqrt{2}$ is a rational number.
$\therefore \quad 5+3 \sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}$ where $\mathrm{q} \neq 0$ and p and q are integers.
$\Rightarrow \quad \sqrt{2}=\frac{p-5 q}{3 q}$
$\Rightarrow \quad \sqrt{2}$ is a rational number as RHS is rational
Ihis contradicts the given fact that $\sqrt{2}$ is irrational.
Hence $5+3 \sqrt{2}$ is an irrational number.
(2) $30 / 1$
8. $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{BC}=\mathrm{AD}$
$\left.\begin{array}{ll}\Rightarrow & x+y=30 \\ \text { and } & x-y=14\end{array}\right\}$
Solving to get $\mathrm{x}=22$ and $\mathrm{y}=8$.
9. $\mathrm{S}=3+6+9+12+\ldots+24$

$$
\begin{aligned}
& =3(1+2+3+\ldots+8) \\
& =3 \times \frac{8 \times 9}{2} \\
& =108
\end{aligned}
$$

10. Let $\mathrm{AP}: \mathrm{PB}=\mathrm{k}: 1$

$$
\therefore \quad \frac{6 \mathrm{k}+2}{\mathrm{k}+1}=4
$$

$\Rightarrow \mathrm{k}=1$, ratio is $1: 1$

$$
\text { Hence } m=\frac{-3+3}{2}=0
$$

11. Total number of possible outcomes $=36$
(i) Doublets are $(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)$

Total number of doublets $=6$
$\therefore \quad \operatorname{Prob}($ getting a doublet $)=\frac{6}{36}$ or $\frac{1}{6}$
(ii) Favourable outcomes are $(4,6)(5,5)(6,4)$ i.e., 3
$\therefore \quad \operatorname{Prob}($ getting a sum 10$)=\frac{3}{36}$ or $\frac{1}{12}$
12. Total number of outcomes $=98$
(i) Favourable outcomes are $8,16,24, \ldots, 96$ i.e., 12
$\therefore \quad \operatorname{Prob}($ integer is divisible by 8$)=\frac{12}{98}$ or $\frac{6}{49}$
(3) $30 / 1$
(ii) Prob (integer is not divisible by 8) $=1-\frac{6}{49}$

$$
=\frac{43}{49}
$$

SECTION C

13. $404=2 \times 2 \times 101=2^{2} \times 101$

$$
96=2 \times 2 \times 2 \times 2 \times 2 \times 3=2^{5} \times 3
$$

$\therefore \quad$ HCF of 404 and $96=2^{2}=4$
LCM of 404 and $96=101 \times 2^{5} \times 3=9696$
$\mathrm{HCF} \times \mathrm{LCM}=4 \times 9696=38784$
Also $404 \times 96=38784$
Hence HCF \times LCM $=$ Product of 404 and 96 .
14. $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}-9 \mathrm{x}^{3}+5 \mathrm{x}^{2}+3 \mathrm{x}-1$
$2+\sqrt{3}$ and $2-\sqrt{3}$ are zeroes of $p(x)$
$\therefore \quad \mathrm{p}(\mathrm{x})=(\mathrm{x}-2-\sqrt{3})(\mathrm{x}-2+\sqrt{3}) \times \mathrm{g}(\mathrm{x})$

$$
=\left(x^{2}-4 x+1\right) g(x)
$$

$$
\left(2 x^{4}-9 x^{3}+5 x^{2}+3 x-1\right) \div\left(x^{2}-4 x+1\right)=2 x^{2}-x-1
$$

$\therefore \mathrm{g}(\mathrm{x})=2 \mathrm{x}^{2}-\mathrm{x}-1$

$$
=(2 x+1)(x-1)
$$

Therefore other zeroes are $\mathrm{x}=-\frac{1}{2}$ and $\mathrm{x}=1$
$\therefore \quad$ Therefore all zeroes are $2+\sqrt{3}, 2-\sqrt{3},-\frac{1}{2}$ and 1
15.

ABCD is a parallelogram
\therefore diagonals AC and BD bisect each other
Therefore
Mid point of BD is same as mid point of AC

$$
\begin{aligned}
& \Rightarrow\left(\frac{\mathrm{a}+1}{2}, \frac{2}{2}\right)=\left(\frac{-2+4}{2}, \frac{\mathrm{~b}+1}{2}\right) \\
& \Rightarrow \frac{\mathrm{a}+1}{2}=1 \text { and } \frac{\mathrm{b}+1}{2}=1 \\
& \Rightarrow \mathrm{a}=1, \mathrm{~b}=1 . \text { Therefore length of sides are } \sqrt{10} \text { units each. }
\end{aligned}
$$

OR

Area of quad $A B C D=\operatorname{Ar} \triangle A B D+\operatorname{Ar} \triangle B C D$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABD} & =\frac{1}{2}|(-5)(-5-5)+(-4)(5-7)+(4)(7+5)| \\
& =53 \text { sq units }
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{BCD} & =\frac{1}{2}|(-4)(-6-5)+(-1)(5+5)+4(-5+6)| \\
& =19 \text { sq units }
\end{aligned}
$$

Hence area of quad. $\mathrm{ABCD}=53+19=72$ sq units $1 / 2$
16. Let the usual speed of the plane be $x \mathrm{~km} / \mathrm{hr}$.

$$
\begin{aligned}
& \therefore \quad \frac{1500}{x}-\frac{1500}{x+100}=\frac{30}{60} \\
& \Rightarrow \quad x^{2}+100 x-300000=0 \\
& \Rightarrow \quad x^{2}+600 x-500 x-300000=0 \\
& \Rightarrow \quad(x+600)(x-500)=0 \\
& \quad x \neq-600, \quad \therefore x=500
\end{aligned}
$$

17. Let the side of the square be ' a ' units

$$
\begin{aligned}
& \therefore \quad A C^{2}=a^{2}+a^{2}=2 a^{2} \\
& \Rightarrow \quad A C=\sqrt{2} a \text { units }
\end{aligned}
$$

$$
\text { Area of equilateral } \triangle \mathrm{BCF}=\frac{\sqrt{3}}{4} \mathrm{a}^{2} \text { sq.u }
$$

$$
\text { Area of equilateral } \triangle A C E=\frac{\sqrt{3}}{4}(\sqrt{2} a)^{2}=\frac{\sqrt{3}}{2} a^{2} \text { sq.u }
$$

$$
\Rightarrow \text { Area } \triangle \mathrm{BCF}=\frac{1}{2} \mathrm{Ar} \triangle \mathrm{ACE}
$$

OR
Let $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
$\therefore \quad \frac{\text { ar } \triangle \mathrm{ABC}}{\text { ar } \triangle \mathrm{PQR}}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
Given ar $\triangle \mathrm{ABC}=$ ar $\triangle \mathrm{PQR}$
$\Rightarrow \quad \frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=1=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
$\Rightarrow \mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}, \mathrm{AC}=\mathrm{PR}$
\Rightarrow Therefore $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$. (sss congruence rule)
18. Correct given, To prove, Figure, Construction

Correct proof
19. $4 \tan \theta=3$
$\Rightarrow \quad \tan \theta=\frac{3}{4}$
$\Rightarrow \quad \sin \theta=\frac{3}{5}$ and $\cos \theta=\frac{4}{5}$
$\therefore \quad \frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}=\frac{4 \times \frac{3}{5}-\frac{4}{5}+1}{4 \times \frac{3}{5}+\frac{4}{5}-1}$

$$
=\frac{13}{11}
$$

$$
\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right)
$$

$\Rightarrow \quad 90^{\circ}-2 \mathrm{~A}=\mathrm{A}-18^{\circ}$
$\Rightarrow 3 \mathrm{~A}=108^{\circ}$
$\Rightarrow \mathrm{A}=36^{\circ}$
20. Radius of each arc drawn $=6 \mathrm{~cm}$

Area of one quadrant $=(3.14) \times \frac{36}{4}$
Area of four quadrants $=3.14 \times 36=113.04 \mathrm{~cm}^{2}$
Area of square $\mathrm{ABCD}=12 \times 12=144 \mathrm{~cm}^{2}$
Hence Area of shaded region $=144-113.04$

$$
=30.96 \mathrm{~cm}^{2}
$$

21. Total surface Area of article $=$ CSA of cylinder + CSA of 2 hemispheres

CSA of cylinder $=2 \pi \mathrm{rh}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 3.5 \times 10 \\
& =220 \mathrm{~cm}^{2}
\end{aligned}
$$

Surface Area of two hemispherical scoops $=4 \times \frac{22}{7} \times 3.5 \times 3.5$

$$
=154 \mathrm{~cm}^{2}
$$

Total surface Area of article $=220+154$

$$
=374 \mathrm{~cm}^{2}
$$

OR

Radius of conical heap $=12 \mathrm{~m}$
Volume of rice $=\frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 3.5 \mathrm{~m}^{3}$
$=528 \mathrm{~m}^{3}$
Area of canvas cloth required $=\pi r l$

$$
\begin{aligned}
& l=\sqrt{12^{2}+(3.5)^{2}}=12.5 \mathrm{~m} \\
& \therefore \quad \text { Area of canvas required }=\frac{22}{7} \times 12 \times 12.5 \\
&=471.4 \mathrm{~m}^{2}
\end{aligned}
$$

22. Salary (in thousand Rs)
No. of persons (f)
cf

$5-10$	49	49
$10-15$	133	182
$15-20$	63	245
$20-25$	15	260
$25-30$	6	266
$30-35$	7	273
$35-40$	4	277
$40-45$	2	279
$45-50$	1	280

$$
\frac{N}{2}=\frac{280}{2}=140
$$

Median class is $10-15$

$$
\begin{aligned}
\text { Median } & =l+\frac{\mathrm{h}}{\mathrm{f}}\left(\frac{\mathrm{~N}}{2}-\mathrm{C}\right) \\
& =10+\frac{5}{133}(140-49) \\
& =10+\frac{5 \times 91}{133} \\
& =13.42
\end{aligned}
$$

Median salary is Rs 13.42 thousand or Rs 13420 (approx)

SECTION D

23. Let the speed of stream be $x \mathrm{~km} / \mathrm{hr}$.
$\left.\begin{array}{ll}\therefore & \text { The speed of the boat upstream }=(18-x) \mathrm{km} / \mathrm{hr} \\ \text { and } & \text { Speed of the boat downstream }=(18+\mathrm{x}) \mathrm{km} / \mathrm{hr}\end{array}\right\} \quad 1$
As given in the question,

$$
\begin{array}{llr}
& \frac{24}{18-x}-\frac{24}{18+x}=1 & 1 \\
\Rightarrow & x^{2}+48 x-324=0 & 1 / 2 \\
\Rightarrow & (x+54)(x-6)=0 & \\
& x \neq-54, \therefore x=6 & 1 \\
\therefore & \text { Speed of the stream }=6 \mathrm{~km} / \mathrm{hr} . & 1 / 2
\end{array}
$$

OR

Let the original average speed of train be $\mathrm{xkm} / \mathrm{hr}$.
Therefore $\frac{63}{x}+\frac{72}{x+6}=3$
$\Rightarrow \quad \mathrm{x}^{2}-39 \mathrm{x}-126=0$
$\Rightarrow \quad(x-42)(x+3)=0$
$x \neq-3 \quad \therefore x=42$

Original speed of train is $42 \mathrm{~km} / \mathrm{hr}$.
24. Let the four consecutive terms of the A.P. be
$a-3 d, a-d, a+d, a+3 d$.
By given conditions

$$
\begin{aligned}
& (a-3 d)+(a-d)+(a+d)+(a+3 d)=32 \\
\Rightarrow & 4 a=32 \\
\Rightarrow & a=8 \\
\text { and } & \frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{7}{15} \\
\Rightarrow & 8 a^{2}=128 d^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{d}^{2}=4 \\
\Rightarrow & \mathrm{~d}= \pm 2
\end{array}
$$

\therefore Numbers are $2,6,10,14$ or $14,10,6,2$.
25.

Draw $\mathrm{AE} \perp \mathrm{BC}$

$$
\triangle \mathrm{AEB} \cong \triangle \mathrm{AEC} \quad(\text { RHS congruence rule })
$$

$$
\therefore \quad \mathrm{BE}=\mathrm{EC}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{AB}
$$

Let $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=\mathrm{x}$

Now $\mathrm{BE}=\frac{\mathrm{x}}{2}$ and $\mathrm{DE}=\mathrm{BE}-\mathrm{BD}$

$$
\begin{aligned}
& =\frac{x}{2}-\frac{x}{3} \\
& =\frac{x}{6}
\end{aligned}
$$

$$
\begin{align*}
& \text { Now } \mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2} \tag{array}\\
& \text { and } \mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}
\end{align*}
$$

From (1) and (2) $\mathrm{AB}^{2}-\mathrm{AD}^{2}=\mathrm{BE}^{2}-\mathrm{DE}^{2}$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}^{2}-\mathrm{AD}^{2}=\left(\frac{\mathrm{x}}{2}\right)^{2}-\left(\frac{\mathrm{x}}{6}\right)^{2} \\
& \Rightarrow \mathrm{AD}^{2}=\mathrm{x}^{2}-\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{x}^{2}}{36} \\
& \Rightarrow \mathrm{AD}^{2}=\frac{28}{36} \mathrm{x}^{2} \\
& \Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}
\end{aligned}
$$

OR
Given, to Prove, Construction and Figure
Correct Proof
26. Correct Construction of $\triangle \mathrm{ABC}$

Correct construction of similar to $\triangle \mathrm{ABC}$.
(10) $30 / 1$
27. $\mathrm{LHS}=\frac{\sin \mathrm{A}-2 \sin ^{3} \mathrm{~A}}{2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}}$

$$
\begin{align*}
& =\frac{\sin A\left(1-2 \sin ^{2} A\right)}{\cos A\left(2 \cos ^{2} A-1\right)} \tag{1}\\
& =\frac{\sin A\left(1-2\left(1-\cos ^{2} A\right)\right)}{\cos A\left(2 \cos ^{2} A-1\right)} \tag{1}\\
& =\tan A \frac{\left(2 \cos ^{2} A-1\right)}{\left(2 \cos ^{2} A-1\right)} \tag{1}\\
& =\tan A=\text { RHS } \tag{1}
\end{align*}
$$

28. Here $r_{1}=15 \mathrm{~cm}, r_{2}=5 \mathrm{~cm}$ and $\mathrm{h}=24 \mathrm{~cm}$
(i) Area of metal sheet = CSA of the bucket + area of lower end

$$
=\pi l\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)+\pi \mathrm{r}_{2}^{2}
$$

where $l=\sqrt{24^{2}+(15-5)^{2}}=26 \mathrm{~cm}$
\therefore Surface area of metal sheet $=3.14(26 \times 20+25) \mathrm{cm}^{2}$

$$
=1711.3 \mathrm{~cm}^{2}
$$

We should avoid use of plastic because it is non-degradable or similar value.
29.

Figure
1
Let $A B$ be the tower and ships are at points C and D.

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{BC}}=1 \\
\Rightarrow & \mathrm{AB}=\mathrm{BC}
\end{aligned}
$$

$$
\text { Also } \tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{\mathrm{BC}+\mathrm{CD}}
$$

$$
\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{\mathrm{AB}+\mathrm{CD}}
$$

$$
\Rightarrow \quad \mathrm{AB}+\mathrm{CD}=\sqrt{3} \mathrm{AB}
$$

$$
\Rightarrow \quad C D=A B(\sqrt{3}-1)
$$

$$
=100 \times(1.732-1)
$$

$$
=73.2 \mathrm{~m}
$$

(11) $30 / 1$
30.

OR
Cumulative frequency distribution table of less than type is
Daily income
Cumulative frequency
Less than 100
0

Less than 120
12
Less than $140 \quad 26$
Less than $160 \quad 34$
Less than $180 \quad 40$
Less than 20050

(12) $30 / 1$

